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Abstract: In this paper, a novel model is presented for machines and automated
guided vehicles’ simultaneous scheduling, which addresses an extension of the block-
ing job shop scheduling problem. An artificial neural network approach is used to
estimate machine’s breakdown indexes. Since the model is strictly NP-hard and
because objectives contradict each other, two developed meta-heuristic algorithms
called “fuzzy multi-objective invasive weeds optimization algorithm” and “fuzzy
multi-objective cuckoo search algorithm” with a new chromosome structure which
guarantees the feasibility of solutions are developed to solve the proposed problem.
Since there is no benchmark available on literature, three other metaheuristic al-
gorithms are developed with a similar solution structure to validate performance
of the proposed algorithms. Computational results showed that developed fuzzy
multi-objective invasive weeds optimization algorithm had the best performance in
terms of solving problems compared to four other algorithms.
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1. Introduction

The novel machine scheduling problem presented in this paper is mainly designed
to find an optimal schedule of the machines which work in the environment of a
flexible manufacturing system. The main distinctive feature of the model presented
in this paper is related to identifying machines and AGVs’ simultaneous schedule
in which machine breakdown is considered, and machines’ operation can use a set
of special tools; furthermore each job can be transported, using a set of different
AGVs. In addition, the time of transportation between machines is not the same,
and it depends on the type of the jobs; a soft due date interval time is considered
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in the proposed model. An artificial neural network algorithm is used in this paper
to estimate the time spent between two machines’ breakdowns as well as machines’
repair times. The model presented in this paper is aimed to optimize the following
objectives: The mathematic model is aimed to optimize the following objectives:
minimizing total costs including processing, travelling, earliness and tardiness costs.
It is also aimed to minimize total completion time. These objectives are conflicting
each other, since decreasing total costs will lead to increasing completion time. In
addition, in the next sections, it will be shown that the model presented in this
paper is strictly NP-hard and that the exact algorithms are not capable of finding
global optimum solution of the model’s large-scale problems. So, metaheuristic
algorithms will be developed in this paper to solve the model’s different test prob-
lems in a reasonable computational time. The rest of this paper is organized as
follows: Literature review of this paper is presented in the next section. Problem
statement, assumptions and the proposed mixed integer non-linear model are in-
cluded in Section 3. The proposed multi-objective metaheuristic algorithms are
discussed in Section 4. Experimental results and the method of calibrating the
model and algorithms’ major parameters are presented in Section 5. Finally, the
paper’s conclusion is given in Section 7.

2. Literature review

Machines and AGVs’ simultaneous scheduling problem in flexible manufacturing
systems’ environment has been studied by different researchers. [1] presented a
novel mathematical formulation for modelling problem of concurrent scheduling
machines and AGVs. The model aimed to identify the optimal schedule of ma-
chines and AGVs so that the total completion time of all jobs’ is minimized. Since
the model was strictly NP-complete, a genetic algorithm was proposed to find
near optimal solutions of the model’s various benchmark instances. [2] developed
a multi-objective mathematical model for machines and AGVs scheduling problem
in flexible manufacturing systems’ environment. The model aimed to minimize
three different objectives including makespan, mean flow time and mean tardiness.
Since the model belonged to the class of NP-hard problems and because the model’s
objectives were in conflict, a novel multi-objective genetic-based algorithm was de-
veloped to find the model’s feasible solutions. [3] presented a novel mathematical
model for the problem of dispatching and routing AGV tools in a flexible manu-
facturing structure. They used benders decomposition algorithm to find optimal
solutions for the model’s various test problems. They respectively employed con-
strained programing and mixed integer programming formulations to decompose
the original model into master and sub problems. This method was able to solve
instances up to six AGV tools. [4] presented a novel mathematical formulation to
model the problem of AGVs in a job shop environment. The main assumption of
their model considered all the vehicle’s bidirectional movement. In other words,
they assumed that several vehicles are allowed to go in the same route. A dis-
patching algorithm was presented to accelerate vehicles movement and improve
transportation efficiency. Finally, a simulation method was conducted to investi-
gate the interactions of the model’s major factors and their effect on predefined
performance measures. [5] presented a novel mathematical model for mechanized
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container terminal scheduling problem. The model aimed to identify the optimal
schedule of the terminals so that AGVs total travelling time is minimized. They
presented a novel heuristic algorithm based on multi-layer genetic algorithm and
maximum matching method to find optimal or near optimal solutions of the pre-
sented model. [6] developed a mathematical model for job shop scheduling problem
with machine and AGVs’ simultaneous schedule. The model aimed to identify the
optimal schedule of the jobs processed on different machines so that total com-
pletion time is minimized. Finally, a neighborhood search mechanism was imple-
mented in three different metaheuristic algorithms including simulated annealing,
iterated local search and their hybridized solution procedure to solve 40 different
benchmark problems. [7] presented a novel linear formulation for modelling a flex-
ible manufacturing system with one vehicle. They imposed some constraints like
buffers’ limited capacity, upper bound of the jobs that can be transported at the
same time and empty vehicle trips to make the model close to real world condi-
tions. They presented several heuristic algorithms to solve the model’s different
instances. [8] presented a mathematical formulation for modelling the problem of
scheduling machines and AGV tools in FMS systems. The model aimed to iden-
tify the optimal schedule of machines and identical AGVs so that total completion
time of the jobs processed on different machines is minimized. They developed
a differential evolutionary algorithm to find the model’s near optimal solutions in
a reasonable time. [9] presented a novel mathematical model for no wait multi-
robot scheduling problem. They assumed that only two parts can be entered into
a special cell at the same time. Additionally, they assumed that several robots can
be employed on a single truck to move commodities among machines. They pro-
posed an exact algorithm to identify optimal solutions of the model’s various test
problems in a reasonable computational time. [10] presented a novel mathematical
model for simultaneous scheduling of machines and AGVs. The model aimed to
minimize total makespan. They presented a genetic algorithm to find near optimal
solution for the developed model. The proposed genetic algorithm was successfully
employed for achieving suitable solutions for various 82 benchmark problems. [11]
developed a mixed integer linear programming formulation for a cyclic job shop
scheduling problem. An AGV tool was employed to change jobs’ location and
transfer them among various machines. The model is mainly designed to identify
the optimal sequence of the jobs processed on different machines so that total cy-
cle time is minimized. They used CPLEX optimization software to find optimal
solutions of the benchmark test problems available in literature. [12] developed a
mathematical model for a multi-product two-machine manufacturing system where
AGVs are used for transporting various types of commodities between machines.
The model was mainly designed to identify optimal sequence of AGVs and calcu-
late the time that is required for processing various parts on each machine so that
total cycle time is minimized. They proposed a novel two-stage heuristic algorithm
to find near optimal solutions for the model’s various test problems in a reasonable
computational time. [13] proposed a disjunctive graph-based novel mathematical
formulation for simultaneous scheduling of machines and AGVs. The novel formu-
lation was presented in the context of jobs shop problem and AGVs were employed
to transfer commodities among different machines. The model aimed to minimize
total completion time. Finally, they proposed an improved memetic algorithm to
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solve the model’s various test problems. [14] proposed a BJS–AGV problem which
used blocking job shop problem by handling jobs between different machines, us-
ing a limited quantity of AGVs. The model aimed to minimize total completion
time. Two-stage heuristic algorithm that incorporates an improving time tabling
method and a local search is proposed. [15] developed a mathematical model for
machines and AGV scheduling problem. The model aimed to minimize total tar-
diness cost. Since the model was strictly NP-hard, a binary particle swarm vehicle
algorithm was presented to solve the model. [16] proposed a novel mathematical
formulation to model the problem of concurrent scheduling machines and AGVs
in FMS structure. The model aimed to minimize the completion time of all jobs.
Since the model was strictly NP-hard and because the global optimal solution of
the model’s large-scale problems could not be obtained in a reasonable time, a
Tabu-based heuristic algorithm was developed to solve the model. [17] presented
a hybrid genetic algorithm to find near optimal solutions for hybrid scheduling,
dispatching routing of the jobs in an FMS structure. The model aimed to opti-
mize conflicting objectives of minimizing total completion time, AGVs’ travelling
time and tardiness costs. They employed an adaptive weight approach to identify
objectives’ optimal weight and compute fitness value on each generation. [18] de-
veloped a mathematical formulation for AGV-based job shop scheduling problem
where AGV tools are mainly employed to transport a set of jobs between machines.
They presented a novel genetic and Tabu-search-based metaheuristic algorithm to
solve the model. [19] presented a novel mathematical formulation for modelling the
problem of machines and mobile robots’ concurrent scheduling in a modern manu-
facturing system. The model aimed to compute optimal schedule of machines and
robots so that all the tasks’ total completion time is minimized. They presented a
genetic-based heuristic algorithm to solve the model’s various test problems.

The main motivation of this paper, compared with related researches, is to
present a novel mathematical formulation where the machines should be scheduled
at the same time as a group of multi-task machines; and tools are required for
completing predefined jobs. Also a group of multi-mode AGVs should be used for
performing a special job. Furthermore, machines may be faced with failure; down-
time and repair time are obtained using ANN, so it can be applied for modelling in
real world problems. The summary of the aforementioned recent works is presented
in Tab. I.

3. Problem statement

The job shop scheduling problem machine and AGVs, with no buffer constraints,
can be described as follows: there is a set of m jobs (i = 1, . . . ,m) with a set
of n operations (j = 1, 2, . . . , n) needing to be processed on a set of K machines
(k = 1, 2, . . . ,K) and a set of L tools (l = 1, 2, . . . , L). The jobs are handled among
different machines by a set of V AGVs (v = 1, 2, . . . , V ). Manufacturing route of
each job on various machines with at least one machine is known. Each AGV can
only handle one job at the same time. The processing of a job on a machine is called
as a machine operation. AGVs are employed in order to perform a transportation
operation between machines Mk and Mk′ when two consecutive operations are
simultaneously performed on these machines. Since there is no buffer constraint
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condition, the machine will be blocked until the product that is processed on the
machine is released. A time interval should be imposed to the model to consider
the waiting time of an AGV’s arrival to transport the finished job. AGVs should
wait until the next machine is released. The job will be unloaded on the machine
when the next machine is released. An AGV should wait near the machine to
transport a job when the machine is released. In addition, a job will be loaded
on the next released machine. Various operations of each job are able to use a
set of predefined tools. A special set of AGVs should be assigned for transporting
each job and transportation time between the machines is independent from job
types. The model includes soft interval due date. The mathematic model is aimed
to minimize total costs including processing costs, travelling costs, earliness and
tardiness costs, as well as minimizing total completion time. These objectives are
in conflict since decreasing total costs will lead to increasing completion time. The
main assumptions of the proposed mixed integer non-linear model is presented as
follow.

An artificial neural network algorithm is used in this paper to estimate the ma-
chines’ breaking and repair times. To do so, the initial data of the previous periods
are given to MATLAB software to estimate the machines’ breaking times in the
middle of executing solution algorithms. As an obvious fact, a time interval will
be spent for repairing the machines which are broken in the middle of performing
operations. So, artificial neural network algorithm will be used to estimate the
broken machines’ repairing time rather than computing their breaking time. This
procedure will be implemented by an artificial neural network algorithm on MAT-
LAB software to estimate broken machines’ next breaking and repairing times. The
flowchart is shown in Fig. 1.

 
 

             
                 

                   
                   
                   

                    
                   

                 
                

               
                
               
      

                
                   

                 
                 

                
               

              
      

 

          

  

               
                      

                 
               

                  
                  

Fig. 1 Flowchart of machine downtime and repair time assignment.

3.1 Assumptions

The main assumptions of the proposed mixed integer non-linear model are pre-
sented as follows: Jobs’ operation can use a set of special tools; each job can be
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transported using a set of AGVs. A soft due date interval time and earliness and
lateness times are considered in the proposed model. The jobs cannot be inter-
rupted. The time required for transporting jobs between various machines is not
the same. Different operations of each job can use a special predefined set of AGVs
and the time of transportation between machines depends on the type of the job.
Machines’ failure and repair time is considered in the model.

3.2 Indices

j index of operations j = 1, 2, . . . , n
i index of jobs i = 1, . . . ,m
k index of machines k = 1, 2, . . . ,K
v index of AGVs v = 1, 2, . . . , V
l index of tools l = 1, 2, . . . , L
s index of failures s = 1, 2, . . . , S

3.3 Parameters

PT ijkl Processing time of operation j of job i on machine k by tool l
PCijkl Processing cost of operation j of job i on machine k by tool l
LDi and UDi Due date’s upper bound and lower bound job i
HCv Handling cost by AGV v
Rij Is 1 when job i requires operation j; otherwise 0
Aijk Is 1 when an operation j job i can be processed on machine k;

otherwise 0
Bijl Is 1 if tool l can perform operation j job i; otherwise 0
tkk′v AGVV transportation time between two machines k and k′

tLOkv AGVV transportation time between loading area and machines k
tUnkv AGVV transportation time between unloading area and machines k
E(MTTR)sk Expected value mean time to repair failure s of machine k
E(MTBF )sk Expected value mean time to repair failure s of machine k
W large number

3.4 Decision variables

Tri and Eri Earliness and tardiness
Sij Operation’s start time
Stij Time of beginning transportation between operations j and j − 1
Cij Operation’s finishing time
Ctij Finishing transportation time between operations j and j − 1
CP i Finishing time of job i’s last operation
POiv Is 1 if AGV v can transport job i; otherwise 0
Yijkl Is 1 if tool l can process operation j job i on machine k; otherwise 0
xijv Is 1 if AGV v transport a predefined job between operations j and

j − 1; otherwise 0
Mks Breakdown time downtime s of machine k
Zijks Is 1 if beak s is occurred in machine k in the middle

of performing operation j of job i; 0 otherwise
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EPi Is 1 if job i is performed earlier than its predefined due date;
0 otherwise

TPi Is 1 if job i is performed later than its predefined due date;
0 otherwise

3.5 Mathematical model

3.5.1 Objective functions

The model presented in this paper includes two different conflicting objectives.
The model’s first objective which is mainly designed to minimize manufacturing
system’s total costs includes two different component defined as:

Process Cost =
n∑
i=1

K∑
k=1

l∑
l=1

Oj∑
j=1

Yijkl · Pijkl · PCijkl, (1)

Travel Cost =
n∑
i=1

K∑
k=1

K∑
k′=1

l∑
l=1

l∑
l′=1

v∑
v=1

oj∑
j=2

HCv · Yijk′l′ · YiOj−1kl · tk′kv · xijv +

+

n∑
i=1

K∑
k=1

l∑
l=1

v∑
v=1

HCv · Yi1kl · tLokv · xi1v +

n∑
i=1

k∑
k=1

l∑
l=1

v∑
v=1

HCv ·

·YiOj+1kl · tUnkv · xiOj+1v, (2)

Erliness Cost =

i∑
i=1

Eri · CEi, (3)

Tardiness Cost =
i∑
i=1

Tri · CTi. (4)

Total cost will be obtained by adding up following components. So, we have:

Cost = Travel Cost + Process Cost + Earliness Cost + Tardiness Cost.

The second objective which is aimed to minimize total completion time is calculated
as:

Total completion time (makespan) = CMax ≥ Cij ∀ij. (5)

3.5.2 Constraints

The model’s constraints are presented as:

V∑
v=1

xijv = 1 ∀i = 1, . . . ,m j = 1, . . . , n+ 1, (6)

Cij = Sij +
K∑
k=1

L∑
l=1

Pijkl · Yijkl +
s′∑
s=1

K∑
k=1

E(MTTR)sk · Zijsk ·
L∑
l=1

Yijkl

∀i = 1, . . . ,m j = 1, . . . , n, (7)
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Stij ≥ 0 ∀i = 1, . . . ,m, j = 1, (8)

Stij ≥ Ci(j−1) ∀i = 1, . . . ,m, j = 2, . . . , n+ 1, (9)

Sij ≥ Stij +
K∑
k=1

L∑
l=1

V∑
v=1

Yijkl · tLOkv · xijv ∀i = 1, . . . ,m, j = 1, (10)

Sij ≥ Stij +
K∑
k=1

K∑
k′=1

L∑
l=1

L∑
l′=1

V∑
v=1

Yi(j−1)k′l′ · Yijkl · tkk′v · xijv

∀i = 1, . . . ,m, j = 2, . . . , n, (11)

Ctij = Stij +
K∑
k=1

L∑
l=1

V∑
v=1

Yijkl · tLOkv · xijv

∀i = 1, . . . ,m, j = 1, (12)

Ctij = Stij +

K∑
k=1

K∑
k′=1

L∑
l=1

L∑
l′=1

V∑
v=1

Yi(j−1)k′l′Y ijkl · tkk′v · xijv

∀i = 1, . . . ,m, j = 2, . . . , n, (13)

Ctij = Stij +
K∑
k=1

L∑
l=1

V∑
v=1

Yi(j−1)kl · tkUov.xijv

∀i = 1, . . . ,m, j = n+ 1, (14)

xijv · xi′j′v ·

(
Stij − Si′j′ +

K∑
k′=1

L∑
l′=1

Yi′j′k′l′ · tLOk′v

)
·

·

(
Sti′j′ − Sij +

K∑
k=1

L∑
l=1

Yijkl · tLOkv

)
≤ 0

∀i, i′ = 1, . . . ,m, i 6= i′, v = 1, . . . , V, j = 1, j′ = 1, (15)

xijv · xi′j′v ·

(
Stij − Si′j′ −

K∑
k′=1

L∑
l′=1

Yi′j′k′l′ · tLOk′v

)
·

·

(
Sti′j′ − Sij +

K∑
k=1

K∑
k′=1

L∑
l=1

L∑
l′=1

Yijkl · Yi′(j′−1)k′l′ · tkk′v

)
≤ 0

∀i, i′ = 1, . . . ,m, i 6= i′, v = 1, . . . , V, j = 1, j′ = 2, . . . , n, (16)
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xijv · xi′j′v ·

(
Stij − Sti′j′ −

K∑
k′=1

L∑
l′=1

Yi′j′k′l′ · tk′Unv

)
·

·

(
Sti′j′ − Sij −

K∑
k=1

K∑
k′=1

L∑
l=1

L∑
l′=1

Yijkl · Yi′(j′−1)k′l′ · tkk′v

)
≤ 0

∀i, i′ = 1, . . . ,m, i 6= i′, v = 1, . . . , V, j = 1, j′ = n+ 1, (17)

xijv · xi′j′v ·

(
Stij − Si′j′ −

K∑
k=1

K∑
k′=1

L∑
l=1

L∑
l′=1

Yi′j′k′l′ · Yi(j−1)kl · tk′kv

)
·

·

(
Sti′j′ − Sij +

K∑
k=1

K∑
k′=1

L∑
l=1

L∑
l′=1

Yijkl · Yi′(j′−1)k′l′ · tkk′v

)
≤ 0

∀i, i′ = 1, . . . ,m, i 6= i′, j = 2, . . . , n, j′ = 2, . . . , n, (18)

xijv · xi′j′v ·

(
Stij − Sti′j′ −

K∑
k′=1

L∑
l′=1

Yi′(j′−1)k′l′ · tLOk′v −
K∑
k=1

L∑
l=1

Yi(j−1)kl · tLOkv

)
·

·

(
Sti′j′ − Sij −

K∑
k=1

K∑
k′=1

L∑
l=1

L∑
l′=1

Yijkl · Yi′(j′−1)k′l′ · tkk′v

)
≤ 0

∀i, i′ = 1, . . . ,m, i 6= i′, j = 2, . . . , n, j′ = n+ 1, (19)

xijv · xi′j′v ·

(
Stij − Sti′j′ +

K∑
k′=1

L∑
l′=1

Yi′(j′−1)k′l′ · tLOk′v −
q∑

k=1

q∑
l=1

Yi(j−1)kl · tLOkv

)
·

·

(
Sti′j′ − Stij +

K∑
k=1

L∑
l=1

Yi(j−1)kl −
K∑
k′=1

L∑
l′=1

Yi′(j′−1)k′l′ · tLOk′v

)
≤0

∀i, i′ = 1, . . . ,m, i 6= i′, j = n+ 1, j′ = n+ 1, (20)

Yijkl · Yi′j′k′l′ ·
(
Sij − Sti′(j′+1)

)
(Si′j′ − Sti(j+1)) ≤ 0 ∀i, i′ = 1, . . . ,m, i 6= i′,

k, k′ = 1, . . . ,K, l, l′ = 1, . . . , L, j = 1, . . . , n, j′ = 1, . . . , n, (21)

YijklYi′j′k′l′
(
Sij − Sti′(j′+1)

)
(Si′j′ − Sti(j+1)) ≤ 0 ∀i, i′ = 1, . . . ,m, i 6= i′,

k, k′ = 1, . . . ,K, l, l′ = 1, . . . , L, j = 1, . . . n− 1, j′ = 1, . . . n− 1, (22)
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YijklYi′j′k′l′ (Sij − Ci′j′) (Si′j′ − Sti(j+1)) ≤ 0 quad∀i, i′ = 1, . . . ,m, i 6= i′,

k, k′ = 1, . . . ,K, l, l′ = 1, . . . , L, j = 1, . . . n− 1, j′ = n, (23)

Yijkl · Yi′j′k′l′ · (Sij − Ci′j′) (Si′j′ − Cij) ≤ 0 ∀i, i′ = 1, . . . ,m, i 6= i′,

k, k′ = 1, . . . ,K, l, l′ = 1, . . . , L, j = n, j′ = n, (24)

CP i ≥ Ctij ∀i = 1, . . . ,m, j = 1, . . . , n, (25)

xijv ≤ POiv ∀i = 1, . . . ,m, v = 1, . . . , V, (26)

L∑
l=1

Yijkl ≤ Aijk ∀i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . ,K, (27)

K∑
k=1

Yijkl ≤ Bijl ∀i = 1, . . . ,m, j = 1, . . . , n, l = 1, . . . , L, (28)

Eri ≥ LDi − CP i ∀i = 1, . . . ,m, (29)

Tri ≥ CP i − UDi ∀i = 1, . . . ,m, (30)

Eri ≤ EP i ×W ∀i = 1, . . . ,m, (31)

Tri ≤ TP i ×W ∀i = 1, . . . ,m, (32)

Lf1k = MTBF 1k

1−
n∑
i=1

Oj∑
j=1

L∑
l=1

Zijk1 × Yijkl

 , (33)

Lfs+1k

1−
n∑
i=1

Oj∑
j=1

Zijks+1

 =
n∑
i=1

Oj∑
j=1

Zijks+1 ×

×MTBFs+1k

1−
n∑
i=1

Oj∑
j=1

Zijks

∀k, s, (34)

Lf1k −
L∑
l=1

Pij · Yijkl ≥ −Zijks ×W ∀i, j, k, s, (35)

Lfsk −
n∑
i=1

Oj∑
j=1

L∑
l=1

Pij · Yijkl × Zijks−1 = LF sk ∀k, s, (36)

K∑
k=1

L∑
l=1

Yijkl ≤ Rij ∀i = 1, . . . ,m, j = 1, . . . , n, (37)

265



Neural Network World 3/2018, 255–283

K∑
k=1

L∑
l=1

Yijkl ≤
V∑
v=1

xijv ∀i = 1, . . . ,m, j = 1, . . . , n. (38)

Eq. 6 ensures that a transportation operation cannot be performed by more than
one AGV. Eq. 7 calculates completion times of each operation by considering repair
time. Eq. 8 refers to the transfer start time from the loading station to the first
machine. Eq. 42 refers to the AGV’s starting transporting time when the machine
has completed the job. Eqs. 43 ensures that the first activity’s processing procedure
should be started when it is completely transported from loading station. Eqs. 44
refers to the relations between the start time for the transportation operation and
the processing start time for operation j of job i, Eqs. 45–14 compute finishing
time of transporting operation. Eqs. 15–20 are imposed to the model to avoid
performing two different operations by a single AGV at the same time. Eqs. 21–
24 enforce the model to prevent performing two various operations by a unique
machine at the same time. Eq. 25 compute finishing time of the last operation
performed on job i. Eqs. 26 assigning a transportable AGV to job i. Eqs. 27 assign
a useable tool for job i. Eqs. 28 assign a machine useable for job i. Eqs. 29–32
calculate the earliness and tardiness time. Eq. 33–36 are used to compute machines’
failure times. Eq. 37 assigns job’s operations requirement. Eq. 38 assigns AGV’s
operations for transportation.

4. The proposed multi-objective solving methods

4.1 Developed MOIWO algorithm

The multi-objective version of the population-based invasive weeds optimization
algorithm was developed by [20]. In this algorithm, a collection of weeds are con-
sidered as initial population. The behavior of the weed for occupying soil and
generating new colony is based on their pruning system, they first try to obtain
appropriate farmlands and employ pruning system to produce new colonies. This
action is continued to solve optimization problems. Conforming to the procedure,
the seeds are scattered in specified pasture and are turned into weeds. New colony
of weeds are generated around their parent weeds. The weeds which are grown
in a more arable region will have superior competency and more luck to survive.
Therefore, higher breeding will be done in vicinity of these potent weeds. It is
important that, by enhancing iteration number, the distance of newly generated
weeds from the parent weeds lessen systematically. At the beginning of the algo-
rithm, a far distance allows diversification of generated solutions all over the search
space, so long that by progressing the algorithm, intensification will be dominated
by dynamically lessening distance from the parent weeds. Standard deviation of
the weeds that are recently produced in previous generations can be employed as
a basis for confining the greedy nature of the algorithm. In addition, the following
consecutive steps can be used in the algorithm in order to:

• Produce initial solutions and asses objective function.

• Employ fuzzy ranking procedure to sort population.
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• Permit every member of the population to make several seeds with preferable
population members. The seeds will be produced according to Eq. 39

seedsi = floor

(
Smin + (Smax − Smin) ∗

(
np− ranki

np

))
. (39)

In which, Smin and Smax are minimum and maximum numbers of seeds pro-
duced by each weed. ranki is the rank of the i-th population member and
seedsi is the number of seeds produced by it. np is the number of population.

• Breed according to merit and update standard deviation. The formula of
calculating standard deviation is shown in Eq. 40.

σiter = (itermax − iter)n ∗
σinitial − σfinal

(itermax)
n + σfinal, (40)

where itermax and iter are maximum and current iteration, σinitial and σfinal

are initial and final Sigma. n is a nonlinear multiplier whose value, during
the execution of the algorithm, is changed from the initial value to the final
value.

The following steps can be used to identify the discounting measure of the
proposed FMOIWO algorithm:

1. Initialize a ratio with members and evaluate them

2. Employ a fuzzy ranking method to rank population members

3. Let the members of the population to make multiple seeds. Make a larger
number of seeds with more proportionate members of population by Eq. 39.

4. Scatter the constructed seeds on the search space, applying the numbers that
are normally distributed with mean equivalent to zero and standard deviation,
calculated by Eq. 40.

5. As the population of the weeds gets more than the upper limit (using fuzzy
ranking and retain the best number of members).

6. Repeat the process until the discontinuing criterion is met.

4.1.1 Fuzzy dominance-based sorting

Computing fuzzy dominance of solutions in the population is considered as a pri-
mary phase of sorting on the basis of fuzzy dominance. Afterwards, solutions are
sorted in an ascending order, using fuzzy dominance. Next, according to the impor-
tance of the largest crowding distance, solutions are sorted, descending concerning
diversity. Calculating the largest n-dimensional hypercube over objective space
per solution can be used as a basis for enhancing hyper cube’s capability of finding
analogous solutions. Eq. (8) was used by [20] as a basis for obtaining the periphery
of each solution’s folded cube.

I (~v) =
n∑
i=1

(yi (~u)− yi (~w)) /(max (yi)−min (yi)), (41)
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where ~u and ~w are two adjacent solutions to the answer ~v. The population is
arranged according to the i-th objective function and in an ascending order. Ob-
viously, the greater the dispersion of the member I (~v), the more priority is given.
And this dispersion is calculated for the unsatisfactory answers in the archive. The
parameters min(yi) and max(yi) are the minimum and maximum values of the
i-th objective function. Eq. (41), contributes to normalization; boundary solutions
contain the extreme of the assigned value. Aggregation of both solutions that
were placed in sparse region and the solutions which have not been dominated by
other existing solutions are placed in archive. The main procedure of employing
fuzzy dominance mechanism on proposed FMOIWO algorithm for obtaining opti-
mal solutions is schematically shown in Alg. 1, where µ (i) is the degree of fuzzy
i-dominance (dom), (~xi) is called the decision parameter vector, y is the objective
vector, ≺Fi sign of dominate, k = 1 : n is objective functions index, j = 1 : m is
decision variables (parameters) index.

Algorithm 1 Fuzzy dominance sorting.

for k = 1 : n do // calculate fuzzy J-dominance per

solution in population

µ (k) = 0;
for i = 1 : n do
µ (i) = 1;
for j = 1 : m do // compute Fuzzy J-dominance per solution

if yj (~xi)− yj ( ~xk) < 0 then
µdomi

(
~xk ≺Fi ~xi

)
= 0

else if yj (~xi)− yj ( ~xk) < pj then
µdomi

(
~xk ≺Fi ~xi

)
= (yj (~xi)− yj ( ~xk))/pj

else
µdomi

(
~xk ≺Fi ~xi

)
= 1

µdom
(
~xk ≺F ~xi

)
= µdom

(
~xk ≺F ~xi

)
∗ µdomi

(
~xk ≺Fi ~xi

)
end if

end for
µ (k) = µ (k) + µdom

(
~xk ≺F ~xi

)
− µ (k) ∗ µdom

(
~xk ≺F ~xi

)
end for

end for

4.2 Developed MOCS algorithm

The cuckoo search algorithm was initially proposed by [21]. The main concept
of this algorithm was inspired from the daily behaviour of cuckoo birds and the
cuckoos’ habit of putting their eggs on the nests of other types of birds. So, two
different possible adventures can be assumed for these eggs. As a first adventure,
the bird will recognize cuckoo’s eggs and will eradicate it or will leave the nest.
As a second adventure, the eggs will not be recognized due to their being similar
to other eggs and the hatched cuckoo chick will eradicate the other eggs. Cuckoo
birds will distribute their eggs on different regions. Moreover, they would like to
put their eggs on the nests which have a lower cuckoo egg eradication rate. As a
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result, oncoming generations’ cuckoo birds will be interested in putting their eggs
in the nests with a lower eradication rate. This mechanism will ensure algorithm’s
convergence. So, cuckoo’s movements in each iteration can be divided into two
main parts including levy flight movement and a special pattern based on random
movement.

4.2.1 Levy flight movement

In cuckoo search algorithm, each solution will move toward a region which includes
leader solution and will search around the region. This movement will be performed
based on the following equation:

nestt+1
i = nestti + αrS

(
nestti − Leaderti

)
. (42)

In the above equation, nestti, nestt+1
i , Leaderti and α are respectively the position

of i-th cuckoo bird on iterations t and t+ 1, the position of the i-th solution up to

iteration t and step size. S is a number that is calculated according to S = u
/
|ν|1/β

formula. β is movement radius and νsr are respectively random normal numbers

with zero mean and their variance respectively equals to σ2
V ′σ

2
u′σ

2
where σν = 1

and σu is computed according to the following equation:

σu =

{
Γ (1 + β) sin (πβ/2)

Γ [(1 + β) /2] · β · 2(β−1)/2

}1/β

. (43)

4.2.2 Especial pattern based random movement

Each metaheuristic algorithm should employ a random search method aiming to
discover new solution regions and move from local solution toward the solutions
with higher quality. Cuckoo search algorithm includes a special pattern based
on random movement mechanism that is employed to search new areas and find
solutions with higher quality. According to this mechanism, two different solutions
are chosen randomly, and then the solution will move with λ probability, and the
length will be equal to maximum distance between two selected solutions toward
a better position. The random search mechanism will be performed according to
the following equations:

x = rand
(
nesttj − nesttk

)
, (44)

nestt+1
i = nestti + P · x, (45)

Pij =

{
1 if rand < λ
0 if rand ≥ λ . (46)

In the above equations, nesttj and nesttk which will be chosen randomly are respec-
tively positions of solutions j and k.
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4.2.3 Fuzzy multi-objective cuckoo search (FMOCS)

Fuzzy multi-objective cuckoo search is developed in this paper; the solutions ob-
tain based on the fuzzy ranking method. First, the initial population is generated
randomly and evaluated. Then, rank them by using fuzzy dominance-based sort-
ing. Computing fuzzy dominance of solutions in the population is considered as a
primary phase of sorting on the basis of fuzzy dominance (according to Fig. 2 fuzzy
dominance sorting). The levy flight movement and the random movement, are em-
ployed to produce the members of the next generations. The levy flight movement
is applied to select the leader solution of the randomly generated non-dominated
members. The framework of developed FMOCS is shown in Fig. 2.

13 
 

 

Fig. 3. The frame work of developed FMOCS  

4.3. Alternative Approaches 

As there is no benchmark available to validate the performance of the Cuckoo algorithm, two 
other meta-heuristic algorithms named NSGA-II (non-dominated sorting genetic algorithm) and 
MOTLBO (multi-objective teaching learning based optimization algorithms), MOPSO (Multi-
objective particle swarm optimization algorithm) were used, with the same coding method as 
Cuckoo for comparison in the two subsequent sections. 

  NSGA-II was introduced by Deb, Pratap [22]. In this algorithm, non-dominance and 
crowding distance concepts are employed to sort population members. In this article, uniform and 
single point crossover also swap mutation operators used as intensification and diversification 
mechanisms for generating the solutions of the generation. Then, the members of the current and 
the previous generations are mixed. At the end, two popular techniques of the multi-objective 
genetic algorithms named non-dominance and crowding distance techniques are employed to find 
the most appropriate solutions obtained in each iteration. 

MOTLBO was developed by Zou, Wang [23] for solving the multi-objective optimization of 
heat exchangers. The main mechanism of this algorithm was inspired from teachers and students’ 
behaviour. This algorithm is performed in two different phases called ‘teaching phase’ and 

Fig. 2 The frame work of developed FMOCS.

4.3 Alternative approaches

As there is no benchmark available to validate the performance of the Cuckoo
algorithm, two other meta-heuristic algorithms named NSGA-II (non-dominated
sorting genetic algorithm) and MOTLBO (multi-objective teaching learning based
optimization algorithms), MOPSO (Multi-objective particle swarm optimization
algorithm) were used, with the same coding method as Cuckoo for comparison in
the two subsequent sections.

NSGA-II was introduced by [22]. In this algorithm, non-dominance and crowd-
ing distance concepts are employed to sort population members. In this article,
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uniform and single point crossover also swap mutation operators used as intensifica-
tion and diversification mechanisms for generating the solutions of the generation.
Then, the members of the current and the previous generations are mixed. At
the end, two popular techniques of the multi-objective genetic algorithms named
non-dominance and crowding distance techniques are employed to find the most
appropriate solutions obtained in each iteration.

MOTLBO was developed by [23] for solving the multi-objective optimization of
heat exchangers. The main mechanism of this algorithm was inspired from teach-
ers and students’ behaviour. This algorithm is performed in two different phases
called ‘teaching phase’ and ‘learning phase’ to elaborate the quality of the solutions
generated on each solution, and to seek other solution spaces for the purpose of
finding solutions with higher quality. So, teaching and learning phases are used
respectively as diversification and intensification mechanisms on each iteration to
generate better solutions.

Multi-objective particle swarm optimization algorithm was presented for solv-
ing multi-objective problems by [24]. At first some solutions are generated ran-
domly, afterwards update position is used for improving generated solutions. Non-
dominated solutions are stored in a bounded archive called repository. The new
generated solutions are added to repository. The solutions which are dominated
due to non-dominance technique are removed from repository.

4.4 Artificial neural network

In this paper, artificial neural networks are used to estimate machine downtime and
machine repair time. The neural networks used in this paper are of a multilayer
perceptron type. In many of the complex mathematical problems that lead to the
solution of nonlinear complexity problems, a multilayer perceptron network can
simply be used to define weights and functions. Different functions are used for
the problem model in neurons. In these types of networks, an input layer is used
to apply the problem inputs of a hidden layer and an output layer that ultimately
provides problem responses. The nodes in the input layer, the sensory neurons,
and the nodes of the output layer are the neurons of the responder. In the hidden
layer, there are hidden neurons. The training of such networks is usually done by
the method of post-propagation error [25].

To predict the time between two failures and repair times, first, 80 % of the
previous data are used to train the neural network; and then 20 % of the previous
data is used to test the neural network. Kumar proposed that in the general
problem, one hidden layer is used for forecasting tasks, so we considered one hidden
layer [26]. To specify the number of hidden nodes, Zhang believed that for better
result forecasting, the number of the hidden nodes must be equal to the number of
input (denoted by “n”) [27]; but Hecht-Nielsen proposed 2n+ 1 [28]. Therefore, in
this article, because we have one input (n = 1), for minimizing mean square error
(MSE), the program was run ten times by considering the number of hidden nodes
between 1 and 3; and it was realized that the best result is two. In determining the
network structure for the problem, a combination of a trial and error test method
and a Bayesian method was used. It is worth mentioning that the steps were taken
using the 2011 version of the MATLAB software.
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4.5 Performance metrics

Four different metrics are considered for performance evaluation of the developed
meta-heuristic algorithms [29]. These metrics are determined as follows:

• Mean Ideal Distance (MID): This metric is mainly used to calculate close-
ness distance of obtained non-dominated solutions from ideal solution. The
solution with lower distance will have more quality. The value of this metric
can be calculated by equation (47)

MID =

n′∑
i=1

√(
f1i−f1best

f1max
total−f1min

total

)2

+
(

f2i−f2best

f2max
total−f2min

total

)2

n
. (47)

where the number of non-dominated solutions, and the smallest and largest
values of non-dominated solutions are respectively shown by n, f2min

total and
f1max

total. The solution algorithm with lower values of MID metric will be
able to generate solutions with lower distance from ideal solutions. So, the
algorithm with lower value of this metric can generate better solutions.

• Spacing metric (SM): This metric is mainly used to calculate uniformity of
the resulted non-dominated solutions. The algorithm with a lower value of
this metric can generate better solutions. the following formula can be used
for calculating the values of this metric:

SM =

n′∑
i=1

∣∣d− di∣∣
(n′ − 1) d

, (48)

where the number of non-dominated solutions, lowest Euclidean distance of
solution i with other existing non-dominated solutions and the average of this
distance are respectively shown by n, di and d.

• Diversification Metric (DM): The following formula can be used for calculat-
ing the values of this metric:

DM =

√√√√ I∑
i=1

(min fi −max fi)2, (49)

where maximum and minimum values of the first and second objectives are
respectively shown by fmax1 total, f

min
1 total, f

max
2 total and fmin

2 total.

• Spread of non-dominance solution (SNS): This metric is mainly known as
diversity metric. The algorithm with a higher value of this metric is able to
obtain better solutions. The following formula can be used for calculating
the value of this metric:

SNS =

√√√√√ n′∑
i=1

(MID − Ci)2

n′ − 1
, (50)
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where Ci =
√
f2

1i + f2
2i and the values of the first and second objectives are

respectively shown by f1i, f2i.

• CPU time: returns the total CPU time (in seconds) used by MATLAB soft
wear from the time it was started.

4.6 Solution coding method

Each solution structure has four rows and a number of columns (the number of
columns is in accordance with the numbers of jobs and jobs’ operations). The
chromosome structure contains random key real numbers between 0 and 1. The
decoding procedure assures the feasibility of the obtained solution. Due to the
assumptions in the proposed model, the solution contains several assignments,
therefore the following substantial points were considered in presenting solution’s
representation: jobs, machines, tools and AGVs assignment. For decoding chromo-
some, first q-column is separated (q = number of job’s operations); this way, jobs,
machines, tools and AGVs are assigned. Afterwards, the remaining p columns are
used for AGV allocation for transportation to the loading and unloading areas (p =
number of job). The procedure of finding the positions of the jobs in the presented
small example is demonstrated in Fig. 3.

 

 

Fig. 3 Representation of chromosome structure 

 

 

 

Fig. 4 Representation of jobs and operations assignment  

 

 
Fig. 5 Representation of machines, tools and AGVs assignment 

 

 

Assign job 1  Two first small 

numbers

Roundup (0.7136× 3 =2.1408) =3
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machine, tools and AGVs 

AGV allocation for 
un/loading area

Fig. 3 Representation of chromosome structure.

Using the example, suppose that we have three jobs and that each job has two
operations; so nine columns with four rows are generated. The six first columns
are separated. The first row is used for jobs assignment. In the first row, the two
first small numbers are 0.1413 and 0.2106; so, job 1 is assigned to the numbers.
The smallest number is considered for the first operation, and the next smallest
number is considered for the second operation of job 1. The same procedure is
continued for the rest to assign all jobs. The results are demonstrated in Fig. 4.
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Fig. 4 Representation of jobs and operations assignment  

 

 
Fig. 5 Representation of machines, tools and AGVs assignment 
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Fig. 4 Representation of jobs and operations assignment.
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Then, the second row is used for machines’ assignment. For instance, the first
element equals to 0.7136. Because it is related to job 3 and operation 2. This
operation can be performed by machines 1, 2 and 3. So, 0.7136 multiplied by
3(0.7136 × 3 = 2.1408) and round it up = 3. Thus, the third machine is selected.
In the same way, the rest of the machines are assigned. For tools allocation, the
third row is used with same machine’s procedure assignment and the fourth row is
used for AGVs allocation as well. The results are demonstrated in Fig. 5.

 

 

Fig. 3 Representation of chromosome structure 

 

 

 

Fig. 4 Representation of jobs and operations assignment  

 

 
Fig. 5 Representation of machines, tools and AGVs assignment 
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Fig. 5 Representation of machines, tools and AGVs assignment.

The last three columns with the same procedures are considered for AGV allo-
cation for transportation to loading and unloading areas.

5. Parameters setting

Parameter setting is categorized into two main parts; first setting the tuning pa-
rameters of the algorithms and second setting model parameters.

5.1 Problem parameters setting

To evaluate the algorithms, 30 problems are generated randomly. The problems
are classified based on the number of jobs, the number of AGVs, the number
of machines, the number of operations, and the number of tools. The problems
are solved three times and the average of the solutions is used to evaluate the
algorithms. In addition, Moreover, the duration of each process in each operation
follows a uniform distribution in the interval [2, 7]; the time required for AGV
transportation between machines follows a uniform distribution in the interval [1, 3];
previous mean time to repair and previous mean time between failures follow a
uniform distribution in the interval [3, 7] and [25, 50] for importing data into ANN
training; penalty for earliness and tardiness time follows a uniform distribution in
the interval [10, 20]; processing cost follows a uniform distribution in the interval
[5, 7]; and handling cost follows a uniform distribution in the interval [5, 10].

5.2 Tuning algorithm parameters

Taguchi method which is applied to calibrate the parameters of the algorithms was
designed based on orthogonal arrays. It can be used efficiently as an alternative for
full factorial experimental design in order to consider a group of factors. These fac-
tors are separated into two groups consisting of controllable noise factors and noise
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factors. The method’s purpose is to select the best level of the factors so that the
effect of noise factors is minimized and controllable factors are maximized. There-
fore, a measure named signal-to-noise ratio is used to determine the performance
of the algorithms. The value of S/N ratio is calculated by using Eq. 51 [30].

S/N = −10× log

(
S(Y 2)

n

)
, (51)

where n and Y are the numbers of response values and orthogonal arrays. Since
multi-objective metrics are a basis for evaluating the performance of multi-objective
algorithms, the metric was developed by [31]. The main advantage of using this
index as a response of Taguchi method is to consider both diversification and
intensification features of metaheuristic algorithms. Using Eq. 52 to compute the
response.

MOCV = MID/MS, (52)

where MID is considered as convergence while MS is considered as diversity. Three
levels of the parameters are displayed in Tab. II for each factor Minitab software is
used to obtain the optimal values of S/N ratios. L9 design is selected for NSGA-
II and MOTLBO algorithms and L27 design is selected for tuning parameters of
FMOIWO, MOPOS and FMOCS algorithms. The most appropriate levels of al-
gorithms’ parameters are shown Fig. 6.

The ratios of the FMOIWO, FMOCS, MOPSO, NSGA-II, and MOTLBO al-
gorithms are presented in Fig. 6.

A level of the parameter is selected, which has the highest signal-to-noise in-
dex. So, in accordance with Fig. 6, it is clear that the FMOCS levels of the
algorithms’ parameters include: max iteration, number of Cuckoo, step size set
in first level, and motion radius parameter set in third level. For MOPSO levels
of the algorithms’ personal learning coefficient and number of particle set in third
level. Global learning coefficient, inertia weight, number of particle, max iteration,
maximum number of repository and number of grid in a dimension set in second
level. It can be seen that the MOTLBO levels of the algorithms’ parameters in-
clude: max iteration set in second level, number of population in third level, and
percentage of mutation set in first level. For NSGA-II the percentage of crossover
and the number of population must be set in the third level, the percentage of
mutation must be set in the second level, and max iteration must be set in the
first level. For MOIWO Max iteration and initial value of standard deviation set in
second level. Number of initial weeds, Final value of standard deviation, minimum
number of seeds, maximum number of seeds and maximum number of archive set
in first level. Non-linear coefficient and fuzzy dominate pressure set in second level.

6. Computational results

The experimental outputs of the five meta-heuristic algorithms for 30 test problems
were classified into three groups: small, medium and large sizes. These problems
were coded in MATLAB software and were performed on a PC with 8 GB RAM
and Dual 2-GHz CPU. The performance of the algorithms are compared with each
other based on the metrics presented in Section 4.5. The experimental outputs of
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the five algorithms are presented in Tab. III. The trends of the test problems are
illustrated in Fig. 7, in terms of MID, SM, SNS, DM and CPU time metrics.

The result of trend metrics over the test problems is shown in Fig. 7. Fig. 7(a)
shows that NSGA-II and MOPSO are dominated by MOTLBO, FMOIWO and
FMOCS for all test problems in terms of SM metric. Fig. 7(b) reveals that there is
a competition between MOPSO and MOIWO for all test problems in terms of the
MID metric where a close competition between MOTLBO and MOCS is obvious.
Fig. 7(c) confirms the better performance of MOIWO for all test problems in terms
of the DM metric where there is a competition between FMOCS and MOIWO.
Fig. 7(d) shows the best performance of FMOIWO for all test problems in terms of
the SNS metric, and that there is a competition between MOTLBO and FMOCS
again. Fig. 7(e) confirms the better performance of FMOIWO for all test problems
in terms of the CPU time metric.

20 
 

    
(a)                         (b)     (c) 

      
        (d)       (e) 

Fig. 8 the trends of the test problems, in terms of MID, SM, SNS, DM and CPU time metrics 
 
The result of trend metrics over the test problems is shown in Fig. 8. Figure 8(a) shows that NSGA-
II and MOPSO are dominated by MOTLBO, FMOIWO and FMOCS for all test problems in terms 
of SM metric. Figure 8(b) reveals that there is a competition between MOPSO and MOIWO for 
all test problems in terms of the MID metric where a close competition between MOTLBO and 
MOCS is obvious. Figure 8(c) confirms the better performance of MOIWO for all test problems 
in terms of the DM metric where there is a competition between FMOCS and MOIWO. Figure 
8(d) shows the best performance of FMOIWO for all test problems in terms of the SNS metric, 
and that there is a competition between MOTLBO and FMOCS again. Figure 8(e) confirms the 
better performance of FMOIWO for all test problems in terms of the CPU time metric. 

To evaluate the performance of the algorithms, a hybrid multi-attribute decision-making 
method named AHP-TOPSIS was applied in order to prioritize algorithms, considering the 
metrics. This method was applied to select an algorithm with the highest priority. AHP, firstly 
introduced by [32], was used to identify the weighs of the criteria. After calculating normalized 
weights, the TOPSIS method, firstly presented by [33], is used to determine which algorithm has 
a better performance for solving large, medium and small size problems. The following steps are 
applied to prioritize alternatives: 

1- Decision matrix is created. 
2- Normalized decision matrix is calculated  
3- Calculate weighted normalized decision matrix.  
4- Negative and positive ideal solutions are calculated. The positive ideal solution is 

determined as the greatest value of positive criteria and the smallest value of negative criteria while 
the negative ideal solution is determined as the greatest value of positive criteria and the smallest 
value of the negative criteria.  

5- Euclidean distances of alternatives from positive and negative ideal solutions are calculated  
6- Relative closeness of each alternative to ideal solution is calculated  
An alternative with the highest closing rate value is selected as the best one. 

 
 
 
 

Fig. 7 The trends of the test problems, in terms of MID, SM, SNS, DM and CPU
time metrics.

To evaluate the performance of the algorithms, a hybrid multi-attribute decision-
making method named AHP-TOPSIS was applied in order to prioritize algorithms,
considering the metrics. This method was applied to select an algorithm with the
highest priority. AHP, firstly introduced by [32], was used to identify the weighs
of the criteria. After calculating normalized weights, the TOPSIS method, firstly
presented by [33], is used to determine which algorithm has a better performance
for solving large, medium and small size problems. The following steps are applied
to prioritize alternatives:

1. Decision matrix is created.

2. Normalized decision matrix is calculated

3. Calculate weighted normalized decision matrix.

4. Negative and positive ideal solutions are calculated. The positive ideal solu-
tion is determined as the greatest value of positive criteria and the smallest
value of negative criteria while the negative ideal solution is determined as
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the greatest value of positive criteria and the smallest value of the negative
criteria.

5. Euclidean distances of alternatives from positive and negative ideal solutions
are calculated

6. Relative closeness of each alternative to ideal solution is calculated

An alternative with the highest closing rate value is selected as the best one.

The decision matrix, normalized decision matrix, weighted normalized decision
matrix, Euclidean distances of alternatives and relative closeness of alternatives
for large and small scale problems are presented in Tabs. IV–VI. The results show
that FMOIWO algorithm has the best rank performance in solving large, medium
and small scale problems and the FMOCS ranked second level in solving small and
medium size problems.

7. Conclusion

A new two-objective mixed integer programming formulation was presented in
this paper for modelling machines and AGVs’ simultaneous scheduling problem,
considering machines’ breakdown possibility. The model aimed to minimize total
costs including processing costs and minimize total completion time. An artificial
neural network approach was employed in this paper to estimate the model’s two
different and significant parameters including the time spent between the machine’s
two consecutive breakdowns and the machine’s maintenance time. Since the model
was strictly NP-hard and because the exact algorithms were not able to find its
global optimum solutions in a reasonable time, two metaheuristic algorithm called
FMOIWO and FMOCS algorithms were developed to solve the model’s various
test problems. In addition, a novel chromosome structure was presented to satisfy
the model’s constraints and ensure the feasibility of the solutions generated in
different iterations. Since there was no benchmark available in literature to validate
the performance of FMOIWO and FMOCS search algorithm, three other solution
algorithms called MOPSO, NSGA-II, and MOTLBO were developed to validate
the performance of FMOIWO and FMOCS search algorithms. A Taguchi method
was used to calibrate the parameters of the presented algorithms and to enhance
the performance of the developed algorithms. All the solutions obtained using
developed algorithms were presented in the form of five various metrics called MID,
DM, SNS, CPU time and SM. In addition, solutions are classified into three main
groups including large, medium and small scale solutions. Finally, an AHP-TOPSIS
method was used to identify an algorithm which has a better overall performance
in solving different test problems. The results showed that developed FMOIWO
search algorithm had a better performance in solving large, medium and small scale
problems and FMOCS ranked second. Adding AGV routing problem to this model
can be future work of this study.
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