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Abstract: We present a new Generalized Learning Vector Quantization classi-
fier called Optimally Generalized Learning Vector Quantization based on a novel
weight-update rule for learning labeled samples. The algorithm attains stable pro-
totype/weight vector dynamics in terms of estimated current and previous weights
and their updates. Resulting weight update term is then related to the proximity
measure used by Generalized Learning Vector Quantization classifiers. New al-
gorithm and some major counterparts are tested and compared for synthetic and
publicly available datasets. For both the datasets studied, it is seen that the new
classifier outperforms its counterparts in training and testing with accuracy above
80% its counterparts and in robustness against model parameter varition.
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1. Introduction

A successful classifier algorithm is expected to be able to generalize varying re-
alization of a given data distribution with high-accuracy even if data is of noisy
contamination and its learning/training stage to be stable and of low-complexity.
High-accuracy objective is mostly achieved by directing the learning process in fa-
vor of correct class (reward) and against the incorrect class (punishment) in order
to minimize misclassification even if data is rarely available or prone to false judg-
ment [1]. Conventional Learning Vector Quantization (LVQ) and its variants have
been considered a group of the most successful classifiers, which are well-suited to
above objectives [9, 10]. They are based on Hebbian-learning with winner-take-all
and the nearest-neighborhood attributed to by class-associated prototype/weight
vectors in feature space. Despite simplicity in weight update rule in training, the
main problem with standard LVQ classifiers stems from representative proximity
or (dis)similarity measure in learning or training and its appropriate practice in
classification. Therefore, it is mandatory to formulate an adaptation scheme as a
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precaution against unstable behavior in weight update since prototype vector for a
loser class, which might have been incorrectly assigned during training are forced to
diverge from respective samples. Another problem with standard LVQ classifiers is
initialization of weight vectors. Major remedial solutions have focused on develop-
ing an adaptive metric for expressing dissimilarities during training. For example,
Generalized Learning Vector Quantization (GLVQ) realizes learning subject to a
hypothesis-testing based cost function being optimized with use of gradient de-
scent as a metric to represent overall decision-making performance [11]. Although
generalization capability of GLVQ is almost independent of data representation
for small dimensions, weight vectors exhibit saliency as data dimension increases
and stability in weight update becomes a hindering factor. Also, proximity mea-
sure used with GLVQ will fail in processing highly correlated data and overlapped
classes since the metric exploited may fail in representing sample-to-weight prox-
imities [4, 7]. A possible remedy to this shortcoming, which may be attributed
to a functional relevance, is to utilize kernel-based scaling for proximities of indi-
vidual samples to weight vectors, which is coined Generalized Relevance Learning
Vector Quantization (GRLVQ) [3,7]. Training phase of GRLVQ also aims at opti-
mizing a decision-making cost function similar to GLVQ training. Although major
(G/GR)LVQ algorithms consider ensemble of prototype-data proximities as a mea-
sure of learning performance, to our knowledge, there has been no algorithm up-to-
date which provides conditions on stability, and consistency for weight/prototype
weight vectors and their update given arbitrary initialization and robustness to
parametric variation.

In this paper, we present a new GLVQ classifier called Optimally Generalized
Learning Vector Quantization (OGVLQ) based on a new training scheme associated
to a convergence rule for stable weight dynamics and consistent learning. Proposed
rule, then, utilized the proximity measure exploited by previous (G/GR)LVQ al-
gorithms. New and some major (G)LVQ algorithms are tested and compared for
synthetic and publicly available datasets for statistical performance measures. Re-
sults show that the new LVQ is faster in training and assigns correct classes more
successfully with improved robustness against variation in learning parameter and
randomness in initialization on weight vectors compared to the predecessors it is
compared for the datasets studied.

2. LVQ Classification: An Overview

A generic operation of an LVQ classifier, which is shown in Fig. 1, is to assign class
labels which are known a priori to input samples to be classified. For a sample
L-dimensional input column vector x = [x1 . . . xL]

T
with superscript ‘T’ refering

to transposition and given K class labels Ci=1,...,K , where the weight vector of the

j-th class label Cj is wj =
[
wj

1

. . . wjL
]T

, the output class label which corresponds

to a winner is assigned. The winning output vector w∗ is determined as the closest
weight vector, i.e. w∗ = arg d(xk,w

j), where d(xkw
j) is the squared Euclidean

distance between xk and wj .
In training phase of original LVQ [8], with Ntrain samples per epoch, for the

k-th input sample vector xk = x (k) , k = 1, . . . , Ntrain, only the weight vector of
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label 𝐶! is 𝐰! = 𝑤!! …𝑤!!
!
, the output class label which corresponds to a winner is 

assigned. The winning output vector 𝐰∗ is determined as the closest weight vector, i.e. 
𝐰∗ = argmin𝐰! 𝑑(𝐱! ,𝐰!), where 𝑑(𝐱! ,𝐰!) is the squared Euclidean distance 
between 𝐱! and 𝐰!. 

 
 

Fig. 1 Generalized operation of LVQ classifiers. 
 
In training phase of original LVQ [8], with 𝑁!"#$% samples per epoch, for the k-th input 
sample vector 𝐱! = 𝐱 𝑘 , 𝑘 = 1,… ,𝑁!"#$%, only the weight vector of the winning 
class label, 𝐰!

∗ = 𝐰∗(𝑘), is adjusted by 

𝐰!!!
∗ = 𝐰!

∗ ± 𝜉 𝐱! −𝐰!
∗  (1) 

until a pre-specified convergence condition is met, e.g. 𝐰! 𝑘 = 𝐰! 𝑘 − 1  for j = 1, 
…, K. The parameter 𝜉 refers to learning rate that may be updated in iteration, e.g. 
decreasing with the number of iterations/epochs of training. The sign ‘±’ is taken ‘+’ if 
𝐱! has been correctly classified otherwise ‘-’ such that the winning weight vector is 
driven toward the data if class label is correctly identified or vice versa, respectively. 
Other variants of original LVQ, e.g. LVQ2.1 and LVQ3, adjust weight vectors of 
some other classes, e.g. closest loser prototype of having the same class label as the 
sample [13, 14].  
 
On the other hand, training of (G/GR)LVQ classifiers involves optimizing a cost 
function which relates correctly classified samples to particular class weight vectors to 
establish a proximity measure to maximize correct decision as a supervisory operation. 
Such a cost function is given by 

𝐸 = !
!

𝑓 𝜇!∀! ,  (2) 

where the classifier function is 𝑓 𝑢 = !
!!!!!

 for a measure of proximity 𝜇! =

𝜇 𝐱! = !!
!!!!

!

!!
!! !!

! . Dissimilarity measures 𝑑!! = 𝑑 𝐱! ,𝐰!
∗ = 𝐰! = 𝐱! −𝐰! ! and 

Fig. 1 Generalized operation of LVQ classifiers.

the winning class label, w∗k=w∗(k), is adjusted by

w∗k+1 = w∗k ± ξ (xk −w∗k) (1)

until a pre-specified convergence condition is met, e.g. wj (k) = wj (k − 1) for
j = 1, . . . , K. The parameter ξ refers to learning rate that may be updated in
iteration, e.g. decreasing with the number of iterations/epochs of training. The
sign ‘±’ is taken ‘+’ if xk has been correctly classified otherwise ‘−’ such that the
winning weight vector is driven toward the data if class label is correctly identified
or vice versa, respectively. Other variants of original LVQ, e.g. LVQ2.1 and LVQ3,
adjust weight vectors of some other classes, e.g. closest loser prototype of having
the same class label as the sample [13,14].

On the other hand, training of (G/GR)LVQ classifiers involves optimizing a cost
function which relates correctly classified samples to particular class weight vectors
to establish a proximity measure to maximize correct decision as a supervisory
operation. Such a cost function is given by

E =
1

2

∑
∀k
f (µk), (2)

where the classifier function is f (u) = 1
1+e−u for a measure of proximity µk=µ (xk) =

d+k−d
−
k

d+k + d−k
. Dissimilarity measures d+

k = d (xk,w
∗
k=w+) = ‖xk−w+‖2 and d−k =

d (xk,w
∗
k=w−) = ‖xk−w−‖

2
are the squared distances of xk to the closest pro-

totype w+ with the same class label as xk and the best matching prototype w−

with a class label different from that of xk, respectively. The weight update is then
implemented as

w∗k+1 ←− w∗k ± ξ(µk)(xk −w∗k)︸ ︷︷ ︸
∆w∗

k

. (3)

It is seen that (G/GR)LVQ algorithms adopt varying ξ (µk) = ∂f
∂µk

d±k

(d+k +d−k )
2

to project spatial localization of weights with respect to sample xk for improved
accuracy [6].
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3. New GLVQ Algorithm

When training samples have not been pruned with overlapped classes and/or initial
weights are chosen improperly, weights and updates may not converge, which may
lead to instability in learning [2]. Thus, it is desirable to provide a method for
ensuring stable learning through weight update dynamics. For this objective, a
reasonable approach is to minimize the cost function

J =

(
1

2

)∑
k
‖∆w∗k‖

2
, (4)

which is satisfied with decreased gradient of J . To obtain a monotonic decrease

in gradient J it is required to maintain ‖∆w∗k‖
2
<
∥∥∆w∗k−1

∥∥2
. We propose a

relationship ‖∆w∗k‖
2

=
∥∥∆w∗k−1

∥∥2 ± αk
(
‖w∗k‖

2 −
∥∥w∗k−1

∥∥2
)

given sample and a

respective decision-dependent parameter |αk| < 1, where ∆w∗k−1 = w∗k − w∗k−1

and ∆w∗k = w∗k+1 − w∗k. The sign ‘±’ is taken ‘-’ if w∗k and w∗k−1 both refer to
the same class label otherwise ‘+’. Thus, it is possible to relate w∗k (w∗k−1) and
∆w∗k(∆w∗k−1) for stable dynamics. We consider the convergence rule

(∆w∗k)
T
w∗k ≤ −η ‖w∗k‖

2
(5)

similar to the approach in [5, 15, 16], where η > 0. By using w∗k−1 = w∗k −∆w∗k−1

(5) can be rewritten as

(∆w∗k)
T
w∗k ∓ η

{
‖∆w∗k‖

2−
∥∥∆w∗k−1

∥∥2

αk

}
±
(
∆w∗k−1

)T
w∗k−1, (6)

where the operator sequence ‘≤ −,+’ (>,+,−) is considered from left to right if w∗k
and w∗k−1 refer to the same (different) class label(s). Equating the right-hand side
of (6) to 0 as a boundary for convergence and combining the resulting expression
with that of (5) corresponding to (k − 1)-th term will yield

‖∆w∗k‖
2

=
∥∥∆w∗k−1

∥∥2
(1∓ αk). (7)

For convenience, it is appropriate to consider αk = µk for relating new learning
algorithm to spatial saliency in decision making exploited by (G/GR)LVQ classi-
fiers. Then, use of gradient for (7) leads to

(∆w∗k)
T

= (∆w∗k−1)
T

(
1∓ αk ∓

∆w∗k−1(
d+
k + d−k

)2 [d+
k

∂d+
k

∂w+
k

− d−k
∂d−k
∂w−k

])
, (8)

where
∂d±k
∂w±

k

= 2(xk−w±)
T

with sign previously given for (G/GR)LVQ. The signs

‘−,−’ (+,+) refers to w∗k and w∗k−1 be of same (different) class label(s) in guid-
ing the weight update and class labeling rules along with convergence rule during
training.
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4. Experiments

New classifier, and its previously cited original LVQ, LVQ2.1, and GLVQ coun-
terparts were designed and compared for accuracy in testing and training time
complexity with two sets of experiments for ξ = 0.02, ξ = 0.05, and ξ = 0.1, re-
spectively. The chosen values of ξ are to simulate the training and convergence
rate characteristics of designed classifiers against parameter variations, which may
be considered as resulting from a suitable adaptive model [12].

The first set of experiments serves solely for visualizing the capability of the new
algorithm in predicting the class labels of test samples given overlapping synthetic
density profiles with use of random subsampling. For this purpose, 100 experiments
were performed for each ξ value. At each experiment, 100 random vectors x =
[x1 x2] were populated from each of five 2D (bivariate) normal densities where 20
(80) samples were set aside per class in forming a training (testing) dataset, i.e. the
total number of training (testing) samples Ntrain = 100 (Ntest = 400). The class
labels and respective densities are C1: N([1.5 0], [1 −0.5;−0.5 1]), C2: N([−1.5 0],
[1 0.75;0.75 1]), C3: N([1.5 −1.5], [1 0.5;0.5 1]), C4: N([0 −1.5], [1 −0.75;−0.75 1]),
and C5: N([0 1.5], [1 0.5;0.5 1]) where the first quantity in parentheses is the mean
vector while the second is the covariance matrix with rows separated by semicolon.
As an illustrative example, scatter for a testing sample dataset and respective
classification results with original and proposed LVQ classifiers for ξ = 0.05 are
shown in Fig. 2 Some important statistical measures, such as average and standard
deviation in accuracy, i.e. classification success score in testing, and training time
complexity in terms of number of epochs, are given in Tab. I.

Algorithm

Accuracy or classification # of training epochs,
success in testing, %, Average/std. deviation

Average/std. deviation
ξ = 0.02 ξ = 0.05 ξ = 0.1 ξ = 0.02 ξ = 0.05 ξ = 0.1

OGLVQ 83.8 / 3.1 84.5 / 2.7 81.1 / 3.0 43.1 / 4.6 36.3 / 3.2 35.2 / 3.4
LVQ 53.5 / 4.8 46.1 / 5.1 51.5 / 5.0 61.4 / 5.9 59.2 / 6.2 51.1 / 5.6

LVQ2.1 72.6 / 4.1 63.5 / 4.5 67.4 / 4.4 57.3 / 6.2 50.5 / 5.7 47.5 / 5.3
GLVQ 74.7 / 3.2 77.8 / 3.9 71.8 / 4.2 47.9 / 4.6 40.6 / 5.2 43.7 / 5.2

Tab. I Statistical performance measures of new (OGLVQ) and some other LVQ
algorithms for 2D normal densities chosen.

From above figure, it is seen that despite considerable overlap between classes,
new algorithm is capable of identifying even those test samples that fall in interclass
regions. On the other hand, original LVQ algorithm creates Voronoi-like regions,
i.e. performing clustering operation rather than classification, which means that it
is unable to classify such samples and issues incorrect class labels for those samples.

The second set of experiments employs cross-validation with average of K = 10
subgroup outputs as K-fold model building and evaluating the performance of re-
spective classifiers studied. For this purpose, Character Trajectories Dataset, which
is publicly available at [17], was used. The dataset consists of 3-dimensional 2858
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(a) 

 
(b)  

 
(c) 

 
Fig. 2 Example scatter of (a) a testing dataset of 2D normal densities, and 
classification results with (b) original LVQ, and (c) proposed algorithms for 
𝜉 = 0.05. 

 
 
 

Fig. 2 Example scatter of (a) a testing dataset of 2D normal densities, and clas-
sification results with (b) original LVQ, and (c) proposed algorithms for ξ = 0.05.

labeled samples of pen tip segment trajectories for the 20 single pen-down charac-
ters, e.g. ‘a’, ‘e’, ‘w’. The feature vectors are composed of respective coordinates
x, y, and pen tip force. From the dataset, randomly chosen 2850 samples from the
dataset were utilized Cross-validation was implemented by setting one out of ten
subgroups of the dataset for testing while the remaining nine was used for model
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building or training. Tab. II presents some major characteristics of the classifiers
studied in statistical terms, i.e. average and statistical deviation of classification
accuracy in testing and training time complexity.

Algorithm

Accuracy or classification # of training epochs,
success in testing, %, Average/std. deviation

Average/std. deviation
ξ = 0.02 ξ = 0.05 ξ = 0.1 ξ = 0.02 ξ = 0.05 ξ = 0.1

OGLVQ 85.6 / 3.3 82.8 / 3.3 84.6 / 3.0 42.3 / 3.6 28.6 / 2.5 31.8 / 3.0
LVQ 51.9 / 5.0 48.6 / 4.5 56.9 / 4.3 56.2 / 4.7 46.9 / 4.3 42.1 / 4.0

LVQ2.1 70.1 / 4.4 70.9 / 4.8 66.6 / 4.7 47.7 / 5.0 40.8 / 4.6 39.6 / 4.4
GLVQ 78.9 / 4.1 79.2 / 3.7 81.0 / 3.8 48.9 / 4.2 44.3 / 4.2 42.5 / 4.0

Tab. II Statistical performance measures of new (OGLVQ) and some other LVQ
algorithms for Character Trajectories Dataset with for K = 10 fold cross-validation.

From Tabs. I and II, it is seen that for both datasets, the OGLVQ classi-
fier exhibits better and consistent statistical characteristics in training and testing
classification performance against variation in learning parameter and random ini-
tialization in weight vectors than the other LVQ classifiers for the datasets utilized.
Although GLVQ classifier exhibits comparable performance in classifying test sam-
ples only for ξ = 0.05, OGLVQ outperforms its counterparts it is compared to in
statistical terms of training, generalization and robustness against model parameter
variation.

5. Conclusions

We presented a new Generalized Learning Vector Quantization classifier called Op-
timally Generalized Learning Vector Quantization. New algorithm is based on a
weight-update rule for training. The algorithm seeks stability in prototype/weight
vector dynamics and their updates. Resulting weight update term is then associ-
ated to the proximity measure used by Generalized Learning Vector Quantization
classifiers. New algorithm and some major counterparts were tested and compared
for synthetic and publicly available datasets. Results indicate that new classifier is
faster in training and is more successful and robust in classifying test samples of
datasets studied than the counterparts it is compared.
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