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Abstract: The self organization can be performed in an Euclidean space as usu-
ally defined or in any metric space which is generalization of previous one. Both
approaches have advantages and disadvantages. A novel method of batch SOM
learning is designed to yield from the properties of the Hilbert space. This method
is able to operate with finite or infinite dimensional patterns from vector space us-
ing only their scalar product. The paper is focused on the formulation of objective
function and algorithm for its local minimization in a discrete space of partitions.
General methodology is demonstrated on pattern sets from a space of functions.
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1. Introduction

The Hilbert space [17] is frequently used for data analysis, recognition and classifi-
cation. Especially, kernel methods operating in the Hilbert space are modern and
efficient tools in many applications. We have been inspired by kernel methods of
data processing [3] related to Kernel Principal Component Analysis, Kernel Clus-
tering techniques and Kernel SOM. The paper is oriented to the self–organization
in the Hilbert space via generalization of Kohonen SOM batch learning [7]. The
method is motivated by infinite–dimensional and high-dimensional cases of pat-
tern description including the self–organization of functions on given domain using
adequate weight function in scalar product. The second useful case is a direct
application to large signals and images which are results of regular sampling of
functions on rectangular domains. The self-organization is also useful for investi-
gation of words and texts using p-spectrum [5] for all p ∈ N. The novel learning
algorithm is based on the data partition over SOM graph nodes and their local
rearrangement. All the procedures of pattern processing are based on the proper-
ties of the Hilbert space. Necessary theoretical background is formulated in three
theorems about the relationships between patterns and their cluster. Based on
principles mentioned above, novel algorithm of SOM learning has been developed
in the Matlab environment. Our SOM learning approach is verified on two exam-
ples using whitened Kernel PCA [12] as referential method.
The rest of the paper is structured as follows. The second section is devoted to
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the Hilbert space introduction. Clusters in the Hilbert space and their properties
are discussed in the third section which is followed by the description of clustering
in the Hilbert space in the fourth section. After these basic facts the fifth section
introduces the self-organization in this space as the main result of this paper. Last
two sections are focused on the case study of the SOM in the space of functions
and concluding remarks.

2. Hilbert space preliminaries
Data processing is frequently performed in a vector space. In particular cases
one can analyze data in metric space or in another special structure. Having
field F [1] with addition, multiplication, zero element, unit element, and axioms,
we can define vector space [2] V with addition ⊕, scalar multiplication �, and
adequate axioms. Metric space [10]M with metric d enables distance measurement
d(x, y) for any x, y,∈ M. Structure M is more general than structure V, but M
is not too useful for data processing except particular cases. The Hilbert space
[17] H as a vector space V with inner product (x | y) is the preferred structure

in this paper. We will use ‖x‖ =
√

(x | x) as norm and d(x, y) = ‖x − y‖ as
distance for x, y ∈ H respecting well known axioms [17]. Any H is also M with

d(x, y) =
√

(x− y | x− y) and Euclidean space E as V = Cn is a special case of H
with

(x | y) =

n∑
k=1

x∗kyk. (1)

Therefore, a data analysis in H will extend the abilities of the Euclidean space E
but it is more strict than in the metric space M. The main advantage of pattern
analysis inH is in simplification of the batch learning algorithms. The Hilbert space
is frequently used in many kernel methods [3, 12, 16] in combination with kernel
trick in the hidden layer, but we design the novel algorithms for the patterns from
the Hilbert space, i.e., presented in the input layer.

3. Cluster representation in the Hilbert space
In accordance with the description of clustering in the Euclidean, metric, and
kernel space, we have to introduce a cluster and its properties, first. Having m ∈ N
patterns in given cluster C = {xk ∈ H : k = 1, . . . ,m} we define cluster quality as
the minimal value of

f+(y) =

m∑
k=1

‖xk − y‖2 (2)

for y ∈ H. Any value y+opt ∈ argmin f+(y) is called centroid [16].
But individual patterns should have various positive weights related to C. Let
wk ∈ R+ be weights for k = 1, . . . ,m satisfying

m∑
k=1

wk = 1. (3)

This approach can be also useful for the SOM description in the main section.
The definitions of centroid and cluster quality in H can be directly generalized as
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follows. Weighted centroid is any t ∈ H satisfying t ∈ argmin f(y) where cluster
quality is defined as

f(y) =

m∑
k=1

wk‖xk − y‖2 (4)

for non-empty C and in the case of empty C we set f(y) = 0. As will be shown, the
unique weighted centroid exists.

Theorem 1. When C is not empty, function f reaches its unique minimum for

t =

m∑
k=1

wkxk.

Proof. We express the objective function as

f(y) =

m∑
k=1

wk(xk − y | xk − y) =

m∑
k=1

wk
(
‖xk‖2 − (xk | y)− (y | xk) + ‖y‖2

)
=

= ‖y‖2 +

m∑
k=1

wk‖xk‖2 −
m∑
k=1

((xk | y) + (y | xk))wk.

Applying function f to t, we obtain

f(t) = ‖t‖2 +

m∑
k=1

wk‖xk‖2 −
m∑
k=1

((xk | t) + (t | xk))wk.

Now we express

f(y)− f(t) = ‖y‖2 − ‖t‖2 −
m∑
k=1

((xk | y) + (y | xk)− (xk | t)− (t | xk))wk =

= ‖y‖2 −

 m∑
k=1

wkxk

∣∣∣∣∣
m∑
j=1

wjxj

− m∑
k=1

wk

xk
∣∣∣∣∣

m∑
j=1

wjxj

+

+

 m∑
j=1

wjxj

∣∣∣∣∣ xk
 =

= ‖y‖2 −
m∑
k=1

m∑
j=1

wkwj(xk | xj)−
m∑
k=1

wk ((xk | y) + (y | xk)) +

+

m∑
k=1

m∑
j=1

wkwj ((xk | xj) + (xj | xk)) =

= (y | y)−
m∑
k=1

((xk | y) + (y | xk))wk +

m∑
k=1

m∑
j=1

wkwj(xj | xk) =

= (y | y)−
m∑
j=1

wj(xj | y)−
m∑
k=1

wk(y | xk) +

m∑
k=1

m∑
j=1

wkwj(xj | xk) =

=

y − m∑
j=1

wjxj

∣∣∣∣∣ y −
m∑
k=1

wkxk

 = ‖y − t‖2 ≥ 0.
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Therefore, f(y) reaches its minimum just for unique t.

Theorem 1 is useful for the explicit approach to weight centroid construction but
direct calculation of centroid t in H is impractical, time expensive or unrealisable.
Fortunately, both cluster analysis and batch SOM can be based only on the mutual
pattern distances and cluster penalization.

Theorem 2. Cluster quality of non-empty C is equal to

f(t) =

m∑
j=2

j−1∑
i=1

wiwj‖xi − xj‖2. (5)

Proof. The optimum value is

f(t) =

m∑
k=1

wk‖xk − t‖2 = ‖t‖2 +

m∑
k=1

wk‖xk‖2 −
m∑
k=1

wk ((xk | t) + (t | xk)) =

=

 m∑
k=1

wkxk

∣∣∣∣∣
m∑
j=1

wjxj

+

m∑
k=1

wk‖xk‖2 −
m∑
k=1

wk

xk
∣∣∣∣∣

m∑
j=1

wjxj

+

+

 m∑
j=1

wjxj

∣∣∣∣∣ xk
 =

=

m∑
k=1

m∑
j=1

wkwj(xk|xj)+

m∑
k=1

wk‖xk‖2−
m∑
k=1

m∑
j=1

wkwj ((xk|xj)+(xj |xk)) =

=

m∑
k=1

wk‖xk‖2 −
m∑
k=1

m∑
j=1

wkwj(xj | xk).

The right hand side of (5) can be expressed as

m∑
j=2

j−1∑
i=1

wiwj‖xi − xj‖2 =
1

2

m∑
k=1

m∑
j=1

wkwj(xk − xj | xk − xj) =

=
1

2

(
m∑
k=1

m∑
j=1

wkwj‖xk‖2 −
m∑
k=1

m∑
j=1

wkwj ((xk|xj)+

+ (xj |xk)) +

m∑
k=1

m∑
j=1

wkwj‖xj‖2
)

=

=
1

2

(
m∑
k=1

wk‖xk‖2 −
m∑
k=1

m∑
j=1

wkwj(xk | xj)−

−
m∑
k=1

m∑
j=1

wkwj(xj | xk) +

m∑
j=1

wk‖xj‖2
)

=

=

m∑
k=1

wk‖xk‖2 −
m∑
k=1

m∑
j=1

wkwj(xj | xk)

which is identical.
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The problem of cluster penalization in H is then reduced to a pair-wise evaluation
of

‖xi − xj‖2 = (xi | xi)− (xi | xj)− (xj | xi) + (xj | xj). (6)

Therefore, when we are able to calculate scalar product in H, we are also able to
evaluate cluster quality without necessity to identify the weighted centroid t. The
evaluation of d(x, t) for x ∈ H is also useful and possible.

Theorem 3. The distance between x ∈ H and centroid t is

d(x, t) =

√√√√ m∑
k=1

wkd2(xk, x)−
m∑
j=2

j−1∑
k=1

wkwjd2(xk, xj). (7)

Proof. According to Theorem 1 the left hand side squared can be expressed as

d2(x, t) = d2

(
x,

m∑
k=1

wkxk

)
=

∥∥∥∥∥x−
m∑
k=1

wkxk

∥∥∥∥∥
2

=

= ‖x‖2 +

∥∥∥∥∥
m∑
k=1

wkxk

∥∥∥∥∥
2

−

(
x

∣∣∣∣∣
m∑
k=1

wkxk

)
−

(
m∑
k=1

wkxk

∣∣∣∣∣ x
)

=

= ‖x‖2 +

 m∑
k=1

wkxk

∣∣∣∣∣
m∑
j=1

wjxj

− m∑
k=1

wk(x | xk)−
m∑
k=1

wk(xk | x) =

= ‖x‖2 +

m∑
k=1

m∑
j=1

wkwj(xk | xj)−
m∑
k=1

wk((x | xk) + (xk | x)).

The right hand side squared can be expressed as

m∑
k=1

wkd2(xk, x)−
m∑
j=2

j−1∑
k=1

wkwjd
2(xk, xj)

and according to Theorem 2 one obtains

m∑
k=1

wkd2(xk, x) −
m∑
j=2

j−1∑
k=1

wkwjd
2(xk, xj) =

m∑
k=1

wkd2(xk, x)−

−
m∑
j=2

j−1∑
k=1

wkwj‖xk − xj‖2 =

m∑
k=1

wk‖xk − x‖2 −

−

 m∑
k=1

wk‖xk‖2 −
m∑
k=1

m∑
j=1

wkwj(xk | xj)

 = ‖x‖2 −
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−
m∑
k=1

wk ((x | xk) + (xk | x)) +

m∑
k=1

wk‖xk‖2 +

+

m∑
k=1

m∑
j=1

wkwj(xk | xj)−
m∑
k=1

wk‖xk‖2 = ‖x‖2 +

+

m∑
k=1

m∑
j=1

wkwj(xk | xj)−
m∑
k=1

wk ((x | xk) + (xk | x))

which is identical.

Previous three theorems form a theoretical background for both batch clustering
and batch SOM learning in the Hilbert space.

4. Clustering in the Hilbert space
Let M,H ∈ N be number of patterns from H and given number of clusters. Pattern
set is then S = {xk ∈ H : k = 1, . . . ,M}. Traditional batch clustering [7] is driven
by partition vector [8] p = (p1, . . . pM ) ∈ {1, . . . ,H}M . It is a kind of lookup table
of length M where pk is the class membership of kth pattern. Cluster Cj ⊂ S is
defined as Cj = {xk ∈ S : pk = j}. The clusters C1, . . . , CH represent partition of S
as trivial to verify. The corresponding weights inside the cluster Cj are defined here
as wk = 1/card(Cj) or undefined for empty cluster. Partition quality is defined [16]
as

Q(p) =

H∑
j=1

∑
k∈Cj

||xk − tj ||2 (8)

where tj is centroid of Cj . After small rearrangement we directly obtained

Q(p) =

H∑
j=1

card(Cj)
∑
k∈Cj

wj,k||xk − tj ||2 =

H∑
j=1

qj (9)

where qj is quality of cluster Cj calculated according (5) as

qj = card(Cj) ·
card(Cj)∑
k=2

k−1∑
l=1

wj,kwj,l||xk − xl||2. (10)

The general aim of batch cluster analysis is to obtain optimal clustering (partition)
driven by partition vector popt ∈ argminQ(p). The batch clustering is therefore a
kind of nonlinear integer optimization task. According to [4], optimal clustering is
a kind of NP-hard task in E which is a special case of finite H. Therefore, optimum
clustering in H is also NP-hard task.
In this case, any optimization heuristics can be employed:

– K-means [16] as procedure beginning with random partition can be modified
to perform partition revisions according to (7) until local minimum is found,

– Simulated Annealing (SA) [6] as traditional optimization heuristics based on
simulation of physical annealing,
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– Fast Simulated Annealing (FSA) [14] as an improvement of SA based on
non-physical concept of importance sampling,

– Integer Cuckoo Search (ICS) [9] as population based heuristics with integer
Lévy flights [15],

– Steepest Descent (SD) [13] as referential heuristics for local minima finding,

– Random Descent (RD) [11] as another referential local heuristics.

5. SOM in the Hilbert space

R ⊂
(
N
2

)
(11)

be a set of edges (relations). Then a pair G = 〈N ,R〉 is an undirected connected
graph which typically represents the topology of SOM [7]. The number of output
nodes H = card(N ). Let d∗ : N × N → N0 be a vertex distance in the graph of
SOM. Then M = 〈N , d∗〉 is a metric space over the SOM. The maximum value
of the vertex distance over N ×N is called diameter D of the SOM. The SOM in
Hilbert space is a function SOM : S → N , while the SOM learning is an algorithm
of the SOM function design according to the set of patterns S [8].

Batch learning of SOM in H is also driven by vector p = (p1, . . . pM ) ∈
{1, . . . ,H}M which places patterns from S ⊂ H into nodes from N of given SOM
graph. Novel penalization strategy is based on weighted centroids around individ-
ual SOM nodes and corresponding centroid quality. When the pattern is placed
into the investigated node, its weight is maximum possible but when it is placed
in the node neighborhood, the weight is a function of d∗ according to

wi,k =
χ(d∗(i, pxk

))∑M
j=1 χ(d∗(i, pxj ))

(12)

where characteristics χ : {0, . . . , D} → R+ is a non-increasing function satisfying
χ(0) = 1, χ(D) ∈ (0, 1). In the case of batch SOM learning [7], only direct neighbors
are involved in centroid calculations with full weight. Therefore, χ(d∗) = 1 for
d∗ ≤ 1 and χ(d∗) = 0 otherwise.
The other characteristics are also useful as:

– rectangular with characteristics χ(d∗) = I(d∗ ≤ R),

– Gaussian with characteristics χ(d∗) = exp

(
−1

2

(
d∗

R

)2
)

,

– Exponential with characteristics χ(d∗) = exp

(
−d
∗

R

)
,

– Cauchian with characteristics χ(d∗) =

(
1 +

(
d∗

R

)2
)−1
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where R > 0 is learning radius. Gaussian characteristics is frequently used in the
traditional Kohonen SOM learning and should be preferred also in this method.
As seen from (12) the weights wi,k are well defined and positive satisfying

M∑
k=1

wi,k = 1, for all i = 1, . . . H (13)

which represents node views to given data set S. SOM quality is then defined as a
sum of node view penalizations according to

S(p) =

H∑
i=1

si (14)

where si is “cluster” quality with weights wi,k for given node i according to (10).
The main difference between cluster analysis and SOM in H is in the interaction
among patterns from various nodes. SOM partition is formally the same as clus-
tering partition but the influence of any pattern overcome its node limitations.
Therefore, SOM learning is just an integer minimization of S(p) for given pattern
set S.

This task is similar to optimum clustering. General integer minimization heuris-
tics (SA, FSA, ICS, SD, RD) can be employed again. Alternative way is to mod-
ify K-means heuristic without necessity of node centroid calculations. The novel
heuristics of SOM learning in H begins with random partition p. The main loop
performs SOM partition revisions till penalization S(p) decreases as follows: For
every pattern xk ∈ S and every node i we calculate d(xk, ti) according to (7) where
ti is hidden centroid of Ci around node i. New pattern position in SOM is then
given by formula pk ∈ argmin

i=1,...,H
d(xk, ti).

6. Case study: SOM in the space of functions
The abilities of novel algorithm will be demonstrated in infinite dimensional Hilbert
space of functions. Let a, b ∈ R, a < b be boundaries. Let f, g : [a, b] → R be
functions from H with scalar product

(f |g) =

∫ b

a

f(x)g(x)dx. (15)

Two pattern sets of functions were studied. In the first case we studied power
functions on interval [0, 1] for various parameter α ≥ 0. Four types of functions
are included as

f1(x) = xα, (16)

f2(x) = (1− x)α, (17)

f3(x) = 1− xα, (18)

f4(x) = 1− (1− x)α. (19)

These functions represent increasing, decreasing, convex, and concave continuous
functions on give interval. The list of functions is included in Tab. I.
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In the second case, we studied four types of trigonometric functions as

f1(x) = sinαx, (20)

f2(x) = cosαx, (21)

f3(x) = sinα x, (22)

f4(x) = cosα x. (23)

These functions were studied on interval [−π, π] for various parameter α ∈ N0. The
list of functions is included in Tab. I.

label power function trigonometric function

A 0 0
B 1 1

C x
1
4 sinx

D x
1
2 sin 2x

E x
3
4 sin 3x

F x sin 4x

G x
3
2 sin 5x

H x2 sin 6x

I (1− x)
1
4 cosx

J (1− x)
1
2 cos 2x

K (1− x)
3
4 cos 3x

L 1− x cos 4x

M (1− x)
3
2 cos 5x

N (1− x)2 cos 6x

O 1− x 1
4 sin2 x

P 1− x 1
2 sin3 x

Q 1− x 3
4 sin4 x

R 1− x 3
2 sin5 x

S 1− x2 sin6 x

T 1− (1− x)
1
4 cos2 x

U 1− (1− x)
1
2 cos3 x

V 1− (1− x)
3
4 cos4 x

W 1− (1− x)
3
2 cos5 x

X 1− (1− x)2 cos6 x

Tab. I Two pattern sets.

The choice of SOM topology is driven by data processing traditional and there-
fore only regular planar SOM graphs will be used to demonstrate the mapping
from the Hilbert space into discrete 2D space with integer coordinates. Two SOM
topologies were used for the self organization. In the first case, we applied rectan-
gular topology 3×3 consisting of 9 nodes. In the second case, hexagonal topology of
7 nodes was used. Gaussian characteristic was used for different radii R. Whitened
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Kernel PCA [12] with kernel K(x, y) = (x|y) was used as referential method and
its results were mapped into 2D and 3D spaces. SOM batch learning was organized
in 1000 independent runs of random shooting heuristics with embedded K-means
local search according to 7 and the best solutions of minimum penalization was
collected.

Pattern set of power functions was self organized first. Results of 2D and 3D
Kernel PCA are depicted on Fig. 1. As seen, 2D KPCA provides good insight
into pattern set and 3D case is not necessary for the self-organization. Therefore,
the mapping into 2D SOM has to be trivial. The influence of learning radius in
the case of rectangular SOM topology is demonstrated on Fig. 2 and in the case
of hexagonal SOM topology is demonstrated on Fig. 3. As seen, the large value
of learning radius R forms separated clusters inside SOM meanwhile lower value
of R caused data spreading and therefore detailed pattern description. The best
subjective result for the set of power functions was obtained for seven nodes of
hexagonal topology with Gaussian characteristics and radius R = 1. In this case,
there is a very good correspondence between Kernel PCA’s as referential method
and SOM partition.

Pattern set of trigonometric functions was organized as the second case. Results
of 2D and 3D Kernel PCA are depicted on Fig. 4. Due to similarity of several
trigonometric functions, 2D Kernel PCA is less informative in comparison with 3D
Kernel PCA which distinguish among the trigonometric functions. Therefore, the
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Fig. 1 Kernel PCA for set of power functions: D = 2 (left), D = 3 (right).
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mapping of these functions into the 2D planar SOM will have similar properties as
2D Kernel PCA. The influence of learning radius in the case of rectangular SOM
topology is demonstrated on Fig. 5 and in the case of hexagonal SOM topology
is demonstrated on Fig. 6. As in the case of pattern set of power functions, the
large value of R forms separated clusters inside SOM meanwhile lower value of
R caused data spreading and therefore detailed pattern description. The best
subjective result for the set of trigonometric functions was obtained for seven nodes
of hexagonal topology with Gaussian characteristics and radius R = 0.5 for which
the correspondence between Kernel PCA’s as referential method and SOM partition
was the best.
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Fig. 5 Rectangular SOM for H = 9 and trigonometric functions: R = 0.2 (left),
R = 1 (right).
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Fig. 6 Hexagonal SOM for H = 7 and trigonometric functions: R = 0.2 (left),
R = 0.5 (right).

7. Conclusions
Using basic properties of general Hilbert space, both weighted clustering and batch
learning of SOM is possible without coordinate-wise processing. Three basic the-
orems were proved and then used for SOM learning. General algorithm was able
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to self-organize the functions from the Hilbert space as demonstrated on two sets
of functions. The effects of SOM topology and repulsing diameter R were studied
experimentally using Gaussian characteristics and random shooting optimization
heuristics with local hybridization. Too high repulsion radius R caused pattern oc-
currence only in the outer nodes of SOM which is inefficient. Therefore, the lower
values of R are recommended due to better pattern spreading over SOM nodes
which means better data description. The general method of self–organization can
be applied to functions, long series, large 2D and 3D images, and words as patterns
from the Hilbert space whenever they can be efficiently mapped into 2D space. We
can also perform the cluster analysis or use special non-planar SOM topology like
2D or 3D cube. The applicability of clustering and SOM in the Hilbert space
outperform the abilities of the pattern analysis in the Euclidean space.
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