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Abstract: In this paper, we propose a new pooling method for deep convolu-
tional neural networks. Previously introduced pooling methods either have very
simple assumptions or they depend on stochastic events. Different from those
methods, RegP pooling intensely investigates the input data. The main idea of
this approach is finding the most distinguishing parts in regions of the input by
investigating neighborhood regions to construct the pooled representation. RegP
pooling improves the efficiency of the learning process, which is clearly visible in the
experimental results. Further, the proposed pooling method outperformed other
widely used hand-crafted pooling methods on several benchmark datasets.
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1. Introduction

Deep learning is an evolving methodology, which represents more abstract concepts
to discover better learning algorithms less dependent on feature engineering [3].
Deep learning implementations extract high-level features of complex data sets
automatically through a special multi-layer neural network structure [10]. These
structures usually have multiple hidden layers instead of a single one, and these
layers are processed with different techniques to train the deep neural network.

Convolutional neural networks (CNNs) are a special type of artificial neural
networks, and they learn very expressive features in an adaptive manner [2]. CNNs
have receptive fields with weight attributes called as convolutional units which
are shifted step by step across a 2-dimensional array of input values [22]. This
structure has recently successfully applied to various research areas from image
recognition to bio-medical image segmentation [6, 9, 13, 16, 19, 25, 27]. CNNs have
a linear mathematical operation of convolution and parameters of the convolution
layer contain learnable filters or kernels. In CNN structures both feature extrac-
tion and classification processes are performed in a conventional training phase,
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where several convolutional and pooling layers are applied successively to obtain
hierarchical properties of the input data. Additional layers are needed because a
deep CNN generalize better when having a more compact representation [12]. A
sufficient number of convolution and pooling layers is necessary to represent the
features of the input precisely.

Pooling layers work as a kind of down-sampling step, where semantically cor-
responding representation of the input is determined. Using all properties of the
input will produce a very high computational cost so that pooling is used on the
output matrix obtained from the convolution layer. In the pooling layer, the data
is reduced in size by applying various techniques to the regions in predetermined
dimensions. The applied technique usually gives the name to the pooling process,
such as Average pooling (for taking averages) and Max pooling (for taking maxi-
mum values). Pooling is a fundamental component of deep CNNs. Nevertheless,
the most widely used pooling methods, Average pooling, and Max pooling have
very simple assumptions, and they do not provide optimal solutions [14]. A sim-
ilar problem occurs with methods which depend on probability values, such as
Stochastic pooling [31]. Many applications follow previously created models with-
out investigating or optimizing the pooling layer, but it is clear that there is a need
to develop more feasible methods to be used in the pooling layer of deep CNNs.

In this paper, we propose a new pooling method, which is as fast as popu-
lar hand-crafted pooling methods. More specifically, we present the RegP pooling
algorithm to be used in deep CNNs. Contributions of this study include: (1) a
new pooling algorithm is proposed; (2) the proposed algorithm, which has same
computational complexity with other hand-crafted pooling methods, significantly
decreases learning time in CNNs according to various experiments; (3) the pro-
posed algorithm is compared with widely used standard pooling methods on three
different benchmark datasets.

The remainder of the paper is organized as follows. A review of the related
literature is given in Section 2, followed by the details of the proposed RegP pooling
in Section 3. Comprehensive analysis of the performed experiments is given in
Section 4 to demonstrate the efficiency of the proposed method. Finally, concluding
remarks are given.

2. Related works

There are different types of layers used in the construction of CNNs, and only a
small number of studies in the literature have explicitly investigated the pooling
layer and developed pooling methods. In most of the studies on the CNNs, usu-
ally one of Max pooling or Average pooling methods has been used, and it has
been unfortunately ignored that a pooling method superior to these methods may
improve the overall model performance. Previous studies done in this area could
be divided into three categories: hand-crafted pooling, learning-based pooling and
probabilistic pooling [26]. Different than this categorization, we can classify spa-
tial pooling methods in a fourth category by separating them from hand-crafted
pooling methods.

Most known methods Max pooling and Average pooling are hand-crafted pool-
ing methods. In the Max pooling method, the largest activation value in a pooling
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region is selected as the pooling sample. In a similar fashion, the average value of
the region is selected as the pooling sample in the Average pooling method. Both of
these methods assume that local features are independently distributed, and they
cannot successfully detect the underlying difference. Because of their implementa-
tion simplicity and speed of operation, these two methods are frequently used in
deep CNN studies. The proposed RegP pooling method is as simple as these two
methods, and it further achieves faster learning in some experiments than these
widely used methods.

One of the important studies carried out in this area is the Stochastic pool-
ing method of Zeiler and Fergus [31]. In this study, a stochastic method, which
randomly selects the pooling sample, was proposed. A multinomial distribution
was used as the selection criteria. Since the probability values are calculated by
dividing the values by the sum of the values of the field, the larger the values, the
greater the chance of being selected. The major drawback of this pooling method
is the outcome naturally linked to the chance factor, and a model may produce
different results at each execution.

In another recent study, a pooling method named as Rank-based pooling was
developed [24]. This method has different variations in which activation values
in each pooling region are first sorted according to their values. The sort oper-
ation is needed as a preprocessing operation to determine the ranks. The major
weakness of this method is the additional computational complexity of sorting pro-
cess, which will eminently decrease the overall performance of the method. It is
also questionable whether it is worth to this performance loss or not because this
approach is not superior to Average pooling and Max pooling in presented exper-
imental results. There is also another rank based pooling study in the literature
for capturing video sequence data which aggregates the relevant information from
a video sequence by using learning-based ranking [5]. Other researchers have also
investigated the learning-based approaches and tried to train the pooling layer
within CNNs. LEAP (LEArning Pooling) [26], which is proposed by Sun et al.,
is one of these methods. In the LEAP method, the weights are learned from the
training data, and pooling operator calculates aggregated information within the
local region for each feature. In another study, representation learning and classi-
fier training are implicitly combined in a framework named as Task-Driven Feature
Pooling [30]. This method includes optimization processes so that it is not a sim-
ple and computationally feasible method. Cross-convolutional-layer pooling also
works as a learning-based approach and examines activations of two consecutive
convolutional layers [15]. This approach requires a pre-trained model and also it is
complicated to implement like other learning-based approaches.

There are spatial pooling studies in the literature, which are specifically used for
face image classification and object-based surveillance [1, 8, 18, 23]. Class-Specific
Pooling Shapes (CSPS) is a recently proposed method, which can learn compact ge-
ometric information within the input image [29]. Another study adopts a category-
specific distribution matrix to determine how patches of an image are pooled to-
gether [17]. Both weighted and content-based spatial pooling methods usually have
computational performance problems, and they are very dependent on the input.
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3. The proposed method

In this section, we present the details of RegP pooling method and evaluate its
computational complexity by comparing it with hand-crafted pooling methods.

3.1 RegP Pooling

The proposed RegP pooling analyzes an activation value by examining its surround-
ing activation values. Hand-crafted pooling methods assume that local features
are independently distributed, and these methods determine the pooling sample
accordingly. However, with this approach, an ambiguity may arise when different
overlapping objects represented in an image and these pooling methods may have
difficulty in separating those objects. RegP pooling treats activation values in a
different manner. For each activation value, the activation values which are in the
neighborhood are examined. As expected, the maximum number of neighborhood
activation values is 9. For the activation value being examined, a counter value is
calculated according to the same (or similar) activation values around. In a pooling
window, activation value with the largest counter value is selected as the pooling
sample. If more than one activation value has the same counter value, the average
of these activation values is calculated to determine the value of the pooling sample.

In Fig. 1, for a pooling region how RegP pooling calculates the pooling sample
is illustrated with a toy example. For the first activation value, there are three
neighborhood activation values. Since two of them have same (or close) values,
the counter value is set as 2, and the current pooling sample is set as 0. The
second activation value also has two neighbors with the same activation values.
According to the RegP pooling algorithm, the new value of the current pooling
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Fig. 1 A toy example to illustrate the proposed RegP pooling method.
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sample is determined by calculating the average of the current activation value and
the previous value of the current pooling sample. After completing 9 steps in a
similar manner, the pooling sample is calculated as 2.375. For this pooling region,
pooling sample is calculated as 9 with Max pooling and 3 with Average pooling.
The algorithm of the proposed RegP pooling is given below. As it is difficult to find
exact same values in surrounding pixels, min and max values are used to create an
acceptable range.

3.2 Computational Complexity

The proposed RegP pooling method examines the activation values in a single loop
structure like hand-crafted pooling methods, such as Average pooling and Max
pooling. For each activation value, a comparison is made using a total of k neigh-
borhood activation values. For these comparisons part, another loop structure is
not needed, and the comparison could be made by using the selection structures.
The maximum value of k is 8, and the activation values at the pooling window edge
are have smaller values than 9. From this perspective, the computational complex-
ity of the method is Θ(kn2). In the worst-case scenario, the value of k is equal
to 8, and computational complexity of the method becomes Θ(n2). Hand-crafted
pooling methods Max pooling and Average pooling also have Θ(n2) computational
complexity. Other pooling methods usually have worse computational complexity
as they try to process the values in the pooling window.

Algorithm 1 RegP Pooling.

Input: pooling window coordinates x1, y1, x2, y2
Output: pooling sample p

1: maxCounter = 0;
2: p = 0;
3: set min and max values
4: for (i = y1; i ≤ y2; i++) do
5: for (j = x1; j ≤ x2; j++) do
6: read ActivationValue valA;
7: counter = 0;
8: investigate neighborhood activation values nVal
9: if (nVal*min ≤ valA ≤ nVal∗max) then

10: increment counter;
11: end if
12: if (counter > maxCounter) then
13: maxCounter = counter;
14: p = valA;
15: else if (counter = maxCounter) then
16: p = (p+ valA)/2;
17: end if
18: end for
19: end for
20: return p
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4. Experiments

For the performance evaluation of the proposed pooling method, widely used
MNIST and CIFAR-10 datasets are used. In addition to these datasets, a model
for the Drexel texture dataset was created. This model was used to obtain results
of Max pooling, Average pooling, and the proposed RegP pooling.

4.1 MNIST Dataset

The MNIST [13] dataset contains handwritten digits, and it consists of 60000 train-
ing and 10000 test data. This dataset is very suitable for testing machine learning
algorithms on real-world data. It is derived from original NIST database, and im-
ages have 28 × 28 dimension. In Fig. 2, various data samples from the MNIST are
given.
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Fig. 2 Various digit samples from the MNIST dataset.

Convolutional Neural Networks [4, 7, 13, 20] were previously implemented on
MNIST for the recognition process. There are several LeNet models used for recog-
nition on the MNIST dataset. In this study, the CNN model from the Matcon-
vnet [28], which is depicted in Fig. 3, is used for the MNIST dataset.
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The MNIST LeNet architecture consists of 8 layers in total. The first layer is the
convolution layer, which contains 20 kernels in 5 × 5 dimension. The second layer
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is the max pooling layer for performing 2× 2 subsampling process. The third layer
is again a convolution layer but with 50 kernels in 5×5 size, and a 2×2 dimension
max pooling layer follows this layer. The fifth layer consists of a convolution layer
with 500 kernels in 4 × 4 dimension, and an activation map forming ReLU layer
follows as the sixth layer of the model. The seventh layer is another convolution
layer with 1 × 1 dimension 10 kernels, which contain activation values. The fully
connected layer is the eighth and final layer. In this model, there are two pooling
layers, which separately perform the subsampling operations. Both of these pooling
layers implement the Max pooling method.

For the performance evaluation of the proposed RegP pooling, the pooling layers
in the Lenet model were arranged as Max, Avg, and RegP, and experimental results
were obtained for 40 epochs. Fig. 4 shows the performance results of each pooling
method on the MNIST dataset. According to the obtained results, it is seen that the
most successful results on the MNIST dataset are obtained according to the original
model parameters when both pooling layers use Max pooling. The arrangement of
the original model parameters (kernel size, bias size, etc.) according to the Max
pooling method is influential on this result. However, it is clear that the proposed
RegP pooling method has more successful results than the Average pooling method
on the MNIST dataset. Tab. I shows average error rates obtained from all pooling
methods at various epoch intervals.
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Fig. 4 Performance graphs of the pooling methods on the MNIST dataset.

4.2 CIFAR-10 Dataset

The CIFAR-10 [11] dataset contains 60000 images of 10 different classes in 32× 32
dimensions. For each class, 50000 of these 60000 color images are allocated for
the training, and the remaining 10000 images are allocated for the testing. This
dataset is divided into five training batches and one test batch. The data in each
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batch was randomly selected. Image classes in the CIFAR-10 dataset and randomly
selected image samples from these classes are given in Fig. 5.
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Fig. 5 Randomly selected image samples from the CIFAR-10 dataset.

For the CIFAR-10 dataset, a model consisting of 12 layers is used in the CNN-
based classification process. This model includes 5 convolution layers, 3 pooling
layers, and 4 activation layers. The 12-layer CNN architecture used in the study for
the CIFAR-10 dataset is given in Fig. 6. The first pooling layer in the CIFAR-10
model of the Matconvnet is the Max pooling, which is the second layer of the model
and has a size of 3 × 3. The following pooling methods are again having a size of
3 × 3. Average pooling is used in layers 6 and 9. After the Max pooling layer, a
subsampling process was applied to activation layers by Average pooling layers.

No parameters have been changed in the original model to evaluate the per-
formance of the three pooling methods. Only corresponding pooling layers of the
model is replaced with the proposed pooling method. Values of the training error
rate and test error rate for each pooling method were examined for 50 epochs.
Fig. 7 shows the performance results of each pooling method.

4.3 Drexel Texture Dataset

The Drexel texture dataset [21] contains 20 different texture images. These images
were obtained 2000 times with multiple distances, different light angles, and differ-
ent in-plane and out-plane angles. In this study, grayscale textures were created for
images selected from the Drexel dataset. These textures are in 64× 64 dimensions
with distance = 1, in-plane rotation: 0o out-of-plane rotation: 0o. 100 sub-images
are derived for each class. Thus, there is a total of 2000 64 × 64 texture data in
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Fig. 6 Original CNN model in Matconvnet for CIFAR-10 dataset.
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Fig. 7 Performance graphs of the pooling methods on the CIFAR-10 dataset.

the dataset. 25 % of these textures (20 × 25 = 500) were used during the training
phase, and the remaining 75 % (20 × 75 = 1500) were used for testing. Samples of
Drexel texture images are shown in Fig. 8.

A new simple CNN model is designed to compare the performance of the three
pooling methods on the Drexel texture dataset. This developed model has four
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Table 2. Error rates of pooling methods on the Cifar-10 dataset at different epoch intervals. 

Pooling 
Method 

Train Error Rate (%) Validation Error Rate (%) 

10-20 
Epoch 

20-30 
Epoch 

30-40 
Epoch 

40-50 
Epoch 

Mean  10-20 
Epoch 

20-30 
Epoch 

30-40 
Epoch 

40-50 
Epoch 

Mean  

Max Pool 13.61 8.51 8.11 7.73 9.58 25.77 24.83 24.91 25.07 25.17 

Avg Pool 21.26 18.27 18.05 17.83 18.90 30.02 29.02 28.98 28.99 29.27 

RegP Pool 16.51 13.40 13.21 13.03 14.09 25.23 24.27 24.33 24.36 24.56 
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Figure 8. Examples of Drexel texture classes used in the study. 

 
Fig. 8 Examples of Drexel texture classes used in the study.

layers, two of which are convolution layers. Remaining two layers are pooling
layer and fully-connected layer. This CNN model developed for the Drexel texture
dataset is shown in Fig. 9.
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Fig. 9 The developed CNN model for the Drexel texture dataset.

The first layer is a convolution layer which has 64 kernels in 12× 12 dimension.
The following layer is a pooling layer in 5×5 dimension with a stride value 5. In the
3rd layer, there is again a convolution layer but having 20 kernels in 5×5 dimension.
Finally, there is a fully-connected layer with softmax function. In this model,
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only the pooling layer was changed to test each pooling method. Performance
measurements for 100 epochs were obtained, and the results are given in Fig. 10.
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Fig. 10 Performance graphs of the pooling methods on the Drexel dataset.

The experimental results show that the proposed RegP pooling method pro-
vides a considerable advantage over other methods. The RegP pooling method
has completed the learning process in a short period which is around 40 epochs.
Average pooling, which gives the closest result to the RegP pooling, has finished
the learning process around 100 epochs. Performance values of all pooling methods
for various epoch ranges are given in Tab. III.

The classification of the test data was performed after completion of the CNN
model’s training. CNN model is separately trained for each pooling method, and
classification results are given in Tab. IV. As it can be seen from these test results,
the CNN model with the proposed RegP pooling method showed the highest per-
formance with 96.80 %. The second successful CNN model was using the Average
pooling, and it has 94.86 % success on the test data. The lowest performance is
seen on the model with Max pooling method, which is 83.13 %.

5. Conclusions

In this paper, we propose a new pooling method, named as RegP, to be used in deep
CNNs. Although the pooling layer seems less attractive for researchers compared
with other layers, we can still obtain recognition and performance improvements.
The proposed method has the same computational complexity with hand-crafted
Average pooling and Max pooling methods. Similar to these methods, the pro-
posed method is easy to implement, and very efficient in texture recognition tasks.
We show that the RegP pooling is superior to other hand-crafted pooling methods
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on the Drexel texture dataset and CIFAR-10 dataset. The main reason for the
improved performance could be the ability to construct a better relation to pix-
els with the surrounding pixels which would be fruitful for the feature extraction
task. The popular hand-crafted pooling methods do not construct such relations
during their operations which is found very problematic and meaningless by some
researchers. This problem already led to the development of new neural network
structures such as capsule networks.

The proposed RegP pooling method showed an acceptable performance on the
MNIST dataset, where the data is very suitable for the success of the Max pooling.
Due to its simplicity and efficiency, the proposed method can potentially be applied
in many other deep learning studies. Despite the rapid progress in deep learning
research, this study has revealed that the overall performance of the proposed CNN
models could be improved with layer tunings. In future, we will apply the proposed
method on domain-specific problems and investigate parameter optimizations for
neighborhood similarity values.
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