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Abstract: In this paper we extend Skip-Gram and Continuous Bag-of-Words
Distributional word representations models via global context information. We
use a corpus extracted from Wikipedia, corpus where articles are organized in a
hierarchy of categories. These categories provide useful topical information about
each article. We present the four new approaches, how to enrich word meaning
representation with such information. We experiment with the English Wikipedia
and evaluate our models on standard word similarity and word analogy datasets.
Proposed models significantly outperform other word representation methods when
similar size training data of similar size is used and provide similar performance
compared with methods trained on much larger datasets. Our new approach shows,
that increasing the amount of unlabelled data does not necessarily increase the
performance of word embeddings as much as introducing the global or sub-word
information, especially when training time is taken into the consideration.
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1. Introduction

Distributional word representation methods are based on the word-context co-
occurence and comes from the principle known as Distributional hypothesis: “lin-
guistic items with similar distributions have similar meanings” [9]. The idea that
“a word is characterized by the company it keeps” was popularized by Firth [6].
There are studies that demonstrate theoretical roots in the psychological reality,
linguistics, or lexicography [4]. The implication of Distributional hypothesis is that
two words are expected to be semantically similar if they occur in similar context
(they are similarly distributed across the text). This research area is often referred
to as distributional semantics. With the rise of a massive and easily-accessible dig-
ital corpora, and the power of computers, it has become very popular in the last
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two decades. It suggests an efficient and practical method to induce the meaning.
Models based on this assumption are denoted as distributional semantic models
(DSMs).

DSMs, also known as “word space” or “distributional similarity” models learn
contextual patterns from a huge amount of textual data. They typically represent
the meaning as a vector which reflects the contextual (distributional) information
across the texts [33]. The words are associated with a vector of real numbers.
Represented geometrically, the meaning is a point in a k-dimensional space. The
words that are closely related in a meaning tend to be closer in the space. This
architecture is sometimes referred to as a semantic space. The vector representation
allows us to measure similarity between the meanings (most often by the cosine of
the angle between the corresponding vectors).

Word-based semantic spaces provide impressive performance in a variety of
NLP tasks, such as language modeling [2], named entity recognition [14], sentiment
analysis [11], and many others.

Different types of context induce different kinds of semantic spaces. [28] and [21]
distinguish context-word and context-region approaches to the meaning extraction.
In this paper we use the notation local context and global context, respectively.
Global-context DSMs are usually based on the bag-of-words hypothesis, assuming
that the words are semantically similar if they occur in similar articles and the
order in which they occur in articles has no meaning. These models are able to
register long-range dependencies among words and are more topically oriented. In
contrast, local-context DSMs collect short contexts around the word using moving
window to induce the meaning. Resulting word representations are usually less
topical and exhibit more functional similarity (they are often more syntactically
oriented).

To create a proper DSM, a large textual corpus is usually required. Very often
Wikipedia is used for the training, because it is currently the largest knowledge
repository on the Web and is available in dozens of languages. Most current DSMs
learn the meaning representation merely from the word distributions and does not
incorporate any metadata which Wikipedia offers.

We combine both, the local and the global context to improve the word mean-
ing representation. We use local-context DSMs – Skip-Gram (SG) and Continu-
ous Bag-of-Words (CBOW) models [22], often denoted as a tool called Word2Vec
and incorporate Wikipedia categories as a global context. We present several ap-
proaches to enrich word meaning representation with such kind of information via
a joint training objective.

We train our models on the English Wikipedia and evaluate it on standard
word similarity and word analogy datasets. Proposed models significantly outper-
form other word representation methods when similar size training data are used
and provide similar performance compared with methods trained on much larger
datasets.

The paper is organized as follows. Section 2 puts our work into the context of
the state of the art. In Section 3 we review Word2Vec models on which our work
is based. We define our model in Section 4 and 5. The experimental results on
English corpora are presented in Sections 6.1, and 7. We conclude in Section 8 and
offer some directions for future work.
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2. Related work

During the past decades, simple frequency-based methods for deriving word mean-
ing from a raw text were popular, e.g. Hyperspace Analogue to Language [18] or
Correlated Occurrence Analogue to Lexical Semantics [29] as a representatives of
local-context DSMs and Latent Semantic Analysis [15] or Explicit Semantic Anal-
ysis [7] as a representatives of global-context DSMs. All these methods record
word/context co-occurrence statistics into one large matrix defining the semantic
space.

Later on, these approaches have evolved into more sophisticated models. [22]
came with two neural network based models CBOW and Skip-Gram on which
this work is based. This single-layer architecture is based on the inner product
between the two word vectors (detailed description is in Section 3). [27] introduced
Global Vectors, the log-bilinear model that uses weighted least squares regression
for estimating word vectors. The main concept of this model is the observation
that global ratios of word/word co-occurrence probabilities have the potential for
encoding the meaning of words.

Both above mentioned models currently serve as a basis for the work of many
researchers. [1] improved the Skip-Gram model by incorporating a sub-word in-
formation. Similarly, in the most recent study [32] incorporated a sub-word in-
formation into the LexVec [31] vectors. This improvement is especially evident
for languages with rich morphology. [17] used syntactic contexts automatically
produced by dependency parse-trees to derive the word meaning. Their word rep-
resentations are less topical and exhibit more functional similarity (they are more
syntactically oriented).

During the most recent years the Deep Learning[16] methods based on CNN or
LSTM architectures give the best score on various NLP tasks. Those approaches
can directly extract word embeddings in the first layers and use them in deeper
layers for decision making. However, we believe that extracted word embeddings
are not in the quality to be used for wide range of NLP tasks and are suited to
particular task on which the network is being trained. Deep Learning approaches
need a lot of data of particular NLP task that are not always available. We also
believe that highly tuned word embeddings trained separately that are further used
together with Deep Learning architectures often lead to even better accuracy and
generalization.

[13] presented a new neural network architecture, which learns word embed-
dings that capture the semantics of words by incorporating both local and global
document context. It accounts for homonymy and polysemy by learning a multiple
embeddings per word. Authors introduce a new dataset with human judgments
on pairs of words in sentential context and evaluate their model on it. Their ap-
proach is focusing on polysemous words and generally does not perform as well as
Skip-Gram or CBOW.

Our approach is focusing on the most widely used Skip-Gram/CBOW methods
and as a source of a global document (respective article) context uses a Wikipedia,
which is currently available for 301 languages. Therefore, our approach can be
adopted to any other language without the necessity of manual data annotation.
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3. Word2Vec

This section describes the Word2Vec package which utilizes two neural network
model architectures (CBOW and Skip-Gram) to produce a distributional represen-
tation of words [22]. Given the training corpus represented as a set of documents

D. Each document (resp. article) aj ∈ D is a sequence of words aj = {wj,i}
Lj

i=1,
where Lj denote the length of the article aj. Each word w in the vocabulary W is
represented by the two different vectors v and u – depending on whether it is used
as a context word vw ∈ Rd or a target word uw ∈ Rd. The task is to estimate these
vector representations in a way that optimizes bellow described objective functions.

We use training procedure introduced in [23] called negative sampling, we define
the negative log-likelihood:

E(w,h) = − log σ(u>wo
h)−

∑
wn∈N

log σ(u>wn
h),

where N = (wn ⊂ P (W)|n = 1, . . . ,K) is a set of negative samples (randomly
selected words from a noise distribution P (W), wo is the output word, and uwo is
its output vector; h is the output value of the hidden layer: h = 1

C

∑
C=1..N vwc

for CBOW and h = vwI
in the Skip-gram model; σ(x) = 1/(1 + exp(−x)).

Considering articles aj , in the CBOW architecture, the model predicts the
current word wj,i from a window of surrounding context words wc ∈ Cj,i. The
context is based on the bag-of-words hypothesis, so that the order of the words does
not influence the prediction. CBOW optimizes the following objective function:

∑
aj∈D

Lj∑
i=1

E(wj,i,
1

|Cj,i|
∑

wc∈Cj,i

vwc).

The position of a vector for each word is optimized in addition to the computed
error.

In the Skip-Gram architecture, the model uses the current word wj,i to predict
the surrounding context words wc ∈ Cj,i. Skip-Gram select the context window
size randomly from uniform distribution [1, S]. Thus, nearby words have higher
chance to be selected as a context words. This is based on intuition that nearby
words have higher impact on semantics of center word wj,i. Skip-Gram model
optimizes the following objective function:

∑
aj∈D

Lj∑
i=1

∑
wc∈Cj,i

E(wj,i,vwc).

According to [22], CBOW is faster than Skip-Gram, but Skip-Gram usually
perform better for infrequent words.

4. Wikipedia category representation

Wikipedia is a good source of global information. Overall, Wikipedia comprises
more than 40 million articles in 301 different languages. Each article references
others that describes particular information in more detail. Wikipedia gives in
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general much more information about an article, such as mentioned links to other
articles, or at the end of the article there is a section that describes all categories
where the actual article is belonging. Wikipedia has a big tree structure1 of cat-
egories with one main category and a lot of subcategories. Every article contains
several categories to which it belongs. Categories are intended to group together
with pages on similar subjects.

For example the article entitled United States has categories Countries in North
America, English-speaking countries and territories, Federal constitutional republics,
G7 nations, and others. Wikipedia categories provide very useful topical informa-
tion about each article.

In our work we use extracted categories to improve the performance of word
embeddings.

5. Proposed model

Some authors tried to extract a more concrete meaning using Frege’s principle of
compositionality [26], which states that the meaning of a sentence is determined as
a composition of words. [34] introduced several techniques to combine a word vec-
tors into the final vector describing the sentence. [3] experimented with Semantic
Textual Similarity; from the tests with words vector composition based on CBOW
architecture, we can see that this method is powerful to carry the meaning of a
complete sentence.

Our new model is shown in Fig. 1. We build up the model based on our previous
knowledge and belief that Global information might improve the performance of
word embeddings and further lead to improvements in many NLP subtasks such
as Semantic Textual Similarity. Each article aj in Wikipedia is associated with
the set of categories Xj . We represent the category x ∈ Xj as a real-valued vector
mx ∈ Rd.

Fig. 1 Architecture of proposed extension of CBOW and Skip-Gram models.

The original CBOW model was adapted by incorporating categories and opti-
mizes the following objective function:

1https://en.wikipedia.org/wiki/Portal:Contents/categories
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∑
aj∈D

Lj∑
i=1

E

(
wj,i,

∑
wc∈Cj,i

vwc +
∑

x∈Xj
mx

|Cj,i|+ |Xj |

)
.

Skip-Gram model optimizes the following objective function:

∑
aj∈D

Lj∑
i=1

∑
wc∈Cj,i

E

wj,i,vwc
+
∑
x∈Xj

mx

 .

We tested with CBOW and Skip-Gram architectures. For CBOW architecture
that is much faster and easier to train, we also experimented with further model
setups:

5.1 Setup 1

Categories are initialized with uniform vector distribution and no training of cate-
gories is performed. Only a word embeddings are trained. Output of this setup is a
model with trained word embeddings. The objective function 5 remains intact, the
vectors mx stays untouched during the complete training. The motivation behind
this setup is, that some articles share similar categories. We expect, that if we sum
vectors of similar categories and mix them with context word vectors, we end up
closer each other in the n-dimensional vector space. We assume that improvement
in training of individual words enriched with this information may lead to a better
word vector representation, especially in describing the words with similar meaning
and context.

5.2 Setup 2

Many models benefit from the weighing of words in a sentence using Term Fre-
quency – Inverse Document Frequency (TF-IDF) [20]. Categories are initialized
with a uniform vector distribution. Vectors representing categories were not trained,
only weighted using TF-IDF. Punctuations, prepositions, conjunction and others
have smaller impact on the overall meaning of the sentence. The idea here is that
not all categories have equal impact on description of the document. Output of this
setup is a model with trained word embeddings. The adapted objective function
is as follows:

∑
aj∈D

Lj∑
i=1

E

(
wj,i,

∑
wc∈Cj,i

vwc
+
∑

x∈Xj
tfidf(x, d,D) ·mx

|Cj,i|+ |Xj |

)
, (1)

where tfidf(t, d,D) = tf(t, d) · idf(t,D), fd(t) is frequency of term t in document
d. D is corpus of documents (resp. articles).

5.3 Setup 3

The Model is initialized with categories uniformly distributed, embeddings for cat-
egories are trained during training of word embeddings. Motivation of this setup
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comes from Distributional hypothesis. If we train the categories, we assume they
would behave similarly. For example, having article with categories ‘vehicles’ and
‘transportation’, these categories will likely have similar distribution of articles
and they will slowly come closer to each other in vector space during the training.
With uniformly distributed vectors representing such categories, we would not ben-
efit from Distributional hypothesis. Outputs of the model are embeddings trained
for both – categories and for words.

5.4 Setup 4

Firstly, the Model has trained the vectors representing categories (using Setup 3 )
and in second round we have used such pre-trained vectors and continue with setup
1 – the use of the pre-trained embeddings for categories. The main motivation is
to have categories organised in vector space according the meaning and help the
word vectors from document to end up on vector positions that has better semantic
and syntactic properties.

6. Training

We trained our models on the English Wikipedia dump from June 20162. The
XML dump consist of 5,164,793 articles and 1,759,101,849 words. We firstly re-
moved XML tags and kept only articles that were assigned to categories, further we
removed articles with less than 100 words or less than 10 sentences. We removed
categories that had less than 10 occurrences in all articles. The final corpus used
for training consist of 1,554,079 articles. Detailed statistics on these corpora are
shown in Tab. I. For evaluation, we experiment with word analogy and a variety
of word similarity datasets.

– Word similarity: These datasets are conducted to measure the semantic sim-
ilarity between pair of words. For English, these include WordSim-353 [5],
RG-65 [30], RW [19], LexSim-999 [12], and MC-28 [24].

– Word analogies: Follow observation that the word representation can capture
different aspects of meaning, [22] introduced evaluation scheme based on word
analogies. Scheme consists of questions, e.g. which word is related to man
in the same sense as queen is related to king? The correct answer should be
woman. Such a question can be answered with a simple equation: vec(king)−
vec(queen) = vec(man)− vec(woman). We evaluate on English word analogy
datasets, proposed by [22]. The word-phrases were excluded from original
datasets, resulting in 8869 semantic and 10,675 syntactic questions for English
(19,544 in total), and 6018 semantic.

6.1 Training setup

We tokenize and lowercase the corpus data. We use simple tokenizer based on
regular expressions. After the model is trained, we keep the most frequent words

2dumps.wikimedia.org
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English (dump statistics)
Articles 5,164,793
Words 1,759,101,849
Categories 4,908,011

English (final clean statistics)
Articles 1,554,079
Avg. words per article 437
Avg. number of categories per article 5
Number of unique words 4,754,040
Categories 4,015,918

Tab. I Training corpora statistics. English Wikipedia dump from June 2016.

in a vocabulary (|W| = 300, 000). Vector dimension for all our models is set to
d = 300. We always run 10 training iterations. The window size is set 10 to
the left and 10 to the right from the center word wj,i, i.e. |Cj,i| = 20. The set
of negative samples N is always sampled from unigram word distribution raised
to 0.75 that has been experimentally shown to work the best [23] and has fixed
size |N| = 10 words. We do not use the subsampling of frequent words. Process
of parameter estimation process is described in [8]. We prefixed categories to be
unique in training and not interferred with words during training phase.

Setup 3 specified in Section 5.3 is easy to train, does not take much longer
than usual training using Word2Vec (depending on categories volume). Due to the
potential convergence issues (infinity vectors, adaptation of SkipGram algorithm
has to be made) and potential much longer training time of Setup 4, the experiments
with Skipgram architecture are made with setup 3 only. This setup can be an easy
extension of Word2Vec or fastText toolkit as is.

6.2 Other models setup

• fastText – trained on our Wikipedia dump 2016 (see Tab. I).

• Subword LexVec English Wikipedia 2015 + NewsCrawl3, has 7 billion words,
368,999 of unique words and vectors of 300 dimensions. Both (fastText and
LexVec) models use character n-grams of length 3-6 as subwords.

• For a comparison with much larger training data, we downloaded GoogleNews
100B4 model that is trained using Skipgram architecture on 100 billion words
corpus and negative sampling, vocabulary size is 3,000,000 words.

• GloVe [27] models has 6 billion words, 400,000 unique words, are uncased,
300d vectors. Second model has 42 billion words, 1.9M of unique words and
300d vectors.

3http://www.statmt.org/wmt14/translation-task.html
4https://developer.syn.co.in/tutorial/bot/oscova/pretrained-vectors.html
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Word similarity Word analogy
Model WS-353 RG-65 MC-28 Simlex-999 Sem. Syn. Total

B
a
se

li
n

es
fastText – SG 300d wiki 46.12 76.31 73.26 26.78 68.77 67.94 68.27
fastText – cbow 300d wiki 44.64 73.64 69.67 38.77 69.32 81.42 76.58
SG GoogleNews 300d 100B 68.49 76.00 80.00 46.54 78.16 76.49 77.08
CBOW 300d wiki 57.94 68.69 71.70 33.17 73.63 67.55 69.98
SG 300d wiki 64.73 78.27 82.12 33.68 83.64 66.87 73.57
GloVe 300d 6B 65.80 77.80 72.70 – 77.40 67.00 71.70
GloVe 300d 42B 75.90 82.90 83.60 – 81.90 69.30 75.00
ESA [10] 74.80 74.90 – 27.10 – – –
Huang [13] 71.30 – – – – – –
Levy [17] 62.60 77.10 – – 16.20 52.60 36.10
LexVec 7B 59.53 74.64 74.08 40.22 80.92 66.11 72.83

W
it

h
ca

t.

CBOW 300d wiki + setup 1 62.25 67.13 74.93 33.66 73.98 68.26 70.55
CBOW 300d wiki + setup 2 67.09 68.95 73.26 35.69 72.11 70.79 71.32
CBOW 300d wiki + setup 3 63.20 78.16 78.11 40.32 77.31 68.68 72.13
CBOW 300d wiki + setup 4 64.42 79.36 79.55 40.32 79.04 71.16 74.31
SG 300d wiki + setup 3 62.55 80.25 86.07 33.54 80.77 71.05 74.93

Tab. II Word similarity correlations and word analogy results on English (seman-
tic and syntactic analogies). Result is expressed in percentage.

7. Experimental results and discussion

As an evaluation measure for word similarity tasks we use Spearman correlation
between the system output and human annotations. For word analogy task we
evaluate by accuracy of correctly returned answers. Results for English Wikipedia
are shown in Tab. II.

From Tab. II we can see that all our setups significantly outperform baseline
models. Our models in some tests also outperforms fastText architecture [1] that is
a recent improvement of Word2Vec with sub-word information. The Setup 3 gives
the best balanced score in terms of the performance/training speed. Our proposed
model based on Skipgram architecture outperform the much larger (50×) model
trained by Google on RG-65 and MC-28 datasets. We also achieved a good per-
formance with CBOW architecture which gives in general worse performance than
SkipGram. With our adaptations the CBOW achitecture has even outperformed
the Skipgram architecture trained on much larger data – see results on RG-65
and semantic oriented analogy questions in Tab. II. In general we can see, that
our model is powerful in semantics. There is also significant performance gain on
WS-353 similarity dataset between all our setups.

In each column of the Tab. II, we have marked the top three best score. In
first column for WS-353 similarity tests, the best architectures are the ESA [10],
Huang [13] and GloVe [27] model trained on larger corpora. Skipgram and CBOW
generally perform poorer on similarity data sets. However, in RG-65 and MC-28
our models outperformed other architectures, even the one trained on much larger
corpora. The best score on the Wikipedia and Word analogy tests gives the fastText
incorporating the subword-information. If we consider only models trained on data
from a Wikipedia, our approach is the winner on 4 from 7 tests.
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8. Conclusion and future work

Proposed models significantly outperforms other word representation methods when
the same size training data are used and provide the similar performance compared
with methods trained on much larger datasets. We experimented with four model
architectures and several settings. We believe that using our method can have
even bigger impact on poorly resourced and highly inflected languages, such as
Czech from Slavic family. As this research is focused on improving essential part
of machine text understanding, it can lead to better performance gains in all NLP
tasks where word embeddings is being used. Word2Vec is generally used among the
other architectures because of its balanced training speed/performance [22]. Our
approach with adapted Word2Vec models using setup 3 gives the best balanced per-
formance, training speed is similar to the default CBOW/Skip-gram architecture
and gives similar performance to model trained on 50 times larger data corpora.
Setup 3 we take into considerations as our baseline for a future work.

Our future work can lead to test further languages and integrate our model to
the latest architectures such as fastText or LexVec to get additional performance
improvement from incorporating a sub-word information. We can also experiment
with further model settings such as weighting categories using Point-wise Mutual
Information (PMI) [25] instead of the TF-IDF.

We provide the extracted documents and the trained word vectors publicly for
research purposes at https://github.com/Svobikl/global_context/.
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