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Abstract: The optimization problem of two or more special-purpose functions of
the energy system is subjected to an analysis. Based on experience of our research
and general knowledge of partial solutions of energy system optimization at the
level of control of production and power energy supply by energy companies in the
Czech Republic, a special-purpose (cost) function has been defined. By analysing
the special-purpose function, penalty and limitations have been defined. Using the
fuzzy logic, a set of suitable solutions for the special-purpose function is accepted.
An optimum of the special-purpose function is looked for using the simulated an-
nealing method. The history of electricity consumption is sorted by day and by
hour, representing the multidimensional data. When using the cluster analysis,
type daytime diagrams of consumption are defined. Type daytime diagrams form
prototypes of identified clusters. The so-called self-organizing neural network with
Kohonen map attached is used to perform the cluster analysis. The result of our
research is presented by an experiment.
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1. Introduction

Decree of the ERO No. 81/2010 Coll., approved in the Czech Republic, specifies
the conditions for the connection of power generating plants and customers’ con-
sumption points to the electricity grid and the method of determining the share of
the costs connected with connection and provision of the power demand. Further,
it specifies the conditions for connection of a local distribution system (LDS) in
connection with changes in its balance inside and the conditions for determination
and reimbursement of the incurred costs (input/output provision). A new role of
the distribution system operators in the management of sources in connection to
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the operation of the Czech Republic’s electricity grid concerns mainly dispatching
management, reduction of electricity generation in plants – in the case of sources
above 1 MW in connection to construction of technical means of control, opera-
tion preparation and transmission of information. A transmission system operator
at distribution-system level provides active and reactive power management and
emergency management services. Analogously, the RES production management
consists in dispatching management in connection to distribution system safety
and solution of emergency situations and their prevention. The role of distribu-
tion system operators in balance managing is important as well. The distribution
system operators are obliged to buy the RES electricity from producers in their
area if they so request, and to pay a green supplement charge as set by the En-
ergy Regulatory Office (ERO) to those who sell the RES electricity on the market.
The development of Smart Grids and stable energy systems is expected. These
grids may adjust automatically the electrical energy consumption as per demand
in real time, thereby avoiding daily energy peaks, reducing the risk of overload and
overproduction.

Several studies deal with energy saving, but the use of energy resources in an
effective way is a problem as well. This is related to the energy balance (EB) ex-
pressed by the sum of the electrical energy needs within a building or building area
or a Smart City. The EB is expressed by the share of individual renewable sources in
energy generation (hydropower, photovoltaics, cogeneration, biomass, distribution
system energy– Smart Energy). In an energy system, equilibrium of energy bal-
ance applies at each moment, which is expressed by: Sv(t) = Ss(t) +Sz(t) +Sa(t),
meaning that the generated electricity at time t is Sv(t), equal to the sum of the
consumed energy at time t, which is Ss(t), losses caused by the distribution at time
t, i.e. Sz(t), and accumulated electricity at time t, which is Sa(t). If there is no
electrical energy balance in the transmission system, the electrical energy quality
is reduced.

The fluctuations in the supply and consumption of a constant amount of electri-
cal energy are considerable on both sides. This is a crucial issue we are solving and
presenting in this article. There is an attempt to set up own energy systems, leading
to the establishment of so-called local distributed RES microgrids with a combina-
tion of a certain electrical energy supply from the distribution system (DS). This
leads to implementation of nearly zero-energy buildings, or more precisely, smart
areas or smart cities of the same quality. In this way, a local RES microgrid be-
haves as an energy production plant in a decentralized renewable energy system
(DRES).

A nearly zero-energy building is a very low-energy building, where the energy
consumption is covered largely by RES. Under Act No. 406/2000 Coll. on energy
management (applicable amendments: No. 103/2015 Coll., effective from July 1,
2015, and No. 131/2015 Coll., effective from January 1, 2016). The current state
of research in the field of consumption optimizing and power energy source orga-
nization – unit commitment for a smart city lies in development of a methodology
for building design in the Smart Cities system.

Above all, the characteristic, concept, structure, and approach of smart build-
ings must be respected as an integral part of the Smart Cities, and then proceed
to the following guidance:
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a) Basic concepts of Smart Cities buildings

All the buildings integrated into a smart city or its area should be designed
as “nearly zero-energy buildings”. This category of buildings is defined by
the following energy parameters, see Tab. I.

Average Specific Specific Specific Total
heat heat heat demand airtightness

transfer demand demand for primary of the
coefficient for heating for cooling energy EnP building

Uem EH EC EnP envelope n50

[W/(m2 ·K)] [kWh/(m2 · a∗)] [kWh/(m2 · a∗)] [kWh/(m2 · a∗)] [1/h]

Family house ≤ 0.20 ≤ 5.0 0 ≤ 60 ≤ 0.6
Block of flats ≤ 0.30 ≤ 5.0 0 ≤ 60 ≤ 0.6
Non-occupied
building
with prevailing ≤ 0.35 ≤ 5.0 ≤ 5.0 ≤ 120 ≤ 0.6
temperature of
18 oC to 22 oC

Other buildings Requirements set individually ≤ 120 ≤ 0.6
∗Aperture (hole) area. Aperture area is the area of the solar collector through which solar

radiation (glazed surface) can enter. It is smaller than the collector area (outer dimensions) and

larger than the absorber surface.

Tab. I The main energy parameters of “nearly zero-energy buildings” according to
their usage (adapted from [39]).

Where the average heat transfer coefficient Uem [W/(m2 · K)] represents
the weighted average of partial heat transfer coefficients Ui [W/(m2 · K)] of
individual structures i, calculated over the areal representation in the building
envelope; specific heating energy demand EH represents the total annual
heating energy demand per unit floor area; the specific cooling energy demand
EC represents the total annual cooling energy demand per unit floor area;
the specific primary energy demand EnP represents the total annual demand
for non-renewable primary energy per unit floor area; the total airtightness
of the building envelope n50 represents the maximum permissible multiplicity
of air change in the building interior at a pressure difference of 50 Pa between
the interior and the exterior. In order the solved building to be able to meet
the above-mentioned energy parameters, an effective approach must be used
at all stages of its design:

b) Mass solution

c) Heat and technical solution

d) Indoor environment

e) Energy solution

It is recommended to be created for the whole territory being solved at once
with the examination of energy sharing between buildings. Primarily, it
should be focused on renewable energy sources, share of which in consumption
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coverage and its increasing represent one of the main objectives of European
states for the future. Several variants should be created from the available
options, from which the most appropriate one should be selected by a multi-
criteria analysis. The energy demand of the area being solved can be covered
by energies from the following sources:

– Solar energy (photovoltaic panels)

– Environment energy (heat pumps)

– Wind energy

– Biomass

– Geothermal energy

– Hydropower

– Cogeneration

For our experiment, a variant of the most suitable composition of RES in the
application of biomass, photovoltaics, wind energy and cogeneration com-
bined with a certain electrical energy supply from DS was selected.

f) City urbanization:

The concept of Smart Cities is closely related to a phenomenon of recent years
– city urbanization with massive resettlement of population on the planet to
large urban areas, thereby increasing the concentration of inhabitants and
associated activities in urban areas.

For our experiment, the Smart Area was selected as a part of Smart Cities
Prague, see Fig. 1, where a comprehensive urban development of smart character
is being solved, as a complex of smart buildings meeting the “nearly zero-energy
building” conditions.

Based on the assessment of the current state of the energy consumption opti-
mization research, the characteristic features of the “nearly zero-energy buildings”
are defined, namely: RES usage, application of quality parameters of construc-
tion building envelope elements, efficient building technical systems, and indoor
environment quality; see Fig. 2.

a) Photovoltaic panels on building roofs: Free areas of flat roofs of buildings will
be used for application of the photovoltaic panels. Parameters of the panels
installed: Orientation

– SOUTH; inclination from the horizontal plane 30 o; the peak panel output
is 320 Wp per panel; the panel efficiency is 13 %.

b) Photovoltaic panels on building facades: Free areas of double facades in the
second or higher aboveground floors of buildings with favourable world ori-
entation will be used for application of the integrated photovoltaic panels

c) Percentage of facade glazing Facades of different types of buildings will have
different percentages of glazing according to the proposed functional type of
the building; see Tab. II.
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Fig. 1 Smart urban area at Rohanské waterfront, Prague (Taken from: Author of
the original urban study is arch. Veronika Soukupová, Czech Technical University
in Prague Faculty of Architecture).

Fig. 2 Building solution schema. A model example.
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Functional Number North East South West
type of floors [%] [%] [%] [%]

Administrative 1floors 20 75 75 75
business >1floors 20 50 50 50

Mixed, living
1floors 20 75 75 75
>1floors 20 35 35 35

Only living
1floors 20 35 35 35
>1floors 30 35 35 35

Cultural
1floors 20 50 50 50
1floors 15 15 15 15

Sport 1floors 20 50 50 50

Tab. II Percentage of building facade glazing in a smart area (adapted from [39]).

d) Building envelope properties: Thermal properties of the building envelopes
are designed according to principles and requirements of the passive construc-
tion standard. Demand for the construction of nearly zero-energy buildings
(NZEB) is based on the Directive 2010/31/EU of the European Parliament
and of the Council on the energy performance of buildings. The main indica-
tor of thermal and technical properties of the building envelope is to achieve
the required heat transfer coefficient Upas,20 [W/(m2K)] – it has very well-
insulated structure, quality windows and doors. Annual energy consumption
for heating of a passive building depends on the building location and ranges
from 1 kWh/m2 in Central Europe to 30 kWh/m2 in Northern Europe. In
our Smart Area experiment (Rohanské waterfront, Prague), all the required
heat transfer coefficient values of the building envelope are achieved; see [7].

e) Building parterre solution: The parterre of the proposed buildings will be
solved with emphasis on maximizing the proportion of green areas used for
rain-water retention in the territory

f) Geothermal heat pumps: Ground-plan of the buildings will be utilized effec-
tively to locate deep boreholes of geothermal heat pumps.

Deep boreholes parameters:
Borehole depth 150 m
Specific output of the borehole taping 100 W/m
Axis bore spacing 10 m
Heat pump parameters:
Percentage of heat loss coverage of a given building −75 %
Proposed heat pump factor COP 4.0

While adhering to the mentioned characteristic features of nearly zero-energy
buildings, we will define subsequently the specific issues that need to be solved
within the research. This is a solution to optimize power consumption and unit
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commitment for a smart city. The considerable fluctuations in the supply and
consumption of a constant amount of electrical energy on both sides represent an
issue. The ability to influence the amount of electrical energy consumed is ensured
by a mass remote control system that enables the appliances to be switched on and
off at high and low tariff periods. However, development of modern technologies
offers more flexible options for individual consumers. Then, they may obtain a
reward from grid operator to reduce or increase their consumption. They are not
subject to mass control, but they can influence the activity of household appliances
on their own. To do this, however, it is necessary to have real-time data on energy
consumption.

The intent and goal of the project – research is to solve the development of
function for planning the supply and consumption coordination of different types
of energy, in our case the electrical energy of the smart building compound within
the Smart area or Smart Cities in a given time period. The aim is to minimize
the operating costs for the electrical energy supply and their implementation into a
building control system. We consider the electrical energy to be energy medium for
the buildings within Smart area as a part of Smart Cities. The electric microgrid
is powered by both the distribution system and its local sources, i.e. cogeneration
units (CHP), various accumulator types (ACCU), and RES, such as photovoltaic
panels (PVP) and biomass power plants (BPP). Mainly, the electric microgrid
load of the building compound consists of heating, ventilation and air condition-
ing (HVAC) systems, transport systems, such as lifts and escalators, information
systems, such as computer networks or various sensors, actuators, and eventually
conventional electric appliances, lighting, etc.

2. Multicriterial optimization

If we want to use more criteria to find the optimum, then their selection is decisive
in order to interpret the results correctly. The number of criteria should not be
too high, otherwise the results would be difficult to formulate. In this case, it is
appropriate to determine the sequence of the objective functions considered.

Multi-Objective Optimization Problem (MOOP) is based on the optimization of
two or more objective functions for which we are looking a minimum or maximum
and is generally defined by the relation

min {f(x)|g(x) ≤ 0, x ∈ X} ,

where:
f(x) = (f1(x), f2(x), . . . , fk(x))

T
is a vector of criterion functions

g(x) = (g1(x), g2(x), . . . , gp(x))
T

is a vector of restrictive condition
x is a solution vector.

The above entry does not specify the role of multicriterial programming un-
ambiguously, since the meaning of the minoperator for the given vectors is not
precisely defined. The task is to find such a vector x that meets the restrictive con-
ditions and in which the criterion functions f1(x), f2(x), . . . , fp(x) reaches values
as high as possible.

Let x1 and x2 are acceptable solutions. Let us say that within the solutions
of x1, the x2 solution dominates, if fk(x1) ≥fk(x2) applies to all the k = 1, . . . , p,
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wherein such r exists that fr(x1) > fr(x2). This means that x1 must be better
at least according to one criterion, while it is not worse according to any another
one. Let us say that solution x is non-dominant (optimal by Pareto) if there is
no acceptable solution to make it dominant. The solution fulfils the condition
of Pareto optimality if no criterion can be improved without worsening another
criterion.

There is no universal computational method for multicriterial optimization
tasks, but there are a number of different methods and procedures that make
it possible to find the best compromise solution for a given task. Their basis is the
one-off or repeated use of single-criterion optimization methods and, in terms of
their breakdown, an interactive method is the most appropriate for our case, where
supplementary information about the preferences of a decision-maker is provided
only during solving the task.

Issue of the multicriterial decision-making: There is a set of possible variants
(decisions, solutions) and we have to choose such variant that is the best one with
respect to a given set of criteria (aspects, characteristics). In our case, it is a
role of multicriterial programming. The admissible variants are defined implicitly.
Generally considered criteria are usually conflicting. In our experiment, qualitative
criteria are taken into account that allow only to determine whether a variant is
better or worse than another one, or whether the two variants being compared are
equivalent under such criterion.

In addition, however, there are also specific methods that use the finiteness
of a set of variants and are able to work with qualitative criteria. These include
methods based on the theory of fuzzy sets (vague or misty sets) that we will use for
our experiment. In these methods, based on the partial preferences of a decision
maker, a vague relation is constructed, from which a non-vague preference relation
is obtained using thresholds or preference and indifference, or dispreference; the
variants can be arrange in some way using such non-vague relation.

3. Optimization of energy system special-purpose
system

The special-purpose function f(x) is a function whose optimization will lead to find
optimal values of its arguments. The special-purpose function is sometimes called
a “price function”, even in our case it has its place. If we look at optimization with
a condition, then we can describe it mathematically as follows

minimization f (x)

under restricitve condition gi(x) ≥ 0, i ∈ I, i = k′ + 1, . . . , k

hj(x) = 0, j ∈ J, j = 1, 2, . . . , k′,

f : D → R,D ⊆ Rd is defined above the definition field D, which is a continuous
set of searched space and R is a real value range.

Furthermore, f, gi and hj are the functions are and I and J are the final sets of
indices. The function f is a special-purpose function and gii ∈ I, are constraints
using the inequality equation, and hj , j ∈ J, are constraints using the equality
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equation. From a general point of view, the optimization problem can be expressed
as follows

min f(x) for x ∈ Rn.

The special-purpose function can be expressed as a sum of quadrates of the devia-
tions between the current parameter values and the values required

f(x) =

m∑
i=1

[yi(x)− di]2 .

The value of the minimized special-purpose function, or the value of the optimized
system parameters, depends on the status vector

x = [x1, x2, . . . , xn]
T
,

where:
x1, x2, . . . , xn are the state variables of the optimized system expressed by the

special-purpose function,
y1, y2, . . . , ym are parameters of the optimized system,
d1, d2, . . . , dm are the required values of these parameters.
By inequality constraint, the condition gi(x) ≥ 0 indicates that the state vari-

able must be higher than or equal to zero. If we multiply both sides by the coef-
ficient of −1, we get the condition that the state variable is less than or equal to
zero, as well as the function of the state variables.

The search methodology for our optimization task is as follows [1]

min {f(x) : x ∈ X} ,

where f : X→ R and X ⊂ Rn.
If our problem is formulated from the point of maximization, then it is easy

to make the adjustment to minimize. In that case, the situation would be the
following [1]

max {f(x) : x ∈ X} = −min {−f(x) : x ∈ X} ,

arg max {f(x) : x ∈ X} = arg min {−f(x) : x ∈ X} .

For the local minimum, following applies

on X ⊂ Rn, if δ > 0 so that,

for each y ∈ X, ||y − x|| < δ applies f(x) ≤ f(y).

For the global minimum, following applies

on X ⊂ Rn, if for each y ∈ X applies f(x) ≤ f(y).

The special-purpose function design is a very complex problem, requiring consider-
able experience in the subject area, and the possibilities of defining the optimization
must be also taken into account. We need to build on the basis of what is to be
achieved and what can be come out. We drew on the experience of our research
and the overview of optimization solutions for energy systems of energy companies
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Fig. 3 Model of Intelligent Cities Energy System.

within the Czech Republic. Based on this, we described the physical model of the
energy grid – RES microgrid, see Fig. 3, which corresponds to our experiment.

When developing a mathematical model, we draw on the analysis of the system,
its overall behaviour and the set solution objectives. Within objective reality, we
define a system, i.e. elements, links, inputs and outputs, processes and functions.
We make some simplification of the problem to separate irrelevant issues from
the essential ones. We identify the most important parts of the system being
examined; this system will be modelled, therefore, the identified parts must describe
the model to be created. The mathematical model describes the system [9] using
a set of variables, constants, and a set of equations or inequalities determining the
relations between them. The variables represent some system properties. In each
mathematical model, we can distinguish three basic groups of objects the model is
composed of: variables and constants, mathematical structures, and solutions. In
our case, this is a mathematical structure that is called restrictive conditions. This
is a system of equations or inequalities.

Mathematical model of a problem is a special-purpose function. The solution
of our mathematical model is to define a suitable solution of a special-purpose
function that either meets or does not meet the restrictive conditions. Another
objective is to find an optimal solution that suits the best the desired aim, i.e. the
optimal solution of the special-purpose function.

When developing this special-purpose function in terms of economically efficient
RES electrical energy supply, the computational process, where the total demanded
generation is divided among the individual electrical energy sources in operation, is
carried out through minimization by the selected cost criterion [11]. Therefore, we
the special-purpose function is called a cost function. This cost function is subject
to a certain load restriction as well as operational load. For a particular load
condition, the output of each power plant is calculated by minimizing the total cost
of its production and system operation [3]. Traditionally, this problem is formulated
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as a cost-function optimization, which is defined as a quadratic function [3]:

f(Pg) =

Ng∑
i−1

(
αi+βiPgi + γiP

2
gi

)
. (1)

If the variable Pg (function argument) is expressed as Pgi i.e. the output of i-th
source at time t and xi (t) is energy state of the i-th source at time t; the basic
relation of the cost function is obtained

f(Pg(t), x(t)) =

Ng∑
i=1

T∑
t=1

(
αi + βiPgi(t) + γiP

2
gi(t)

)
· xi(t). (2)

Based on the above-defined variables, constants, mathematical approximations and
mathematical structures (1) and (2), two variants of the cost functions of our energy
system are developed – a physical model of the Intelligent Cities Energy System,
see Fig. 3. This is supported by [8] as well.

f(Pg(t), x(t)) =
T∑
t=1

Ng∑
i=1

(αi + βiPgi(t) + γiP
2
gi(t) + δi(1− e−αt)) · xi(t) (3)

f(Pg(t), x(t)) =

T∑
t=1

Ng∑
i=1

(αiPgi + βiP
2
gi) · xi(t) + γiPgixi(t) · (1− xi(t− 1)). (4)

When based on the cost function (4) defined over the entire integrated period (24
hours/day), the RES operating costs and the start-up costs of the RES organiza-
tion have to be separated. The starting point is the fact that the cost function is
determined by mathematical approximation of economic indicators obtained em-
pirically. We will define individual variables, constants, mathematical structures,
etc.:

– The cost function is referred as f ;

– Number of RES in the grid is referred as Ng;

– Time of the scheduled RES organization mode (24 hours) is referred as t ∈
{1, 2, . . . , T};

– The resource index is referred as i ∈{1, 2, . . . , Ng};

– The number of time moments in a given period when the RESs are deployed
is referred as T ;

– The output of the i-th source at time t is referred as Pgi(t);

– The operational costs of the cost function f are expressed as an algebraic
shape

(
αiPgi + βiP

2
gi

)
xi(t);

– The start-up costs to run one of the RES have an algebraic shape γixi(t) ·
(1− xi (t− 1));
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– The start-up costs (to start the RES operation) in relation to (3) are expressed
by the relation δi (1− e−αt) · xi(t); as well; α = −∆Ti

τi
(t);

– The cost coefficients in relation (3) and (4) are αi, βiγiδi and ∆T i(t), respec-
tively; and τi are the relevant cost coefficients, or the downtime and time
constant of exponential increase in the start-up costs of the i-th source at
time t;

αi [CZK] , βi

[
CZK/MW

]
, γi

[
CZK

/
MW2

]
, δi [CZK] ,

– The operating costs of RES generating an output are expressed in an algebraic
relation P = α+ β · P + γ · P 2 + δ · e,

– xi(t) is the energy state of the i-th source at time t,

– (x1, x2, . . . , xn) , are the vector components (independently variable of the
cost function),

where Ng, or T is a number of sources in the network or a number of time sectional
views considered in the period of running of the sources.

The cost (special-purpose) function (4) is broken down in such shape to describe
the significance of the individual coefficients. In particular, the operating costs of
RES (one source is selected) producing the output Pg = α · Pgi + β · P 2

gi [CZK] are
expressed. This relation is specified without expressing the start-up costs. This
relationship simplifies the Eq. (4) as the generators (RES) are always ON xi(t) = 1.
In this case, the individual variables (cost items) mean:

α Costs dependent on the output generated (e.g. fuel quantity depending on
higher output); [CZK/MW], example αi · Pi = [CZK].

β Costs dependent on the second power of the output generated (e.g. Joule
heat losses Q is generated in a live wire (winding of generator at a wind
power plant within the RES), through which the electric current flows for the
time t. The higher current passing through the wire (generator winding), the
higher losses. Then, Joule heat is Q = RI2t [J]. In addition, there may be
losses in iron and due to friction

[
CZK

/
MW2

]
Pg generated output [MW].

The suitable solutions of the cost function are determined by the condition
that the state of the source in the given hour is given by the sum of outputs of the
sources switched on, consumed outputs and total output lost.

Ng∑
i=1

Pgi −
ND∑
i=1

PDi + Pzt = 0,

s.t Vmin ≤ V ≤ Vmax,

Pgi,min ≤ Pgi ≤ Pgi,max,

where Ng is the total output generated by the all RESs; ND is the total output
consumed; and Pzt is the total output loss within the system; xi(t) is the energy
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state of the i-th source at time t; Pgi is the output of RES electrical energy source;
PDi is the output consumed; Pgi,min is the minimum output of the RES electrical
energy source; Pgi,max is the maximum output of the RES electrical energy source;
Pg is the rated output of the RES electrical energy source; V is the RES source
voltage; Vmin the minimum RES source voltage; and Vmax is the maximum RES
source voltage.

The restrictive conditions include balances and imbalances that represent en-
ergy equations, as well as restriction of generator, bus, voltage, and current flow.
This can be solved using analytical programming such as Non-Linear Program-
ming (NLP), Quadratic Programming (QP), Linear Programming (LP), Newton’s
method, Internal Point Methods IPM, and decision support methods, such as the
Analytical Hierarchy Process (AHP), where the solving of decision-making issues
has to take into account all the elements influencing the analysis result, the relations
between them, and the intensity with which they interact.

The computational methods used to solve such problem require simplification
of the cost function to be linearly and monotonically incremental in parts, but it
suffers from the problem of nonconvex behaviour of the energy system, leading to
local minimization or local optimality. In this case, we use alternative methods
such as Evolutionary Programming (EP) [11], genetic algorithm (GA) [12], search
taboo [13], neural networks [14], particle swarm optimization [15, 16] optimization
stochastic algorithm of simulated annealing (SA) [17], and ADP (adaptive dynamic
programming); these are passive learning methods to improve the performance of
the economic delivery algorithm.

3.1 Unit commitment

Unit Commitment Planning covers the scope of decisions on hourly operation of
the RES system with a horizon of one day to one week. The following must be
taken into account:

a) Operating restrictions and unit cost.

b) Production and reserve restrictions.

c) Restrictions at power plant start-up.

d) Network restrictions.

In order to follow the above-mentioned restrictions, certain unpredictability, or
stochastic variables, certain assumptions need to be fulfilled to formulate unit com-
mitment. For example, a device for rotary reserve of electric current generator, a
device for initial reserve under reduced boiler conditions (in the case of biomass),
or partial formulation with operation start – start of the electric current rotary
generator must be defined. The first restriction to be met is that real electrical
energy generation must be higher than or equal to the sum of the total electrical
energy demand (output) by consumers and the required system output reserve.

Ng∑
i=1

Pgi(t) ≥ Pcel + Prez,
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Pcel – total required output [MW],
Pres – total output reserve [MW].

Should the RES units keep a certain reserve, the upper limits must be adjusted
accordingly. Therefore:

Pmax
gi = P cap

gi − P
res
gi ,

Pmax
gi – is the maximum output power of the i-th RES source [MW],
P cap
gi – output capacity of the i-th RES source [MW],
P res
gi – output reserve of the i-th RES source [MW],

Ppop + Pzt ≤
N∑
i=1

Pgi −
N∑
i=1

P res
gi ,

Ppop – output demand [MW],
Pzt – output loss [MW],

γc = γ0

(
1− eαt

)
+ γL,

where:
γc – costs of the off-line source run (source status at a given hour) [CZK],
α – thermal time constant of the unit (source),
t – time [s],
γL – labour costs to fill the units [CZK],
γ0 – costs of running a cold boiler [CZK],
Pmax
gi – the maximum output power of the i-th source [M],

γban = γBt+ γL,

where:
γB – costs of running a reduced source [CZK],
t – time [s],
γban – wage costs [CZK].

Applying the Lagrangian relaxation a better relaxation is obtained, and, there-
fore a better upper estimation for optimal value than using the normal integer
relaxation. It belongs to classical techniques used for the unit commitment prob-
lem, where the limitations are based on stochastic variables and predictability is
taken into account. For these reasons, and then for reasons that will be discussed
in Chapter 4 “Simulated Annealing”, the stochastic optimization method will be
used to solve this problem because its randomness is a good approach to such so-
lution. Therefore, a stochastic algorithm inspired by physical laws, i.e. simulated
annealing, will be applied for unit commitment solution. The suitable solutions
of the cost function are determined by the condition that the output state of the
source in the given hour γ(t) is given by the sum of outputs of the sources switched
on. It is based on the daily output consumption type diagram at the given time.
Then, the optimization algorithm works only with the suitable solutions [8], which
can be evaluated directly through the cost function without any penalty. Then,
the following can be written

Ng∑
i=1

Pixi(t) = γ(t) for t = (1, 2, . . . , 24) [h]. (5)
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By adjusting the Eq. (5), the relation for the restrictive condition of the cost
function is get using relation min {f(x)|g (x) ≤ 0,x ∈ X} and the relation Eq. (5)
is get. The fact (reality) will be such that g (xi(t)) ≥ 0. Then, the relation can be
written

g (xi(t)) =

Ng∑
i=1

Pixi(t)− γ(t) ≥ 0, (6)

where xi(t)= (x1(t), x2(t), . . . , x7(t)) . Dependency ~x(t) = (x1(t),x2(t), . . . , x7(t))
depends on the state of the source at a given hour.

Where
∑Ng

i=1 Pixi(t) represents the electrical energy generation at time t and
γ(t) represents a prediction of consumption at a given hour. Parameters i ∈
{1, 2, . . . , Ng} specify the source index and Ng is the number of sources of local
RES microgrid; in our case, these are 7 (ten). In addition, t ∈ {1, 2, . . . , T} indi-
cates the time of planned source organisation mode and Pgi(t) is the power of the
i-th source at time t.

3.2 Penalty function

When using the penalty method, the optimization algorithm works with both suit-
able and unsuitable solutions. The penalty function in relation to standardized
requirements acquires the value of zero; for a solution not meeting one criterion,
for example, it acquires the value of nonzero, i.e. it is positive. Defining the penalty
function, for example by adding it to cost (special-purpose) function, depends on
its complexity in terms of the effectiveness of searching for local optima. Always,
it depends on the algorithm used. We will consider one of many approaches to
penalizing our cost function, see e.g. [18, 19].

First of all, let’s express: Definition 1: Considering the functions f, g and as-
suming that some values of the function g(x) belong to D(f). Such value u =
g(x) ∈ D(f) can be assigned the value y = f(u) = f(g(x)). This is a definition for
a new function h(x) = f(g(x)), which is called a function composed of functions
f, g and is referred as h = f ·g. Note: The function g is applied as first, the function
f as second. The penalty function will be directed to the position of unsolicited
electrical energy supply that can be expressed as

f(Pg(t),x(t)) = (f(X) + a)·
m∏
i=1

cbii , (7)

where x(t) = X = {x1, x2, . . . , xD} , D = 7 minimizing functional of f(Pg(t),x(t)) ≡
fcost(X), which is a special-purpose function and, further, ci = 1.0 + si · gi(X) if
gi(X) > 0, or ci = 1 otherwise si ≥ 1, bi ≥ 1; min (f(X)) + a > 0.

Where individual parameters have the following meanings: a ensures that the
cost (special-purpose) function f(Pg(t),x(t)) will acquire non-negative values only.
The parameter a is set to high values, not affecting the optimization process. The
constant s is applied to transform the functional into a suitable scale, and b copies
the searched hypersurface. The constraint g(X) is expected to be low, then the
higher values for s and b are used. Very often, the penalty works satisfactorily with
the parameters s = 1 and b = 1.
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In our case, this is an external penalty function that links penalty to violations
of conditions. The penalty applies only outside the suitable solutions. The most
common external penalty is the one that uses the quadrate rate of exceeding as a
penalty, see [22]. Let’s have a limited minimization task [23]

min f(x); gi(x) ≤ 0, i = 1, . . . ,m;hj(x) = 0, j = 1, . . . , l,

Replacing

min f(X,g) = f(X) + a

l∑
j=1

h2
j (X) + a

m∑
i=1

(gi)
2(X), (8)

where a = a1, a2, . . . , a→∞
At hj(x) = 0, j = 1, . . . , l, the following is obtained:

min f(x,g) = f(x) + a

m∑
i=1

(gi)
2(x). (9)

Then, when applying and including the Definition 1, the restrictive conditions (5)
and the relation (6) to the target function fg(X) or when applying the Definition
1 and the conditions (5), (8) and (9), the modified expression of [24] is obtained
as:

fg(X)= f(X)+ag2(X)≈ min, (10)

where ag2(X) is so-called penalty of non-required electrical energy supply. Because
g2 is a negative number, there is a power when γ(t) >

∑
i Pgixi(t). The functional

value of the target function (10) must be artificially reduced or increased, then w
is the weight in order the two addends in the Eq. (10) are the same. Then we
look for such x to minimize both functions f(X) + ag2(X). In this case, we will
solve Eq. (10) by minimizing the cost function f(X) and maximizing the penalty
expressed by the function ag2(X). This is how I optimize the special-purpose
function.

The sum of the two functions fg compiled from the special-purpose function f
and the restrictive-condition function g will provide a new function

fg(X)= f(X)−aµ(g(X)). (11)

The “minus” sign is in the Eq. (11) because we want to maximize the functional
prescription aµ(g(X)). The restrictive-condition function g expresses a deviation
of the stable output balance, so we need to adjust it to zero. The function g(X)
ranges from 0 to 1 and µ is fuzzy number zero.

Both restrictive conditions in relations (10) and (11) are compared in terms of
the results, from which the formulation of restrictive conditions is better. If fg(X)
is approaching to the minimum (as we desire), then we are talking about stable
energy output balance. The goal of our experimental task follows from it, i.e. to
minimize operation costs and minimize generation deviation from consumption.

Note: There may be a case where the electrical energy consumption in the smart
urban area at a certain time will be higher than the generated electrical energy,
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then the relation (5) will be a negative number, therefore the defining condition is
promoted by the second power, see the relation (6). If (5) is very small (or zero) it
will be a satisfactory solution.

Let us to outline the experiment solution:

1. Basis is the Eq. (11). Let us focus on penalizing the non-required electrical
energy supply to the smart area from the local RES grid. Weight w (coeffi-
cient) defines the cost function conditions. It enters the costs and the balance
deviation in the numerical ratio; it is set so that the cost and balance ratios
match approximately.

2. Then, we proceed to the condition of extending the set of admissible solutions.

(a) We proceed to make a small admissible deviation of consumption from
electrical energy generation.

(b) We organize the outputs of individual sources so that the desired output
at a given time approaches to the required consumption as much as
possible.

(c) We accept a small admissible deviation and mark it ∆P , see Fig. 4
and the relation (12), which is the equation of a line with negative and
positive slope.

Fig. 4 Affiliation function of triangular fuzzy number of zero f [8].

We assume that the most common type of fuzzy numbers is a triangular fuzzy
number their affiliation function is in the form of a triangle, Fig. 4. Let us have
X = 0, which is a classical set, and µg : X → 〈0, 1〉 is a representation [3]. In
this case, the fuzzy set will be called an ordered pair A = (X, µg). In our case,
g expresses a deviation of the stable output balance and, therefore, we try to
mathematically adjust it to zero. The set X is labelled as a universe of the fuzzy
set A and µg is the affiliation function of the fuzzy set A (from where the admissible
deviation is defined). Obviously, for each x ∈ X, just the real number µ(g)(X))
can be called as a degree or level of affiliation of the element x to the fuzzy set
A. [We describe and compare the expressions x ≡ g(X) and µA(X) ≡ µ(g(X))].
Then, µ(g(X)) can be expressed as follows
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µ(g(X)) = (∆P − |g(X)|)/∆P in the case when g(X) ∈ 〈−∆P,∆P 〉 (12)

µ(g(X)) = 0 in the case when g(X) /∈ 〈−∆P,∆P 〉.

From the above triangular fuzzy number of zero, it can be assumed ∆P = 0
that the restrictive condition µ(g(X)) = 1 is fulfilled. In relation (11), f(X) is
optimized so that it is minimized, and the subtrahend is maximized (the subtrahend
has in the product µ = 0 up to 1 is small). Fuzzy number of zero “mu” will
be small always against the subtrahend and we can even up it by the weight w
(therefore, we maximize f(X)). Up to this point, we have solved the optimization
task formulation for the need for other optimization task applications to minimize
the special-purpose (cost) function.

4. Simulated annealing

Optimization means the search for state values of state space (State Space, Search
Space), on where the special-purpose (target or cost) function f(x) is defined. It
is about finding a global extreme (maximum or minimum) of the special-purpose
function. The domain of definition of the function f(x) is given by a set of con-
straints as we mentioned in the previous section. These limitations can be realized,
for example, by means of a set of linear, possibly non-linear equations. The points
of the domain of definition are referred as suitable solutions. In practice, we en-
counter two basic types of optimization – “model” and “technical”. The model
optimization is understood as situation where the problem presented is defined by
a suitable mathematical model (1), (2), (3), and (4). This mathematical model
represents a special-purpose function that is mostly analytical, or it is available
through a computer procedure. Therefore, the functional value evaluation at the
given point does not take too long and we can afford a high number of functional
calls (100 000; 1 000 000; etc.). Under the model optimization, the problem of
the RES energy system can be included, for example. Another situation occurs in
the case of technical optimization. In this case, the special-purpose function is not
analytical and may not be available even through a computer procedure.

According to the results presented in [20], the simulated annealing is one of the
most successful traditional stochastic optimization algorithms. Therefore, it could
be faster and more accurate than genetic algorithms. Each call of the special-
purpose function is used directly to scan the state space, without the need of
any excess calls of the special-purpose function. During the simulated annealing
run, the whole state space is scanned globally, later (at a lower temperature, the
probability of receiving a worse solution is lower), the simulated annealing is rather
local.

A detailed description of selected optimization techniques can be seen in [4] and
[5], for example. Then, we will introduce a typical simulated annealing algorithm,
see the Algorithm 1, in a simplified form in JAVA, which shows to be a lot more
effective in its complex form. A complex module of simulated annealing software
for our task and solution in the experiment is not mentioned here for its scope.

396
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Algorithm 1 Example of the simulated annealing algorithm of the program mod-
ule written in JAVA.

Initial parameters
x0 = randomly generated initial solution;
t = t max;x = x0; k = 1;
while (t > t min &&p > 0) do
t = 0; p = 0;
while (t < t max &&p < p max) do
t+ +;
xi = randomly generated new solution;
if (f(xi) <= f(x)) then
pr = 1;

else
pr = exp((f(xi)−−f(x))/kt);
if ( random <pr) then
x = xi; p+ +;

end if
end if

end while
t = decr ∗ t;

end while

At the beginning, a random solution is generated to evaluate the objective cost
function. Another randomly generated solution x′, for which a replacement existing
solution with a probability according to the Metropolis criterion applies, which is
referred to as a relation (13) taken from the literature [6]

Probability (x→ x′) = min

{
1, e−

f(x′)−f(x)

kT

}
. (13)

The probability of replacing a current solution with a new solution is that this
probability depends on the functional value of the special-purpose (cost) function
for each solution. If the original solution has a functional value of x and if it is
worse than or the same as the functional value of the newly generated solution x′,
then the probability of replacement is just equal to one, and the next new solution
automatically moves to the next metallurgical SA process

f(x′) ≤ f(x) (14)

Probability (x→ x′) = 1. (15)

If the functional value of the original solution x is better than the functional
value of the newly generated solution x′, the probability of replacement is less than
1 and its value is determined, see the relation (15)

f(x′) > f(x),

Probability (x→ x′) =
{

e−
f(x′)−f(x)

kT

}
. (16)
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4.1 Conclusion and comparison of optimization methods
and evaluation of selection of simulated annealing
method

From the tests given in [21] and [26], the stochastic optimization algorithm of sim-
ulated annealing results as the most suitable one. Only if we have a small number
of functional calls available, it may be better to use a stochastic mountaineering
algorithm. The question of further investigation remains the optimal setting of
constants in these algorithms and the testing of algorithms for more functions.
Furthermore, the stochastic algorithm implementation has to be adjusted so that
they can be used to optimize under more general state space constraints, creating
a versatile tool to optimize the general black-box functions.

The first notable feature of the stochastic methods is that they try to eliminate
the disadvantage of the gradient method, which is early convergence to a local
extreme. This happens by randomly deciding during the search of state space,
and we can move, with a certain probability, to a worse solution than the best
solution found by us. The early convergence can be prevented by extending the
deterministic algorithm by running it several times and each time from different
starting point. The great advantage of stochastic algorithms is that they allow us
to work with “black box” functions without further modifications, that is, with
functions that we cannot analytically describe, but we are only able to evaluate
the functional value at any point. The stochastic algorithms include, for example,
simulated annealing, adaptive scanning method, stochastic method of branches
and boundaries, but also news from the evolutionary algorithms. The evolutionary
algorithms include, for example, SOMA (Self Organizing Migration Algorithm),
Differential Evolution, Ant Colony Optimization, Immunology System Method,
and, primarily, the genetic algorithms.

To analyse and compare each method, the computational results from testing
the methods presented in [20] were used. We have found out that the calculation of
the stochastic algorithm complexity requires a sufficient number of information on
the special-purpose function that are not available sometimes. In our experiment,
the shape of special-purpose (cost) function is known and we know a satisfactory
number of information about it. For this reason, the quality of the algorithm
(“complexity”) will be evaluated using the number of “redundant” calls of the
special-purpose function, i.e. those that are not used directly to search the state
space.

5. Experiment

Let us assume that there is a fictitious Smart City formed by a complex of smart
buildings of residential, administrative and public character of a wide range of civic
amenities, see Fig. 1.

The energy concept of the area under consideration is clearly focused on local
renewable energy sources, which use portion of the heat and electricity needs as
much as possible. The essence of the energy concept of the given area on Fig. 1
is the interconnection of photovoltaic systems from the whole territory (PS1, PS2,
PS3, PS4, and PS5) into one large system including the biomass and cogeneration
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with an energy centre in substation for TS-DS 22/0.4 kV; RMS (see Fig. 3) in the
centre of smart area on the underground floor of the building KU02. Such system
reacts more flexibly to the current electrical energy demand in sub-operations and,
at the same time, provides the use of all the energy currently generated as per
the unit commitment optimization plan directly in the territory. This eliminates
the problem that would arise with systems separated for each building, selling of
excesses to a grid from one house and, at the same time, buying energy from the
grid of the neighbouring house.

This is a RES microgrid at a distance of up to 50 km from the Smart City. In
order to ensure a continuous and reliable electrical energy supply, two high-voltage
lines of different distributors are brought to the city from the two independent
directions. The local microgrid of distributed RES system consists of biomass, co-
generation, and photovoltaic system; see Fig. 3. In the experiment, the complex of
smart buildings in urban development is supplied with electrical energy from seven
sources, see Tab. III, showing the costs, characteristics, and technical constraints
of the individual sources.

UNIT State Pn A B C
[off/on] [MW] [CZK/MW] [CZK/MW2] [CZK]

PS1 1 140.0 190 0.50 170
PS2 0 260.0 190 0.50 230
PS3 0 100.0 190 0.50 123
PS4 1 50.0 190 0.50 110
PS5 1 4.0 190 0.50 95

Biomass 1 1.0 300 0.40 173
Cogeneration 0 4.3 80 0.10 85

Tab. III Parameters of Sources RES. Pn is rated output of a RES plant with
concurrency inclusion of 0.7. PS – photovoltaic source.

Estimation of electrical energy consumption in the smart urban area at Ro-
hanské waterfront, Prague, is based on the values of the total useful floor area of
all buildings in the smart area to estimate the given type of electrical energy con-
sumption and the specific consumption values and the electrical energy consump-
tion values by months per year for each type of buildings and the total electrical
energy consumption per year; Tab. IV including financial costs. Tab. V shows
the electrical energy generation values per year according to the type of building,
including the total electrical energy generation per year from the RES microgrid
energy system of the smart area.

Note: Wp [kWh/m2] is specific electrical energy consumption per floor area
in m2, Wp,rok [kWh/m2], Wsp [kWh] is electrical energy consumption per year,
PPV [kWp] is photovoltaic power plant output.

Note: PPV [kWp] is the photovoltaic power plant output, 701 · PPV [kWh] is
the relation for calculation of electrical energy generated per year by photovoltaic
panels located on a given type of building, and CZK is a financial appreciation of the
electric energy generated on a given building. kWe is the unit of electrical power.
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Building type RES PPV [kWp] 701× PPV [kWh] [CZK]

Administrative
and Commercial

PS1 2 655 1 861 155 7 630 735.50

Mixed living PS2 5 251 3 680 951 15 091 899.00
Only living PS3 2 036 1 427 236 5 851 667.60
Cultural PS4 1 015 711 515 2 917 211.50
Sport PS5 78 54 678 224 179.80
Distribution area Biomass 3 ×1500 kWel 22 680 47 443.20
Distribution area Cogeneration 8600 kWel 43 344 7 740 000.00
Total X 11 035 7 801 559 39 503 136.60

Tab. V Electrical energy generation per year according to the building type and
total electrical energy generation per year.

5.1 Self-Organizing Map

Our experiment aims to define a solution for source organisation system design for
a typical working day in the middle of week – Wednesday. After processing the
analytical part of the experiment – the optimization project, i.e. minimizing the
total cost of generating electrical energy supplied by the RES unit commitment
system, where the amount of electrical energy generated is based on prediction
(estimation) of consumption during the period under consideration (smart buildings
or smart premises in a smart area system) sampled by hours. This is to create a plan
of unit commitment and their generated outputs covering predicted consumption
at each hour of the period under consideration. Using mathematical analysis with
the optimization stochastic method – simulated annealing, we have reached an
evaluation and design of the input parameters for the purpose of program module
design – a software with application of the JAVA programming language.

The input parameters to the optimization program are:

1. Prediction of load by hours (obtained from the history of experimental scien-
tific observation) – what the electrical energy consumption will be at a given
time.

Note: To evaluate this data, a neural network will be used to transmit and
process information (data). Furthermore, the neural network will be used to
implement and optimize the parameters and structure of a fuzzy model. In
addition, the mathematical and information-oriented method of clustering –
cluster analysis of data – will be used through the data analysis. Several types
of daytime diagrams as objects will be created that will be grouped then into
“clusters” so that two objects of the same cluster are similar than two objects
of different clusters. Individual clusters will result in so-called prototype.
These are the prototypes, cost coefficients and restrictive conditions that will
be the inputs for the neural network, and, further, these include:

2. Number of electrical energy generators (sources).

3. Number of hours for which the plan is developed.
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4. Cost coefficients for each generator.

5. Predicted consumption per hour of the given period.

6. Weight w.

We will apply the cluster analysis method. The annual history of electrical en-
ergy consumption will be modelled artificially to compare the identified type day-
time diagram with a standard. The basic standard used the characteristic hourly
consumption patterns of the working day - Wednesday in July. The individual
hourly consumptions were modified randomly using a random number generator
with a normal probability distribution. This modelling was performed two hundred
and sixty times (the number of Wednesday working days) using the JAVA program.
In Figs. 5 and 6, two examples of randomly dialed daily diagrams are selected in
the center. In fact, it is an hourly consumption forecast, ie its standards derived
from historical data.

We apply the self-organizing neural network (SOM); we call it the Kohonen
network. For example, we can imagine a representation of a self-organizing neural
network consisting of inputs, individual weights, and so-called competitive neuron-
containing layer. The SOM networks are implemented always with uncontrolled
training. The self-organizing principle is the reaction of outputs, i.e. the activation
of artificial neurons on input changes. This uncontrolled neural network model
collects data into clusters. The Kohonen networks work in analogy to cluster or
factor analysis. The point is to reduce the input file by mapping it to a smaller
number of clusters.

The Kohonen algorithm is defined as follows:

1. We initialize the weights of neurons by small random values and set the initial
value α(t) to the maximum.

Fig. 5 Type of daily electricity consumption diagram (Wednesday).
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Fig. 6 Standard power consumption chart (Wednesday).

2. We select the vector ~x from the learning set and attach it to the network input,
i.e. the node i at time t. Vector ~x is in the form x0(t), x1(t), . . . , xn−1(t).

3. We calculate the neuron outputs (distances), i.e. determining the competence

winner. yi =
N∑
j=1

(xj − wij)2.

4. We determine the winning neuron, which is the neuron with the lowest re-
sponse, through yi as j∗.

5. We will adjust the weights for each neuron by ∆wij = α(t)(xj − wij)h(i, b).
Where α(t) determines the rate of learning (i.e. the variable decreases to zero
over time); h(i, b) is the function, which is the maximum if i is the winning
neuron index (i = b),; if it is another neuron, then the function h decreases
with the distance from the winner. Where i = 1, 2, . . . , n and j = 1, 2, . . . , n,
are the indices passing through the neurons of adjacent layers and wij is
the weight between the i-th and the j-th neuron. Extreme is 1 for i = b, 0
otherwise.

6. If the learning set is not exhausted, we proceed from the point 2.

7. The coefficient of α(t) is decreased and if it is higher than zero, we continue
with the point 2 from the beginning of the learning set.

The learning process is that we submit the pattern to the input and determine the
winner. Winner weights are moved a little closer to the vector being learned. In
addition to the winner, the adjacent neurons are modified. Then, the procedure is
repeated, until α(t) = 0. is stabilized.
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Recalling can be imagined that a pattern is submitted on inputs and the re-
sponses are calculated. The winner, the lowest-response neuron, is a representative
of the cluster where the pattern belongs.

Function h(i, b) means how the weights of neurons close to the winner one will
change, i.e. how the prototypes represented by neurons will move towards the
pattern being learned. The winning neuron will be attracted the most, the neuron
that is the most distant from it will be attracted the least. If the function h(i, b)
is negative, then the nearest neurons are repelled, in order to barriers between
clusters. The learning process begins with an area of h(i, b) that gradually becomes
steeper over time.

In the context of the mentioned Kohonen algorithm, the SOMs are applied as
one of the artificial intelligence methods for modelling the annual history of hourly
electrical energy consumption. Our experiment is a complicated data structure, so
choosing the SOM application is a transparent solution. So, a square grid of 52
rows and 24 columns is built.

This grid represents the shape of multidimensional data that form the proba-
bility distribution of training patterns. It is a set of neurons, which, during the
adaptive dynamics, submit a vector of the learning set to the Competence Model
SOM within one day; this vector is attached on the network input determined by
24 attributes at time t. The outputs of the neurons are calculated, the winner
is identified, and the weights are adjusted according to point 5 of the Kohonen
algorithm (KA) for each adjacent neuron. The next procedure according to KA is
obvious from points 6 and 7.

This principle of adaptation is applied in the so-called Kohonen Map. By this,
one can image the finding of spatial representation of complex data structures so
that classes of similar vectors are defined by close neurons in a given topology.
Following the network adaptation course during the active dynamics, after resub-
mitting the training patterns, the Kohonen Map will be drawn (Fig. 7), from which
the very well-separated most massive cluster corresponding to Wednesday can be
found.

Fig. 7 Kohonen maps of our example.

In addition, by reactive propagation during active dynamics, we can extract the
necessary weighing sectors from the configuration of the neural network we learn,
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ie the Type Day Diagrams to be scanned, as shown in Fig. 8, compared to the
corresponding standard Fig. 9.

Individual daytime diagrams within the annual history in the Figs. 8 and 9
clearly show that the consumption patterns are quite different. The typical daytime
diagrams of consumption are substantially similar to the relevant standards, see
Figs. 8 and 9, proving the fact that the cloud analysis method is very effective.
Tab. II and Tab. II show the specific power expression of type daytime diagrams
() compared to standards.

At the same time, the Tab. IV clearly show that their average and maximum
tolerances are about 0.1 % and 0.5 %, respectively. From this expression, the cluster
analysis method can be said as very effective and high-quality method, which was
demonstrated by this experiment.

Here is another example in our experiment. This will provide a smart area with
energy from the local micro grid of the RES network. The distributed local micro
grid of the RES network is equipped with eight generators combined with the dis-
tribution of public electricity and local ACCUs: photovoltaic energy, cogeneration
and biomass, Power Grid and ACCU. There are a total of ten sources in total, see
Tab. VII.

Another task and objective of the experiment was to propose the unit commit-
ment for one working day of a week, i.e. Wednesday in June 2018. The hourly
consumption forecast was processed for the Wednesday, see Fig. 7. The initial
temperature setting operation is based on its initial estimate and its subsequent
increase to a value, at which almost every failure is accepted during the first ten
percent of the repeat. The principle of tuning the number of iterations is based
on its initial estimation and subsequent increase to a value, after which there is no
decrease in the resulting production cost of the amount of power energy that covers
the consumption of the period under consideration. The reference costs of power

Fig. 8 Typical day diagram of the working day in the center.
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Fig. 9 Standard Day Diagram to Type Day Diagram Fig. 8.

energy generation, which covered the predicted consumption of the period under
consideration, were defined by a simplified solution. The simplified solution for
the period under consideration consisted in that all sources are working at medium
power, see the relation (17).

Wednesday Wednesday
Time TDD SD Diference Time TDD SD Diference

(order of hours) [kW] [kW] [%] (order of hours) [kW] [kW] [%]

1 791 792 0.13 13 2100 2103 0.14
2 650 651 0.15 14 2100 2109 0.43
3 350 351 0.29 15 2000 2007 0.35
4 340 342 0.20 16 1600 1603 0.19
5 1050 1054 0.38 17 1310 1313 0.23
6 2300 2307 0.30 18 1560 1565 0.32
7 2300 2302 0.09 19 1700 1708 0.47
8 2400 2402 0.08 20 1750 1754 0.23
9 2360 2363 0.13 21 1570 1574 0.25
10 2620 2625 0.19 22 1310 1312 0.15
11 2300 2303 0.13 23 1250 1251 0.08
12 2300 2304 0.17 24 1050 1051 0.10

MEAN = 0.08
MAX = 0.50

Tab. VI Type daytime diagrams and their standards.

Note: TDD – type day diagram, SD – standard diagram.
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Algorithm 2 Source code accidentally set the status and power source using a
random number generator for each hour of the period, and each iteration in JAVA.

for ( int j = 2; j ⇐ nt+ 1; j + +) do // start hour cycle

for ( iter = 1; iter ⇐ n; iter++) do // start iteration cycle

// state random generation

// random choise of source
i = ran(seed) ∗(ng − 1) + 1;
ij = (i− 1) ∗ (nt+ 1) + j;
if (x(ij) == 0) then // random change of state

if (ran(seed) ⇐ Ponoff) then
x(ij) = 1;

end if
else

if (ran(seed) ⇐ Ponoff) then
x(ij) = 0;

end if
end if
i = ran(seed) ∗(ng − 1) + 1; // random choise of source
ij = (i− 1) ∗ (nt+ 1) + j;
p(ij) = ran(seed) ∗(Pmax(i)− Pmin(i)) + Pmin(i);

// random set of power

end for
end for

Pi(t) = C(t)
PCi∑
i

PCi
PCi =

1

2
(Pmax
i − Pmin

i ). (17)

During our optimization Algorithm 2, a random setting of the state and power
of a randomly selected source from the RES range is carried out by using a ran-
dom number generator for each hour of the defined period and for each iteration
according to the example of the partly presented source code in JAVA.

Where nt is the number of hours and ng is the number of available resources,
p(ij) is the power of the i-th source and the j-th hour, x(ij) is the state of the i-th
source and the j-th hour. Pmin and Pmax are the power limits the i-th source. Ponoff

is parameterizable probability of the source state change, and the RAN function is
the said random number generator from the interval (0, 1) with even distribution
of probability. The result of our experiment from the source organization position
for said Wednesday is shown in the Tab. VII. Finally, a remarkable fact that time
of calculation made by a laptop was two minutes and thirty seconds.

6. Conclusion

According to the ERO in the Czech Republic (Energy Regulatory Office), the
circuit breaker payment used for the new tariff calculation should be replaced with
the so-called “concurrency” parameter. The creation of a balanced tariff system
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should be managed according to this, for example by introducing a special tariff for
consumers with the production plant (RES microgrid), by analysing the reserved
input powers, by omitting the primary circuit breaker setting from the design,
by using the existing mathematical model of a new tariff structure focusing on
the concurrency parameter with a coefficient of 0.2, by optimizing the existing
distribution rates, by analysing the possibility of splitting the tariff system to
individual voltage levels, etc. We will build on the concurrency coefficient, which
is determined according to the Rusküv formula.

βn = β∞ + (1 + β∞)·1
/√

n [−]

Where n is the number of flats in the group, βn is the concurrency for the considered
number of flats in the group, and β∞ is the concurrency for an infinite number of
flats; for (100 or more), it is β = 0.15 to 0.2.

Practical assignment is done for a given number of flats, or for a given object
using a standard where values of β are specified. Then, in the case of large LV grids,
other values of concurrency are get in the calculation of the concurrent input power,
such as the concurrency between buildings according to the density of consumption
at the outlet (according to [27], this value is 0.5 to 0.8) or the concurrency between
the individual outlets. Based on some experience, we determine the load, i.e. the
electrical energy consumption according to the value of the specific consumptions
and the total consumption for each type of buildings and its useful area, see Tab. IV.

We define the grid load, i.e. we “estimate” the concurrent prospective load in
the expected maximum of individual consumptions, which is the most important
step in the grid design. The optimal technical design is based on this load. From
this, it follows that determination of concurrency of individual LV sections is one
of the most difficult parts of the design and often, it depends mainly on designer’s
experience.

The total power load (consumption) of the urban smart area of Rohanské wa-
terfront is evaluated at 21 000 757 kWh/year = 21 MWh/year according to Tab. IV.
The total power generation of the electrical energy from the RES microgrid, see
Fig. 3 and Tab. V, is 7 801 559 kWh/year = 7.8 MWh/year. At the concurrency of
β = 0.6, the total power consumption of the smart area is 12 600 454 kWh per year.
The installed distributed RES microgrid will cover the power consumption of the
urban smart area at 62 % of electrical energy. In the planned concurrency (idea de-
sign) according to the ERO by 2020 using the existing mathematical model of the
new tariff structure, focusing on the concurrency parameter with the coefficient
of 0.2, it is possible to optimize the existing distribution rates by analysing the
possibility of splitting the tariff system to individual voltage levels, reaching signif-
icant electrical energy savings. In our experiment, power excess of electrical energy
would be 85 %, which is 3.6 MWh/year, at the consumption of 4.2 MWh/year. This
would ensure that the urban smart area would be self-sufficient in terms of elec-
trical energy consumption, in fact, it would produce 3.6 MWh of electrical energy
per year into the distribution 22 kV Power Grid. The smart area would be ener-
getically active in this case and with 85 % of the total volume of electrical energy
generated, this portion would be saleable. With the move to smart grids, see Fig. 3,
it is assumed that buildings within the urban smart area at Rohanské waterfront
will be able to generate energy themselves and act as autonomous traders in the
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energy market. As today, for example, there is an automated exchange system that
helps to offset exchange rate differences, a decentralized network of autonomous
buildings – power plants – may also emerge in the energy market.

When defining the unit commitment optimization of the RES electrical energy
according to the working day (Wednesday) by hours, see Fig. 10, further energy
savings are shown graphically, where A is the volume energy saving, B is the volume
present, mathematically-defined electrical energy consumption, and A + B is the
total required current electrical energy consumed on a Wednesday in July. Fig. 10
shows energy savings of about 20 %.

Fig. 10 Other energy savings represented graphically.

By applying cluster analysis and Kohonen map, it can be said that the Tab. VI
shows clearly that the average and maximum tolerances between the type daytime
diagram and its standard range between approximately 0.1 % and 0.5 %. For this
reason, cluster analysis method is a very efficient and high-quality method where
individual clusters of arbitrary shapes (graphical waveforms over a day by hours)
and, eventually, building densities are identified easily. It means that it is a hierar-
chical clustering that can be imagined as a sequence of buried decompositions that
start with trivial decomposition on the one side, where each object of a given set of
objects forms a single-element cluster and ends with trivial decomposition on the
other side with one cluster containing all objects. It is also evident from the Ko-
honen map. This method is sensitive to the presence of remote objects that highly
differ from all other objects. That is why the degree of similarity is important,
and that is our case. Similarity between objects is used as object clustering crite-
rion. First, the characteristics determining the similarity are specified, and these
are combined further into similarities. In this way, the object can be compared to
another object. Cluster analysis generates clusters of similar objects. Therefore,
either one of them or empty set is an intersection of any two clusters.
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Hierarchical models are based on distance connection. In the future, the metrics
that are not influenced by this phenomenon are advised to be explored. This is
also related to the need to use algorithms able to work with these distances. The
K-Medoids method is most appropriate in this case. This is similar to the K-means
method, but clusters are not represented by their centre of gravity but one of the
cluster points. The advantage of this approach consists in that this representative
is determined by the method automatically, it is not necessary to choose it using
silhouettes. This method is quite robust in relation to remote objects. Compared
to the K-means method, for example, a neural network cluster analysis is com-
pletely versatile in relation to the character of the object arrangement in the file
to be examined (it is able to identify even uniform distribution of objects in a
n-dimensional space), but the interpretation of its results is partly dependent on
the subjective reading from the Kohonen map.

From our experiment, it can be concluded that the above procedure of solution
shows the high efficiency of the optimization SA algorithm in scanning the space
of suitable solutions. This efficiency is given by the ratio of the total number of
suitable solutions to the simulated suitable solutions at each hour of the defined
period; expressed mathematically 1075 : 106.

6.1 Sensitivity analysis

For the sake of integrity of the smart area energy performance solution, for exam-
ple through our experiment, we will always face the problem, whether a project
focusing on the RES use in order to generate the electrical energy for a given urban
smart area will be effective. This problem is typical for applying the sensitivity
analysis. First, we will name the net present value formulation (NPV). Factually
right criterion of the economic assessment is based on the maximization of future
cash flows. Given the cost of money over time, the cash flows generated by the
implemented project in the future must be converted to an addable value, which is
done best by calculating the net present value (NPV) using discounting. The dis-
counting consists in conversion of various monetary variables (net cash generated
by a project after taxation in individual years of the project operation) to a suit-
ably chosen moment, which is usually the beginning of the first year of operation.
Our project focusing on the RES use for electrical energy generation is a typical
example of the sensitivity analysis application. The values are as follows:

1. NPV at change in the investment costs.

2. NPV at selected items of operating expenditure (e.g. on the price of pur-
chased biomass).

3. NPV at discount (expresses impact of expected appreciation of the capital
invested on the project effectiveness).

4. NPV at electrical energy generation amount (annual utilization of installed
output).

5. Minimum electrical energy price at discount.

411



Neural Network World 4/2018, 379–413

6. Minimum electrical energy price at electrical energy generation amount (an-
nual utilization of installed output).

Of course, there are more possible sensitivity analyses and their selection always
depends on the particular case of the project to be evaluated. The sensitivity
analysis enables for whom conducts the economic evaluation of the project and
decides on its implementation to assess how changes in the assumptions (economic
parameters of the evaluated projects) affect the economic efficiency.

When applying the results of the financial evaluation of the RES application
of our project according to Tab. IV and V in the context of the unit commitment
solution as per Tab. VI and VII, we have come to the conclusion given in Chapter 6
of the Conclusion. The smart area is energetically active, so the project is effectively
feasible.
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