
CLASSIFICATION BASED ON MISSING
FEATURES IN DEEP CONVOLUTIONAL

NEURAL NETWORKS

N. Milošević∗, M. Racković†

Abstract: Artificial Neural Networks, notably Convolutional Neural Networks
(CNN) are widely used for classification purposes in different fields such as image
classification, text classification and others. It is not uncommon therefore that
these models are used in critical systems (e.g. self-driving cars), where robustness
is a very important attribute. All Convolutional Neural Networks used for classifi-
cation, classify based on the extracted features found in the input sample. In this
paper, we present a novel approach of doing the opposite – classification based on
features not present in the input sample. Obtained results show not only that this
way of learning is indeed possible but also that the trained models become more
robust in certain scenarios. The presented approach can be applied to any existing
Convolutional Neural Network model and does not require any additional training
data.

Key words: neural networks, convolutional neural networks, neural network robust-
ness, classification

Received: December 13, 2018 DOI: 10.14311/NNW.2019.29.015
Revised and accepted: August 30, 2019

1. Introduction and motivation

The widely known neural network models for classification always use present fea-
tures to figure out what the output class is. In other words, even though for many
problems there is a finite set of features that are possible only the features that are
present are used for classification.

Our approach is guided with intuition that neural networks can and should also
take into consideration the features that are missing. For example for humans,
when classifying images, it is beneficial to also look what is not present in a given
image, and if we know all the possibilities, then we can deduce what the given
image actually represents. Our modification to the training process and models
tries to mimic this ability.

∗Nemanja Milošević – Coresponding author; University of Novi Sad, Faculty of Sciences, De-
partment of Mathematics and Informatics, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia,
E-mail: nmilosev@dmi.uns.ac.rs
†Miloš Racković; University of Novi Sad, Faculty of Sciences, Department of Mathematics and

Informatics, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia, E-mail: rackovic@dmi.uns.ac.

rs

c©CTU FTS 2019 221

mailto:nmilosev@dmi.uns.ac.rs
mailto:rackovic@dmi.uns.ac.rs
mailto:rackovic@dmi.uns.ac.rs


Neural Network World 4/2019, 221–234

Fig. 1 A motivational example where classification based on missing features would
work in our dataset. Digit “5” from the MNIST dataset and its missing features
named here: Feature 1 (on the left, circle-like feature) and Feature 2 (on the right,
corner-line feature).

In Fig. 1 we can see an example. Consider the given image of digit 5 (on the
left) and two illustrative, very high-level features from our network model. Digit 5
can be defined in many ways, one of which is as “a digit missing these two features”
(features are smaller squares on the right). To clarify, features are kernels (filters)
from the convolutional layers in our model.

Circle-like Feature 1 given here is present in digits 0, 6, 8, 9 while a sharp
corner-line Feature 2 is present in digits 1, 2, 3 (e.g. top-right corner, or the middle
part), 4, and 7. Digit 5 does not have these features, therefore we can check the
input image and see if these features are missing. If they are, we can safely assume
that we are looking at digit 5.

This is not the only example where this is possible and this example is only
given to clarify our way of thinking about “missing feature classification”. In this
paper we will demonstrate not only that this way of training neural networks is
possible but also that it comes with the added benefit of increased robustness in
trained models.

For a wide-spread adoption of systems that rely on neural networks it is needed
to improve the current standard ways for training so the networks can be better
prepared for intentional attacks and uncertain situations. It is very easy to de-
scribe this problem on the now standard task where neural networks are used –
image classification [7]. Neural networks are widely used for image classification,
especially ones with convolutional layers. However, new research is taking place to
investigate how these networks can handle real-world situations where there is noise
in the image, the image is of low quality or where image is not given in full [1, 3].

Our approach of classification based on missing features, as we will show, cer-
tainly can help with the last part – it can improve image classification accuracy
with convolutional neural networks when they are faced with a task to classify an
image by only seeing one part of it (partial input samples).

This proof-of-concept paper is just the first step towards larger research where
the ultimate goal for us is to see where missing feature classification models are
applicable firstly for robustness in image classification and then also for other prob-
lems.

One example which we hope to explore in our future research is traffic signs.
In self-driving cars – a critical system that uses neural networks [2], traffic signs
are processed as inputs from many cameras on a vehicle. These cameras are not
perfect, but they produce very high quality images and usually the model used can
easily detect and classify all traffic signs present in any given image. But what

222



Milošević N., Racković, M.: Classification based on missing features in deep CNN’s

happens when a traffic sign is obstructed by another object, for example a tree
or another car? A person in a similar situation can deduce what sort of a sign it
is just by looking at one part of it and it is reasonable to require from the CNN
models to be able to do the same.

1.1 Related work

Classification based on missing features, as presented here, is a new area of research
in the neural network research field. We believe this new family of neural network
models can be used in many different scenarios. The main benefit of these models
described in this paper is increasing robustness in partial input classification which
is related to the neural network robustness, a growing topic in neural network
research [3].

Another topic which should be mentioned here is adversarial attacks on neural
networks research [1].

There have been some research papers similarly exploring how to increase ro-
bustness of neural networks when the inputs have been tampered with. However,
our approach is not directly comparable with their approaches for many reasons
i.e. different network architectures, usage of partial inputs in training, usage of
adversarial examples in training, etc.

In [5] the MNIST [8] dataset used in our work was also used to investigate
robustness of neural networks. In our paper parts of the input image were removed
as will be explained later, while the authors in [5] describe a way to combine two
images as an adversarial example input.

[18] and [6] described also on the MNIST dataset different modifications to
the input image which affect the model greatly. In [18] MNIST dataset was used
to investigate how different elements in input images maximize some network ac-
tivations. The second part of the paper describes an adversarial attack on the
network using previously gathered information. Our paper differs from this paper
in that we are investigating how missing features are affecting classification instead
of what features affect it the most, and that we are also using a convolutional neu-
ral network, while in this paper a traditional multi-layer fully connected network is
used. Also in the mentioned paper, authors suggest that training with a mixture of
adversarial and clean examples is a way to achieve better performance. In our case,
we did not want to train on our generated adversarial (partial) examples, as will
be explained later. Similarly in [6] adversarial examples are being used to increase
neural network robustness, but they are being used during training.

2. Dataset

For this proof-of-concept research we decided to use widely known MNIST [8]
dataset of handwritten digits. In addition to MNIST we also validated our work
with the Extended MNIST dataset also known as EMNIST [4].

MNIST dataset consists of 60000 training examples (pairs of images and labels)
and 10000 testing or validation examples. To try and mimic a real life scenario
where we wanted to test out our neural network model, we decided to make a few
other validation sets which also contain 10000 examples. The way we did it is

223



Neural Network World 4/2019, 221–234

that we took the testing examples and removed some parts of every image, while
keeping the label intact. It is important to clarify that we did not modify the
training dataset. It is crucial to be able to train the network on the complete
images, because in a real-world scenario we are unlikely to have partial inputs
available for training. Also, we wanted to check if our network modification affects
the standard, unmodified inputs.

We did not want to limit ourselves to only one validation set because it is
difficult to decide what data should be removed from the images. So we created
multiple validation sets:

• Horizontal cut dataset (top half removed)

• Vertical cut dataset (left half removed)

• Diagonal cut dataset (two diagonal quarters of the image removed – top-right
and bottom-left)

• Triple cut dataset (three (9 × 9) pixel squares removed from coordinates (5,
5), (17, 10), and (7, 16) – this is roughly 30 % of the input image removed,
but the locations were chosen so that they cover vital parts of the digits

Fig. 2 Example of digit 3 in our validation set; From left to right: unmodified –
original version, horizontally cut image – top half removed, vertically cut image –
left half removed, diagonally cut image – first and third quadrants removed, “triple
cut” image – three squares removed as described before

We will refer to this dataset as PMNIST or partial MNIST dataset. The final
created dataset then consisted of:

• 60000 training examples (unmodified)

• 10000 test examples (unmodified)

• 10000 horizontally cut validation examples

• 10000 vertically cut validation examples

• 10000 diagonally cut validation examples

• 10000 “triple-cut” validation examples

For the EMNIST dataset, we did exactly the same for two of its subsets. We first
used the EMNIST-MNIST dataset whose structure is similar to MNIST dataset
to validate our results, and then we tried our networks on the EMNIST-Balanced
dataset which contains 131600 characters of digits and letters with 47 different
classes for classification.

224



Milošević N., Racković, M.: Classification based on missing features in deep CNN’s

The EMNIST-MNIST dataset, contains 60000 images and labels in the training
set and 10000 images and labels in the test set – exactly the same number of
samples as in MNIST dataset. We used the process described above to generate
four new validation sets, same as with PMNIST dataset. As for the EMNIST-
Balanced dataset the same 85/15 % training and testing split was used to get a
training set of 112800 images and labels and a test set of 18800 images and labels.
Then, we generated four new test sets of size 18800, with different partial inputs
for validation, same as before.

As both EMNIST and MNIST datasets have images of the same size (28x28
pixels) we used the exact same model architecture except for the last layer in
the neural network which had to be changed to accommodate different number of
classes in different datasets. The model is described in great detail in the next
section.

It is important to note that during training the test sets and the newly intro-
duced validation sets are not used. We want to completely avoid “peeking” at our
validation data. That is why we split our dataset into three subsets: for training,
testing and validation. All the models are trained and tested on complete input
and output images and then validated on all validation data sets.

Another important remark is that approach described in this paper can work
on any dataset, not just digits, letters etc. We chose these datasets because we
can very clearly describe the features and their presence in a sample. With other
datasets which have color or larger images this approach would still work but the
features would be less interpretable.

3. Model architecture

For the purpose of testing our theory a fairly standard model was used. The model
is a default example model used in machine learning frameworks (e.g. PyTorch
[14]), so it was a good starting point for us to experiment with.

The model consists of five layers ordered in a common way – a number of
convolutional layers followed by a number of fully connected layers:

1. Input layer – 2D grayscale image of size 28 × 28 pixels

2. 2D Convolutional layer 1 – 20 kernels of size 5×5, with max-pooling of stride
2, and ReLU activation function

3. 2D Convolutional layer 2 – 50 kernels of size 5×5, with max-pooling of stride
2, and ReLU activation function

4. Fully-connected layer 1 – 500 neurons, ReLU activation function

5. Fully-connected layer 2 – 10 output neurons for MNIST and EMNIST-MNIST
cases, 47 output neurons for EMNIST-Balanced case, Softmax activation
function

We used SGD (Stochastic Gradient Descent) with learning rate of 0.01, and
momentum of 0.5. These values were also not changed from the given model. Again,
the given model was not modified in any way apart from introducing the conditional

225



Neural Network World 4/2019, 221–234

negation of the output vector of the last convolutional layer, as described in the
following section.

3.1 Model upgrades

In the first section we showed an example where it is easy to see how missing
features can be used to classify a digit. While this example shows what we want
to do it requires some additional knowledge about the data used. We want to use
standard datasets without any additional knowledge so our approach can be used
in any scenario. The main question was how can we obtain the missing features in
the input sample. In this and the following section we will explain how we can use
existing knowledge from convolutional layers obtained with normal training in our
modified approach.

We also realize that the features in these features vectors are not binary. For a
person it is very easy to decide whether a feature is either present or not present
in an image. Neural networks are more flexible and can also say “how much” a
feature is in a given sample. If the features were binary it would be trivial to find
all the missing features in an image by replacing values in the feature vector with
their opposites. Also, at this stage, it is very hard for us to say which missing
features are more important than others, we simply try to classify based on all
missing features.

For our approach of classification on missing features the model had to be
modified slightly. We modified the forward pass in the network to negate the
vector which represents what features are present in an image. When negated, this
vector will represent what features are not present in an image. To demonstrate
on an example, imagine a feature vector where 1 denotes a present feature and 0
denotes a missing feature. By simply replacing zeros with ones and vice-versa we
can obtain a vector with all the missing features in the feature vector.

The negation process takes place between the exit of the last convolutional
layer in a network and the entry to the first fully connected layer. It can be
applied after the activation function application in the last convolutional layer, or
by modifying the activation function as we will cover later. At that point the signal
passed through the neurons is simply a feature vector describing what features were
detected by convolutional layers.

The negation operation largely depends on the activation function of the last
convolutional layer. We have to negate the vector in a way that it represents the
complete opposite of what would be the output of an unmodified network. The
term “negate” probably can be replaced with “invert” in cases of some activation
functions.

For example, for hyperbolic tangent function tanh which is used as an activation
function in neural networks a simple negation is enough. The tanh function always
returns a value between −1 and 1. If we agree that a present feature is represented
by a value close to 1 and an absent feature is represented by a value of close to −1,
it is easy to see that negating a whole vector of tanh outputs would provide us a
vector of features that are missing.

Rectified linear unit (ReLU) [10] functions are also widely used in neural net-
works. The ReLU function is different than the tanh function in that it returns

226



Milošević N., Racković, M.: Classification based on missing features in deep CNN’s

values between zero and positive infinity. Here, simply negating the vector would
not work, but calculating a new vector is not complicated. The output with a pos-
itive value represents a present feature and the value of zero represents a missing
feature. If we apply a simple function as such:

f(x) = 1 − x

we will get a vector representing what features are missing from the input image.

In our model there were a total of 800 values (a vector of length 800) which is
the output of the last convolutional layer and the input to the first fully connected
layer. This vector represents all the present features and their positions in the
input sample. As we are using (ReLU) activation function, we can negate the
vector using the formula above.

The implementation of this modification is very simple in PyTorch library. We
only need to modify the “forward” function of the neural net Python module to
negate the vector at a specific stage. The backwards pass is calculated automati-
cally with autograd [15].

4. Training processes

The training processes are also modified from the standard process. The unmodified
network is trained for 10 epochs in the provided model. After that, no significant
increase in accuracy is noted, as the network already gets around 99 % accuracy
on the test set. At this stage in our research we have experimented with several
training processes.

The first one is to simply apply the model upgrade we described in the previ-
ous chapter and train the network normally. We called this model “ONN” (only
negate network). Although this approach gives us some improvements, it does not
represent fully what we wanted to do. Because the network is modified to negate
the vector representing the features in the input image, we observed that our new
model adapted to our layer inversion modification. The change affected the back-
wards pass in the network so the convolutional filters in convolutional layers were
completely different opposed to the standard network. In other words, the features
found in input images were not the same – the network learned them in a differ-
ent way. As we wanted the features to remain the same and only to modify the
later stages of the network, we thought of the second training process which allows
this. Our goal is to classify on the same features but to emphasize those which are
missing.

The second process requires a few extra steps and is as follows. The training
process begins for a number of epochs where the “negation layer” is inactive. This
is so that the convolutional layers inside the network learn all the features in the
training data. In this step the filters inside the convolutional layers will learn
both the high-level and low-level features of digits given the digit images from the
dataset. We do this training step for 10 epochs, which is enough for the model to
learn the features well enough.

227



Neural Network World 4/2019, 221–234

The next step consists of freezing the convolutional layers and resetting the
fully connected layers. The freezing of convolutional layers is necessary so that the
further training does not affect them. The features represented in the convolutional
kernels are learned already and we do not wish to modify them. The convolutional
layers are simply going to be used for feature extraction at this and future points.

Resetting the fully connected layers is also necessary as we want the network
to start over the learning process but to classify based on the missing features in
an image. Resetting the layers simply means re-initializing them with the same
initializer used in the model setup.

With the features learned, convolutional layers frozen and fully connected layers
ready for new training, we can activate the modification in the model which will
negate or invert the output of the convolutional layer. This is made possible by
dynamic nature of execution which is available in PyTorch neural network library.
This is the main reason why it was chosen to be used for this work.

The training is then continued on for another 10 epochs, making it 20 epochs
in total which is more than normal training. It is important to clarify that while
our modified network is in total trained for 10 epochs more than the standard
network its fully connected layers are reset after the tenth epoch making it so the
final models are equal in quantity of training received. Convolutional layers only
receive the 10 epochs of training also, before being frozen. This approach is a
hybrid between normal and our new way of training so we called it “HN” (“hybrid
network”).

In the next chapter, the result section also contains the results for two more
experimental training processes very similar to this one.

The first modification to our described process is to skip resetting the fully
connected layers after the features were learned (referred in the results tables as
“NR” – “no reset”). In a way, this means that the network continues training after
this step but in a different way. The reasoning for this approach is that there may
still be useful weights in our fully connected layer which can improve the model
accuracy even after we have trained with our inversion modification in place. We
wanted to try to combine standard training with our modified way to see if synergy
between standard and our training process has any effect.

Another modification we tried is to alternate between normal training and train-
ing with inversion modification. For a number of epochs, we train the network so
that one epoch the network is unmodified and another epoch is with the inversion
modification in place. This is an extension of the previous modification because we
wanted to make sure that the order of training is not important. This method we
called “ALT” method as it alternates between ways of training. We also noticed
that the “ALT” training model works best with smaller learning rates. When using
large learning rates, the model would change the weights too much when switching
from one way of propagation to another. This is something to be aware of, if using
this approach.

For all processes and models, because random initialization is used we made
sure to test several times to avoid any coincidental results. In development stages
a constant random seed method was used for reproducible results.

228



Milošević N., Racković, M.: Classification based on missing features in deep CNN’s

5. Results and observations

Since we are introducing a new neural network model in this work, we decided that
the best baseline in comparing the results would be a traditional neural network
with the same architecture (“SN”). This way we can be sure that our modification
in the model is what we are benchmarking.

We are aware that a model architecture which would give even better results
compared to our own model probably exists. It is a very difficult task in finding
such a model, while making sure that our modification actually does affect the
accuracy increase. This is why we decided to test our approach on a very well-
known model to see how it behaves. Since our modification is simple and can
be applied to any CNN model, we will definitely experiment with other models
(network architectures) on our newly introduced validation sets to see how they
perform.

After testing the models on the mentioned datasets we obtained the following
results. First, we present the results on unmodified testing sets.

Dataset/Model SN ONN HN NR ALT

Unmodified MNIST 99.13 98.90 99.18 99.21 99.05
Unmodified EMNIST-MNIST 99.18 99.07 99.16 99.15 99.00

Unmodified EMNIST-Balanced 87.14 87.62 87.38 86.78 87.92

Tab. I Results with accuracy for all models and unmodified testing datasets. Here,
SN denotes the standard, unmodified network, ONN denotes the network only
trained with layer negation and HN denotes Hybrid network which was trained
normally for a number of epochs but was then switched to negate the output of the
last convolutional layer. The NR and ALT models are trained as explained in pre-
vious section. NR model is the model which is not reset (NR) after the inversion
modification and the ALT model is extension of the NR model where the normal
and inversed training takes place in alternating (ALT) epochs. All the values are
percents which depict accuracy of a network on a given dataset.

As seen in Tab. I the modified network models performed better in almost all
of the standard unmodified test sets showing that classification on missing features
does slightly improve accuracy when the input sample is given in full. We want to
emphasize that this method of training while longer and slower does not negatively
affect the network performance when the input is given in full. This is something we
were hoping for to be achieved. These results also show that our initial assumption
was correct – it is possible to train a neural network to classify based on missing
features.

In Tabs. II, III and IV we present the accuracy percentages on the newly intro-
duced validation sets. In Tab. II we show the results on the four PMNIST valida-
tion sets while in Tabs. III and IV we present the result on the four validation sets
generated for EMNIST-MNIST and EMNIST-Balanced datasets, respectively.

229



Neural Network World 4/2019, 221–234

Dataset/Model SN ONN HN NR ALT

Horizontal cut 44.71 48.96 52.33 56.07 41.60
Vertical cut 57.46 64.64 60.45 66.07 69.66

Diagonal cut 52.97 59.59 55.40 56.01 62.49
Triple cut 40.68 34.62 41.19 41.73 46.40

Tab. II Results with accuracy for all models used on newly introduced PMNIST
validation sets.

Dataset/Model SN ONN HN NR ALT

Horizontal cut 49.07 51.34 54.76 48.70 48.73
Vertical cut 31.10 28.10 32.91 28.62 31.12

Diagonal cut 58.43 61.22 59.37 58.18 61.50
Triple cut 46.78 49.63 53.90 48.99 47.44

Tab. III Results with accuracy for all models used on newly introduced EMNIST-
MNIST validation sets.

Dataset/Model SN ONN HN NR ALT

Horizontal cut 20.95 26.97 26.34 19.32 26.53
Vertical cut 22.23 20.02 22.19 19.50 24.36

Diagonal cut 27.91 30.14 30.79 25.80 26.83
Triple cut 20.39 22.88 21.07 21.81 19.83

Tab. IV Results with accuracy for all models used on newly introduced EMNIST-
Balanced validation sets.

6. Discussion and summary

When comparing our training processes or models (Tab. V), it is clear to see that
some of them perform better in certain scenarios. However, apart from the 0.02 %
accuracy loss on the unmodified EMNIST-MNIST test set, it is uniform that the
newly introduced models featuring some shape of classification based on missing
features outperform traditional neural network models, and in some cases by large
margins. This is the most important finding in this experiment with our new
models.

We also notice that models which use convolutional layer freezing outperform
the model which just negates the convolutional feature vector (ONN). Also, strong
performance of ALT network suggests there is some benefit of combining traditional
neural network models with our newly introduced ones. We will discuss this further
in the Future Work section. As for choosing what model would work best in a
certain scenario, it is difficult to say with certainty. We suggest trying different
models and deciding by testing them.

The different datasets we used all behave similarly. We see the largest accuracy
increase of 12.2 % with the vertical cut validation set in the PMNIST set.

230



Milošević N., Racković, M.: Classification based on missing features in deep CNN’s

Dataset Best model Accuracy Delta

Unmodified – PMNIST NR 99.21 0.08
Horizontal cut – PMNIST NR 56.07 11.36

Vertical cut – PMNIST ALT 69.66 12.20
Diagonal cut – PMNIST ALT 62.49 9.52

Triple cut – PMNIST ALT 46.40 5.72
Unmodified – EMNIST-MNIST HN 99.16 −0.02

Horizontal cut – EMNIST-MNIST HN 54.76 5.69
Vertical cut – EMNIST-MNIST HN 32.91 1.81

Diagonal cut – EMNIST-MNIST ALT 61.50 3.07
Triple cut – EMNIST-MNIST HN 53.90 7.12

Unmodified – EMNIST-Balanced ALT 87.92 0.78
Horizontal cut – EMNIST-Balanced ONN 26.97 6.02

Vertical cut – EMNIST-Balanced ALT 24.36 2.13
Diagonal cut – EMNIST-Balanced HN 30.79 2.88

Triple cut – EMNIST-Balanced ONN 22.88 2.49

Tab. V Results with showing what models worked best with different test and val-
idation sets. The “Accuracy” column shows final, highest accuracy achieved while
the “Delta” column shows accuracy gain over the standard unmodified network.
Both “Accuracy” and “Delta” columns are given in percentages.

To summarize, in this paper we decided to test out the idea that neural networks
can be taught to classify based on missing features. Consequently we discovered
that performance of neural networks can be improved for classification when partial
inputs are given using this approach. We described our approach of classification
based on missing features and tested it in well-known environments.

This paper draws these conclusions and observations:

• It is possible to train a convolutional neural network to classify based on
missing features in the input sample.

• Our approach of “negating” feature vectors before passing them to fully con-
nected layers implements this idea and shows that this simple modification
can help in a scenario where a partial input is given.

• The performance of convolutional neural networks, as expected, degrades
greatly when we use partial inputs.

• The PMNIST dataset and other partial datasets based on EMNIST dataset,
can be used for checking how a network behaves when given a partial input
to classify.

• We also showed four similar but different training techniques to maximize
the usefulness of our modification. These training techniques can be used to
experiment with different datasets.

The results show that classification based on missing features is possible and
that these new models we introduced help in partial input scenarios. Our approach,

231



Neural Network World 4/2019, 221–234

albeit much simpler than some other approaches (e.g. training with adversarial
examples) can also help with a very difficult real-world problem of having partial
inputs to classify in a critical environment. The partial input example is only one
of many use cases for our models that we hope to discover.

6.1 Future work

During our experiments, especially with “ALT” and “NR” networks we realized
that it would be of great benefit if we could somehow combine the traditionally
trained network with our new “negatively” trained network. A synergy or ensemble
of two or more networks trained in this way would, we believe, work even better
than the models described in this paper. Some initial testing is already being done
and we can see that this approach is promising.

Another logical step in this research is to test our training processes and the
new model in a different scenario. We already mentioned that one possible good
use case would be in traffic sign detection. This is something that we wish to
pursue very soon. There are already some traffic sign datasets (e.g. [12]) but none
with partially visible inputs so manual labelling will be required.

Another idea is to see what happens when the inputs are somehow differently
modified opposed to simply removing their parts. As some of the related work
would suggest [1,13], attacks with image noise and other methods are possible, and
we wish to test out our model against those attacks. It stands to reason that this
way of classification can help in some of those scenarios. Another addition to this
idea is to replace removed parts of the inputs with other parts taken from different
inputs with a different label similar to [5]. This would probably be a very strong
attack to our model and we would like to see how it affects accuracy.

We also believe that these models and methods of training neural networks can
be applied to regression problems, not just classification. Instead of training on
missing features we want to introduce a new idea of negative learning or telling the
network what surely is not the desired output. One example that is familiar to us
is the basketball referee problem [16, 17] where the position of basketball referees
needs to be decided based on the position of the ball and the players. There, we
sometimes do not know the best positions for referees but we are certain what are
the bad positions (where referees cannot see the ball), and we believe that making
a model that can take this information into consideration will perform better than
traditional model. This idea is somewhat related to our “negation” or “inversion”
processes described here.

Another different model where a similar technique could be used is in reinforce-
ment learning. For example in games [11] it is very easy to see how a missing feature
would affect the model output. Therefore, it stands to reason that classification
based on missing features would yield good results in this scenario.

Lastly, in generative models our approach is relevant for reconstructing images
from their parts similar to [9]. Since we are trying to create a model where missing
features are defining a class, we could also provide what features are missing and
also where. This approach, we believe, would work well with a structures like GANs
(Generative Adversarial Network) or VAEs (Variable Auto Encoder).

232



Milošević N., Racković, M.: Classification based on missing features in deep CNN’s

7. Source code

Work described in this paper is free open-source software distributed on Github
under GNU Public License (v3). The results are therefore reproducible with the
correct environment.

The source code is available at the following link:
https://github.com/nmilosev/negative-learning/

Acknowledgement

The work is partially supported by Ministry of Education and Science of the Re-
public of Serbia, through project no. OI174023: “Intelligent techniques and their
integration into wide-spectrum decision support”.

We would also like to thank NNW’s anonymous reviewers for their comments
and suggestions which greatly improved this work.

References

[1] BASTANI O., IOANNOU Y., LAMPROPOULOS L., VYTINIOTIS D., NORI A., CRIMIN-
ISI A. Measuring neural net robustness with constraints. In: Advances in neural information
processing systems, 2016, pp. 2613–2621.

[2] BOJARSKI M., DEL TESTA D., DWORAKOWSKI D., FIRNER B., FLEPP B., GOYAL
P., JACKEL L.D., MONFORT M., MULLER U., ZHANG J., ET AL. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316 , 2016, doi: 10.1109/ivs.2017.7995975.

[3] CARLINI N., WAGNER D. Towards evaluating the robustness of neural networks. In: 2017
IEEE Symposium on Security and Privacy (SP), 2017, IEEE, pp. 39–57, doi: 10.1109/sp.
2017.49.

[4] COHEN G., AFSHAR S., TAPSON J., VAN SCHAIK A. Emnist: an extension of mnist to
handwritten letters. arXiv preprint arXiv:1702.05373, 2017.

[5] GLOBERSON A., ROWEIS S. Nightmare at test time: robust learning by feature deletion.
In: Proceedings of the 23rd international conference on Machine learning, ACM, 2006,
pp. 353–360, doi: 10.1145/1143844.1143889.

[6] GOODFELLOW I.J., SHLENS J., SZEGEDY C. Explaining and harnessing adversarial
examples. corr., 2015.

[7] KRIZHEVSKY A., SUTSKEVER I., HINTON G.E. Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems, 2012,
pp. 1097–1105, doi: 10.1145/3065386.

[8] LECUN, Y. The mnist database of handwritten digits. http://yann.lecun.com/exdb/

mnist/, 1998.

[9] LI F., ZURADAY J., WU W. Sparse representation learning of data by autoencoders with
lˆ sub 1/2ˆ regularization. Neural Network World, 2018, 28(2), pp. 133–147, doi: 10.14311/
NNW.2018.28.008.

[10] MAAS A.L., HANNUN A.Y., NG A.Y. Rectifier nonlinearities improve neural network
acoustic models. In: Proc. icml., 2013, 30, p. 3.

[11] MNIH V., KAVUKCUOGLU K., SILVER D., GRAVES A., ANTONOGLOU I., WIER-
STRA D., RIEDMILLER M. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, https://arxiv.org/abs/1312.5602, 2013.

[12] MØGELMOSE A., TRIVEDI M.M., MOESLUND T.B. Vision-based traffic sign detection
and analysis for intelligent driver assistance systems: Perspectives and survey. IEEE Trans.
Intelligent Transportation Systems, 2012, 13(4), pp. 1484–1497. doi: 10.1109/tits.2012.
2209421.

233

https://github.com/nmilosev/negative-learning/
http://dx.doi.org/10.1109/ivs.2017.7995975
http://dx.doi.org/10.1109/sp.2017.49
http://dx.doi.org/10.1109/sp.2017.49
http://dx.doi.org/10.1145/1143844.1143889
http://dx.doi.org/10.1145/3065386
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.14311/NNW.2018.28.008
http://dx.doi.org/10.14311/NNW.2018.28.008
https://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1109/tits.2012.2209421
http://dx.doi.org/10.1109/tits.2012.2209421


Neural Network World 4/2019, 221–234

[13] MOOSAVI-DEZFOOLI S.-M., FAWZI A., FROSSARD P. Deepfool: a simple and accurate
method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 2574–2582. doi: 10.1109/cvpr.2016.282.

[14] PASZKE A., GROSS S., CHINTALA S., CHANAN G. Pytorch. Computer software. Vers.
1.2.0, https://pytorch.org. 2019.

[15] PASZKE A., GROSS S., CHINTALA S., CHANAN G., YANG E., DEVITO Z., LIN Z.,
DESMAISON A., ANTIGA L., LERER A. Automatic differentiation in pytorch. NIPS
2017 Workshop Autodiff Submission, https://openreview.net/forum?id=BJJsrmfCZ, 2017.

[16] PECEV P., RACKOVIC M. Ltr–mdts structure–a structure for multiple dependent time
series prediction. Computer Science and Information Systems 2017, 14(2), pp. 467–490,
doi: 10.2298/CSIS150815004P.

[17] PECEV P., RACKOVIĆ M., IVKOVIĆ M. A system for deductive prediction and analysis
of movement of basketball referees. Multimedia Tools and Applications, 2016, 75(23), pp.
16389–16416, doi: 10.1007/s11042-015-2938-1.

[18] SZEGEDY C., ZAREMBA W., SUTSKEVER I., BRUNA J., ERHAN D., GOODFELLOW
I., FERGUS R. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
https://arxiv.org/abs/1312.6199, 2013.

234

http://dx.doi.org/10.1109/cvpr.2016.282
https://pytorch.org
https://openreview.net/forum?id=BJJsrmfCZ
http://dx.doi.org/10.2298/CSIS150815004P
http://dx.doi.org/10.1007/s11042-015-2938-1
https://arxiv.org/abs/1312.6199



