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Abstract: The paper presents a new methodology how to extend the well-known
quantum model [2] with (2N − 1) free parameters (moduli and phases) of wave

probabilistic functions ψ(Ai) assigned into events Ai, i ∈ {1, 2, . . . , N} to N ·(N+1)
2

free parameters necessary for full N -dimensional representation of complex system.
Our approach generally enables to include additional functions applied on events
Ai, i ∈ {1, 2, . . . , N}. In the paper, we will demonstrate this mathematical instru-
ment on additional wave probabilistic functions ψ(Ak ∩ Am ∩ · · · ∩ An) connected
with macroscopic events’ intersections Ak ∩ Am ∩ · · · ∩ An where k,m, . . . , n ∈
{1, 2, . . . , N}.
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1. Introduction

A probability space consists of a sample space S and a probability function P (·),
mapping the events of S to real numbers in [0, 1], such that P (S) = 1, and if
A1, A2, . . . , AN is a sequence of disjoint events, then the sum rule is fulfilled:

P

(⋃
i∈N

Ai

)
=
∑
i∈N

P (Ai). (1)

If the events A1, A2, . . . , AN are not disjoint, the following (intersection and
union) rules can be used:

P (A1 ∩A2 ∩ · · · ∩An) = P (A1) · P (A2|A1) ·
·P (A3|A1 ∩A2) . . . P (AN |A1 ∩ · · · ∩AN−1), (2)

P (A1 ∪A2 ∪ · · · ∪AN ) =

=

N∑
i−1

P (Ai)−
N∑
i<j

P (Ai ∩Aj) +

N∑
i<j<k

P (Ai ∩Aj ∩Ak) + . . .

+ (−1)N−1 · P (A ∩A ∩ · · · ∩AN ). (3)
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Considering the basic laws of probability Eq. (3), we need generally N ·(N+1)
2 free

parameters.
The main goal of the paper is to extend a quantum model [2] with (2N−1) free

parameters in such a way that it could describe the system with more parameters.
In this way, the curse of dimensionality can be overcome, at least in part, with the
increasing dimensionality of the system, the number of required parameters for its
full description rapidly increases. The Section 2 summarizes the basic definition
and some features of quantum models. Section 3 shows the applicability limits of
current quantum models. In Section 4, the new approach to quantum extended
models is described together with illustrative examples presented in Section 5.
Section 6 concludes the paper.

2. Quantum models

Let us suppose N events Ai, i ∈ {1, 2, . . . , N} with defined probabilities P (Ai),
i ∈ {1, 2, . . . , N}, and N wave probabilistic functions:

ψ(Ai) = αi · ej·υi =
√
P (A)i · ej·υi, i ∈ {1, 2, . . . , N}, (4)

together with their superposition state |ψ〉 as a quantum object [3]:

|ψ〉 = ψ(A1) · |A1〉+ ψ(A2) · |A2〉+ · · ·+ ψ(AN ) · |AN 〉, (5)

with moduli
√
P (Ai) and phases υi, where the reference phase assigned to event

A1 is chosen as υ1 = 0. The intersection and union rules for quantum models were
defined in [4]:

P (|A1〉 ∪ |A2〉 ∪ · · · ∪ |AN 〉) =

∣∣∣∣∣
N∑
i=1

ψ(Ai)

∣∣∣∣∣
2

, (6)

P (|Ar〉 ∩ |As〉) = lim√
P (Ak)
k 6=r,s

→0

[ψ∗(Ar) · ψ(As) + ψ(Ar) · ψ∗(As)] , (7)

where symbol ψ∗ expresses a complex conjugate of ψ.
Quantum model Eq. (4) and (5) provides only (2N − 1) parameters – moduli

|ψ(Ai)| and phases νi of wave probabilistic functions ψ(Ai) = |ψ(Ai)| · ej·νi. Let
us show the dimension limit of quantum model on following illustrative example.

Example 1 – N-dimensional distribution and its approximation by quan-
tum model We will assume N -dimensional distribution for which we need to
specify all the values of the N × N covariance matrix σi,j . Due to symmetry, we

need only N ·(N+1)
2 parameters.

Since we cannot determine the covariance matrix σi,j exactly, we therefore need
to come up with an approximate description, a description that would require fewer
parameters.

Instead of representing each quantity δi as an N -dimensional vector ai =
(ai,1, . . . , ai,N ) corresponding to δi =

∑N
j=1 aij · Xj where {X1,. . . , XN} are in-

dependent standard random variables, we select some value k << N and represent
each quantity δi as a k-dimensional vector corresponding to δi =

∑k
j=1 aij · Xj .

For k = 2, the approximation leads to a Quantum model [1].
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3. Practical applications of quantum models

In quantum (wave) approximation, only (N − 1) phase parameters among N -
dimensional events Ai, i ∈ {1, 2, . . . , N} are available. For simplicity, we will not
be concerned by moduli |ψ(Ai)| because they have no impact on phase parameters.
Look at practical examples of quantum models’ applicability.

3.1 Ordering models

Suppose the unique ordering of the events {A1, A2, . . . , AN} where each index rep-
resents the event’s order in sequence and the distance between two events l, m is
defined as dl,m = |l−m|. In quantum notation, the phase difference νl,m = νl−νm
represents correlation (link) between two events. The quantum (wave) model is
fully applicable in case the correlation between events l,m is dependent only on
the distance between them dl,m = |l − m| and not on their position. For this
example, the new phase parameters ν̃i could be introduced:

ν̃1 = ν2 − ν1 = ν3 − ν2 = . . . νN−1 − νN−2 = νN − νN−1
ν̃2 = ν3 − ν1 = ν4 − ν2 = · · · = νN − νN−2

...

ν̃N−1 = νn − ν1. (8)

From (8) it is clear that we can describe whole system by (N − 1) phase pa-
rameters (ν̃1, ν̃2, . . . , ν̃N−1). This model is typical for time-invariant subsystems [5]
where the correlation is dependent only on the time differences between two real-
izations.

3.2 Incremental models

Let us suppose the existence of a reference event (a phase of event A1) typically
equal to ν1 = 0, from which we measure the correlations (links) to other events. In
incremental model, due to additivity all other correlations could be computed from
phases. For example, a phase difference between events k and (k+d) has to be equal
to νd = νk+d− νk. This situation is standard for quantum mechanics [7] where the
reference represents a zero energy and other energy levels are gradually increased
by step functions. Such system is represented by following phase structure as:

ν̃1 = ν1

ν̃2 = ν1 + ν2
...

ν̃N = ν1 + ν2 + · · ·+ νN . (9)

This model corresponds to gradual evolution of complex systems [3, 4]. At
the beginning we have only subsystem S1. After adding the subsystem S2 the
correlation yields into encapsulation into the new subsystem S1,2. Now we can
imagine adding the subsystem S3 to subsystem S1,2, which plays the role of a
reference for subsystem S3. We can continue up to subsystem SN that will be
dependent on previous encapsulated subsystem S1,2,...,N−1.
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4. Quantum extended models

The main idea of extended quantum model is to include into quantum superposition
not only events itself Ai, i ∈ {1, 2, . . . , N} but also n additional events’ functions,
e.g. fk(A1, . . . , AN ), k ∈ {i, . . . , n}. Then the modified quantum model can be
written:

ψ(A) = ψ(A1) · |A1〉+ ψ(A2) · |A2〉+ · · ·+
+ ψ(AN ) · |AN 〉+ ψ(f1(A1, . . . , AN )) · |f1(A1, . . . , AN )〉+ · · ·+
+ ψ(fn(A1, . . . , AN )) · |fn(A1, . . . , AN )〉. (10)

Such approach brings many possibilities how rapidly extend the dimensionality
of complex system.

Example 2 – dimensionality analyze of binary functions In case of N
binary events A ∈ {0, 1}, i ∈ {1, 2, . . . , N} we have 2N different variants of outputs
combinations. If we suppose a binary function applied on each events’ combination,

theoretically we can achieve 22
N

different variants of functions outputs.
Let us suppose an example with N = 2 that means 4 combinations of binary

events A1, A2 ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. By application of two dimensional func-
tion f(A1, A2) we can return 42 = 16 variants of different outputs. For N = 3 we
have 8 binary combinations of events A1, A2, A3 but 256 possible variants of bi-
nary functions. This example demonstrates how fast the number of free parameters
increases by adding additional binary functions.

4.1 Extended intersectional quantum models

For practical feasibility, we will restrict us only to events’ intersections fh(A1, . . . ,
AN ) = Ak ∩ Am ∩ · · · ∩ Ar, k,m, . . . , r ∈ {1, 2, . . . , N}. The extended quantum
model can be than rewritten:

ψ(A) = ψ(A1) · |A1〉+ ψ(A2) · |A2〉+ · · ·+
+ ψ(AN ) · |AN 〉+ ψ(A1 ∩A2) · |A1 ∩A2〉+ · · ·+
+ ψ(Ak ∩Am ∩ · · · ∩Ar) · |Ak ∩Am ∩ · · · ∩Ar〉. (11)

There are of course other possibilities how to include additional information
into quantum model but the intersections seem to be more natural and easily
applicable. In this case, it is possible to manipulate with different combinations of
events’ intersections (⊗ is Kronecker product [5]):

|Ai〉 ⊗ |Ai ∩Aj〉 ⇒ |Ai ∩Aj〉
|Ai ∩Ak ∩Ar〉 ⊗ |Ak ∩Ar〉 ⇒ |Ai ∩Ak ∩Ar〉
|Ai ∩Ak ∩Ar〉 ⊗ |Ap ∩Aq〉 ⇒ |Ai ∩Ak ∩Ar ∩Ap ∩Aq〉. (12)

Such logical rules give us mathematical instrument for wave probabilistic inter-
ferences that yields to modelling of new multi-dimensional complex systems like
quantum entanglement [2].
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4.2 Interpretation of extended intersectional quantum
models

A superposition of different events together with some events’ intersections yields
into the extended intersectional quantum model. We can divide events’ intersec-
tions into two groups: inner (microscopic) and outer (macroscopic).

Inner (microscopic) intersections represent emergent feature of complex system
and are modeled by phase differences of wave probabilistic functions [2]. Due to
positive or negative sigs, they could go to either inner attraction or repelling of
events. These features yields into well-known quantum modelling [5, 9].

Outer (macroscopic) intersections could be seen as the additional observable
behavior that could be considered as the new event (quantity) of studied system.
Because of macroscopic nature, we need use only classical probability theory that
was developed for description of macroscopic phenomena.

For example, the extended quantum model enables modelling links between
two different macroscopic intersections through their wave probabilistic phases.
Entanglement than can be realized not only among pure events but also among
events’ intersections.

Example 3 – social model of relation among company employees We
can suppose to have N employees Ai, i ∈ {1, 2, . . . , N} with the inner links that
are defined psychologically, ability to take responsibility, etc. Such characteristic
can be scarcely measured. Its observations are limited to inner phase parameters
that are extracted only from holistic behavior of the team.

On the other hand, there are outer (macroscopic) links that have strong impacts
on holistic system’ behavior and are easily identifiable. We can state e.g. family
relationships, schoolmates, etc. Such macroscopic links should be taken into our
model to catch better details. If I am employee Ar I am influenced by all other
employees Ak, k 6= r and also by links to additional (macroscopic) employees
groups, e.g. Ak ∩ Ac ∩ Ad, Aq ∩ Al ∩ At ∩ Ao. Taking into consideration the all
relations among studied group of employees the holistic social model can be better
specified.

5. Application of extended intersectional quantum
models

In many practical applications of quantum models, there is a demand for description
of complex networks [8–10]. Optimal management of complex systems consists of
the best arrangement of all network nodes represented by amplitudes and phases
of all components [2]. The applicability of presented approach will be shown on
following examples.

Example 4 – incremental/ordering quantum model We can assume events
A1, A2, A3, A4 represented by probabilities P (A1), P (A2), P (A3), P (A4) with as-
signed wave probabilistic functions:

ψ(A1) =
√
P (A1) · ej·ϕ1 , ψ(A2) =

√
P (A2) · ej·ϕ2, (13)
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ψ(A3) =
√
P (A3) · ej·ϕ3 , ψ(A4) =

√
P (A4) · ej·ϕ4 . (14)

The union of all events Eq. (6) can be given as follows:

P (A1 ∪A2 ∪A3 ∪A4) = |ψ(A1) + ψ(A2) + ψ(A3) + ψ(A4)|2 =

= P (A1) + P (A2) + P (A3) + P (A4) +

+ 2 ·
√
P (A1) · P (A2) · cos(ϕ2 − ϕ1)+2 ·

√
P (A1) · P (A3) · cos(ϕ3 − ϕ1) +

+ 2 ·
√
P (A1) · P (A4) · cos(ϕ4 − ϕ1)+2 ·

√
P (A2) · P (A3) · cos(ϕ3 − ϕ2) +

+ 2 ·
√
P (A2) · P (A4) · cos(ϕ4 − ϕ2)+2 ·

√
P (A3) · P (A4) · cos(ϕ4 − ϕ3).

(15)

Comparing with classical probabilistic rule Eq. (3), we can extract:

P (A1 ∩A2) = 2 ·
√
P (A1 ·A2) · cos(ϕ2 − ϕ1),

P (A1 ∩A3) = 2 ·
√
P (A1 ·A3) · cos(ϕ3 − ϕ1),

P (A1 ∩A4) = 2 ·
√
P (A1 ·A4) · cos(ϕ4 − ϕ1),

P (A2 ∩A3) = 2 ·
√
P (A2 ·A3) · cos(ϕ3 − ϕ2),

P (A2 ∩A4) = 2 ·
√
P (A2 ·A4) · cos(ϕ4 − ϕ2),

P (A3 ∩A4) = 2 ·
√
P (A3 ·A4) · cos(ϕ4 − ϕ3). (16)

To obtain the ordering quantum model (Section 3.1) we provide transformation
and compute following phases:

ν̃1 = ϕ2 − ϕ1 = ϕ3 − ϕ2 = ϕ4 − ϕ3, (17)

ν̃2 = ϕ3 − ϕ1 = ϕ4 − ϕ2, (18)

ν̃3 = ϕ4 − ϕ1. (19)

The phases ν̃1, ν̃2, ν̃3 fully describe the quantum ordering model and there is not
necessary to provide any approximation.

Example 5 – extended intersectional quantum model Let us use previous
example and to add into this model one additional macroscopic intersection P (A3∩
A4) represented by wave probabilistic function:

ψ(A3 ∩A4) =
√
P (A3 ∩A4) · ej·ν3,4 . (20)

The extended intersectional quantum model can be written in “bra-ket” nota-
tion as:

ψ(A1, A2, A3, A4) = ψ(A1) · |A1〉+ ψ(A2) · |A2〉+

+ψ(A3) · |A3〉+ ψ(A4) · |A4〉+ ψ(A3 ∩A4) · |A3 ∩A4〉. (21)

The union of all events Eq. (15) can be enlarged:

P (A1 ∪A2 ∪A3 ∪A4) = ψ(A1, A2, A3, A4) · ψ∗(A1, A2, A3, A4) =

= [ψ(A1) · |A1〉+ ψ(A2) · |A2〉+ ψ(A3) · |A3〉+ ψ(A4) · |A4〉+

+ψ(A3 ∩A4) · |A3 ∩A4〉] · [ψ∗(A1) · |A1〉∗ + ψ∗(A2) · |A2〉∗ +

+ψ∗(A3) · |A3〉∗ + ψ∗(A4) · |A4〉∗ + ψ∗(A3 ∩A4) · |A3 ∩A4〉∗]. (22)
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We can use the following “composition” rules:

ψ(Ai) · |Ai〉 · ψ∗(Aj) · |Aj〉∗ +

+ ψ(Aj) · |Aj〉 · ψ∗(Ai) · |Ai〉∗ =

=
√
P (Ai) · P (Aj) · cos(ϕi − ϕj) · |Ai ∩Aj〉, (23)

ψ(Ai) · |Ai〉 · ψ∗(Aj ∩Ak) · |Aj ∩Ak〉∗ +

+ ψ(Aj ∩Ak) · |Aj ∩Ak〉 · ψ∗(Ai) · |Ai〉∗ =

=
√
P (Ai) · P (Aj ∩Ak) · cos(ϕi − ϕj,k) · |Ai ∩Aj ∩Ak〉, (24)

ψ(Ai) · |Ai〉 · ψ∗(Ai ∩Ak) · |Ai ∩Ak〉∗ +

+ ψ(Ai ∩Ak) · |Ai ∩Ak〉 · ψ∗(Ai) · |Ai〉∗ =

=
√
P (Ai) · P (Ai ∩Ak) · cos(ϕi − ϕi,k) · |Ai ∩Ak〉. (25)

The probabilistic union of enlarged intersectional model can be computed:

P (A1 ∪A2 ∪A3 ∪A4) = |ψ(A1) + ψ(A2) + ψ(A3) + ψ(A4) + ψ(A3 ∩A4)|2 =

= P (A1) + P (A2) + P (A3) + P (A4) + P (A3 ∩A4) +

+ 2 ·
√
P (A1) · P (A2) · cos(ϕ2 − ϕ1) +

+ 2 ·
√
P (A1) · P (A3) · cos(ϕ3 − ϕ1) +

+ 2 ·
√
P (A1) · P (A4) · cos(ϕ4 − ϕ1) +

+ 2 ·
√
P (A2) · P (A3) · cos(ϕ3 − ϕ2) +

+ 2 ·
√
P (A2) · P (A4) · cos(ϕ4 − ϕ2) +

+ 2 ·
√
P (A3) · P (A4) · cos(ϕ4 − ϕ3) +

+ 2 ·
√
P (A1) · P (A3 ∩A4) · cos(ϕ3,4 − ϕ1) +

+ 2 ·
√
P (A2) · P (A3 ∩A4) · cos(ϕ3,4 − ϕ2) +

+ 2 ·
√
P (A3) · P (A3 ∩A4) · cos(ϕ3,4 − ϕ3) +

+ 2 ·
√
P (A4) · P (A3 ∩A4) · cos(ϕ3,4 − ϕ4). (26)

In addition of intersections Eq. (16), P (A3 ∩A4) was extended to:

P̃ (A3 ∩A4) = P (A3 ∩A4) + 2 ·
√
P (A3) · P (A3 ∩A4) · cos(ϕ3,4 − ϕ3) +

+2 ·
√
P (A4) · P (A3 ∩A4) · cos(ϕ3,4 − ϕ4), (27)

where P̃ (A3∩A4) is modified extended intersection probability P (A3∩A4) enriched
with inner links to events A3, A4.

The third order intersections appeared due to added wave function Eq. (20):

P (A1 ∩A3 ∩A4) = 2 ·
√
P (A1) · P (A3 ∩A4) · cos(ϕ3,4 − ϕ1),

P (A2 ∩A3 ∩A4) = 2 ·
√
P (A2) · P (A3 ∩A4) · cos(ϕ3,4 − ϕ2). (28)
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In a similar way, more variants of macroscopic intersections can be included
into extended intersectional quantum model. The more intersections (pieces of
information), the more available additional parameters and the more possibility to
model multi-dimensional complex system.

6. Conclusion

The main goal of the paper was to find the way to overcome the dimensionality
problem of quantum models. The proposed solution supposes including events’
combinations (function of events) into mass parallel quantum model as the ad-
ditional macroscopic state. For better feasibility, we concentrated only on the
intersectional macroscopic models (intersections of selected events). The events’
intersections could be easily interpreted and logical rules, how to work with them,
were developed.

For complete description of all correlations (links) among eventsAi, i ∈ {1, 2, . . . ,
N} we need to specify at least N ·(N+1)

2 free parameters. This corresponds to re-
quirements how many different intersections we need to include into the extended
intersectional quantum model. We revealed on illustrative example how to incorpo-
rate new information into the extended model. The more intersections the better
model we can build.

The benefit of the extended model is that a well-known entanglement cannot be
only among the pure events but also among the different intersections or among the
combinations of intersections and pure events. These features bring new possibili-
ties for modelling especially soft systems with enormous links and interconnections.

In quantum physic, moduli represent typically energy [7]. In our approach, the
mathematical instrument of wave probabilities has, therefore, much broader appli-
cations than in physics [12, 13]. In system sciences, for example, we can evaluate
by quantum models other system features like the ability to create alliances [8], the
ability for adaptation (the quickest response to changes) [6], etc. The presented
methodology can be further enlarged not only to entanglement among pure events
and events’ functions, but also it can add an enlargement of different system pro-
cesses and their functions. If we imagine the complexity of such a model [11], we
are coming closer to Kaufmann tissue [6].
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