
OPTIMIZED FUZZY MIN-MAX NEURAL
NETWORK: AN EFFICIENT APPROACH FOR

SUPERVISED OUTLIER DETECTION

N. Upasani∗, H. Om∗

Abstract: Fuzzy min-max neural network (FMN), proposed by Simpson is a well-
known supervised neuro-fuzzy classifier that has been successfully used by many
researchers for pattern recognition. However, the FMN represents the learned
knowledge with exhaustive details in a ‘fine-grained’ manner that reduces its per-
formance for pattern recognition in terms of the recall time per pattern. In this
paper, we adapt the basic architecture of the FMN to represent the learned knowl-
edge in a compact way that is in a ‘coarse-grained’ manner, which is closed to
human thinking. The working of the proposed method that is fuzzy min-max neu-
ral network with knowledge compaction (FMN-KC) is illustrated using the Fisher
Iris dataset. The potential of using the FMN-KC for supervised outlier detection is
demonstrated using a time-series disk defect dataset published by NASA and KDD
cup 99 dataset available in UCI repository. The proposed method achieves around
50 % gain in the recall time as compared to the original FMN and the recognition
rate is also comparable. We strongly recommend using the proposed architecture
FMN-KC for supervised outlier detection in the real time applications, where recall
time per pattern is one of the key parameters.

Key words: coarse-grained knowledge, fault detection, Fuzzy Min-Max Neural Net-
work (FMN), intrusion detection, neuro-fuzzy systems, supervised out-
lier detection

Received: June 3, 2016 DOI: 10.14311/NNW.2018.28.017
Revised and accepted: August 10, 2018

1. Introduction

An outlier is an observation that deviates from other observations in such a way
that it creates a suspicion about the original method that was used to generate it [1].
The outliers may obstruct the process of data mining due to the incorrect knowl-
edge discovery [2]. Outlier detection is an essential pre-processing task in diverse
domains including automation and control in industry applications [2], computer
network intrusion detection [3], fraud detection [4], suspicious or criminal activities
detection in e-commerce [5], image processing [6], remote sensing [7], etc. Various

∗Nilam Upasani – Corresponding author; Hari Om; Department of Computer Science and En-
gineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand,
India, E-mail: nilamupasani@gmail.com, hariom4india@gmail.com

c©CTU FTS 2018 285

mailto:nilamupasani@gmail.com
mailto:hariom4india@gmail.com


Neural Network World 4/2018, 285–303

methods have been discussed to catch the outliers and a detailed study can be found
in [8–10]. There are three basic approaches for outlier detection that include unsu-
pervised clustering, supervised classification, and semi-supervised recognition [10].
A general approach for detecting the outliers is to train the model for normality
and then calculate the deviation of each input instance with respect to the trained
normal data. The methods based on the supervised classification approach have
used different methods to calculate the distance between an input pattern and the
trained normal data. If the deviation of some input exceeds the pre-specified thresh-
old, then that input is considered as an outlier. The threshold is initially set based
on the application requirements [10]. The unsupervised clustering based methods
do not have any prior knowledge about the data to determine the outliers and
hence many times they are used for noise removal [11]. The semi-supervised based
methods require either normal or abnormal patterns for training. The supervised
methods use the characteristics of the known examples including the normal and
abnormal patterns to sharpen the learning process to find more relevant outliers.
The outlier detection systems have not been well-studied, explored, or applied as
classification systems [12]. The supervised methods have been found more effective
to get the meaningful outliers; however, these methods have not been explored
much in this area. Gomez and Dasgupta have applied the supervised fuzzy classi-
fiers for intrusion detection and they reported good detection rate [13]. The fuzzy
systems however do not have the capability to construct the models solely based
on the sample data for the target system. Zhang et.al. have employed a percep-
tron back propagation hybrid (PBH) neural network classifier for detecting the
network–based attacks [14]. Hawkins et. al. have successfully employed the repli-
cator neural networks for anomaly detection [15]. The works [14,15] have employed
neural network approach for outlier detection that has advantages such as adaptive
capability of learning new patterns, refining the existing ones, managing complex
nonlinear decision boundaries, and faster recall. They however are not effective to
handle the uncertainties involved in the outlier detection. Toosi, et.al. have used
the adaptive neuro-fuzzy inference system (ANFIS) classifier to detect intrusions
in computer networks [16].This integration of fuzzy and neural soft computing sys-
tem for outlier detection is very promising as they exactly address the challenges
associated with the outliers. The fuzzy logic handles the uncertainty involved in
outlier detection and the parallel nature of neural networks achieves faster recall.
A detailed survey on outlier detection techniques involving fuzzy and/or neural
networks methods has been discussed in [17].

Fuzzy min-max neural network (FMN) is a well-known hybrid neuro-fuzzy clas-
sifier proposed by Simpson [18] that has been successfully used by many researchers
for pattern recognition. It has many advantages such as on-line learning ability,
learning with a single pass through data, learning any realistic and multidimen-
sional data that have nonlinear decision boundaries. The parallel hardware can
be used to accelerate the execution as implementation can be done using single
precision arithmetic operations. Researchers have used this classifier for several
applications such as medical diagnosis [19], fault diagnosis [20], detection of heart
diseases [21], face recognition [22], speaker identification [23], Iris recognition [24],
business intelligence [25], outlier detection [26–28], etc. The FMN is a three layer
feed-forward neural network model that grows adaptively to meet the demands of

286



Upasani N., Om H.: Optimized Fuzzy min-max neural network: an efficient. . .

a given problem. It utilizes the fuzzy sets as pattern classes and each fuzzy set
is a union of hyperboxes. A hyperbox(HB) is defined by min-max points that are
updated and fine-tuned in the learning or training phase. The training algorithm
determines the min-max points in a single pass through the data, which leads to
creation of new HBs belonging to different classes and refining the existing ones
(without retraining). The FMN allows overlap between the HBs belonging to the
same class; however, overlap between the HBs belonging to different classes is not
accepted. Each HB has an associated membership function, which states how much
a particular pattern belongs to that HB. Some researchers have modified the FMN
to make it more effective for specific type of problems. A fusion of fuzzy min-max
classification and clustering algorithms, called general FMN, is discussed in [29],
which can be used in hybrid clustering classification problems. Nandedkar and
Biswas have updated the FMN by including the compensatory neurons to handle
the overlapping and containment situations in FMN [30]. They have used this
modified algorithm for outlier detection and obtained better performance than the
existing well-known methods. Anas and Lim have modified the FMN to reduce
the size of the rule set and used it for fault detection and classification [27]. They
have reduced the number of HBs using a pruning strategy. The pruning method is
based on a confidence factor which is calculated using the method discussed in [31].
The confidence factor recognizes the HBs that are frequently used and generally
give high classification accuracy as well as the HBs that are highly accurate but
rarely used. After training phase, the HBs having confidence factor less than the
user defined threshold are pruned. Liu et al. have used the FMN with cancroids
rather than the min-max points to improve the computation time and to obtain
faster recall [32].

In this paper, we modify the basic architecture of FMN, calling it as fuzzy
min-max neural network with knowledge compaction (FMN-KC), to organize the
learned knowledge in a more compact and systematic manner. The aim is to provide
faster recall and make it more effective for real time applications. It has been
observed that the FMN creates more number of HBs even away from the decision
boundary that is it represents the learned knowledge with exhaustive details in
‘fine-grained’ manner. Though the FMN is a well-known pattern recognizer, yet the
‘fine-grained’ representation of the learned knowledge may reduce its performance
for pattern recognition in terms of the recall time per pattern. Here, we add a
new phase, called knowledge compaction, after the regular training phase. The
training phase creates the HBs and the knowledge compaction phase combines the
HBs created away from the decision boundaries that belong to the same class,
without creating any overlap with the HBs of other classes. This ‘coarse-grained’
representation of the knowledge achieves considerable improvement in the recall
time than the regular FMN without reducing its recognition rate. Our modified
architecture improves the recall time for outlier detection task. We use the Fisher
Iris dataset [33] to explain the working of our proposed FMN-KC. The outlier
detection performance of the FMN-KC is assessed on a 2-dimentional synthetic
dataset, a time-series disk defect dataset published by NASA and KDD cup 99
dataset available in the UCI repository [34]. Our proposed method gives better
performance than the original FMN in terms of the recall time per pattern and its
recognition rate is also comparable.

287



Neural Network World 4/2018, 285–303

The rest of the paper is organized as follows. Section 2 reviews the FMN.
Section 3 introduces our proposed modified FMN-KC and Section 4 introduces it
in an algorithmic form. Section 5 illustrates the proposed method with an example.
Section 6 discusses the simulation results for outlier detection and finally Section 7
concludes the paper.

2. Review of Fuzzy Min-Max Neural Network
(FMN)

The FMN is a three layer feed-forward neural network model that grows adaptively
to meet the demand of a problem. It may be considered as an example of the
hyperspherical attractor neural network [35]. It is a supervised learning algorithm
proposed by Simpson [18] that creates the decision boundaries by creating subsets
of a pattern space. The architecture of the FMN is given in Fig. 1.

Fig. 1 Architecture of FMN.

An input pattern is defined as (Ah ,Ch), where Ah= {ah1, ah1, · · · , ahn} is an
input pattern in n-dimensional unit hypercube (I-n) and Ch, hε{1, 2, · · · , p}, is a
class-index that h-th pattern belongs to. The input patterns are represented as A
or X in this paper. The FMN creates fuzzy sets, called HBs, and each pattern class
is a fuzzy union of HBs. The HBs representing the hidden nodes in the three layer
FMN model define a region of the n-dimensional pattern space that has patterns
with full membership. A HB is defined by a fuzzy membership function and min-
max points. The max and min refer to the farthest and closest points from the
origin in a hyperspace, respectively. The j-th HB, denoted as Bj, is defined as
follows.

Bj = {X,Vj ,Wj , bj (X,Vj ,Wj)} ∀XεIn, (1)

288



Upasani N., Om H.: Optimized Fuzzy min-max neural network: an efficient. . .

where matrices Vj and Wj store the min and max points, respectively, of Bj. The
matrices V and W represent the connections between the input nodes and HB
nodes, as shown in Fig. 1. The fuzzy membership function associated with a HB
tells the degree to which an input pattern belongs to that HB. A fuzzy membership
function bj for j-th HB is given by

bj (Xh) =
1

2n

n∑
i=1

max (0, 1−max (0, γ min (1, xhi − wji)))

+ max (0, 1−max (0, γ min (1, vji − xhi))) ,
(2)

where γ is sensitivity parameter that regulates how fast the membership value
changes. The fuzzy membership values 0 and 1 indicate no and full membership,
respectively; and the values in between tell partial membership. The connections
between the HBs and the output nodes that is the class nodes are stored in con-
nection matrix U as binary values, which are given by

ujk =

{
1 if bj is a HB for class ck

0 otherwise.
(3)

We now briefly present the FMN training algorithm.
FMN training: The training process constructs HBs and learns the non-linear
decision boundaries between different classes. New HBs are created and the existing
are refined in a single pass through the data. The number of HBs created depends
on a user defined value, called expansion coefficient that is the HB-size (θ), 0 ≤ θ
≤ 1. The less value of θ creates more number of HBs and gives better classification
accuracy; it however badly affects the recall time. So, the value of θ must be
selected such that it gives better classification accuracy with minimum possible
number of HBs. There are four steps of training/learning algorithm, as discussed
below.

1. Initialization: In this step, it creates the first HB using the first training
pattern and its min-max point is identical to that pattern.

2. HB expansion/creation: A HB is expanded to accommodate an input pattern
in the training set that belongs to the same class. The expansion criterion,
given in (4), should be satisfied to include a pattern xh in the HB Bj

nθ ≥
n∑

i=1

(max (wji, xhi)−min (vji, xhi)) . (4)

New min and max points for the expanded HB are calculated using (5) and
(6), respectively, as given below.

vnewji = min
(
voldji , xhi

)
∀ i = 1, 2, · · · , n, (5)

wnew
ji = max

(
wold

ji , xhi
)
∀ i = 1, 2, · · · , n. (6)

If the expansion criterion in (4) is not fulfilled, then a new HB is created.

289



Neural Network World 4/2018, 285–303

3. Overlap test: A pattern classifier must be proficient enough to form the
decision boundaries that can avoid overlapping of the classes to minimize the
misclassification. The overlaps of the HBs that belong to the same class do not
create any class formation problem and hence allowed. The overlap of the HBs
that belong to different classes must be eliminated to avoid misclassification.
The overlap of an expanded or a newly created HB is checked using the
overlap tests as given in [18]. If any overlap is detected, then a contraction
process is used to eliminate the overlap.

4. HB contraction: The overlap is removed by minimally adjusting one of the
dimensions of both the HBs. The minimal adjustment is done to assure a
very negligible change in the shape of the HBs, using the rules defined in [18].

After training, the learned knowledge gets stored in the form of HBs.
Test Phase: Here, the fuzzy membership value of a test pattern is calculated in
each HB, using (2). A transfer function is implemented at the output node to
calculate the degree to which a test pattern belongs to each class. The transfer
function for k-th class is a fuzzy union of the corresponding HB fuzzy membership
values that is given by

ck =
m

max
i=1

(biuik) , (7)

where m is number of HBs that are connected to class ck using matrix U.

3. Proposed architecture

The classification accuracy of the FMN is mainly affected by the HB-size (θ), which
is a user defined parameter. If the value of θ is less, more number of small-sized
HBs is created that increases the classification accuracy. However, these small-
sized HBs are created even away from the decision boundary that need not be
stored separately as this fine-grained representation of the learned knowledge with
exhaustive details reduces its performance for pattern recognition in terms of the
recall time per pattern. These HBs cannot be completely removed as it will reduce
the recognition accuracy; however, big-sized HBs can be formed by combining the
HBs away from the decision boundary. Here, the basic architecture of the FMN
is modified by adding a new phase, called knowledge compaction phase, which
organizes the learned knowledge in a systematic and compact manner. The main
aim of adding this phase is to combine the HBs away from the decision boundary
rather than removing them. Our proposed modified architecture FMN-KC is given
in Fig. 2.

The FMN is first trained according to the FMN training algorithm as described
in Section 2. The FMN creates K number of HBs with the corresponding min-max
points (V, W ) and a connection matrix U. The matrices V, W and U are given as
input to the KC-phase. This step reduces the count of the HBs to fit the knowledge
in a smaller system. New sets of HBs are represented with the revised min-max
points G, H and the updated connection matrix as F. The KC-phase inherits the
knowledge learned in the training phase and shows a comparable level of detection
rate with faster recall after the compaction.

290



Upasani N., Om H.: Optimized Fuzzy min-max neural network: an efficient. . .

Fig. 2 Modified Architecture: Fuzzy Min-Max Neural Network with Knowledge
Compaction (FMN-KC).

In order to avoid misclassification, an upper bound is set on the maximum size
of the HB while combining them, called HB-size-max-limit (δ). It is a user-defined
parameter that should be greater than the value of θ, i.e. (δ > θ) to create big-sized
HBs and reduce the count of HBs to achieve better compaction. If (δ < θ), then
it would not reduce the count as the HBs are not combined together. Same is the
case for equal values. The compaction process is described below.

The KC-phase tries to combine the K number of HBs created by FMN, con-
sidering δ as the maximum limit on the size of HB. For each HB, p in K, find the
number of HBs belonging to the same class as that of the p-th HB, denoted as (t).
The KC-phase tries to merge p-th HB with each of the HBs in t. After combining
p-th HB with q-th HB in t, the min-max points (g, h) of newly created r-th HB
are calculated using (8) and (9), respectively.

gri = min (vpi, vqi) ∀i = 1, 2, · · · , n, (8)

hri = max (wpi, wqi) ∀i = 1, 2, · · · , n. (9)

The overlap of a newly created r-th HB with the existing set of HBs belonging to
other classes is checked using the overlap test given in [18]. If no overlap is detected,
then delete p-th and q-th HBs, that is, the min-max points of the corresponding
HBs from the existing set (V, W ). Then add the newly created r-th HB, that is,
the new min-max points calculated using (8) and (9) to the existing set of HBs. An
overlap of r-th HB with the HBs belonging to the same class, that is, the HBs in
t is allowed. However, if it creates an overlap with the HBs belonging to different
classes, then we do not add it to the system and retain the existing set of HBs.

The compaction process is executed for all the K number of HBs created by
FMN. The KC-phase creates L number of HBs with the revised min-max points
(G, H ), where the value of L is substantially less than K. Finally, the connections
between the revised set of HBs and class nodes are calculated using (3) and stored
in matrix F. The KC-phase changes the representation of internal knowledge before
test phase to get faster recall than the original FMN. We now present the algorithm
to implement our proposed method.

291



Neural Network World 4/2018, 285–303

4. Our proposed method in algorithmic form

It has three phases that include training phase, knowledge compaction phase, and
test phase, as discussed below.

4.1 Phase 1: Training phase

Denote,
P : Number of patterns in the training dataset, N : Dimension of pattern vector, θ:
HB-size
Use training dataset to train the neural network using the learning algorithm [18]
that is described in Section 2. This phase provides the learned knowledge in terms
of HBs. Let K be the number of HBs.

4.2 Phase 2: Knowledge compaction phase

In this phase, we combine the HBs belonging to the same class, which are away
from the decision boundary, without creating any overlap with the HBs of other
classes. The algorithm for knowledge compaction is given in Algorithm 1.

We keep increasing the value of δ and execute the KC-algorithm (Algorithm 1)
to combine the HBs. Increase the value of δ till it does not drop the classification
accuracy that we achieved in the training phase. Select the maximum possible
value of δ that creates the minimum number of big-sized HBs. A revised set of
HBs, denoted by (L), with the corresponding min-max points (G, H ) and a revised
matrix F are given as inputs to the test phase. The KC-phase organizes the learned
knowledge in a compact manner prior to the test phase. We get different levels
of compaction based on the value of δ. It also depends on the way the HBs have
been created in the first step of training. We can achieve better compaction if
more number of small-sized HBs is created away from the decision boundaries in
the training phase.

4.3 Phase 3: Test phase

The test set is given as input to the fully-trained classifier. The fuzzy membership
value of each test pattern is calculated in the revised set of HBs (G, H ), using
(2). The HB giving the maximum membership to a test pattern is identified as
the winner. The class to which this HB belongs is detected as the class of a test
pattern. We achieve faster recall after compaction as the fuzzy membership value
of a test pattern is calculated for L number of HBs instead of K, where the value
of L is substantially less than K.

The basic aim of this work is to represent the learned knowledge in a coarse-
grained manner using less number of big-sized HBs. The classifier is first trained
using the FMN training algorithm, where the value of θ is finalized and then the
HBs created for the finalized value of θ are combined using the KC-algorithm. The
compaction is done till it does not drop the accuracy achieved by the classifier in
the training phase. The compact knowledge represented with the less number of
big-sized HBs is used for the test phase. The big-sized HBs after compaction will fit
in all the training patterns which were earlier covered by the small-sized HBs. This

292



Upasani N., Om H.: Optimized Fuzzy min-max neural network: an efficient. . .

Algorithm 1 Knowledge compaction algorithm.

1: Set an upper bound on compaction, called HB-size-max-limit (δ)
{Find HBs belonging to the same class as that of p-th HB}

2: for p =1 to K do
3: for q =1 to K do
4: if p != q AND classof[p] = classof[q] then
5: Add index q to t
6: end if
7: end for

{Combine p-th HB with all the HBs in t iff it does not create any overlap with the HBs

of other classes}
8: for q =1 to sizeof(t) do
9: Calculate min-max points (g, h) using (8) and (9) for newly created r-th

HB, generated after combining p-th and q-th HBs
10: size-of-newly-created-HB (δn) = Euclidean distance (g, h)
11: Test overlap of r-th HB with all existing, K number of HBs using overlap

test [18]
{Combine p-th and q-th HB if no overlap detected and size of r-th HB is less than the

upper bound (δ)}
12: if No overlap detected AND δn <δ then
13: Delete the min-max points of p-th and q-th HBs from (V , W )
14: Add new min-max points, g and h to (V , W )
15: end if
16: end for
17: end for
{After compaction, we get L number of HBs with the revised min-max points G, H}

18: G = V
19: H = W
20: Update matrix U using (3) for revised set of HBs, calling it as F
21: return G,H,F

compact representation reduces the computation time for the recall phase without
compromising the accuracy. Next section illustrates our proposed method with an
example.

5. Illustration of proposed method

We use the Fisher Iris dataset [33] to illustrate our proposed method. The Fisher
Iris dataset is a standard dataset used in a wide range of classification techniques.
It has three classes of Iris Plants: Iris-setosa, Iris-versicolor, and Iris-virginica. This
dataset consists of a total of 150 patterns, 50 patterns of each class, where each
pattern is a four-dimensional feature vector. We use all three phases of our method
on this dataset, as follows.

293



Neural Network World 4/2018, 285–303

5.1 Phase 1: Training phase

We select 100 patterns randomly from the dataset and for simplicity use only
the first two dimensions of the Iris dataset for training. In order to make the
computation simpler, we rescale the 2-dimensional input pattern space to the 2-
dimensional unit cube I2. The training dataset after pre-processing is shown in
Fig. 3.

Fig. 3 Scatter plot: IRIS data converted into 2-dimensional unit cube (I2) used for
training.

The FMN is trained using the training dataset as shown in Fig. 1 by varying the
value of θ and the size that gives nearly 100 % classification with the least number
of HBs is finalized for the KC-phase. Fig. 4 shows the HBs and non-linear decision
boundaries created for the three classes of the Iris dataset after training phase.

From Fig. 4, we observe that the FMN creates many HBs even away from the
decision boundaries. That is, the classifier stores the knowledge in a fine-grained
manner. Normally, the KC-phase described in next section tries to combine the
HBs away from the decision boundaries as the HBs near the decision boundaries
could easily create overlap after merging and cause misclassification. However, the
HBs near the decision boundaries could also be combined if they do not create any
overlap with the HBs belonging to different classes after merging.

5.2 Phase 2: Knowledge compaction phase

The min-max points of the HBs created in the training phase are given as input
to the knowledge compaction phase. For combining HBs, we set the value of HB-
size-max-limit (δ) greater than the HB-size (θ) that was set in the training phase.

We execute the knowledge compaction phase by increasing the value of δ till we
get maximum possible or nearly 100 % classification and finalize the best possible

294



Upasani N., Om H.: Optimized Fuzzy min-max neural network: an efficient. . .

Fig. 4 HBs and Decision boundaries created for three classes of Iris dataset after
training phase of FMN (HB-size, θ = 0.07).

maximum value for δ with least number of HBs. Fig. 5 shows the HBs and decision
boundaries created for three classes of the Iris dataset after executing the knowledge
compaction phase.

Fig. 5 HBs and decision boundaries created for 3-classes of Iris dataset after exe-
cuting Knowledge compaction phase (HB-maximum-limit (δ) = 0.21).

295



Neural Network World 4/2018, 285–303

5.3 Phase 3: Test phase

Tab. I. shows the comparative performance of the original FMN and our FMN-KC
for the Iris dataset.

Classifier HB-size Number of HBs Detection rate Recall time per pattern
(θ) / (δ) (K ) / (L) (%) (ms)

Original FMN 0.07 28 100 0.72
FMN-KC 0.21 8 100 0.30

Tab. I Comparative performance of the original FMN and FMN-KC for Iris
dataset.

It can be observed from Tab. I. that the proposed method achieves more than
50 % gain in the recall time while having the comparable detection rate. We have
used a small-sized dataset to understand how the HBs are combined in the knowl-
edge compaction phase. For the large-sized datasets, our modified architecture
would provide considerable improvement in the recall time. In next Section, the
simulation of the proposed method has been done for the large-sized datasets.

6. Simulation results for supervised outlier
detection

We employ our proposed FMN-KC for outlier detection. Experiments have been
done using two benchmark datasets, a time-series disk defect dataset and a KDD
cup 99 dataset. We use the detection rate, false alarm, and recall time per pattern
as the standard metrics to evaluate the performance of the proposed algorithm.
The detection rate is the total number of predictions that are correct. The false
alarm is the ratio of the number of normal patterns that are classified as outliers
to the total number of normal patterns.

6.1 Outlier detection using synthetic dataset

Here, we use a 2-dimentional synthetic dataset containing some regular patterns
and few outlier patterns for experiment, as shown in Fig. 6.

Class1 and Class 2, both representing regular patterns, are shown in Fig. 6. We
use 80 % patterns selected from each regular and outlier category for training and
the remaining 20 % patterns for testing. We select the value of θ for training and δ
for the knowledge compaction phase that give nearly 100 % classification with least
number of HBs. The results of the original FMN and our FMN-KC for outlier
detection on the test dataset are shown in Tab. II.

As evident from Tab. II, our FMN-KC reduces the recall time per pattern almost
half of the original FMN.

296



Upasani N., Om H.: Optimized Fuzzy min-max neural network: an efficient. . .

Fig. 6 Synthetic dataset.

Classifier HB-size Number of HBs Detection rate Recall time per pattern
(θ) / (δ) (K) / (L) (%) (ms)

Original FMN 0.15 13 100 0.19
FMN-KC 0.30 7 100 0.10

Tab. II Comparative performance of original FMN and FMN-KC for outlier de-
tection using synthetic dataset.

6.2 Fault detection using time-series disk defect dataset

The Rotary Dynamics Laboratory at NASA Glenn Research Centre acquired a time
series data on the simulated engine disks to detect cracks in it. These anomalies
could be detected in advance to prevent accidents. The data was recorded in three
different states: normal, notch, and large notch at three different speeds measured
in rpm. The class-distribution of patterns in disk defect dataset when disk moved
at different speeds is shown in Tab. III.

Speed Normal Fault Severe fault Total

3krpm-3min-50sec 8997 8998 8998 26993
4krpm-3min-50sec 11998 11997 11998 35993
5krpm-3min-50sec 14998 14998 14998 44994

Total 107980

Tab. III %-distribution of patterns in Disk defect dataset.

297



Neural Network World 4/2018, 285–303

Higher rpm runs have more samples since there are more revolutions over the
same period of time. The normal or healthy state represents the regular data, the
faulty state indicates anomalous data with small notch or crack on the disk, and
the severe fault indicates anomalous data with large notch or crack. Each pattern
vector has been represented with 38 parameters that include clock time, measured
RPM, maximum gap across all gap sensors, average gap across all gap sensors,
minimum gap across all gap sensors, and measured gap for total 32 blades, and the
last parameter is the state to which the pattern belongs. All these parameters have
been sampled once per revolution. We have performed experiment on total 10,000
patterns randomly selected from the dataset when disk is moving at a speed of
3krpm with 33.33 % patterns from each category including the normal, faulty, and
severe faulty. The training dataset is prepared with 80 % patterns selected from
each class and remaining 20 % patterns are used for testing as shown in Tab. IV.

Class Training dataset Test dataset Total patterns
(80 % patterns) (20 % patterns) (%)

Normal 2668 666 33.34
Fault / Notch 2666 667 33.33

Severe fault / Large notch 2666 667 33.33

Total 8000 2000 100.00

Tab. IV Number of patterns selected for experiment from Disk defect dataset when
disk is moving at a speed of 3krpm.

The data is pre-processed to make the computations simple. All the features
are normalized in the range [0, 1] using (10).

x =
x− xmin

xmax − xmin
, (10)

where x is a numerical value of a feature. The maximum and minimum values of
feature that x belong to are represented as xmax and xmin, respectively.

After pre-processing, the FMN is trained on the training dataset to get nearly
100 % classification. The time taken to train the classifier is given as
Time taken for training = 1488.5 seconds

The test dataset is given as input and the performance of the original FMN for
fault detection has been measured with K number of HBs as shown in Tab. V. The
HBs created in the training phase are given as input to the knowledge compaction
phase. We have set the HB-size-max-limit (δ) such that it is the maximum possible
value of the HB giving 100 % classification and is greater than the HB-size (θ) that
was finalized in the training phase. This phase has created L number of HBs of
size δ by combining the HBs away from the decision boundary. The time taken for
the compaction of knowledge is given as
Time taken for knowledge compaction = 37114.0 seconds

The test dataset is given as input and the performance of the FMN-KC for fault
detection is measured and the results are shown in Tab. V.

It can be observed from Tab. V. that the proposed FMN-KC reduces the number
of HBs for the disk defect dataset, which in turn improves the recall time per pattern

298



Upasani N., Om H.: Optimized Fuzzy min-max neural network: an efficient. . .

Classifier HB-size Number of HBs False Detection Recall time
(θ) / (δ) (K) / (L) Alarm rate (%) per pattern

(ms)

Original FMN 0.000001 5385 0.172 83.65 704.5
FMN-KC 0.000300 2362 0.111 83.80 215.9

Tab. V Performance of original FMN and FMN-KC for fault detection on a time-
series disk defect dataset.

as compared to the original FMN, with comparable detection rate. The following
formula has been used to calculate the % gain in time achieved by the proposed
FMN-KC.

%Gain in time =
Recall time forOriginal FMN− Recall time for proposed FMNKC

Recall time forOriginal FMN
.100

(11)
The proposed FMN-KC has achieved 69.4 % gain in the recall time for the disk

defect dataset as compared to the original FMN.

6.3 Signature based intrusion detection using KDD cup 99
dataset [34]

The KDD cup 99 intrusion detection dataset is based on the DARPA 98 dataset
containing a wide variety of intrusions simulated in a military network environment.
There are three different components of KDD 99 intrusion detection dataset. The
10-percent dataset is a more concise version of the Whole KDD dataset. Addi-
tional 14 types of attack are available in Corrected KDD dataset that also provides
different statistical distributions than 10-percent KDD or Whole KDD. We use the
corrected KDD dataset for experiments. There are total of 311029 single connec-
tion vectors, each described by 41 features, labelled as either normal or attack with
a specific type of attack. There are total 37 types of attacks, belonging to one of
the following four categories:

i. Denial of Service (Dos): Attacker tries to prevent a legitimate user from using
service.

ii. Remote to Local (R2l): unauthorized access from a remote machine.

iii. User to Root (U2r): Attacker is having local access to the victim’s machine
and tries to get the super-user privileges.

iv. Probe: Attacker tries to capture information about the target host for cir-
cumventing its security controls.

Tab. VI. shows the number of pattern vectors available in the corrected KDD
dataset under five different categories, viz. Normal, DoS, Probe, R2L, and U2R,
and their percentage distribution.

299



Neural Network World 4/2018, 285–303

Class Number of Patterns % distribution

Normal 60593 19.48
R2L 16347 5.25
DoS 229853 73.90

Probe 4166 1.34
U2R 70 0.03

Total 311029 100.00

Tab. VI %-distribution of patterns in corrected KDD dataset.

The KDD-99 dataset contains features having all forms of data including sym-
bolic, continuous, and discrete. In pre-processing phase, the symbolic features like
protocol-type, service, and flag are mapped to integer values ranging from 0 to
N-1, where N is number of symbolic values available in the corresponding feature.
For example, the protocol-type feature with three different symbols, namely, UDP,
TCP, and ICMP have been mapped to three discrete numeric values 1, 2 and 3,
respectively. The features available in continuous or discrete form have been used
in the original form. All the features have been normalized between 0.0 and 1.0
using (10). We have performed the experiment with a total of10000 patterns, se-
lected from the dataset with similar percentage distribution of patterns from all
the categories including the normal and attack types, as shown in Tab. VII. The
80 % patterns have been selected from each class to prepare a training dataset and
the remaining 20 % patterns for test, as shown in Tab. VII.

Class Training dataset Test dataset Total patterns
(80 % patterns) (20 % patterns) (%)

Normal 1600 400 20.00
R2L 554 138 6.92
DoS 5600 1400 70.00

Probe 240 60 3.00
U2R 6 2 0.08

Total 8000 2000 100.00

Tab. VII Number of patterns selected for experiment from KDD corrected dataset.

As shown in Tab. VII, the time taken by the FMN for training on the training
dataset is given as

Time taken in training = 1431.63 seconds

In the test phase, the test dataset as shown in Tab. VII is given as input and
the performance of the original FMN for signature-based intrusion detection is
measured with K number of HBs as shown in Tab. VIII. The HBs created in the
training phase are given as input to the knowledge compaction phase and the value

300



Upasani N., Om H.: Optimized Fuzzy min-max neural network: an efficient. . .

of δ is set as the maximum possible value of the HB giving 100 % classification,
creating L number of HBs. The time taken for the compaction of knowledge is
given as

Time taken for knowledge compaction = 24780.05 seconds

The performance of our FMN-KC has been tested for signature-based intrusion
detection with L number of HBs and the results are shown in Tab. VIII.

Classifier HB-size Number of HBs False Detection Recall time
(θ) / (δ) (K) / (L) Alarm rate (%) per pattern

(ms)

Original FMN 0.000000009 3831 0.0075 99.4 491.5
FMN-KC 0.00003 2374 0.0075 99.4 254.9

Tab. VIII Performance of the original FMN and FMN-KC for signature-based
intrusion detection on KDD corrected dataset.

It can be observed from Tab. VIII. that the FMN-KC has reduced the number
of HBs for KDD dataset, that is, the knowledge has been represented in a compact
form. The FMN-KC has achieved the gain in the recall time as compared to the
original FMN and the recognition rate is also comparable. For the KDD corrected
dataset, the proposed FMN-KC has achieved 48.1 % gain in the recall time as
compared to the original FMN, calculated using (11). As evident from Tab. V. and
Tab. VIII, the proposed FMN-KC has obtained a significant gain in the recall time
as compared to the original FMN without dropping the detection accuracy of the
classifier that proves the success of the proposed method.

7. Conclusions

The neuro-fuzzy approach is very promising for outlier detection as it exactly ad-
dresses the challenges associated with outliers, such as uncertainty involved in it,
false alarm, and faster recall. A fuzzy min-max neural network (FMN) proposed by
Simpson is a well-known supervised neuro-fuzzy classifier used for pattern recogni-
tion. The FMN creates more number of HBs even away from the decision boundary
and stores the learned knowledge with extensive details in a fine-grained manner.
In this paper, we have added a knowledge compaction phase in the basic archi-
tecture of the FMN, calling it as fuzzy min-max neural network with knowledge
compaction (FMN-KC), to represent the knowledge in a coarse-grained manner.
We have evaluated its performance for the supervised outlier detection. The KC-
phase combines the HBs of the same class that are away from the decision boundary
without creating any overlap with the HBs of other classes. This phase changes the
representation of the internal knowledge before the test phase. This compact and
coarse-grained representation of the learned knowledge improves the recall time
per pattern. Experimentally, we have shown that the proposed FMN-KC achieves
around 50 % gain in the recall time as compared to the original FMN. That is, the
FMN-KC requires almost half of the time that of the original FMN. This significant

301



Neural Network World 4/2018, 285–303

gain in the time without dropping the detection accuracy of the classifier proves
the success of the proposed method. The FMN-KC however requires additional
time for compaction of the knowledge. Though the training activity needs to be
done only for few times (generally once) as opposed to the recall activity which is
a recurring activity, the extra time needed for FMN-KC should not be recognized
as serious handicap of this architecture. The FMN-KC outperforms the existing
FMN in terms of the recall time per pattern. So, the proposed FMN-KC can be
used for supervised outlier detection in real time applications where the recall time
per pattern is one of the key parameters.

References

[1] HAWKINS D.M. Identification of outliers, London: Chapman and Hall, Vol. 11, Springer,
1980.

[2] CATENI S., COLLA V., VANNUCCI M. Outlier detection methods for industrial applica-
tions. In: Advances in Robotics, Automation and Control, InTech, 2008, doi: 10.5772/5526.

[3] LANE T., BRODLEY C.E. Temporal sequence learning and data reduction for anomaly
detection, ACM Transactions on Information and System Security (TISSEC), 2(3), 1999,
pp. 295–331. doi: 10.1145/288090.288122.

[4] BOLTON R.J., HAND D.J. Statistical fraud detection: A review, Statistical science, 2002,
pp. 235–249.

[5] CHIU A.L.M., FU A.W.C. Enhancements on local outlier detection, in: Database Engineer-
ing and Applications Symposium, 2003. Proceedings. Seventh International, IEEE, 2003, pp.
298–307, doi: 10.1109/IDEAS.2003.1214939.

[6] AL-ZOUBI M.B., KAMEL A.M., RADHY M.J. Techniques for image enhancement in the
spatial domain, WSEAS Transactions on Computers, 5(5), 2006, pp. 1047–1052.

[7] YANG J., ZHAO Z., ET. AL. A fast geometric rectification of remote sensing imagery based
on feature ground control point database, WSEAS Transactions on Computers, 8(2), 2009,
pp. 195–204.

[8] KNOX E.M., NG R.T. Algorithms for mining distancebased outliers in large datasets. In:
Proceedings of the international conference on Very Large Data Bases, Citeseer, 1998, pp.
392–403.

[9] KNORR E.M., NG R.T., TUCAKOV V. Distance-based outliers: algorithms and applica-
tions, The VLDB Journal—The International Journal on Very Large Data Bases, 8(3-4),
2000, pp. 237–253.

[10] HODGE V., AUSTIN J. A survey of outlier detection methodologies, Artificial intelligence
review, 22(2), 2004, pp. 85–126.

[11] AGGARWAL C.C. An introduction to outlier analysis. In: Outlier analysis, Springer, 2013,
pp. 1–40, doi: 10.1007/978-1-4614-6396-2_1.

[12] FAN W., MILLER M., STOLFO S., LEE W., CHAN P. Using artificial anomalies to detect
unknown and known network intrusions, Knowledge and Information Systems, 6(5), 2004,
pp. 507–527.

[13] GOMEZ J., DASGUPTA D. Evolving fuzzy classifiers for intrusion detection. In: Proceedings
of the 2002 IEEE Workshop on Information Assurance, Vol. 6, New York: IEEE Computer
Press, 2002, pp. 321–323.

[14] ZHANG Z., LI J., MANIKOPOULOS C., JORGENSON J., UCLES J., Hide: a hierarchi-
cal network intrusion detection system using statistical preprocessing and neural network
classification. In: Proc. IEEE Workshop on Information Assurance and Security, 2001, pp.
85–90.

302

http://dx.doi.org/10.5772/5526
http://dx.doi.org/10.1145/288090.288122
http://dx.doi.org/10.1109/IDEAS.2003.1214939
http://dx.doi.org/10.1007/978-1-4614-6396-2_1


Upasani N., Om H.: Optimized Fuzzy min-max neural network: an efficient. . .

[15] HAWKINS S., HE H., WILLIAMS G., BAXTER R. Outlier detection using replicator neural
networks. In: International Conference on Data Warehousing and Knowledge Discovery,
Springer, 2002, pp. 170–180, doi: 10.1007/3-540-46145-0_17.

[16] TOOSI A.N., KAHANI M., MONSEFI R. Network intrusion detection based on neuro-fuzzy
classification. In: International Conference on Computing and Informatics (ICOCI’06),
IEEE, 2006, pp. 1–5.

[17] UPASANI N., OM H., Outlier detection: A survey on techniques involving fuzzy and/or neu-
ral approaches. In: IEEE Workshop on Computational Intelligence: Theories, Applications
and Future Directions, IIT Kanpur, India, July 2013, pp. 28–32.

[18] SIMPSON P.K. Fuzzy min-max neural networks – Part 1: classification, IEEE transactions
on neural networks, 3(5), 1992, pp. 776–786. doi: 10.1109/72.159066.

[19] QUTEISHAT A., LIM C.P. Application of the fuzzy min-max neural networks to medical di-
agnosis. In: International Conference on Knowledge-Based and Intelligent Information and
Engineering Systems, Springer, 2008, pp. 548–555. doi: 10.1007/978-3-540-85567-5-68.

[20] PANICKER S.S., DHABE P., DHORE M. Fault diagnosis using fuzzy min-max neural net-
work classifier, Artificial Intelligent Systems and Machine Learning, 2(7), 2010, pp. 95–101.

[21] MOHAMMADI M., PAWAR R.V., DHABE P.S. Heart diseases detection using fuzzy hyper
sphere neural network classifier, CiiT International Journal of Artificial Intelligent Systems
and Machine Learning, Issue Jul, 2010.

[22] POTEY M.A., UPASANI N.V. Generalized ring averaging: a new method for left and right
directional illumination invariant face recognition for frontal poses and their small variants.
In: Proceedings of the International Conference and Workshop on Emerging Trends in
Technology, ACM, 2010, pp. 206–210. doi: 10.1145/1741906.1741951.

[23] JAWARKAR N., HOLAMBE R., BASU T. Use of fuzzy min-max neural network for speaker
identification. In: International Conference on Recent Trends in Information Technology
(ICRTIT), IEEE, 2011, pp. 178–182. doi: 10.1109/ICRTIT.2011.5972455.

[24] CHOWHAN S., SHINDE G. Iris recognition using fuzzy min-max neural network, Interna-
tional Journal of Computer and Electrical Engineering, 3(5), 2011, pp. 743. doi: 10.7763/
IJCEE.2011.V3.414.

[25] SUSAN S., KHOWAL S.K., KUMAR A., KUMAR A., YADAV A.S. Fuzzy min-max neural
networks for business intelligence. In: International Symposium on Computational and Busi-
ness Intelligence (ISCBI), IEEE, 2013, pp. 115–118. doi: 10.1109/ISCBI.2013.31,115-11.

[26] MENEGANTI M., SAVIELLO F.S., TAGLIAFERRI R. Fuzzy neural networks for classifi-
cation and detection of anomalies, IEEE Transactions on Neural Networks, 9(5), 1998, pp.
848–861. doi: 10.1109/72.712157.

[27] QUTEISHAT A., LIM C. P. A modified fuzzy min–max neural network with rule extraction
and its application to fault detection and classification, Applied Soft Computing, 8(2), 2008,
pp. 985–995. doi: 10.1016/j.asoc.2007.07.013.

[28] UPASANI N., OM H. Evolving fuzzy min-max neural network for outlier detection, Procedia
computer science, 45, 2015, pp. 753–761. doi: 10.1016/j.procs.2015.03.148.

[29] GABRYS B., BARGIELA A. General fuzzy min-max neural network for clustering and
classification, IEEE transactions on neural networks, 11(3), 2000, pp. 769–783.

[30] NANDEDKAR A.V., BISWAS P.K. A fuzzy min-max neural network classifier with compen-
satory neuron architecture, IEEE transactions on neural networks, 18(1), 2007, pp. 42–54.

[31] CARPENTER G.A., TAN A.-H. Rule extraction: From neural architecture to symbolic
representation, Connection Science, 7(1), 1995, pp. 3–27.

[32] LIU J., HE X., YANG J. A fuzzy min-max neural network classifier based on centroid. In:
Control Conference (CCC), 30th Chinese, IEEE, 2011, pp. 2759–2763.

[33] DHEERU D., KARRA TANISKIDOU E. UCI machine learning repository 2017. http://
archive.ics.uci.edu/ml.

[34] KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[35] KENNEDY R. The hyperspherical attractor neural network: concepts, theory and applica-
tion. In: Proc. WNNAIND, 91, 1991, pp. 241–271.

303

http://dx.doi.org/10.1007/3-540-46145-0_17
http://dx.doi.org/10.1109/72.159066
http://dx.doi.org/10.1007/978-3-540-85567-5-68
http://dx.doi.org/10.1145/1741906.1741951
http://dx.doi.org/10.1109/ICRTIT.2011.5972455
http://dx.doi.org/10.7763/IJCEE.2011.V3.414
http://dx.doi.org/10.7763/IJCEE.2011.V3.414
http://dx.doi.org/10.1109/ISCBI.2013.31,115-11
http://dx.doi.org/10.1109/72.712157
http://dx.doi.org/10.1016/j.asoc.2007.07.013
http://dx.doi.org/10.1016/j.procs.2015.03.148
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html



