
A MODIFIED HIGHER-ORDER FEED
FORWARD NEURAL NETWORK WITH

SMOOTHING REGULARIZATION

Kh.Sh. Mohamed∗, W. Wu∗∗, Y. Liu†

Abstract: This paper proposes an offline gradient method with smoothing L1/2

regularization for learning and pruning of the pi-sigma neural networks (PSNNs).
The original L1/2 regularization term is not smooth at the origin, since it involves
the absolute value function. This causes oscillation in the computation and dif-
ficulty in the convergence analysis. In this paper, we propose to use a smooth
function to replace and approximate the absolute value function, ending up with a
smoothing L1/2 regularization method for PSNN. Numerical simulations show that
the smoothing L1/2 regularization method eliminates the oscillation in computa-
tion and achieves better learning accuracy. We are also able to prove a convergence
theorem for the proposed learning method.
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1. Introduction

Pi-sigma neural networks (PSNNs) [4, 10–12] as a kind of higher-order neural net-
works can provide more powerful mapping capability than conventional feedforward
neural networks, and have been successfully applied to many applications such as
the equalization of nonlinear satellite channels, the real classification of seafloor sed-
iments, and the image coding. The PSNN was introduced by Ghosh and Shin [11].
It computes the product of sums of the input layer, instead of the sums of the prod-
ucts. And the weights connecting the product layers and the summation layers are
fixed to 1.

There are two practical ways to accomplish the gradient weights updating in
the network learning process: the online gradient approach, in which weights are
updated promptly after a training sample is supplied into the network; and the
offline gradient approach, where the network weights are updated after all the
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training samples have been treated by the network (cf. [15, 16]). We shall use the
offline gradient approach in this paper.

Various kinds of regularization terms have been used in many applications, such
as the method in [2] in terms of weight decay [5,6], the methods based on Akaike’s
information criterion (AIC) [3, 13], and the method employing model prior in the
Bayesian structure [8]. These regularization terms are inserted into the standard
cost function for network learning to improve the learning ability and to get a
sparse network.

Many regularization terms take the form of the Lp norm of the weights, leading
to the following new error function

E(W) = Ē(W) + λ‖W‖pp, (1)

where Ē(W) is a usual error function depending on the weights W of the network,

‖W‖p = (
∑n
k=1 |wk|p)

1
p is the p-norm of the weights of the network, and λ is the

regularization parameter. In particular, the L0 regularizer is the earliest regular-
ization method applied for variable selection, and its solution is the most sparse.
But it is a combinatory optimization problem and is shown to be NP-hard [14].
The popular L1 regularizer is discussed in [9]. The L1/2 regularizer is suggested
in [17] and, among many favourable properties, it is shown to result in better spar-
sity than the L1 regularizer. A smoothing L1/2 regularizer is proposed in [1, 7].
And in the numerical experiments, it behaves equally good as or even better than
the L1 regularizer and the standard L1/2 regularizer for neural networks. There-
fore, in this paper, we shall use the smoothing L1/2 regularizer for the network
regularization.

The organization of this paper is as follows. In section 2, we describe PSNN
and the offline gradient method with smoothing L1/2 regularizer. In Section 3,
a convergence theorem is given. Section 4 contains some supporting simulation
results. The proof of the convergence theorem is given in Section 5. Finally, a brief
conclusion is provided in Section 6.

2. Offline gradient method with smoothing L1/2

regularization

In this section, we describe the network structure of PSNN and the off-line gradient
method with smoothing L1/2 regularization.

2.1 Error function with L1/2 regularization

Let p, n and 1 respectively be the dimensions of the input layer, the summation layer
and the product layer of PSNN. Denote by ωj = (ωj1, . . . , ωjp)

T ∈ Rp (1 ≤ j ≤ n)
the weight vector connecting the input layer and the k-th summing unit, and write
ω = (ωT

1 , . . . , ω
T
n ) ∈ Rnp. Note that the weights from summing units to product

unit are fixed to 1. Let g : R→ R be a given activation function. The topological
structure of SPNN algorithm is shown in Fig. 1.
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Fig. 1 Pi-sigma neural network structure.

For an input data vector x ∈ Rp, the network output is

y = g

 n∏
j=1

(
p∑
i=1

(ωjixi)

) = g

 n∏
j=1

(ωj · x)

 , (2)

where ωj · x is the usual inner products of ωj and x.
Suppose that we are supplied with a set of training samples {xl, Ol}Ll=1 ⊂

Rp × R, where Ol is the desired ideal output for the input xl. By adding an L1/2

regularization term into the the usual error function, the final error function takes
the form

E(ω) =
1

2

L∑
l=1

Ol − g
 n∏
j=1

(ωj · xl)

2

+ λ
n∑
j=1

p∑
i=1

|ωji|1/2. (3)

The partial derivative of the above error function with respect to ωji is

Eωji(ω) =

L∑
l=1

δl

 n∏
j=1

(ωj · xl)

 n∏
k=1
k 6=j

(ωk · xl)xli +
λsgn(ωji)

2|ωji|1/2
, (4)

i = 1, 2, · · · , p; j = 1, 2 · · · , n;

where λ > 0 is the regularization parameter, Eωji
(ω) = ∂E(ω)

∂ωji
and δl(t) = −(Ol −

g(t))g′(t).
Starting from an arbitrary initial value ω0 , the offline gradient method with

L1/2 regularization term updates the weights ωm iteratively by

ωm+1
ji = ωmji +4ωmji , (5)

with

4ωmji = −η

 L∑
l=1

δl

 n∏
j=1

(ωmj · xl)

 n∏
k=1
k 6=j

(ωmk · xl)xli +
λsgn(ωmji )

2|ωmji |1/2

 , (6)
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i = 1, 2, · · · , p; j = 1, 2, · · · , n; m = 0, 1, · · ·
where again η > 0 is the learning rate.

2.2 Error function with smoothing L1/2 regularization

The usual L1/2 regularization is non-differentiable at the origin, since it involves
the absolute value function. We replace the absolute value function by a smooth
function f(t) defined below:

f(t) =


−t, t ≤ −a;

− 1
8a3 t

4 + 3
4a t

2 + 3
8a, −a < t < a;

t, t ≥ a;

(7)

where a is a small positive constant. Then we have

f ′(t) =


−1, t ≤ −a;

− 1
2a3 t

3 + 3
2a t, −a < t < a;

1, t ≥ a;

f ′′(t) =

{
0, |t| ≤ −a;

− 3
2a3 t

2 + 3
2a , |t| ≥ a;

and

f(t) ∈ [
3

8
a,∞), f ′(t) ∈ [−1, 1], f ′′(t) ∈ [0,

3

2a
].

Now, the new error function with smoothing L1/2 regularization term is

E(ω) =
1

2

L∑
l=1

Ol − g
 n∏
j=1

(ωj · xl)

2

+ λ
n∑
j=1

p∑
i=1

f1/2(ωji). (8)

The partial derivative of the error function E(ω) in Eq. (8) with respect to ωji is

Eωji
(ω) =

L∑
l=1

δl(
n∏
j=1

(ωj · x))
n∏
k=1
k 6=j

(ωk · xl)xli +
λf ′(ωji)

2f1/2(ωji)
, (9)

i = 1, 2, · · · , p; j = 1, 2, · · · , n.
Starting from an arbitrary initial value ω0, the offline gradient method with smooth-
ing L1/2 regularization term updates the weights ωm iteratively by

ωm+1
ji = ωmji +4ωmji , (10)

with

4ωmji = −η

 L∑
l=1

δl

 n∏
j=1

(ωmj · x)

 n∏
k=1
k 6=j

(ωmk · xl)xli +
λf ′(ωmji )

2f1/2(ωmji )

 , (11)

i = 1, 2, · · · , p; j = 1, 2, · · · , n; m = 0, 1, · · ·
where again η > 0 is the learning rate.
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3. Main results

The following conditions will be used later on to prove the convergence theorem.

Proposition 1. |δl(t)|, |δ′l(t)| ≤ C0, |g(t)|, |g′(t)|, |g′′(t)| ≤ C1,∀t ∈ R, 1 ≤ l ≤ L.

Proposition 2. max{‖xl‖, |ωmj · xl| } ≤ C0,∀1 ≤ j ≤ n, 1 ≤ l ≤ L,m = 0, 1, · · ·

Proposition 3. The parameters η and λ are chosen to satisfy: 0 < η < 2
Mλ+C

where M =
√
6

4√
a3

and C = C2/2 + C3.

Proposition 4. There exists a compact set Φ such that ωm ∈ Φ and the set
Φ0 ∈ {ω ∈ Φ : Eω(ω) = 0} contains finite points.

Theorem 5. Let the error function E(ω) be defined by Eq. (8), and the weight
{ωm} be generated by the iteration algorithm Eq. (10) for an arbitrary initial value
ω0. If propositions 1-3 are valid, we have the following error estimates:

(i) E(ωm+1) ≤ E(ωm)

(ii) There exists E∗ ≥ 0 such that limm→∞E(ωm) = E∗

(iii) limm→∞ |Eωji
(ωm)| = 0, i = 1, 2, . . . , p; j = 1, 2, . . . , n.

Furthermore, if proposition 4 is also valid, we have the following strong convergence:

(iv) There exists a point ω∗ ∈ Φ0 such that limm→∞ ωm = ω∗.

4. Numerical simulations

To illustrate the efficiency of our proposed learning method, we consider the numer-
ical simulations of two classification problems (XOR and Parity problems) and two
function approximation problems (Gabor and Mayas functions). We compared
our batch gradient method with smoothing L1/2 regularization (BGSL1/2) with
the batch gradient method with L1/2 regularization (BGL1/2) and batch gradient
method with L2 regularization (BGL2).

4.1 Classification problems

The activation function is chosen as g(x) = 1/(1+e−x). Each of the three algorithms
takes 10 trials for XOR and parity problems, respectively. Typical performances
are shown in Figs. 2–5. For the XOR problem the network has 2 input nodes,
2 summation nodes, and 1 output node, with the learning rate η = 0.06 and the
regularization parameter λ = 0.001. For the parity problem, the network has 4 input
nodes, 5 summation nodes, and 1 output node, with the learning rate η = 0.04 and
the regularization parameter λ = 0.001. For both the two cases, the initial weights
are selected randomly within the interval [−0.5, 0.5], and the maximum iteration
number is 3000.

From Figs. 2–5, we see that the proposed learning method BGSL1/2 enjoys the
best learning accuracy, while BGL2 is the worst. In particular, as predicted by
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Fig. 2 Learning errors of different algorithms for XOR problem.
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Fig. 3 Norms of gradient of different algorithms for XOR problem.
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Fig. 4 Learning errors of different algorithms for parity problem.
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Fig. 5 Norms of gradient of different algorithms for parity problem.

Theorem 5, the error of BGSL1/2 decreases monotonically and the gradient of the
error function goes to zero in the learning process.

Tabs. I and II show the results of the average errors over the 10 trials and the
average norms of gradients for each learning algorithms. The Average Numbers
of neurons Eliminated (ANE in brief) by the pruning over the 10 trials are also
shown in Tabs. I and II. The comparison convincingly shows that BGSL1/2 is more
efficient and has better sparsity-promoting property than BGL1/2 and BGL2.

Algorithm Average training error Norm of gradient ANE

BGSL1/2 1.2336e-004 0.0233 5.4
BGL1/2 1.8418e-004 0.0301 5.1
BGL2 1.7076e-004 0.0387 4.6

Tab. I Numerical results for solving XOR problem.

Algorithm Average training error Norm of gradients ANE

BGSL1/2 5.9008e-006 0.0108 7.1
BGL1/2 1.1690e-005 0.0164 6.7
BGL2 2.4495e-005 0.0211 4.9

Tab. II Numerical results for solving Parity problem.

4.2 Approximation of Gabor function

Now, we try to approximate the following Gabor function (cf. Fig. 6)

F (x, y) =
1

2π(0.5)2
exp

(
x2 + y2

2(0.5)2

)
cos(2π(x+ y)).
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Fig. 6 Gabor function.

36 input training samples are selected from an evenly 6× 6 grid on −0.5 ≤ x ≤ 0.5
and −0.5 ≤ y ≤ 0.5. Similarly, the input test samples are 256 points selected from
the 16 × 16 grid on −0.5 ≤ x ≤ 0.5 and −0.5 ≤ y ≤ 0.5. The neural network
has 3 input nodes, 6 summation nodes, and 1 output node. The initial weights are
randomly chosen from [−0.5, 0.5]. The learning rate η = 0.6, and the regularization
parameter λ = 0.00001. The maximum iteration number is 30000.

Typical network approximations by using the three algorithms are plotted in
Figs. 7–9. We observe that our method BGSL1/2 gives the best approximation of
the Gabor function. Tab. III presents the average training errors, the average test
errors, and the ANE, over the 10 trials for the three learning algorithms. Again,
we see that our method BGSL1/2 has the best accuracy and the best sparsity-
promoting property.

Algorithm Average training error Average test error ANE

BGSL1/2 0.0104 0.1285 2.7
BGL1/2 0.0293 0.1875 2.6
BGL2 0.0269 0.2444 2.8

Tab. III Numerical results for approximating Gabor function.

4.3 Approximation of Mayas function

This example is to approximate the following Mayas function

F (x, y) = 0.26(x2 + y2)− 0.48x× y.

64 input training samples are selected from an evenly 8× 8 grid on −0.5 ≤ x ≤ 0.5
and −0.5 ≤ y ≤ 0.5. Similarly, the input test samples are 900 points selected from
the 30 × 30 grid on −0.5 ≤ x ≤ 0.5 and −0.5 ≤ y ≤ 0.5. The neural network
has 3 input nodes, 5 summation nodes, and 1 output node. The initial weights are
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Fig. 7 Gabor function Approximation performane by BGSL1/2.
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Fig. 8 Gabor function Approximation performane by BGL1/2.
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Fig. 9 Gabor function Approximation performane by BGL2.
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randomly chosen from [−0.5, 0.5]. The learning rate η = 0.9, and the regularization
parameter λ = 0.0001. The maximum iteration number is 10000.

Tab. IV shows that, among the three algorithms, BGSL1/2 exhibits the best
approximation accuracy and the best sparsity for the Mayas function.

Algorithms Average training error Average test error ANE

BGSL1/2 0.0013 0.0141 10.0
BGL1/2 0.0035 0.0344 7.3
BGL2 0.0465 0.2043 3.3

Tab. IV Numerical results for approximating Mayas function.

5. Proofs

In this section, the convergence theorem of the smoothing L1/2 regularization al-
gorithm is proved. First,we give two lemmas.

Lemma 6. Suppose that the propositions 1 and 2 are satisfied and {ωm} is gen-
erated by Eq. (10), then we have

 n∏
j=1

(ωm+1
j · xl)−

n∏
j=1

(ωmj · xl)

2

≤ C2

n∑
j=1

p∑
i=1

‖4ωmji‖2, (12)

and

L∑
l=1

δl

 n∏
j=1

(ωmj · xl)

 n∏
j=1

(ωm+1
j · xl)−

n∏
j=1

(ωmj · xl)


≤ (−1

η
+ C3)

n∑
j=1

p∑
i=1

‖4ωmji‖2. (13)

Proof. Using the Taylor expansion to first and second orders, we have

n∏
j=1

(ωm+1
j · xl)−

n∏
j=1

(ωmj · xl) =
n∑
j=1

 n∏
k=1
k 6=j

tk

 (∆ωmj · xl)

n∏
j=1

(ωm+1
j · xl)−

n∏
j=1

(ωmj · xl)

(14)
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=
n∑
j=1

n∏
k=1
k 6=j

(ωmk · xl)(4ωmj · xl) +
1

2

n∑
j=1
s=1
j 6=s


n∏
k=1
k 6=j
k 6=s

tj,sk

 (4ωmj · xl)(4ωms · xl)

=
n∑
j=1

n∏
k=1
k 6=j

(ωmk · xl)(4ωmj · xl) + σ, (15)

where tk and ti,sk are in between ωm+1
k · xl and ωmk · xl. By proposition 2, we can

see that
|tk| ≤ 2C0, |ti,sk | ≤ 2C0, k = 1, 2, . . . , n. (16)

Thus, Eq. (12) can be easily obtained from Eq. (14) and Eq. (16). By Eq. (16), we
have

σ ≤ 1

4
(2C0)n−2 max

1≤l≤L
‖xl‖2

n∑
j=1
s=1
j 6=s

(‖4ωmj ‖2 + ‖4ωms ‖2) ≤ C ′3
n∑
j=1

p∑
i=1

‖4ωmji‖2. (17)

A combination of proposition 1, Eq. (10), Eq. (11), Eq. (14) and Eq. (17) leads to

L∑
l=1

δl

 n∏
j=1

(ωmj · xl)

 n∏
j=1

(ωm+1
j · xl)−

n∏
j=1

(ωmj · xl)


=

L∑
l=1

δl

 n∏
j=1

(ωmj · xl)

 [
n∑
j=1

(4ωmj · xl)
n∏
k=1
k 6=j

(ωmk · xl) + σ]

≤
n∑
j=1

[
L∑
l=1

δl

 n∏
j=1

(ωmj · xl)

 n∏
k=1
k 6=j

(ωmk · xl)xl] · (4ωmj ) + LC0C
′
3

n∑
j=1

p∑
i=1

‖4ωmji‖2

=
n∑
j=1

p∑
i=1

[
L∑
l=1

δl

 n∏
j=1

(ωmj · xl)

 n∏
k=1
k 6=j

(ωmk · xl)xli]4ωmji + LC0C
′
3

n∑
j=1

p∑
i=1

‖4ωmji‖2

= −1

η

n∑
j=1

p∑
i=1

‖4ωmji‖2 + C3

n∑
j=1

p∑
i=1

‖4ωmji‖2

= (−1

η
+ C3)

n∑
j=1

p∑
i=1

‖4ωmji‖2. (18)

Here C3 = LC0C
′
3. This completes the proof.

Lemma 7. Suppose that H : Ru → R is continuous and differentiable on a com-
pact set Ď ⊂ R and that Ω =

{
Z ∈ Ď|OH(Z) = 0

}
has only finite number of

points. If a sequence {Zm}∞m=1 ∈ Ď satisfies limm→∞ ‖Zm+1 − Zm‖ = 0 and
limm→∞ ‖OH(Zm)‖ = 0, then there exists a point Z∗ ∈ Ω such that limm→∞ Zm =
Z∗.
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Proof. Lemma 7 is almost the same as Theorem 14.1.5 in [18] and the detail of the
proof is omitted

The Proof of Theorem 5 is alienated into four parts dealing with statements (i),
(ii), (iii) and (iv), respectively.

Proof. For convenience, we use the following notations

ρm =
n∑
j=1

p∑
i=1

(4ωmji )2. (19)

Then, it follows from the error function E(ω) in Eq. (8) that

E(ωm+1) =
1

2

L∑
l=1

Ol − g
 n∏
j=1

(ωm+1
j · xl)

2

+ λ
n∑
j=1

p∑
i=1

f1/2(ωm+1
ji ), (20)

and

E(ωm) =
1

2

L∑
l=1

Ol − g
 n∏
j=1

(ωmj · xl)

2

+ λ
n∑
j=1

p∑
i=1

f1/2(ωmji ). (21)

Proof to (i) of Theorem 5. By Eq. (12), Eq. (13), Eq. (20), Eq. (21) and the Taylor
expansion, we have

E(ωm+1)− E(ωm)

=
1

2

L∑
l=1


Ol − g

 n∏
j=1

(ωm+1
j · xl)

2

−

Ol − g
 n∏
j=1

(ωmj · xl)

2


+ λ

n∑
j=1

p∑
i=1

[f1/2(ωm+1
ji )− f1/2(ωmji )]

=
L∑
l=1

δl

 n∏
j=1

(ωmj · xl)

 n∏
j=1

(ωm+1
j · xl)−

n∏
j=1

(ωmj · xl)


+

1

2

L∑
l=1

δ′l(t
′
l)[

n∏
j=1

(ωm+1
j · xl)−

n∏
j=1

(ωmj · xl)]2 + λ
n∑
j=1

p∑
i=1

[f1/2(ωm+1
ji )− f1/2(ωmji )]

=
n∑
j=1

p∑
i=1

L∑
l=1

δl


 n∏
j=1

(ωmj · xl)

 n∏
t=1
t6=j

(ωmt · xl)xli4ωmji

+
L∑
l=1

δl

 n∏
j=1

(ωmj · xl)

σ

+
1

2

L∑
l=1

δ′l(t
′
l)

 n∏
j=1

(ωm+1
j · xl)−

n∏
j=1

(ωmj · xl)

2

+ λ
n∑
j=1

p∑
i=1

[f1/2(ωm+1
ji )− f1/2(ωmji )]
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=
n∑
j=1

p∑
i=1

[
−1

η
4ωmji − λ

f ′(ωmji )

2f1/2(ωmji )

]
(4ωmji ) +

n∑
j=1

δj

 n∏
j=1

(ωmj · xl)

σ

+
1

2

L∑
l=1

δ′l(t
′
l)

 n∏
j=1

(ωm+1
j · xl)−

n∏
j=1

(ωmj · xl)

2

+ λ
n∑
j=1

p∑
i=1

[f1/2(ωm+1
ji )− f1/2(ωmji )]

= −1

η

n∑
j=1

p∑
i=1

(4ωmji )2 + λ
n∑
j=1

p∑
i=1

[
f1/2(ωm+1

ji )− f1/2(ωmji )−
f ′(ωmji )

2f(ωmji )
1/2

]

+
L∑
l=1

δl

 n∏
j=1

(ωmj · xl)

σ +
1

2

L∑
l=1

δ′l(t
′
l)

 n∏
j=1

(ωm+1
j · xl)−

n∏
j=1

(ωmj · xl)

2

= −1

η

n∑
j=1

p∑
i=1

(4ωmji )2 +
L∑
l=1

δl

 n∏
j=1

(ωmj · xl)

σ

+
1

2

L∑
l=1

δ′l(t
′
l)

 n∏
j=1

(ωm+1
j · xl)−

n∏
j=1

(ωmj · xl)

2

+
λ

2
F ′′(tj,m)

n∑
j=1

p∑
i=1

(4ωmji )2

≤
[
−
(

1

η
− λ

2
F ′′(tj,m)

)
+

(
C2

2
− 1

η
+ C3

)] n∑
j=1

p∑
i=1

(4ωmji )2, (22)

where t′l is in between
∏n
j=1(ωm+1

j · xl) and
∏n
j=1(ωmj · xl), tj,m ∈ R is in between

ωm+1
j and ωmj , M =

√
6

2
√
a3

and F (x) ≡ (f(x))1/2. Note that

F ′(x) =
f ′(x)

2
√
f(x)

, (23)

and that

F ′′(x) =
f ′′(x)

2
√
f(x)

≤
√

6

2
√
a3
. (24)

Thus, by using the Lagrangian mean value theorem for f(x) and proposition 3, we
have

E(ωm+1)− E(ωm) = [−(
1

η
− λ

2
F ′′(tj,m)) + (

C2

2
− 1

η
+ C3))]

n∑
j=1

p∑
i=1

(4ωmji )2

≤ −(
2

η
− λM − C2

2
− C3)

n∑
j=1

p∑
i=1

(4ωmji )2

≤ 0, (25)

This completes the proof to statement (i) of Theorem 5.
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Proof to (ii) of Theorem 5. From the conclusion (i), we know that the non-negative
sequence {E(ωm)} decreases monotonously. But it is also bounded below. Hence,
there must exist E∗ ≥ 0 such that limm→∞E(ωm) = E∗. The proof to (ii) is thus
completed.

Proof to (iii) of Theorem 5. Write β = 1
η−λM−

C2

2 −C3 and ρq =
∑n
j=1

∑p
i=1(4ωqji)2.

It follows from proposition 2 that β > 0. By using Eq. (25) we get

E(ωm+1) ≤ E(ωm)− βρm ≤ · · · ≤ E(ω0)− β
m∑
q=0

ρq.

Since E(ωm+1) > 0, we have

β
m∑
q=0

ρq ≤ E(ω0) <∞.

Setting m→∞, we obtain

∞∑
q=0

ρq ≤
1

β
E(ω0) <∞.

Thus,

lim
m→∞

ρm = 0.

This leads to

lim
m→∞

|4ωmji | = 0, (26)

and completes the proof.

Proof to (iv) of Theorem 5. Note that the error function E(ω) defined in Eq. (8)
is continuous and differentiable. According to Eq. (26), proposition 4 and lemma
7, we can easily get the desired result, i.e ., there exists a point ω∗ ∈ Φ0 such that

lim
m→∞

ωm = ω∗.

This completes the proof to (iv).

6. Conclusion

Some weak and strong convergence results are established for an offline gradient
method with smoothing L1/2 regularization for PSNN training. Criterions for
choosing the appropriate learning rate and the penalty parameter are given to
guarantee the convergence of the learning process. Numerical experiments show
that the sparsity and the accuracy of BGSL1/2 are better than those of BGL1/2
and BGL2.
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