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Abstract: There always exist parametric uncertainties, bounded disturbances and
some other unknown nonlinearities such as the input dead-zone in physical motor
servo systems, which can degrade the system’s control performance. In this pa-
per, a composite control strategy is proposed for high-accuracy motion control of
a torque-controlled motor servo system with dead-zone. A smooth and continuous
mathematical model is used to provide an approximate inverse transformation of
the input-output dead-zone needed for feedback linearization. A single-layer neu-
ral network capable of on-line learning is designed to compensate for the inversion
error, which comes from the approximate inversion. A stable weights adaption
law for the on-line neural network is derived. In addition, a parameter adapta-
tion law is also derived for handling the parametric uncertainty, and a nonlinear
robust feedback term is designed to inhibit the influence of the imperfect model-
ing, compensation error or other disturbances. Lyapunov theorem is used to prove
the stability of the proposed control algorithm with the weights and parameters
adaptation law. Extensive comparative simulation results are used to illustrate the
effectiveness and advancement of the proposed controller compared with several
other main-stream controllers.
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1. Introduction

High-accuracy motion control of motor servo systems has been catching much at-
tention of many scientists and engineers, since it has been widely used in industrial
application [1–4]. However, designers usually find it difficult to design a high-
performance controller for the servo systems, since there always exist various uncer-
tainties. We could divide them into two kinds, one is called parametric uncertainty,
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such as the unknown friction coefficient [5,6], load inertia [7] and so on [8–11]. The
other is called uncertain nonlinearity, such as the external disturbance [12, 25].
These uncertainties could result in badly deteriorative control performance, bring-
ing about undesirable control effect such as limit-cycle vibration, or even worse,
leading to system instability [13]. In order to solve these problems, lots of related
research has been done and scholars have acquired many achievements in this field.
During the past few decades, adaptive control has been proposed and experienced
rapid development with abundant papers and publications [14–17]. Based on the
specific assumption that the nonlinear systems have only parametric uncertainties,
systematic approaches of adaptive control were proposed in [14], which can achieve
asymptotic tracking performance. As a matter of fact, modeling errors and exter-
nal disturbances definitely exist in real motion systems, no matter how accurate
the practical system model and identified parameter can be. However, the control
performance of adaptive controller would reduce when faced with such condition.
Therefore, some robust adaptive controllers have been developed in consideration
of parametric uncertainties together with disturbances [18–20]. Moreover, Yao et
al proposed an adaptive robust control (ARC) strategy in [21] for uncertain non-
linear systems. The ARC strategy has been effectively applied in many application
occasions [22–25].

Apart from the parametric uncertainties and external disturbances discussed
above, dead-zone nonlinearity usually exists in many motion control systems. Since
dead-zone often leads to deteriorative tracking performance [26] and even instabil-
ity, essential attention should be paid to solving this problem effectively. To atten-
uate the dead-zone effect well, a dead-zone inverse model combined with adaptive
control was first proposed in [27] for linear systems with unmeasured dead-zone
outputs. However, the approach mentioned above used discontinuous dead-zone
inverse, which lead to unavoidable chattering in the control input. Hence, a smooth
dead-zone inverse was designed in [12,28] and it was used in the design of an adap-
tive output feedback controller for motion control systems with dead-zone non-
linearity. This method can guarantee uniformly bounded tracking performance.
Another way is to treat the dead-zone as a time-varying disturbance [26, 29–31].
Based on this idea, robust controllers can be used to overcome this disturbance-
like term, such as sliding mode control [32, 36] and robust integral of the error
control [33, 34]. In [35], the author introduced a workable adaptive controller to
control nonlinear systems with dead-zone and the controller can achieve asymptotic
tracking performance. However, without considering the explicit characteristics of
the dead-zone, it might result in undesired tracking performance [28], especially
when encountering severe dead-zone. According to the discussion above, we know
it hard but worthwhile to make further research on the controller design for motion
systems with dead-zone, parametric uncertainties and disturbances so as to obtain
an ideal tracking performance.

In this paper, a smooth and continuous mathematical model is used to ap-
proximate inverse transformation of the dead-zone needed for controller design. A
single-layer neural network capable of on-line learning is designed to compensate
for the inversion error. A weights adaption law for the on-line neural network is
derived. In addition, a parameters adaptation law is also derived for handling the
parametric uncertainty, and a nonlinear robust feedback term is designed to inhibit

28



Hu J. et al.: High-accuracy motion control of a motor servo system with. . .

the influence of the imperfect modeling, compensation error or other disturbances.
Lyapunov theorem is used to prove the stability of the proposed control algorithm.
Applying the proposed controller to the nonlinear system with dead-zone, we can
obtain better tracking performance compared with other different controllers.

This paper is organized as follows. Section 2 gives problem description and
dynamic model. Section 3 gives the design procedure of proposed controller and
its theoretical results. Section 4 presents comparative simulation results, and some
conclusions are described in Section 5.

2. Problem description and dynamic model
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Fig.1 Architecture of the motor servo system 
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Fig. 1 Architecture of the motor servo system.

The motor in the servo system considered here is a torque-controlled servo motor
driven by a commercial servo electrical driver. It is connected with an inertia load
through some mechanical connector such as a reducer. The system is presented
in Fig. 1. The aim is to have the inertia load track any specified smooth motion
trajectory xc as close as possible. Considering the dead-zone of the actuator, the
dynamic equation of the inertia load could be given as follows:

Jẍ = kuu(v)−Bẋ− (t), (1)

where J is the inertia moment of the motor, ku, B and d(t) represent the motor
torque constant, the viscous friction coefficient and the unmodeled disturbance
(e.g., external disturbances, unmodeled dynamics, nonlinear friction and so on)
respectively, x, ẋ, ẍ ∈ R mean the position, velocity and accelerator of the motor
respectively. v represents the input of the actuator while u represents the output
of the actuator. The characteristic of the dead-zone could be described as follows
[27]:

u(t) = f(v(t)) =

 mr(v − br), v ≥ br
0, bl < v < br
ml(v − bl), v ≤ bl

, (2)
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where f(•) represents the mapping relation of the dead-zone, mr > mr > 0,
br < 0,ml < 0 and bl < 0 are the right slope, the right break-point, the left
slope and the left break-point. In this paper we regard these parameters as known
constants.

It is required to compute the inverse transformation in Eq. (2) to implement the
control strategy. However, it is difficult to compute the inversion of Eq. (2) since it

is not continuous and not smooth. Then we introduce a mapping f̂ to approximate
the actual one f . The input-output mapping of the actuator’s dead-zone f and its
approximate function f̂ are depicted in Fig. 2. The exact inverse form of f̂ could
be given as follows:

v(t) = f̂−1(u(t))

=
u(t) +mrbr

mr
Φr(u) +

u(t) +mlbl
ml

Φl(u), (3)

where ϕr(u) and ϕl(u) are smooth continuous indicator functions which are defined
as

Φr(u) =
eu/ε

eu/ε + e−u/ε
, Φl(u) =

e−u/ε

eu/ε + e−u/ε
, (4)

where ε is a positive constant needing to be selected.
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Fig.2 Input-output mapping of the actuator’s dead-zone 
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Fig. 2 Input-output mapping of the actuator’s dead-zone.

Now we could design the control input u using feedback linearization method
and then get the actual control input v by computing the inversion of u. However,
since we approximate inverse transformation of the input-output dead-zone, there
exists an output error of the actuator arising from the approximate inversion. We
could get v̂ = f̂−1(u) after we design u and the actual output of the actuator is
f(v̂). Thus the output error of the actuator could be expressed as follows.

∆ = f(v)− f(v̂), (5)

where v = f−1(u). The output error has been shown in Fig. 2.

Thus we could rewrite the system model as follows:

Jẍ = ku(u(v)−∆)−Bẋ− d(t). (6)
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Substituting ∆ into (6), we could get

Jẍ = kuf(v̂)−Bẋ− d(t) = kuu(v̂)−Bẋ− d(t). (7)

In fact, the Eq. (7) is equivalent to Eq. (1) in nature.

4 

 

-1ˆ (u)f

approximate dead-

zone inversion

ˆ(x,v)f
2

1

s

u v̂ x x

nonlinear system

 
Fig.3 Implementation of the approximate inversion process 

The block diagram shown in Fig.3 depicts how to implement the approximate inversion process. 
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Fig. 3 Implementation of the approximate inversion process.

The block diagram shown in Fig. 3 depicts how to implement the approximate
inversion process. For the new form of system dynamic function (6), we can uti-

lize the approximate function f̂−1 to determine the actual control input v̂ after
designing the motor control input u.

In order to compensate for the output error of the actuator, a single hidden-layer
neural network is designed later to observe ∆.

Dividing two sides of Eq. (6) by J , we can get a new form as follows:

ẍ = θ1u− θ2ẋ−∆′ − τ, (8)

where θ1 = ku
J , θ2 = B

J ,∆
′ = ku

J ∆, τ = d(t)
J .

We can also rewrite Eq. (8) in a state-space form as follows:{
ẋ1 = x2
ẋ2 = θ1u− θ2x2 −∆′ − τ, (9)

where x1 is the system’s position and x2 is the system’s velocity. Define x[x1, x2]T

as the state vector of the motor servo system.

To make the design of controller convenient, some assumptions should be made
as follows.

Assumption A

1) All the systematic parameters are slowly time-varying or invariant unknown
variables, that is J̇ = k̇u = Ḃ = 0.

2) τ(t, x, ẋ) and ∆′ are time-varying unknown values, but they are bounded and
the upper/lower bounds are known.

3) All the systematic parameters are bounded and the upper/lower bounds are
known.
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3. Controller design

As mentioned above, there exist parametric uncertainties, bounded disturbances
and dead-zone in the motor servo system. Thus a composite control strategy is
proposed for high-accuracy motion control of the motor servo system. Considering
the universal approximation property of neural network, it is used to approximate
∆. A parameter adaptation law is derived for handling the parametric uncertainty.
Both of them could be compensated for through the feed-forward cancellation tech-
nique. A nonlinear robust feedback term is also designed to inhibit the influence
of the imperfect modeling, compensation error or other disturbances. The overall
control strategy diagram is shown in Fig. 4 and the design process of the controller
is presented as follows in detail.
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Fig.4 The neural network based control strategy diagram 
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Fig. 4 The neural network based control strategy diagram.

Step 1: Design the desired virtual control input x2eq

In this step, x2 is treated as a virtual control input. Then a control function x2eq
should be designed for the virtual control input x2 such that the output tracking
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performance is guaranteed. Let xc be the desired position and z1 = x1−xc denote
the position tracking error. Then we could obtain the error dynamic equation as
follows:

ż1 = ẋ1 − ẋc = x2 − ẋc. (10)

If ż1 = ẋ1 − ẋc = −k1z1, where k1 is a positive feedback gain, we can guarantee
system stability based on Lyapunov stability theorem as follows:{

V1 = 1
2z

2
1 > 0

V̇1 = z1ż1 = −k1z21 < 0.
(11)

Thus let’s design the desired virtual control input x2eq as follows:

x2eq = ẋc − k1z1. (12)

However, there exists some error between x2 and x2eq. Let’s define this error as

z2 = x2 − x2eq = ẋ1 − ẋc + k1z1 = ż1 + k1z1. (13)

Since G(s) = z1(s)
z2(s)

= 1
s+k1

is a stable transfer function, z1 can converge to zero

when z2 converges to zero. Now our main task is to make z2 converge to zero. By
taking the derivative of z2 combining with Eq. (9), we have

ż2 = ẋ2 − ẋ2eq = θ1u− θ2x2 −∆′ − τ − ẋ2eq. (14)

Step 2: Design the actual control input u

Noting (14), a feedback linearization controller can be designed as

u = (θ2nx2 + ∆′ + τ + ẋ2eq − k2z2)/θ1n, (15)

where k2 >0 is a feedback gain, θ1nand θ2nare the nominal values of θ1and θ2.
If the exact system model is known, i.e., θ1n = θ1, θ2n = θ2, ∆′ = 0 and τ = 0,

we could define a Lyapunov function as follows:

V2 =
1

2
z21 +

1

2
z22 > 0, (16)

then

V̇2 = z1(z2 − k1z1) + z2(−k2z2)

= −k1(z1 −
1

2k1
z2)2 − (k2 −

1

4k1
)z22 < 0, (17)

provided
(
k2 − 1

4k1

)
≥ 0.

Thus the designed feedback linearization controller Eq. (15) can obtain asymp-
totic tracking performance. Unfortunately, θ1n and θ2n are uncertain parameters
which are not equal to θ1 and θ2. ∆̂ is the model inversion error which would not
be zero and τ is a lumped disturbance which would not be zero either. Thus, we
need to improve our controller. An improved controller is designed as follows:

u = (θ̂2x2 + ∆̂′ + ẋ2eq − k2z2 + us2)/θ̂1, (18)
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where θ̂1, θ̂2 and ∆̂′ represent the estimation of θ1, θ2 and ∆′ respectively. us2
is a nonlinear robust feedback item used to compensate the error of parameter
estimation, approximation error of dead-zone model inversion as well as the external
disturbance.

Substituting Eq. (18) into Eq. (14), we could obtain the error dynamic equation
of z2 as follows:

ż2 = −θ̃Tϕ− ∆̃′ − k2z2 + us2 − τ, (19)

where θ̃ = [θ̃1, θ̃2]T = [θ̂1 − θ1, θ̂2 − θ2]T,ϕ = [u,−x2]T, ∆̃′ = ∆′ − ∆̂′.

Step 3: Design the parameter adaptation law

In this step, our goal is to design a parameter adaption law to estimate the unknown
parameter θ =[θ1, θ2].

A discontinuous projection is given as follows:

Projθ̂(i)

 0, if θ̂ = θmax and i > 0

0, if θ̂ = θmin and i < 0
i, otherwise,

(20)

where θmax and θmin represent the upper and lower bounds of θ respectively. The
purpose of using discontinuous projection (20) is to make the estimation of system
parameters bounded, so that the estimation values of parameters could be within
a range near their true values and then the controller could be stable.

Then, the parameter adaptation law of θ is given by

˙̂
θ = Projθ̂(Γ1χ), (21)

where Γ1 > 0 is the slope of adaptation law, and χ is the adaptation function to
be designed later. For the function χ, there is an inequality guaranteed as below:

θ̃T
[
Projθ̂(Γ1χ)− Γ1χ

]
≤ 0, (22)

χ is chosen as follows:
χ = ZTPbϕ, (23)

where Z = [z1, ż1]
T

, b = [0, 1]T, and P is a (2 × 2) symmetric positive definite
matrix satisfying

PA+ ATP = −Q, (24)

where A is a Hurwitz matrix, and

A =

[
0 1

−k1k2 −(k1 + k2)

]
. (25)

Step 4: Design a neural network based observer

In this step, we will design an approximator to approximate ∆̂ which represents
the output error of the actuator. As is known to all, neural network is capable
of approximating any nonlinear function within arbitrary accuracy when given a
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sufficient number of hidden layer neurons together with essential input information.
A single hidden layer neural network is used here since it has a simple structure
and it is trained online to approximate ∆̂.

The input-output mapping of the single layer neural network can be given as
follows:

f(x) = W∗Th(x) + εapp = ∆′, (26)

hj = exp

(
‖x− cj‖2

2b2j

)
, (27)

where x = [x1, x2, u]T is the input vector of the network, j is the j-th node of the
hidden layer, W∗ is the ideal weight value of the network, h = [h1, h2, . . . , hj ]

T

is the output of network’s Guass radial function, εapp < εN is the approximation
error of the network.

The actual output of the network is

f̂(x) = ŴTh(x) = ∆̂′, (28)

where Ŵ is the estimated weights.
Design the weight adaptation law as follows:

˙̂
W = −Γ2Ψ, (29)

where Γ2 is the weights adaptation velocity matrix, and ψ is the adaptation function
to be designed. Then we could obtain the error dynamic equation of z2 as follows:

ż2 = −k2z2 − θ̃Tϕ+ W̃Th(x) + us2 − εapp − τ, (30)

where W̃ = Ŵ −W∗ is the estimation error between estimated and ideal weight.
ψ is chosen as

ψ = ZTPbh(x). (31)

Step 5: Design the sliding mode robust feedback term

In this step, a sliding mode robust feedback term us2 will be designed to overcome
the influence of parameter estimation error, approximation error of dead-zone effect
and the external disturbance so as to guarantee the system stability.

Design us2 = −sgn(zTPb)h, where h represents the upper bound of the sum of
|εapp| and |τ |. Then, there is a property given as follows:

zTPb [us2 − εapp − τ ] ≤ 0, (32)

where δ1 ≥ |τ | , δ2 ≥ |εapp| , h ≥ δ1 + δ2.

Theorem 1. By designing the discontinuous projection-type parameter adaptation
law Eqs. (21), (23) and weight adaptation law Eqs. (29), (31), the control input
Eq. (18) can guarantee asymptotic tracking performance of the system, in other
words, z , [z1, z2]→ 0 as t→∞.
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Remark 1. Theoretically speaking, sliding mode robust feedback term us can help
to acquire system asymptotic stability, but sliding mode control achieve this goal by
constantly switching control directions, which may lead to unacceptable chattering
around the zero in actual systems. If the chattering is too big to put up with, we
can transform it to a high frequency feedback robust control [32], sacrificing part
control accuracy by set an eclectic or comparative proper band width of the error
so as to reduce chattering, and then we can achieve bounded stability.

Remark 2. In terms of computational burden, the proposed controller has certain
complexity. Using this controller, the first step is to calculate the control value
u, which contains a term of the estimation of model inversion error ∆̂′ and it is
calculated by a neural network. As we all know, the calculation of neural network
is large, however it mainly depends on the number of neurons. As long as we
choose a proper number of neurons, we can take into account both the calculation
accuracy and the calculation amount. It needs some experience in engineering.
Then the second step is to use the given Eq. (3) to find the inverse of u to output
the final control value v̂. Eq. (3) seems a little bit complex since it contains some
exponential operations. However, the expansion of Taylor series can be used to
approximate the exponential operation so as to reduce the amount of calculation.

Remark 3. Here some guidelines about how to select the proposed controller’s
parameters values and the effect of each parameter are given. k1 and k2 are feedback
gains. The larger they are, the faster the convergence rate of the controlled system
is, but large feedback gain is easy to cause oscillation and instability. Thus it is
necessary to select a suitable value, which is often determined according to the
debugging effect in practice. Γ1,Γ2 are positive constants, which determine the
parameter adaptation rate and neural network weights adaptation rate. Usually we
choose an appropriate value for them according to experiment results. h represents
the upper bound of the sum of neural network approximation error and external
disturbance. Sometimes it is difficult to determine its real value, but we just choose
a relative large value for it.

Proof. See Appendix.

4. Comparative simulation results

In this section, to verify the effectiveness of proposed ARCNN controller in this
paper, we will compare the tracking performance of another four kinds of common
controllers with that of the ARCNN controller under two working conditions, that
is, high and low frequency tracking modes.

The total five different controllers are listed below.

1) PID: This is the well known traditional three-loop proportional-integral-
derivative controller. Basing on position-loop, we choose kp = −900, ki =
−6000, kd = 0 in simulation, which represent proportional gain, integral gain
and derivative gain respectively.

2) FBL: This is the feedback linearization controller. The control parameters
are chosen as k1 = 0.05, k2 = 0.005.
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3) FBLNN: This is the feedback linearization controller with neural network, in
which the network is also used to compensate the dead-zone error. We choose
the control parameters as k1 = 0.05, k2 = 0.005, Γ2 = diag{0.1, 0.1, 0.1, 0.1,
0.1}.

4) ARC: This is the adaptive robust controller with adaptive law Eq. (21). And
the nonlinear robust feedback term us is designed to not only overcome the
external disturbance but also attenuate the whole effect caused by the dead-
zone. Hence, a larger constant h is to be chosen. The control parameters
are choose as Γ1 = diag{0.009, 0.009}, k1 = 25, k2 = 1, h = 0.05. The

initial estimated value of θ̂ is chosen as [0.001, 0.001]. The bounds of uncertain
parameters are set at [0.0005, 0.004].

5) ARCNN: This is the adaptive robust controller with neural network and adap-
tive law Eq. (21), which is proposed in this paper and discussed in the previ-
ous sections. This control parameters are chosen as Γ1 = diag{0.009, 0.009},
Γ2 = diag{0.1, 0.1, 0.1, 0.1, 0.1}, k1 = 13, k2 = 4.95, h = 0.01. The initial

estimated value of θ̂ is chosen as [0.001, 0.001]. The bounds of uncertain pa-
rameters are set at [0.0005, 0.004].

Case 1. High frequency tracking mode
In this case, we set the motion trajectory as xc = (1−exp(−0.1×t))×sin(1.0×t).

Case 2. Low frequency tracking mode
In this case, we set the motion trajectory as xc = (1−exp(−0.2×t))×sin(0.2×t).
The simulation time in the high frequency tracking mode is chosen as 50s, since

the frequency of the desired motion trajectory is high and this time is enough to
show the tracking performance of all the controllers, while the simulation time
in the low frequency tracking mode is chosen as 100s, since the frequency of the
desired motion trajectory is low and we need to extend simulation time to show
the tracking performance of all the controllers adequately.

The designed motion trajectory and corresponding tracking performance of the
five controllers in high frequency and low frequency tracking modes are shown in
Fig. 5 and Fig. 6.
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Fig. 5 Tracking errors of the five controllers in the high frequency tracking mode.
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Fig. 6 Tracking errors of the five controllers in the low frequency tracking mode.

As we can see from Fig. 5 and Fig. 6, in both cases the ARCNN controller
achieves the best tracking performance from the view of tracking error. The PID
control strategy is not based on system model, in another word, it has no model
compensation. Thus its tracking performance is quite undesirable with large stable-
state error and fierce chatter in transient state. The ARC controller has a better
tracking performance than that of the PID controller and the FBL controller, due
to its learning capability brought by parameter estimation as well as the existence
of the nonlinear robust feedback term designed to attenuate the effect of the dis-
turbance. Obviously, the ARCNN controller has a good robustness since it inherits
this advantage from the ARC controller. Furthermore, ARCNN controller esti-
mates the dead-zone and compensates it effectively. Thus it has the best control
performance. In addition, the system switches more frequently in both sides of
the dead-zone in the high frequency tracking mode, which is the reason why the
ARCNN has a better performance in low frequency tracking mode. The specific
tracking indexes and the values are listed in Tab. I (see Appendix) which can help
verify the effectiveness of the ARCNN controller more precisely.

Fig. 7 and Fig. 8 show the designed velocity trajectory and velocity tracking
errors of the five controllers in the two modes. The performance of the ARCNN
controller is also the most satisfactory with the minimal tracking error. In the low
frequency tracking mode, we can see distinctly that the time the ARCNN controller
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Fig. 7 Velocity tracking errors of the five controllers in the high frequency tracking
mode.
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Fig. 8 Velocity tracking errors of the five controllers in the low frequency tracking
mode.

takes to cross the dead-zone is much less that of all the other controllers, which
indicate that the ARCNN controller can compensate the effects of the dead-zone
effectively.

Fig. 9 and Fig. 10 show the parameter estimation of ARC and ARCNN con-
trollers in the two modes. It is easy and distinct to see that the adaptive law
designed in ARCNN controller can make the estimated parameter reach its truth
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Fig. 9 Parameter estimation of ARC and ARCNN controllers in the high frequency
tracking mode.
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Fig. 10 Parameter estimation of ARC and ARCNN controllers in the low frequency
tracking mode.
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value more quickly. In addition, for the same controller, the estimation process is
shorter in low frequency tracking mode than that in high frequency tracking mode.

The network tracking performance of FBLNN and ARCNN controllers in both
modes is shown in Fig. 11 and Fig. 12. From the two figures, we can draw a conclu-
sion that the network integrated with ARC controller estimates the dead-zone error
in a relatively better accuracy compared with that integrated with FBL controller.
In addition, in the high frequency tracking mode, the tracking performance is much
worse than that in another mode due to the fact that the motion system crosses the
dead-zone more frequently, making the dead-zone error be a heartbeat-like spike
curve, which leads to a harder estimation process for the network.
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Fig. 11 Network tracking performance of FBLNN and ARCNN controllers in the
high frequency tracking mode.
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Fig. 12 Network tracking performance of FBLNN and ARCNN controllers in the
low frequency tracking mode.

5. Conclusion

In this paper, a composite control strategy has been proposed for a motor servo
system subjected to dead-zone nonlinearity, the parametric uncertainty and un-
known bounded disturbance. A smooth dead-zone inverse is designed to approx-
imately substitute the actual dead-zone inverse so as to guarantee the continuity
of actual control input and then overcome fierce system chattering. Moreover a
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single-hidden-layer neural network is applied to compensate the control input er-
ror resulted from the approximate dead-zone inverse. Furthermore the parametric
uncertainty is solved by designing an adaptation law via Lyapunov method. At
last a sliding mode robust feedback term is designed to overcome the integrated
disturbances including the external disturbance and error of network estimation.
The proposed controller can guarantee the motion system obtain an asymptotic
stability. The effectiveness of the proposed controller has been verified by com-
paring the simulation result of the proposed controller with those of another four
different controllers.
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Appendix

High frequency tracking mode Low frequency tracking mode
mean standard deviation mean standard deviation

PID 0.0221 0.0075 −0.1040 0.0270
FBL −4.9308e− 004 0.0196 −8.1583e− 004 0.0197
FBLNN 0.0027 0.0142 −7.2267e− 004 0.0201
ARC −6.8101e− 005 0.0059 −2.3971e− 004 0.0013
ARCNN −4.3668e− 005 0.0044 −2.0023e− 005 7.4499e− 004

Tab. I The means and standard deviations of tracking results of the five controllers
working in two modes.

Proof of theorem 1 Defining Z = [z1, ż1]
T

, we have

Ż =

[
ż1
z̈1

]
=

[
ż1

ż2 − k1ż1

]
=

[
ż1

−θ̃Tϕ+ W̃Th(x) + us2 − εapp − τ − k2(ż1 + k1z1)− k1ż1

]
=

[
0 1

−k1k2 −(k1 + k2)

] [
z1
ż1

]
+

+

[
0
1

] [
−θ̃Tϕ+ W̃Th(x) + us2 − εapp − τ

]
= AZ + b

[
−θ̃Tϕ+ W̃Th(x) + us2 − εapp − τ

]
. (33)

Since A is a Hurwitz matrix, we have

PA + ATP = −Q, (34)

where P represents a symmetric positive definite matrix.
Consider the Lyapunov function candidate

V =
1

2
ZTPZ +

1

2
Γ−11 θ̃T θ̃ +

1

2
Γ−12 W̃T W̃ . (35)
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Thus, the time derivative of V is

V̇ = ZTPŻ + Γ−11 θ̃T
˙̂
θ + Γ−12 W̃T ˙̂

W

= ZTP{AZ + b
[
−θ̃Tϕ+ W̃Th(x) + us2 − εapp − τ

]
}+ Γ−11 θ̃T

˙̂
θ +

+Γ−12 W̃T ˙̂
W

=
1

2
(ZTPAZ + ZTATPZ) + ZTPb ∗

[
−θ̃Tϕ+ W̃Th(x) + us2 − εapp − τ

]
+

+Γ−11 θ̃T
˙̂
θ + Γ−12 W̃T ˙̂

W

=
1

2
ZT(PA + ATP)Z + ZTPb ∗

[
−θ̃Tϕ+ W̃Th(x) + us2 − εapp − τ

]
+

+Γ−11 θ̃T
˙̂
θ + Γ−12 W̃T ˙̂

W

= −1

2
ZTQZ + ZTPb

[
−θ̃Tϕ+ W̃Th(x) + us2 − εapp − τ

]
+

+Γ−11 θ̃T
˙̂
θ + Γ−12 W̃T ˙̂

W

= −1

2
ZTQZ + ZTPb [us2 − τ − εapp] +

+Γ−11 θ̃T(
˙̂
θ − Γ1Z

TPbϕ) + Γ−12 W̃T
[

˙̂
W + Γ2Z

TPbh(x)
]
. (36)

Choose the sliding mode robust feedback term, the parameter adaptation law and
the weight adaptation law as

us2 = −sgn(ZTPb)h(x)
˙̂
θ = Projθ̂(Γ1Z

TPbϕ)
˙̂
W = −Γ2Z

TPbh(x)

. (37)

Substituting Eq. (37) in Eq. (36), we have

V̇ = −1

2
ZTQZ + ZTPb [us2 − τ − εapp] + Γ−11 θ̃T ×[

Projθ̂(Γ1Z
TPbϕ)− Γ1Z

TPbϕ
]

+ Γ−12 W̃T ×[
−Γ2Z

TPbh(x) + Γ2Z
TPbh(x)

]
≤ 0 (38)

Thus, employing the proposed ARCNN controller, the motion system considered in
this paper can obtain asymptotic stability theoretically, namely, z1 → 0 as t→∞t.
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