BUS ARRIVAL TIME PREDICTION BASED
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Abstract: Considering the correlations of the input indexes and the deficiency
of calibrating kernel function parameters when support vector machine (SVM)
is applied, a forecasting method based on principal component analysis-genetic
algorithm-support vector machine (PCA-GA-SVM) is proposed to improve the
precision of bus arrival time prediction. And the No. 232 bus in Shenyang City of
China is taken as an example. The traditional SVM and Kalman Filtering model
and GA-SVM are also employed to make comparative analysis on the prediction
rate, respectively. The result indicates that PCA-GA-SVM obtains more accurate
prediction results of bus arrival time prediction.
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1. Introduction

Bus arrival time prediction has already become a key problem of realizing high
service level of Intelligent Transport System (ITS) in modern cities. On one hand,
precisely bus arrival time prediction in urban public transport system enables pas-
sengers to arrange their own itinerary more reasonable, improves the passengers’
utility of public transport, and further promotes the development of mass transit;
on the other hand, precise bus arrival time prediction makes the real-time informa-
tion of dispatch of buses achievable, lowers the operating cost of the entire transit
system and further improves the service level of ITS. However, the operation of
buses is within enormous and complex urban transport system, therefore, bus ar-
rival time is subject to a variety of factors including physical properties of the
roads, running time, traffic structure, passengers’ willing, weather, land use struc-
ture of the surrounding. The emphasis of accurate bus arrival time prediction lies
on rational choices of influencing factors, collection of valid observation data and
models to predict bus arrival time precisely.
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2. Literature review

Bus arrival time forecast is a crucial research topic in the study of urban transit
dispatch, and there are abundant researches mainly concentrate on two aspects:
models for bus arrival time prediction and suitable input indexes selection.

2.1 Models for bus arrival time prediction

Altinkaya & Zontul [2] divided existing research methods into four categories: Mod-
els based on the Historical Data [5,25, 26, 33], Statistical Models [6, 13], Kalman
Filtering Model [15, 23] and Machine Learning Models [8,9,20]. A discrimina-
tive method, Support Vector Machine (SVM), has been successfully applied to
protein sequence classification and shown the superiority to the other methods
[7,11,14,16,19]. Relevant researchers compared the forecast effect of these four mea-
sures, and found that the Machine Learning Models, represented by SVM, reveals
the best performance of sample amounts requirement and prediction effects. There-
fore, bus arrival time prediction based on SVM became a hotpot of study [17,27].
The dynamic selection of both penalty parameter and kernel function parameter
is difficult in traditional SVM, therefore “SVM+”, as the major hybrid model,
emerged for purpose of improve the precision of forecast based on SVM, have been
the research trends of bus arrival time prediction [1,4,10,18,20,22,24,28,33,36,37].

2.2 Selection of prediction index

Apart from Models based on the Historical Data, all the other three types of
methods need to select and collect input indexes while bus arrival time prediction
is conducted. The selection of bus arrival time index in existing researches is showed
in Appendix 1. Different studies imply that bus arrival time is affected by the time
period, weather, road segment and vehicle operation status. The weight of the
identical index varies in different researches. As we know, sufficient input indexes
will significantly increase the forecasting accuracy; nevertheless, the correlations
between indexes will influence the prediction performance.

Therefore, in order to forecast bus arrival time precisely without the deficiency
in value of the penalty parameter and the kernel function parameter as well as the
deficiency of the correlation of input indexes, this paper first proposes a PCA-GA-
SVM model to predict the bus arrival time. Then, take No. 232 bus in Shenyang
of China as an example, and the prediction performance of PCA-GA-SVM is com-
pared to results of traditional SVM model and Kalman Filtering model.

3. Methodologies

3.1 Introduction of PCA-GA-SVM model
3.1.1 Modeling process

The present paper complies with the following modeling process to conduct bus
arrival time prediction (Fig. 1). The input index include the time period, weather,
road segment, the latest run time of the next link, the running time of the last bus.
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First, apply PCA to lower collected data, dimension of characteristic index of
SVM’s training samples, thereby settle relevant errors of characteristic index of
traditional SVM’s training samples, and explain redundant problems.

Second, apply GA to determine the penalty coefficient C' and RBF kernel func-
tion value v in traditional SVM model, avoiding the influence on prediction accu-
racy by empirical values.

Finally, apply dynamic slippage to ascertain the training sample set. It is
illustrated as follows, when forecasting the time that bus arrives at certain stop
at moment ¢ + 1, dynamically select the time and other characteristic index of
preceding n shifts of buses as the training sample to predict the time that bus
arrives at certain stop at moment ¢ + 2. When forecasting moment ¢ + 2, slippage
moves forward a moment in order to retrain sample and continue to predict.
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Fig. 1 Flowchart of proposed PCA-GA-SVM model.

3.1.2 Regression of SVM

Given a set of samples (z1,41), (z2,y2),.-., (x;,y)(x; € X C R*y; € Y C R),
among which the relation is unknown. SVM is able to utilize a nonlinear mapping
®, mapping data x to a high dimensional feature space H and conduct linear
approximation in this space. Mapping function is found to nicely approximate the
given data sample. According to statistical theory, this function can be expressed
as follows

f(z) =wep(x)+0b. (1)
Define this regression estimation problem as a problem of a loss function to

minimize branching, the final regression function is minimizing and regularizing
risk functional under certain constraints
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Therein, the first item is regularization item, contributing to improve the ability
of function generalization; the second item is empirical risk functional, which can be
determined by different loss function; constant C' > 0 controls the degree of penalty
in samples which exceed error €. The distribution is demonstrated as follows when
insensitive loss function is applied

Le(yi, f(x:)) = max(|y; — f (2:)| — €,0). 3)

With regard to L. (y;, f(z;)), if absolute value of deviation between estimated
output f (z;) and desired output y; is less than e, it equals to 0; otherwise it
equals the absolute value of deviation minus €. By introducing non-negative slack
variables &;, £, the minimizing formula (2) can be converted into

l
min;||w|2+C§;(§i+§f)v (4)
sty —wep(r;) —b<e+&, (5)
wep(z;) +b—y <e+&,i=1,...,1, (6)
&> 0. (7)

The minimum of formula (4) is a convex quadratic optimization problem. The
Lagrange function is introduced as follows

(a; —al)z; = 0. (8)

l
w—
1=

Then

l
fx) =) (ai—a})p(x;) o p(z) +b. (9)

i=1

Plug kernel function K (z;, ;) into formula (9) we can get the following formula

l
flx) = (a5 — af) K (w5, 25) +b. (10)

i=1

Kernel function K(z;,x;) is the core of SVM, different kernel functions can
form different SVM. The present paper mainly uses Radical Basis Function (RBF):
K(zi,zj) = exp(—v|z; — xj\Z), for its sound performance, where 7 is the parame-
ter.
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3.1.3 Principal component analysis

Train the sample set (z;,;), (i = 1,...,n,2 € R?) which is the base of SVM model,
therein x; = (2;1, T2, ..., T;q) as an indicator vector, where every index may have
certain correlations with each other. It may occur that the sample information
overlapped too much for there are high correlations between sample indexes when
choosing training samples. Therefore, PCA is serviceable to summarize the primary
aspect of the numerous data and reduce the dimension of sample index data through
these aggregative indicators representing characters in certain field independently
and respectively, thereby improve the validity of training samples.

For every training sample, the variable index which it affects is x; = (21, 2, - - -,
Zin), Where x;; representing the j-th index value of the i-th sample. Assume that
the corresponding index is a random variable x-; to the j-th index, the correspond-
ing sample average is T-;, sample standard deviation is S-;.

First, standardize, e-; = (z -; —%)/S";;

Second, calculate e = (e1,ea,...,e,)T covariance matrix >_;

Third, use > u = Au to calculate and obtain eigenvalue of matrix Y A =
diag(A1, A2, ..., A,) and eigenvector matrix u = [ug,uz,...,u,]T, among which
Uj = [Ujl, Uj2, - - ,an];

Fourthly, acquire following principal component by preceding calculations:

Fi=wujeq +upen + -+ +uige.q,
Fo =wugie +ugen + -+ uzqe.q.

Fg=ugeq+uges + -+ ugqe.q.

Therein, u3) + ufy + - + u?d =1, where u; = (uj1,uj2,...,ujq), then ulu;r =0.
Assume A1 > Xy > -+ > Ay, then name F-4 is the d-th principal component.
Fifthly, cumulative = Z?zl A/ Z;l=1 Aj, where k < d. When the accumulated
variance contribution rate of k principal components is reach 90%, they will be
taken as new indexes.
Sixthly, new training samples can be expressed as (F;,y;) after lowering the
dimension of principal components, where F; = (Fj1, Fyo, ..., Fig).

3.1.4 Genetic algorithm

RBF kernel function adopted by SVM model involves an unknown parameter ~;
And the penalty coefficient C' is also unknown. Therefore, it is of necessity to preset
these two parameters. The present paper applies genetic algorithm to calibrate
parameter C' and v to prevent errors from human trial.

This research uses CVy (D-delete Crossed Validation). It randomly chooses
d samples from n training sample sets as predicted sample sets, and select n —
d samples as training samples to form learning machine simultaneously, further
utilize training sample sets to conduct training and formation of learning machine,
eventually forecast the sample sets and observe the accuracy of prediction. For
arbitrary training sample set, it is required that E is small enough in the following
formula
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v o d

ZZ yu : (11)

i=1 j=1

Therein, y;; represents the actual value of j-th trained sample in i-th com-
bination of predicted sample set, while §;; represents the predicted value of j-th
trained sample in i-th combination of predicted sample set; d represents sam-
ple amounts of each extracted predicted sample set; (Z) represents the quantity
of all the combination. There are some literatures which have successfully ap-
plied heuristic algorithms for parameters for SVM. These results indicate a useful
means for our SVM [29, 30]. Furthermore, heuristic algorithms are also tested
by lots of researchers as an effective method to solve this kind of complex prob-
lems [21,31,32,34]. Thus, we attempt to use genetic algorithm for parameter op-
timization of SVM. Therefore, the prediction accuracy can reach maximum when
the aforementioned fitness function takes the minimum value, through searching
for the parameters C' and v with genetic algorithm.

GA optimizes the parameters of SVM as the following steps.

Algorithm 1 GA algorithm for parameter optimization.
Set the initial parameters of GA, such as population size and number of itera-
tions, set num = 1.
Determine the encoding interval of C, ¢, 4. Real number coding is chosen to
generate the chromosomes.
Mean square error (MSE) is chosen as the fitness function.
repeat
Roulette selection is used cooperating with elite strategy.
Crossover and mutation operators are used to create a child population.
Set num = num +1.
if fitness agrees then
Output the best individual and optimal solution.
else
Run the operators of selection, crossover and mutation.
end if
until the stopping criterion is met.

3.2 Application of PCA-GA-SVM on forecasting bus arrival
time

In aim of proceeding the reasonable prediction of bus arrival time, the present
paper sets the parameters as follows.

First, the two variables, weather and time of day, are taken into account as a
situation combination in this essay.

Second, the other 6 variables are set as follows: segments of road (x}_,,, , from
k-th time spot to k4 1-th time spot); number of lanes in segments (miﬂkﬂ, k+1—
k in segment); number of intersegments in segment (xi ki1 k+1 — kin segment);
running time in pre-segment (x%_l _,5» Tunning time of current busin k —1 — k
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segment); dwell time at last stop (372—1 _ > dwell time of current bus at £ point
in k — 1 — k segment); running time in pre-segment (acg k1) Tunning time of
last schedule). 2?2, 23 represent the static characteristics of a specific operation,
while 2!, 2%, 2°, 2% mark the dynamic operation information of the vehicle, changing
under different physical properties of road segments and traffic conditions.
Finally, after obtaining new input variables ((F*, F2,..., F™),n < 6) based on
PCA, use the new n principal components to forecast the bus running time yx_ 511
in k4 1 — k segment. Then, use mi_l_m to output the arrival time ¢ at k+ 1

time spot.

4. Empirical study

4.1 Data collection and analysis

Shenyang is the central city of Northeast in China. In order to testify the predic-
tion effectiveness of the proposed model, this essay takes No. 232 bus in Shenyang,
Liaoning province, China, as an object of research (Fig. 2). Its round is from San-
taizi to Wanda Plaza. And No. 232 representative the most typical bus in Shenyang.
Santaizi is suburbs and Wanda Plaza is a hub in the vicinity. What’s more, it is
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T B ° . Songsh
242 Hospital ¢ 7

= No.2 of Provincal
ting © . I Chinese Hospital
Xinle'Borm™e , .
« T Jellows ‘e Xinje-Site %
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Efaoning-Masion®e=_ . 4!s
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" Proviacal Shiyan
' Middle School
Ningshansroad : '
Bei Xing Bashan road -
No#4 Hospital s
- North P
A Crossing
iy Y rengy S
< "West of North Squarere = .7 Fc 0
S + Shenyieryuan ‘
Yuan Road %" -
* . °Taiyuan Street
YWanda Plaza

1

S

Beiliufa Road

Fig. 2 No. 232 bus route.
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punctuality to facilitate calculation. The origin of No. 232 bus is Santaizi while the
terminal is Wanda Plaza with 11 kilometers long, passing 19 stops (18 segments).
The operation time is from 5:20 to 23:00. It runs every 2 minutes in peak hours
and every 3 to 5 minutes in normal hours. The present paper selects 8 primary
stops (7 segments) as predicted objects among all (Santaizi, 242 Hospital, Xinle
Dorm, Provincial Shiyan Middle School, No. 4 Hospital, Huangsi Square, Beiliuma
Road and Wanda Plaza).

Considering weather condition (sunny or rainy) and time of day (peak hour
(7:00 to 8:00) and normal hour (9:30 to 10:30)) are categorical data, the paper
designs 4 groups (sunny-peak hour; sunny-normal hour; rainy-peak hour; rainy-
normal hour) to collect data. The present paper surveyed on the vehicle from
July 9t", 2015 to July 22", 2015 and collected 290 terms of data in 8 major
stops (sunny-peak hour: 94 terms; sunny-normal hour: 94 terms; rainy-peak hour:
42 terms; rainy-normal hour: 60 terms). Therein, 240 terms are used as training
samples (sunny-peak hour: 80 terms; sunny-normal hour: 80 terms; rainy-peak
hour: 35 terms; rainy-normal hour: 35 terms), and the surplus 50 terms are taken
as test samples. The statistical information of sample data is depicted in Tab. I
and Tab. II.

Index

Segment length (km) 3.0 2.33 3.3 ... 1.9 1.08 1.58
Num. of Lanes 5.5 485 6 ... 47 52 4

Num. of intersegments 56 7.8 8 ... 3 447 6.69
Running time of pre-segment (second) 331 265 167 ... 31 257 89
Dwell time of pre-segment (second) 46 109 128 ... 65 14 79

Running time of last schedule (second) 375 50 265 ... 158 172 99

Tab. I Sample statistics data.

Index Max Min Avg. S.E.
Segment length (km) 33 1.08 1.62 1.01
Num. of Lanes 6 4 5.44 1.45
Num. of intersegments 8 3 4.72 1.57
Running time of pre-segment (second) 331 31 141.71 83.30
Dwell time of pre-segment (second) 128 14 51.18 34.38

Running time of last schedule (second) 375 50  174.72 97.38

Tab. IT Description of statistical data of sample data.

4.2 Assessment methods on prediction effectiveness

Prediction effectiveness is mainly measured by mean absolute error (MAE), mean
absolute percentage error (MAPE) and root-mean-square error (RMSE), to evalu-
ate prediction effectiveness of arrival time at certain stop.
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E tl.‘unning _ tﬁfunning
MAE; = ———— , (12)

runnin srunnin
t; & grunmne

1 i
MAPE; = — > s x 100%, (13)
Z (t?unning o tjunning)Q
MSE; = t : . 14
RMSE, \/ — (14)

Therein, ¢;""""® is the observed bus running time at stop i, ¢;"""'"® is the

predicted bus running time at stop i, and N is the quantity of prediction.

4.3 Prediction process of PCA-GA-SVM
4.3.1 Principal component analysis

Aimed at the 6 terms of original index in four groups of training samples, this essay
applies PCA to lower the dimension and convert into new training samples.

First, the pair correlations among 6 indicators under four groups are demon-
strated in Appendix 2. Obviously, information overlapping exists between indica-
tors by different degrees.

Second, in view of four situation combination, SPSS software is applied to
lower the dimensions based on PCA procedure. According to the standard that
accumulated variance contribution rate > 90 %, transform the 6 indicators into 4
principal components by dimension reduction (Appendix 3).

4.3.2 Calibration of C' and v based on genetic algorithm

This essay applies genetic algorithm in order to ascertain the sound value of un-
known parameter C in the penalty function and RBF kernel function . The
present paper primarily adopts real coding, select entities proportionately, cross
the single points and the basic bit mutate to proceed setting key steps of genetic
algorithm. With regard to fitness of entities, use every C' and « substitute into
RBF kernel function from initial groups and then train the previous sample sets
by SVM. After the predicted sample values are obtained, substitute them in to
formula (6) to get E. This essay sets that d equals 10 in genetic algorithm. For
smaller £ means bigger fitness value, take E as the standard to filter entities. With
accordance to 4 groups of situations, the optimal value C' and value ~ are acquired
through genetic algorithm, illustrated in Tab. TII.

4.3.3 Prediction based on SVM

The 3 new indictors are established through PCA. The prediction operates again
after training the samples of C' and ~y, optimized by genetic algorithm.

Meanwhile for the sake of comparison, the present paper uses traditional SVM
model to compare, therein the values of C' and v are obtained through trial meth-
ods, equaling to 0.2 and 1.54, respectively.
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E Group 1 Group 2 Group 3 Group 4

Q

g

s PCA- GA-SVM PCA- GA-SVM PCA- GA-SVM PCA- GA-SVM
& GA-SVM GA-SVM GA-SVM GA-SVM

C 0.2532 0.2615 0.2561 0.2387 0.6235 0.6421 0.6451 0.6251
v 1.5262 1.5036 1.5640 1.6841 1.6284 1.6355 1.6173 1.5972

Tab. III The Results of Calibration on C and v in PCA-GA-SVM & GA-SVM.

4.4 Forecast by variable-parameter state-space model
4.4.1 Kalman filtering model

In order to compare the models, this essay paper applies variable parameter state-
space model of Kalman filter to predict bus arrival time

yt:xtﬂt+zt7+ut,t:132a"'aTa (15)

where y; is the dependent variable, x; is the explanatory variable vector of 1 x m,
uy is the random disturbance term, z; is the explanatory variable matrix with fixed
parameter, 7 is the fixed parameter; 3; is unknown parameter vector of m x 1, which
is to-be-estimated and time-variant, reflecting the change of relations of dependent
variables influenced by explanatory variables. Assume that variable parameter ;
is described by AR (1)

By = YBi—1 + & (16)

Tt is also feasible to extend into AR (p) model, and suppose that:

(ut,st)’~N<(g>,<g2 g)),tzl,Q,...,T. (17)

u; and g4 are independent from each other, and they comply with a normal distri-
bution that the mean, variance and covariance equal to 0, o and Q respectively.

4.4.2 Variable-parameter state-space model

This paper applies variable-parameter state-space model to conduct bus arrival
time forecast simultaneously, with regard Segment length, Num. of Lanes, Num.
of intersegments, Weather, Time of day as fixed impact indicators, Running time
of pre-segment, Dwell time of pre-segment, Running time of last schedule as the
variable parameters impact indicators, to calibrate and forecast the model param-
eters accordingly. While Num. of Lanes, Weather, Time of day are not significant,
the final results of parameter calibration are exhibited in Tab. IV after eliminating
them.
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Coefficient Std. Error z-Statistic Prob.

C (Segment length) 44.36805 6.303209  7.038962  0.0000
C (Num. of intersegments) 1.951060 0.362121  5.387867  0.0000

Final State Root MSE z-Statistic Prob.
SH (Running time of pre-segment) 0.680401 0.044156  15.40891  0.0000

SH (Dwell time of pre-segment) —0.178132 0.053010  —3.360347 0.0008
SH (Running time of last schedule) 0.588617 0.091026  6.466476  0.0000
Log likelihood —88.08036  Akaike info criterion 8.189124
Parameters 2 Schwarz criterion 8.288309
Diffuse priors 3 Hannan-Quinn criter.

Tab. IV Results of calibration on parameters in variable-parameter state-space
model.

4.5 Comparison of the prediction results

Based on the three evaluation quota values, MAE, MAPE and RMSE, it is apparent
to perceive that:

First, under 4 groups of situations, the effectiveness of prediction is PCA-GA-
SVM > GA-SVM > SVM > VPSSM. Under 4 groups of situations, the average
prediction error rate is about 10 % of PCA-GA-SVM. The one of GA-SVM model
is around 12 %. The one of traditional SVM model is around 15 %, while VPSSM
model takes the worst prediction effectiveness, reaching nearly 22%. However,
the time of prediction is also PCA-GA-SVM > GA-SVM > SVM > VPSSM. The
difference of the computation time is within 5.04s. GA increases the calculation
time of the PCA-GA-SVM. But it does not have much influence in performance of
the PCA-GA-SVM.

Second, weather conditions influence the accuracy of four categories of mod-
els evidently. The outcome of evaluation indicators unveiled that the prediction
precision of sunny days in three models is superior to that of rainy days.

Finally, the effects of the peak hour or the normal hour are of less influence rela-
tively on prediction accuracy. In consider the time of day, the evaluation indicators
result show that the forecast precision during normal hour is slightly higher than
during peak hour based on these three models. However, the average discrepancy
is within 5% only.

It is discerned that, compared with current prediction methods, the proposed
PCA-GA-SVM model is capable of predict bus arrival time more accurately, for
this model solves the correlation of information of input index and modifies the
precision of traditional SVM kernel function parameter.

5. Conclusions
Considering that the traditional SVM model is flawed on index correlation and
unknown parameter calibration of kernel function for bus arrival time prediction,

the present paper designs a bus arrival time prediction measure based on PCA, GA
and SVM. The proposed PCA-GA-SVM model can reduce dimension of character-
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istic indexes and shorten the time of training. Moreover, the PCA-GA-SVM model
optimizes the penalty coeflicient and kernel function value to improve the classifi-
cation accuracy. Compared with the traditional SVM, the PCA-GA-SVM is more
accurate. Taking No. 232 bus in Shenyang, Liaoning province, China, as an object
of research, analyzes and compares the prediction effectiveness between PCA-GA-
SVM model, GA-SVM model, traditional SVM model and VPSSM model. By
means of comparing three types of prediction effectiveness indicators, it is obvious
that though prediction accuracy varies under different weather and time, PCA-
GA-SVM model always performs quite well.
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Authors [12] Jeong [40] Yu [38] Yu [39] Yu [35] Yu [3] Chen [17] Lin
& Rilett etal. etal. etal etal et al. et al.

Time of day Vv Vv Vv Vv Vv

Weather Vv V4

Segment Vv vV Vv Vv

Bus time interval Vv Vv

Bus running time N4 Vv vV Vv Vv N4

Arrival time Vv Vv

Departure time 4 N4

Stop distance

Dwell time Vv

Day of week 4 N4
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Tab. V Comparison of calculation methods.
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Appendix 2

Scenario 1
Index 1 Index2 Index3 Index4 Index5 Index 6
Index 1 1
Index 2  0.1729 1
Index 3 0.6024 0.1644 1
Index 4 —0.3130 —0.0957 —0.2892 1
Index 5 0.0522 —0.1540 0.0733 0.8467 1
Index 6  0.4989 0.1577 0.9980 —0.2906 0.0512 1
Scenario 2
Index 1 Index2 Index3 Index4 Index5 Index 6
Index 1 1
Index 2 0.1654 1
Index 3  0.5504 0.1662 1
Index 4 —-0.3178 —0.0575 —0.2544 1
Index 5 0.0741 —0.1467  0.1364 0.8549 1
Index 6  0.5462 0.1730 0.9984 —0.2687 0.0370 1
Scenario 3
Index1 Index2 Index3 Index4 Index5 Index6
Index 1 1
Index 2  0.1654 1
Index 3  0.5473 0.1638 1
Index 4 —-0.3175 —0.0582 —0.2529 1
Index 5 0.0799 —0.1419 0.1539 0.8432 1
Index 6  0.5504 0.1662 0.9997 —0.2531 0.1496 1
Scenario 4
Index1 Index2 Index3 Index4 Index5 Index 6
Index 1 1
Index 2 0.1654 1
Index 3 0.5451 0.1615 1
Index 4 —0.3184 —0.0561 —0.2405 1
Index 5 0.0823 —0.1557  0.1400 0.8742 1
Index 6  0.5473 0.1638 0.9992 —0.2501 0.1361 1

Tab. VI Person correlation coefficient matriz.
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