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Abstract: The paper presents an information model for representation of brain lin-
ear and nonlinear resonance phenomena based on information nullors. In the brain
functions the rhythms and quasi periodicity of processes in neural networks play the
outstanding (significant) role. It is why adaptive resonance theory (ART) including
resonant effects has been studied for a long time by many authors. The periodicity
in the transfers of signals between the long-term memory (LTM) and short-term
memory (STM) creates a possibility of resonance system structure. LTM with in-
formation content representing expectations and STM covering sensory information
in resonance process offer effective learning. Nonlinear adaptive resonance creates
conditions for new knowledge, or inventory observation. In the paper this feature is
newly modelled by an information gyrator that best fits these linear and non-linear
phenomena.
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1. Introduction

The adaptive resonance theory (ART) has been developed by Stephen Grosberg
and Gail Carpenter [6,8-11]. This theory can be understood as the dynamical
description of the information processing in the brain. ART provides a unified
systematic perspective for the understanding of periodic processes in interaction
of intention and attention in the course cognitive activities. Expectations start to
focus on data worthy of learning, and these attentional activities are confirmed
when the system as a whole incorporates them into periodical resonant states [2,5].

For futher investigation it is useful to determine current of information and call
it information flow ®, which is measured in information unit per second. We can
analogously define information content I, which determines the quantity of work
per information unit [23] or determines the amount of eliminated uncertainity.
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From determination of information flow and information content, one can define
other information physics quantities. One of the important quantities can be infor-
mation power as the product of information flow times information content [19,26].
The information model of the processes between the long-term memory (LTM)
and short-term memory (STM) is given on Fig. 1. When a top-down expectation
I, is flowing to the short-term memory (STM as ®; flow, the bottom-up ®, is
bringing the more relevant information content I; to long-term memory (LTM).

Long term memory - LTM

I Short term memory - STM I

Sensors and actuators level

Fig. 1 Schematic expression of ART.

The effective interpretation of this information model is determined in the case
of resonant process between STM and LTM.

In this paper, the adaptive resonance theory (ART) is studied by using the
theoretical information model. In Ch.2 the information model of ART is presented
with help of new information components like information transmittance and con-
ductance, information nullor and information norator with the use of concepts
introduced in electrical circuits theory. Ch.3 introduces the resonant functional
blocks in brain neural structure and Ch.4 introduces two-port representation of
the resonant feedback route between STM and LTM. Ch.5 extends this approach
to non-linear resonance between STM and LTM that creates condition for a new
knowledge, or inventory observation. In Ch.6 the possible applications in very
complex uncertain systems are mentioned together with better understanding of
emergencies in brain neural networks. Ch.7 brings small example of resonance
effect in communication among neural networks.

2. Information circuits

2.1 Electric-information analogies

The electric-information analogies were firstly presented in [23]. The comparison
of basic electrical and information variables is given in Tab. I.

Information flow ® measured in [b/s] defines the amount of information in [bit]
transmitted per second. This definition is analogous to the flow of electric charge
in electric circuits often carried by moving electrons in a wire.

Information content I measured in [J/bit] determines the quantity of work
in [J] done due to available one [bit] of information. It is analogous to an electric
potential that represents the amount of work needed to move a unit positive charge
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Electrical variables Information variables

Electrical current [C/s] Information flow [bit/s]
Electrical potential / voltage [J/C] Information content [J/bit]

Electrical power [J/s] Information power [J/s]

Tab. I Comparison of electrical and information variables.

from a reference point to a specific point inside the field without producing any
acceleration.

In information systems, it is difficult to determine the work in [Joule] and there-
fore this variable can be specified as a number of excess events that are activated
in the system. Information content can consequently be defined as the number of
excess events [23] in the system per bit of received information. This means that in
order to obtain any concrete information content, we would already have to have
done work, such as processing of available information flow, reducing the entropy
in received information, etc.

From knowledge of information flow and information content, one can define
other information physics quantities. One of the important quantities can be in-
formation power PI, defined as the product of information flow and information
content. Analysis easily reveals that the unit of information power is work per
second realized thanks to the received bit of information. For information systems
(IT/ICT), information power is defined as the number of excess events per second
caused by the receipt of one bit of information.

By introducing the quantity of information power, one can demonstrate that
the impact of information is maximized if the received information flow is appropri-
ately processed by the recipient and transformed into the best possible information
content (interpretation). If there is a flow of valuable information that the recipient
is incapable of processing, the information power level is low. On the other hand, if
the recipient is able to make good use of the information flow, but the flow does not
carry needed information, the result is likewise a low level of information power.

2.2 Information model of ART

If the information content I, is considered as well as a mean for decreasing of
entropy in the neural network and in the system decision under the condition of
information additivity. Then it is possible to apply the basic principles of the
general system theory, as they are expressed, for example in the theory of electrical
circuits. The basic approach stems from the description of one information element

by equations:
I 11 t12) (11)
pr— . 1
<¢2> <t21 too o1 (1)

where I, I5 are input and output information content of information segment or
branch and ¢1, ¢2 are input and output data flow, respectively. Let us further
expect the all variables in operator form to replace the necessity to use convolution
expression in time domain.
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The graphical expression via oriented graph and the relation to Eq. (1), as well
as respective matrix description are introduced on Fig. 2.

b

Fig. 2 Oriented graph representing segment of information network described by
FEq. 1.

In the oriented graph expression on Fig. 2, t1; is the transfer function of infor-
mation content, to; is function of coding, t12 represents decoding process and tos
is the transfer function of the data (or signal) flow. Coding and decoding process
represents the relation between information flow and content

The set of Eqgs. (1) can be expressed in matrix form:

e o

The matrix T:

T— {t” ’512], (3)

to1  ta2

is the cascade matrix describing the “linear” information connection between LTM
and STM. Symbols I; represent information content decreasing the entropy in the
approximation of linear dependence on relevant data (signal) flow.

Then:
e [ is in the model ART input content from STM

e [, is in the model ART output content installed in LTM
e &, is input information flow from STM

e 5 is output information flow to LTM

The schematic expression of the basic components of the information circuit is
introduced on Fig. 3. The information model of neural network consists of two-
poles [3]:
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e transmittance, (is defined as the ratio of I, and ®)

e conductance, (is defined as the rate of ® and I)

e nullator, (the input Information content is the same on both nodes)

e norator, (the information content does not depend on the information flow)

These components are described by following graphical symbols and equations:

aA)I=R;- ¢, b)o=G;-I, ¢)I=¢p=0, d)I# f().

I ) l ) ) ?
Rl Gl nullator norator

L

a) Transmittance b) Conductance c¢) Nullors d) Norators

Fig. 3 Elementary two-poles of information network without memory behavior in
the model of neural structure.

The detailed meaning of the introduced representation of two-poles is more
deeply described in [22,23]. R; represents the relation between signal flow and
Information content and G; has the reverse function. Nullators and norators are
described by equation c), d) and the meanings of these two-poles are more described
in [3,14-16].

3. Network components of resonant functional
blocks in brain neural structure

Let us devote attention to two-ports transforming information content to data
(signal) flow and the data flow to information content, as it is represented by
branches t15, t2; on Fig. 3.

This kind of transforming branches can by represented by two-port matrix
description where the nullor representation using conductance Go; is presented:

[2;] N {Gom 8} Bﬁ] ' (4)

Another representation by the matrix transmittance Rg; can be written as

follows:
A= o [ ®
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According [16] Eq. (4), (5) express the function of “controlled sources” as
information-controlled source of signal flow, (4) and by signal flow-controlled in-
formation content (5). Elementary two-port model structure has the form as it is
shown in Fig. 4(a), or Fig. 4(b) [16].

¢2:G21'Il I2:7R12'¢1

—r —  — € —

-Rq

Fe FEOQ T Gk

(a) (b)
Fig. 4 Model of the branch (a) ta1, (b) t12.

For the modelling of STM and LTM it is necessary to work with components
having the memory ability — as there are for example “information capacitance”,
(Fig. 5(b)) and “information inductance” (Fig. 5(b)).

I=4 [Fodt =1 [ (bt
2 [0

e 18,

(a) (b)

Fig. 5 (a) Information capacitance, (b) Information inductance.

The integration shown on Fig. 5(a) and Fig. 5(b) represents the accumulation
of information flow or information content in memories STM and LTM.

4. Two-port representation of the resonant feed-
back route between STM and LTM

If the connection between LTM and STM is approximated as a “parallel” connec-
tion of linear two-ports (Fig. 6), and if each two-port is described by “conductance”

matrix:
01 _ (Y Yie| |6
ol = [ ) 2] ®
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then the parallel connection can be expressed as the sum of the two-port matrices
of each partial two-ports.

[Y] =]+ [¥a]. (7)

-

D [v1] D

le Iel
[v]

Fig. 6 Parallel connection of information segments.

If there is a cascade matrix T available for each two-port, then it is possible to
determine the partial conductance matrix in the form [14]:

—tin 1
tiz tiz
[ Attt ] (8)

t12 ti2”

Anti-parallel connection of two-ports from Fig. 4(a) means that input of one
controlled source is connected in parallel to the output of the second one (Fig 7).

Fig. 7 Information “gyrator”.

This anti-parallel connection forms the so-called information gyrator, which
can be described by the conductance matrix in the form [15]:

0 D
M=% o o
If the output of information gyrator is terminated by the information capaci-

tance of LTM, then the input of this gyrator behaves as an information inductor,
(Fig. 8).
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Fig. 8 Transformation of the memory capacitance into the memory inductance.

9]
—_—

]

The signal flow ® in to inductance can consequently be expressed by the equa-
tion, which represents the integration (i.e. accumulation of information content in
the memory):

D? [t

0= —/ I(t)dt. (10)
Cat Jo

If this signal flow ® is connected to STM capacitance Clt, (Fig. 9), then one

will obtain the resonant connection with the resonant frequency:

D2

fo= 2m/C1:Cat

(11)

e

Fig. 9 Resonant connection with information gyrator.
The respective resonant curve is in general shown on Fig. 10, where f represents

the frequency of information exchanges between STM and LTM.

5. Nonlinear resonant feedback route between STM
and LTM

Let the connections between STM and LTM be in principle of non-linear nature
(Fig. 11), which is the case that appears quite often. Then it is possible to suppose
that matrix relations are valid as well. On the other hand, the matrix elements
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Fig. 11 A nonlinear model of the relation between LTM and STM.

become nonlinear functions of their controlling variables. For example, Ds; is
non-linearly dependent on the level I.

Then the resonance connection is also a nonlinear one and the resonant fre-
quency can be approximated by the equation:

_ D12Doy (I1)
fO(Il)* 271_\/@7 (12)

where the resonant frequency fy is dependent on the information content I3 and
the respective resonant curve changes its form as it is shown in Fig. 12.

First, one can observe the shift of resonant frequency. In the case where the
non-linearity is of higher order this situation projects significantly on the resonant
characteristic in which the effect of hysteresis can be observed.

Such effects were already described by R. Thom in his theory of catastrophes
[25]. In this paper the meaning of hysteresis in information systems appears e.g.
in the connection between LTM and STM, which can be considered as the instant
jump in the level of interpretation of incoming signal, quick learning, or even the
discovery of new content, generally the emergent phenomenon.
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Fig. 12 The resonant characteristic between LTM and STM with the hysteresis
caused by non-linearity.

In the model of nonlinear resonance effect, the instant jump from point A to
point B on Fig. 12 brings the instant increase of information content in LTM and
simultaneously in STM. (See experimentally obtained result in Fig. 13)

In principle, this jump can be smooth, but in many practical cases, it can be
influenced by some random modulation. However, if this uncertainty is significant
one, another apparatus must be used for appropriate system analysis. This kind
of behavior is typical namely for large and very complex systems [19].

6. Brain neural networks and resonance

The behavior of very complex uncertain systems can be typical especially for the
cases in that respective structures involve significant parts of living bodies. In
such a case, the similarity with the above-mentioned operation of LTM and STM
functional blocks can form useful base for further investigation.

Thinking about how the information transmission in biological neuron is pro-
cessed, one has to take into account that information is transmitted through electric
synapses principally by bits, however through chemical synapses such information
transmission is realized by higher information quanta. These quanta are repre-
sented by information content of vesicles, mediators or transmitters (since various
names are used for these information carriers, let us further call them simply carri-
ers). At chemical synapses during one directional information transmission between
both parts of synapses, many carriers act in parallel.

As far as we know, there is not enough complete knowledge at our disposal
about:

e the eventual differences of the information content involved in various parallel
acting information carriers especially in chemical synapses,

e the process of information maturing in chemical synapses carriers and of the
mechanisms of approaching the threshold level of such synapses,
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e the process of combination of particular information coming into chemical
synapse via impulses on axon membrane,

e how such complex of information is accepted in the following synaptic part
of the cooperating neuron.

Both the transmissions in the electric and the chemical synapses have to be
considered a complicated dynamic procedure, the time constants and transmission
speeds can change significantly under the influence of other independent variables.
Unfortunately, one does not have enough knowledge on it.

As far as the brain is concerned, many problems are still open in operation of
the cerebral cortex, the seat of all modalities of higher intelligence [7,24]. Its orga-
nization into layered circuits (often six main layers) has been well known for many
years [17]. We also know, that information here undergoes characteristic bottom-
up, top-down circulations, and that there exist many horizontal interactions and
couplings. How do specializations of this shared laminar design embody different
types of biological intelligence, including vision, speech, language and cognition is
not however known in detail until now.

7. Small example effect in communication through
resonance in neural networks

As was experimentally verified by many authors, for example Hahn, G., Bujan F.
A., Frégnatc, Y., Aertsen, A., Kumar, A., the resonant effect can be found in com-
munication processes among brain neural networks. These authors claim in [13],
that: “The cortex is a highly modular structure with a large number of func-
tionally specialized areas that communicate with each other through long-range
cortical connections”. It is has been suggested that communication between spik-
ing neuronal networks (SNNs) requires synchronization of spiking activity which is
either provided by the flow of neuronal activity across divergent/convergent con-
nections, as suggested by computational models of SNNs, or by local oscillations
in the gamma frequency band (30-100 Hz).

Authors in [24] derive the results, in which slow periodic modulations of the
background dynamics could rhythmically improve or even gate signals that prop-
agate using fast oscillations. The fact that the nesting of slow and fast cortical
oscillations (e.g., beta-gamma) is commonly found in experiments could be in-
dicative of such a collaborative effort between different cortical rhythms. These
results lead us to consider the possibility that top-down signals may provide the
change of background activity state required for coherent feedforward oscillations
to be generated. The resonance mechanism, which is the essence of the model, is a
general property of recurrently connected populations of excitatory and inhibitory
neurons [13] and therefore it is widely applicable. Notably, a specific range of prop-
agating frequencies can be achieved by a proper selection of network parameters.
In summary, we have shown that communication of neuronal signals across con-
nected networks can be achieved by combining oscillatory activity with resonance
dynamics.
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Above described nonlinear resonant effect in the neuronal communications is
demonstrated in experimental results on Fig. 13, where a jump in the resonant
curve is introduced near the frequency 45 Hz.

a b

150+
[ ]
- (]
754 o o
o 0
u‘s-l T T 1 l-l T 1
10 20 50 100 10 35 60
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Fig. 13 (According to authors [13] Responses of isolated layers of neural network
in the range of stimulus frequencies 10-100 Hz.

The reduction of recurrent inhibitory conductance was compensated with an
additional external inhibitory Poisson input with a rate as indicated in Fig. 13,
where (a) represents the resonance curves for different values. The activity is
expressed using normalized by the mean of the spike count vectors calculated with
a time bin of 5ms. (b) Changes in size and frequency of the two main resonance
peaks in (a). The points in b) indicate the first (10-30 Hz) and second (30-80 Hz)
main resonance peaks, respectively. (c) Pulse triggered average modulation of the
inhibitory conductance of neurons for different values. (d) Pulse triggered average
modulation of the membrane potential of neurons for different values.

Another set of tasks concerns the investigation of the delicate balance of ac-
tivities of a rational and emotional nature processed mainly in the left and right
hemispheres of the brain, respectively. As far as it is known, this balance, ex-
tremely important for brain reliable and safe responses to external stimuli and
human interaction with artificial systems, takes place mainly in the prefrontal cor-
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tex and can be modified by activities of the amygdala and hippocampus. Though
a considerably large research interest has recently been focused on this area, many
questions remain open.

8. Conclusion

The introduced information models of processes between LTM and STM in the
neural networks of the brain enable the description of the learning under resonance
of top-down expectations. The matching of these expectations against bottom-up
data, the focus on the expected information flow, and the development of resonant
states between bottom-up and top-down processes is properly performed. In the
case of resonance, they reach an attentive consensus between what is expected and
what is there in the outside world. As Grossberg and others suppose, all conscious
states in the brain are resonant states. These resonant states move the learning
of sensory and cognitive representations on the higher quality level. The described
information model of nonlinear resonance, which summarizes these concepts is
therefore called Adaptive Resonance Theory, or ART model. It is necessary to
say that ART mechanism seems to be operative at all levels of the sensor system.
Simplified models of how these mechanisms are implemented by known circuits of
signal flow and information content in LTM and STM are feasible. It is predicted
that the same circuit realization of ART mechanisms will be found in the laminar
circuits of sensory and cognitive neocortex.

It is also suggested that sensory and cognitive processing in the nonlinear reso-
nance of the brain follow the top-down matching and learning laws that are often
complementary to those used for dealing with large spatial and surface transporta-
tion systems, or of processing in the brain. This enables our sensory and cognitive
representations to achieve the progress in learning more about the input observa-
tions, while allow spatial and motor representations to forget learned maps and
results that are no longer appropriate. May be the representation by the jump
between the A and B points at nonlinear resonance effect could be an appropriate
modelling tool. A deeper understanding of these phenomena could help efficiently
solving many practical problems, e.g. the task of driver / car simulation and
respective virtual environments [1]. We intend to evaluate alternative or mixed ap-
proaches, e.g. [21] to gain deeper insight into these phenomena in future research.
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