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Abstract: Prediction problems with small sample size are problems which widely
exist in engineering application. Because lazy prediction algorithms can utilize the
information of predicted individual, it is often possible for them to achieve better
predictive effect. Traditional lazy prediction algorithms generally use sample infor-
mation directly, and therefore the predictive effect still has room for improvement.
In this paper, we combine support vector regression (SVR) with lazy prediction
algorithm, and propose a lazy support vector regression (LSVR) model. The in-
sensitive loss function in LSVR depends on the distance between the individual in
training sample set and the predicted individual. The smaller the distance, the
smaller the lossless interval of the individual in training sample set, which means
that the individual in training sample set has a great impact on the predicted
individual. To solve the LSVR model, a generalized Lagrangian function is intro-
duced to obtain the dual problem of the primal problem, and the solution to the
primal problem is obtained by solving the dual problem. Finally, three numerical
experiments are conducted to validate the predictive effect of LSVR. The exper-
imental results show that the predictive effect of LSVR is better than those of
ε-SVR, neural network (NN) and random forest (RF), and it is also better than
that of k-nearest neighbor (k-NN) algorithm when the sample size is not too small
and the distance between the predicted individual and the individual in training
sample set is not too large. Therefore, LSVR not only has the advantage of good
generalization ability of traditional SVR, but also has the advantage of good local
accuracy of lazy prediction algorithm.
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1. Introduction

The prediction of the output for future input based on the limited number of input
with known output is a problem which widely exists in engineering application.
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The input with known output is often referred to as a training sample set. For
the problem, the current approaches can be divided into two categories. The first
category is based on training sample set to establish a mapping between input space
and output space, and then apply this mapping to predict the output for future
input, such as a variety of regression in statistics [1,2], neural network (NN) [3,4],
support vector regression (SVR) [5, 6] and random forest (RF) [7, 8] in machine
learning, etc. Such methods are called eager prediction algorithms. The second
category does not establish any mapping based on training sample set in advance.
Only when the output for future input need to be predicted, a mapping between
input space and output space will be established according to the relationship
between the training sample set and future input, and then the output for future
input will be predicted based on this mapping, such as k-nearest neighbors (k-NN)
algorithm [9], local weighted regression [10,11], etc. Those methods are called lazy
prediction algorithms. It should be noted that the mapping established by lazy
prediction algorithms is only applicable to the prediction of a single individual,
and it is necessary to reestablish the mapping when other individuals need to be
predicted.

The sample size of many prediction problems is small because of the natural
sparseness of samples or the difficulty in sample collection. The essence of predic-
tion problem with small sample size is lack of information, and the samples cannot
fully reflect the mapping between input space and output space. In another word,
the sample space is not complete. At present, there are mainly three approaches
to deal with the prediction problem with small sample size. The first approach is
directly using eager prediction algorithms with good generalization performance,
such as SVR [12], extreme learning machines (ELM) [13], etc. These methods are
limited by incomplete sample space, and there exists a large difference between
the established global mapping and the actual mapping, and thus the predictive
error is large. The second one is using virtual sample generation (VSG) technique
to extend the sample size and then to predict [14, 15]. However, this method may
produce wrong results because of the random data distribution. Moreover, when
the data only has a small number of features, VSG may not be able to improve the
prediction accuracy effectively. The third one is using lazy prediction algorithms
to predict. When the predicted individual is close to the individual in training
sample set, the lazy prediction algorithms are often able to obtain better results
than the eager prediction algorithms. However, existing lazy prediction algorithms
generally use sample information directly and simply.

For prediction problems with small sample size, the more information is used in
modeling, the better the predictive effect may reach. Compared with eager predic-
tion algorithms, lazy prediction algorithms not only use the sample information,
but also use the predicted individual information. However, the existing lazy pre-
diction algorithms cannot make full use of the sample information. The SVR model
which is based on the VC dimension theory and the structural risk minimization
can seek the best compromise between the model complexity and learning ability
according to the limited sample information, and thus it has good generalization
ability. Therefore, this paper introduces SVR into the lazy prediction algorithm,
and proposes a lazy support vector regression (LSVR) model which is suitable for
prediction problems with small sample size. By deducing the LSVR model, the
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decision function and optimal solution of the model can be obtained. We test the
model in several numerical experiments and compare its prediction accuracy with
LSVR, ε-SVR, k-NN, NN and RF. We find that LSVR has the best prediction
accuracy.

The remainder of the paper is organized as follows. Section 2 describes the
establishment of the LSVR model. Section 3 introduces solution of the model.
Section 4 sets up experiments to verify the predictive effect of LSVR and analyzes
experimental results. Section 5 summarizes the results and concludes the paper.

2. Model Establishment

A training sample set T = {(x1, y1) , (x2, y2) , · · · , (xl, yl)} and a predicted individ-
ual (x∗, y∗) are given, where l is the sample size, and xi is the input, xi ∈ Rn, and
yi is the output, yi ∈ R, and i = 1, 2, · · · , l. The problem studied in this paper is
how to predict y∗ based on T and x∗.

In this paper, we propose a LSVR model based on ε-SVR. In ε-SVR, ε-insensitive
loss function is introduced to ensure its good generalization performance, denoted
as

|yi − f(xi)|ε = max {0, |yi − f(xi)| − ε} , (1)

where f(·) is the decision function, and ε is a small positive number. According to
Eq. (1), ε-SVR allows ε deviation from the output yi, as shown in Fig. 1.
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Fig. 1 ε-insensitive loss function.

The ε-SVR model aims at finding the appropriate decision function, denoted as

f(x) = ω · Φ (x) + b, (2)

fitting T and minimizing

1

2
‖ω‖2 + C

l∑
i=1

|yi − f(xi)|ε, (3)
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where ω is a normal vector, Φ(·) represents the mapping function, b is denoted as
the intercept, and C(C > 0) is called penalty constant.

In ε-SVR, ε is a fixed number. This means that the allowable lossless intervals
for all individuals in training sample set are equal, and that all individuals play
exactly the same role in the process of building model. For a lazy prediction
algorithm, its purpose is not to establish a perfect global mapping between input
space and output space, but to establish a good local mapping near the predicted
individual. In general, the closer the individual in sample is to the predicted
individual, the better it can reflect the local mapping in vicinity of the predicted
individual, and it should play a greater role in building the model, and vice versa.
Thus, in LSVR, the allowable lossless intervals should be smaller for individuals in
sample closer to the predicted individual. In order to establish a LSVR model, we
firstly introduce an E-insensitive loss function, denoted as

|yi − f(xi)|E = max {0, |yi − f(xi)| − E (‖xi-x∗‖)} , (4)

where E (·) is a function of the distance between the individual xi in sample and
the predicted individual x∗. The smaller ‖xi − x∗‖ is, the smaller E (‖xi − x∗‖) is,
and vice versa. E (·) is generally defined as

E (‖xi − x∗‖) =
ε ‖xi − x∗‖

maxi=1,2,··· ,l ‖xi − x∗‖
, (5)

where ε is a small positive number. According to Eq. (5), when ‖xi − x∗‖ =
maxi=1,2,··· ,l ‖xi − x∗‖, E (‖xi − x∗‖) = ε, and when ‖xi − x∗‖ = 0, E (‖xi − x∗‖) =
0.

When E (·) is defined as in Eq. (5), the E-insensitive loss function is shown in
Fig. 2.

 
Fig. 2 Ε-insensitive loss function. 
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Similar to ε-SVR, the LSVR model also aims at finding an appropriate decision
function, denoted as

f(x) = ω · Φ (x) + b, (6)

fitting T and minimizing

1

2
‖ω‖2 + C

l∑
i=1

|yi − f(xi)|E. (7)

Compared with Eq. (3), we can find that LSVR is exactly the same as ε-SVR
except for the insensitive loss function.

3. Model Solution

Minimizing Eq. (7) is equivalent to solving the constrained optimization problem
Eqs. (8)–(11).

minω,ξi,ξ∗i ,b
1

2
‖ω‖2 + C

l∑
i=1

(ξi + ξ∗i ) (8)

s.t. yi − ω · Φ (xi)− b ≤ E (‖xi − x∗‖) + ξi, (9)

ω · Φ (xi) + b− yi ≤ E (‖xi − x∗‖) + ξ∗i , (10)

ξi, ξ
∗
i ≥ 0, i = 1, 2, · · · , l. (11)

In order to solve this constrained optimization problem, a generalized Lagrange
function is introduced, denoted as

L(ω, ξ, ξ∗, b, α, α∗, µ, µ∗) = 1
2 ‖ω‖

2
+ C

∑l
i=1 (ξi + ξ∗i )+∑l

i=1 αi (yi − ω · Φ (xi)− b− E (‖xi − x∗‖)− ξi) +∑l
i=1 α

∗
i (ω · Φ (xi) + b− yi − E (‖xi − x∗‖)− ξ∗i )+∑l

i=1 µi (-ξi) +
∑l
i=1 µ

∗
i (−ξ∗i )

, (12)

where αi, α
∗
i , µi, µ

∗
i ≥ 0, i = 1, 2, · · · , l.

The minimax problem of Eq. (12) is denoted as

minω,ξi,ξ∗i ,bmaxα,α∗,µ,µ∗L(ω, ξ, ξ∗, b, α, α∗, µ, µ∗) (13)

s.t. αi, α
∗
i , µi, µ

∗
i ≥ 0, i = 1, 2, · · · , l, (14)

which is equivalent to Eqs. (8)–(11).
Therefore, the dual problem of Eqs. (8)–(11) is denoted as

maxα,α∗,µ,µ∗minω,ξ,ξ∗,bL(ω, ξ, ξ∗, b, α, α∗, µ, µ∗) (15)

s.t. αi, α
∗
i , µi, µ

∗
i ≥ 0, i = 1, 2, · · · , l. (16)
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The optimal solutions of the primal problem and dual problem are respectively
represented as

(
ω̄, ξ̄, ξ̄∗, b̄

)
and (ᾱ, ᾱ∗, µ̄, µ̄∗). First, we solve ᾱ and ᾱ∗. According

to the Karush-Kuhn-Tucker (KKT) conditions, we can get

∇ωL(ω̄, ξ̄, ξ̄∗, b̄, ᾱ, ᾱ∗, µ̄, µ̄∗)=ω̄ −
l∑
i=1

ᾱiΦ (xi) +

l∑
i=1

ᾱ∗iΦ (xi) = 0, (17)

∇ξiL(ω̄, ξ̄, ξ̄∗, b̄, ᾱ, ᾱ∗, µ̄, µ̄∗)=C − ᾱi − µ̄i = 0, (18)

∇ξ∗i L(ω̄, ξ̄, ξ̄∗, b̄, ᾱ, ᾱ∗, µ̄, µ̄∗)=C − ᾱ∗i − µ̄∗i = 0, (19)

∇bL(ω̄, ξ̄, ξ̄∗, b̄, ᾱ, ᾱ∗, µ̄, µ̄∗)=−
l∑
i=1

ᾱi +

l∑
i=1

ᾱ∗i = 0. (20)

Eqs. (17)–(19) can be transformed into Eqs. (21)–(23), denoted as

ω̄ =

l∑
i=1

ᾱiΦ (xi)−
l∑
i=1

ᾱ∗iΦ (xi), (21)

µ̄i = C − ᾱi, (22)

µ̄∗i = C − ᾱ∗i . (23)

Put Eqs. (20)–(23) into Eqs. (15)–(16) and then simplify them, we can get

minα,α∗

(
1
2

∑l
i=1

∑l
j=1 (αi − α∗i )

(
αj − α∗j

)
Φ (xi) · Φ (xj)−∑l

i=1 (αi (yi − E (‖xi − x∗‖))− α∗i (yi + E (‖xi − x∗‖)))
) (24)

s.t.

l∑
i=1

(α∗i − αi) = 0, (25)

0 ≤ αi, α∗i ≤ C, i = 1, 2, · · · , l, (26)

where Φ (xi) · Φ (xj) = K (xi,xj) is denoted as positive definite kernel function.
It is easy to prove that Eqs. (24)–(26) is a convex quadratic programming

problem. The optimal solution ᾱ and ᾱ∗ can be solved by interior point method
or sequential minimal optimization method.

The process of solving b̄ is as follows. According to the KKT conditions, we
can get

ᾱi
(
yi − ω̄ · Φ (xi)− b̄− E (‖xi − x∗‖)− ξ̄i

)
= 0, (27)

ᾱ∗i
(
ω̄ · Φ (xi) + b̄− yi − E (‖xi − x∗‖)− ξ̄∗i

)
= 0, (28)

µ̄iξ̄i = 0, (29)

µ̄∗i ξ̄
∗
i = 0. (30)

When 0 < ᾱi < C, according to Eqs. (27) and (22), we can get

yi − ω̄ · Φ (xi)− b̄− E (‖xi − x∗‖)− ξ̄i = 0, (31)
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µ̄i = C − ᾱi > 0. (32)

And according to Eq. (29) we can also get

ξ̄i = 0. (33)

Put Eqs. (21) and (33) into Eq. (31) and transform it, we can get

b̄ = yi −
l∑

j=1

(
ᾱj − ᾱ∗j

)
K (xi,xj)− E (‖xi − x∗‖) . (34)

Put (ᾱ, ᾱ∗), Eqs. (21) and (34) into Eq. (6), we can obtain the final decision function

f(x) =

l∑
j=1

(
ᾱj − ᾱ∗j

)
K (xj ,x) +

yi − l∑
j=1

(
ᾱj − ᾱ∗j

)
K (xi,xj)− E (‖xi − x∗‖)

 .
(35)

4. Numerical Experiment

In order to verify the predictive effect of LSVR, the sinc function sinc(x) =
sin(x)/x, which is shown in Fig. 3, is selected for three numerical experiments.
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Fig. 3 Sinc function.

Experiment 1 the training sample set is {(x, sin c(x)) |x = 1, 2, · · · , 2 0}, and its
size is 20. The test sample set is {(x, sin c(x)) |x = 0.1, 0.2, · · · , 2 0.0}, and its size
is 200. LSVR, ε-SVR, k-NN, NN and RF are all used in the numerical experiment.
For LSVR and ε-SVR, their penalty constant C = 50000, and the kernel function

is Gaussian kernel function K (xi,xj) = exp
(
−‖xi−xj‖2

2σ2

)
, where σ = 0.25. The

ε in LSVR and ε-SVR is 0.1, 0.01, 0.001 and 0.0001 respectively. The k of k-NN
is 1, 2, 3 and 4 respectively. The structure of NN is a multi-layer perceptron,
which has 2 hidden layers with 10 nodes, and its activation function is the rectified
linear unit (ReLU). For RF, the number of trees in the forest is 200, and the
minimum number of samples at a leaf node is 8. In order to observe the impact
of the distance d between the predicted individual and the individual in training
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sample set on the predictive effect, we calculate the mean absolute error (MAE)
for predicted individuals of d ≤ 0.2, d ≤ 0.5 and all the individuals in test sample
set respectively.

Experiment 2 the training sample set is {(x, sin c(x)) |x = 1, 3, 5, · · · , 19}, and its
size is 10. The minimum number of samples at a leaf node in RF is 4. The rest is
similar to Experiment 1.

Experiment 3 the training sample set is {(x, sin c(x)) |x = 1, 5, 9, 13, 17}, and its
size is 5. The structure of NN is also a multi-layer perceptron, which has 2 hidden
layers with 9 nodes. The rest is similar to Experiment 2.

The results of all the experiments are listed in Tab. I. The best results of each
method are shown in Fig. 4.

Based on the results, firstly, the prediction results of LSVR and ε-SVR are
compared. For LSVR, when ε = 0.01, the MAE in experiments 1 and 2 is mini-
mal, and when ε = 0.1, the MAE in experiment 3 is minimal. For ε-SVR, when
ε = 0.001, the MAE in experiments 1 and 2 is minimal, and when ε = 0.01, the
MAE in experiment 3 is minimal. It can be seen from Tab. I that LSVR obtains
better predictive effect than ε-SVR for both the predicted individuals in the vicin-
ity of training sample set and all predicted individuals in three experiments. This
means that the LSVR model not only has good generalization ability of ε-SVR,
but also improves the local accuracy because of using the information of predicted
individuals.

Then, compared with k-NN, LSVR shows obvious advantages in the first two
experiments. It can be clearly seen from Figs. 4(g) and (h) that k-NN cannot
fit the sinc function exactly in experiments 1 and 2. In experiment 3, it can be
seen from Figs. 4(c) and (i) that LSVR and k-NN cannot accurately track the
trend of sinc function due to the serious shortage of training sample. For d ≤ 0.2
and d ≤ 0.5, the predictive effect of LSVR is better than k-NN. But for all the
individuals in test sample set, the predictive effect of LSVR is worse than k-NN.
This means that LSVR is more sensitive to the training sample size and the distance
between predicted individual and training sample than k-NN. Therefore, when the
training sample size is not too small or the distance between predicted individual
and training sample is not too large, LSVR is more suitable. If not, k-NN may be
more suitable.

Finally, compared with NN and RF, LSVR shows obvious advantages in three
experiments. RF relies on a large number of different decision trees, but the prob-
lem we are discussing is a prediction problem with small sample size, and thus
many decision trees are almost the same. Therefore, RF may not well deal with
the prediction problem with small sample size. The model space of NN is directly
related to the number of model parameters. In order to fit complex functions, NN
must have many neurons, which means many model parameters need to be trained.
Therefore, NN often requires a certain number of samples. When the sample size
is small, NN is often difficult to achieve good prediction effect.
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(a) Experiment 1 of LSVR (b) Experiment 2 of LSVR (c) Experiment 3 of LSVR 

 
(d) Experiment 1 of ε-SVR (e) Experiment 2 of ε-SVR (f) Experiment 3 of ε-SVR 

 
(g) Experiment 1 of k-NN (h) Experiment 2 of k-NN (i) Experiment 3 of k-NN 

 
(j) Experiment 1 of NN    (k) Experiment 2 of NN (l) Experiment 3 of NN 

 
(m) Experiment 1 of RF (n) Experiment 2 of RF (o) Experiment 3 of RF 

Fig. 4 Best Prediction results of each method in each experiment. 
 Fig. 4 Best Prediction results of each method in each experiment.
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5. Conclusion

In order to improve the predictive effect with small sample size, this paper combines
ε-SVR and lazy prediction algorithm to establish a LSVR model. The insensitive
loss function in LSVR depends on the distance between the individual in sample
and the predicted individual. To solve the LSVR model, a generalized Lagrangian
function is introduced to obtain the dual problem of the primal problem. The
solution to the primal problem is obtained by solving the dual problem. Finally,
three numerical experiments were conducted using sinc function. The experimental
results show that the predictive effect of LSVR is better than those of ε-SVR, NN
and RF. When training sample size is not too small and the distance between
the predicted individual and the individual in training sample set is not too large,
the predictive effect of LSVR is also better than that of k-NN. Therefore, the
LSVR model can integrate the advantages of traditional SVR and lazy prediction
algorithm. It not only has better generalization ability, but also improves local
accuracy.

Despite the era of big data is coming, many small enterprises are still far from
being overwhelmed by big data. The proposed LSVR model can well deal with the
prediction problems such as insufficient accumulation of historical data, high data
acquisition cost and long data acquisition time, etc.
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