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Abstract: Differential evolution algorithms represent an efficient framework to
tackle complicated optimization problems with many variables and involved con-
straints. Nevertheless, the classic differential evolution algorithms in general do not
ensure the convergence to the global minimum of the cost function. Therefore, the
authors of the article designed a modification of these algorithms that guarantees
the global convergence in the asymptotic and probabilistic sense. The modification
consists in adding a certain ratio of random individuals to each generation formed
by the algorithm. The random individuals limit the premature convergence to the
local minimum and contribute to more thorough exploration of the search space.
This article concentrates specifically on the role of random individuals in the iden-
tification of the global minimum of the cost function. Besides, the paper also
contains some useful estimates of the probability of finding the global minimum of
the corresponding cost function.
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1. Introduction

Optimization tasks represent a principally important part of application math-
ematics. The optimization algorithms are frequently used in science, economy,
engineering, and production practice. In general, to optimize a system means
to maximize the system’s desirable properties minimizing at the same time its
unfavourable characteristics. For an example of the optimization task in the au-
tomotive industry see articles [12], and [13]. In these articles the optimization of
the infrared heaters setting over the complex shell metal mould is realized by a
differential evolution algorithm with good results.

The differential evolution algorithms represent an efficient framework to solve
complicated optimization tasks with many variables and diverse constraints. These
algorithms are sufficiently universal and versatile and provide good results even
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with problems characterized by non-differentiable cost functions with many local
minima. The conventional gradient optimization methods do not usually provide
in these cases satisfactory results either because they use the derivatives of the
cost function (that need not be available) or since they end up at a local minimum.
Furthermore, their results may strongly depend on the point from which the search
of the cost function minimum starts.

The topic of efficient utilization of the differential evolution algorithms in op-
timization tasks is treated in a row of articles. The articles [1, 4–7], and [14] deal
with possible modifications of the differential evolution algorithms focused on lim-
iting the stagnation of the algorithms and convergence acceleration to the global
minimum of the cost function. Simultaneously, some articles concentrate on the
division of the optimization process into several local optimization tasks which
are subsequently solved using the differential evolution algorithms (see articles [15]
and [20]). The topic of combining the differential evolution algorithms with an-
other optimization or approximation technique is studied in articles [3] and [19].
The topics of convergence of the differential evolution algorithm itself are handled
in article [8].

The authors of the current article demonstrated (see [9]) that even the dif-
ferential evolution algorithms as introduced in the original works of Price, Storn,
and Lampien [16], [18] do not guarantee in general the convergence to the global
minimum of the cost function. To be specific we focus on the classic differential evo-
lution algorithm DE/rand/1/bin (further referenced to as CDEA) but our remarks
apply mostly to all alternatives of the original differential evolution algorithms.
The principal problem with this algorithm is its too fast convergence to the local
minimum of the cost function in some cases. This phenomenon is usually called
premature convergence. The premature convergence consists in the rapid reduc-
tion of the size of generations formed by the algorithm around a local minimum
excluding in this way the possibility to attain a better local minimum or the global
minimum of the cost function.

This was the reason why we proposed a modification of the CDEA that en-
sures the global convergence in the asymptotic sense based on relatively general
assumptions imposed on the cost function. The modification consists in replacing
some individuals (with higher values of the cost function) in the current generation
by fully random individuals. The modified differential evolution algorithm was
denoted as MDEA. For the algorithm MDEA it was possible to prove the global
convergence to the minimum of the cost function in the asymptotic sense. For
details see the article [9]. In article [10] we further investigated the properties of
MDEA, primarily its convergence speed.

In the current paper we concentrate more closely on the role of random indi-
viduals in the convergence process. The random individuals limit the premature
convergence and provide more thorough exploration of the search space. In reality,
they usually slow down partially the convergence speed of the algorithm, but they
provide much better chance to identify the global minimum of the cost function.
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2. Optimization task

Let us have an optimization task to find a minimum of a cost function
f(x1, x2, . . . , xn) of n real variables defined on a bounded domain in the Euclidean
space En. For brevity we denote by the symbol x the ordered n-tuple of all variables
x1, x2, . . . , xn of the optimized function f . That is, we should find the minimum
of the function f(x). In principle, this function may have many local and global
minima. We would like to find the minimum with the lowest cost function value

min{f(x) : x ∈ S}, (1)

where S ⊂ En is a measurable search space of a finite measure representing all
possible configurations of the variables x. The solution set can be defined as

S∗ = {x∗ : f(x∗) = min{f(x) : x ∈ S}}, (2)

where x∗ represents the global minimum of the cost function.
To be able to find an approximate solution of the optimization task (1), we

introduce a concept of an expanded solution set

S∗ε = {x ∈ S : |f(x)− f(x∗)| < ε}, (3)

where ε > 0 is a small positive real number. Denoting by µ the Lebesgue measure,
we suppose that for each ε it holds µ(S∗ε ) > 0.

In the following part we concentrate on finding an x∗ ∈ S∗ defined by the
relation (2) or at least on finding an approximate solution of the task (1) x ∈ S∗ε
defined by the relation (3) for a sufficiently small value ε > 0. We will solve the
task (1) utilizing the differential evolution algorithm.

3. Differential evolution algorithms

In this part we briefly describe the functioning of CDEA and MDEA.

3.1 Classic differential evolution algorithm

In general, CDEA seeks for the minimum of the cost function by constructing whole
generations of potential solutions. These solutions are usually called individuals.
Each individual is an ordered set of specific values from the cost function domain.
The quality of the individual is determined by the evaluation of the cost function.
Further we refer to the cost function domain as the search space.

The next generation is formed from the existing generation by means of muta-
tion and crossover operators. Specifically, we go successively through all individuals
in the generation G. To each individual yGi (termed as the target individual) we
select randomly three other (different) individuals yGr1, yGr2, yGr3 from the current
generation. We form in a specific way (including randomness) a combination of
these three individuals and the target individual. This combination is termed the
trial individual and denoted ytriali . Then we evaluate the cost function for the target
yGi and trial individual ytriali and compare the results. The individual with lower
value of the cost function advances to the position of the target individual of the
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next generation yG+1
i . When this procedure is completed for all target individuals

in generation G, we have the new generation of individuals numbered G+ 1.
The next part illustrates CDEA operation more specifically in the form of the

pseudocode.

Input: Optimization task parameters:
f denotes the cost function, D is the dimension of the cost function domain,
〈ximin, ximax〉 is a domain of each cost function variable xi.

CDEA parameters:
NP denotes the generation size (the number of individuals in each generation), NG
is the total number of generations, F stands for the mutation factor, F ∈ 〈0, 2〉, and
CR denotes the crossover probability, CR ∈ 〈0, 1〉. The symbol G stands for the
generation number, index i is the number of the individual in a specific generation,
index j describes the j-th component of a specific individual yi.

Computation:

1. create the initial generation (G = 1) of NP individuals yGi , 1 ≤ i ≤ NP ,
randomly or according to a prescribed scheme

2. (a) evaluate all individuals yGi of the generation G (calculate f(yGi ) for each
individual yGi )

(b) store the individuals yGi and their evaluations f(yGi ) into the i-th row
of matrix A with NP rows and D + 1 columns

3. repeat until G ≤ NG

(a) for i = 1 to NP do

i. randomly select three different indices r1, r2, r3 ∈ {1, 2, . . . , NP},
rm 6= i,m ∈ {1, 2, 3}

ii. randomly select an index ki ∈ {1, . . . , D}
iii. for j = 1 to D do

if (rand(0, 1) ≤ CR or j = ki)
then ytriali,j = yGr3,j + F (yGr1,j − yGr2,j)
else ytriali,j = yGi,j

endif

endfor(j)

iv. if f(ytriali ) ≤ f(yGi )
then yG+1

i = ytriali

else yG+1
i = yGi

endif

endfor(i)

(b) store the individuals yG+1
i and their evaluations f(yG+1

i ), 1 ≤ i ≤ NP ,
of the new generation G+ 1 into the matrix A, set G = G+ 1

endrepeat.
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Output:
The matrix A with NP rows and D + 1 columns contains the final generation of
individuals including their evaluations. The row of matrix A that contains the
lowest cost function value represents the best found individual ymin.

3.2 Modified differential evolution algorithm

In this part we describe the modification of CDEA denoted by MDEA. Since there
is in principle necessary to make one simple change in the algorithm, we present
only the differences with respect to CDEA.

Input: We add another parameter R that determines the ratio of random indi-
viduals in each generation, R ∈ 〈0, 1〉, e.g., R = 0.1 means that 10 % of individuals
in each generation are generated randomly.

Computation: We add another procedure to the part (3), specifically:
(c) determine in matrix A the quantity bNP · Rc of individuals with the highest
cost function values and replace these individuals by random individuals (yrand)i
from the search space, 1 ≤ i ≤ bNP · Rc, including their evaluations. Here the
symbol bxc denotes the integer part of the real number x. This straightforward
modification makes possible to prove the asymptotic convergence in probability.
For more details see the article [11].

3.3 Convergence in probability

To examine the global convergence of MDEA we need to introduce a concept of
the convergence in probability introduced in article [21].

Definition: Let {Y (G) : G = 1, 2, . . .} be a generation sequence formed by a
differential evolution algorithm to solve the optimization problem (1). We say that
the algorithm converges to the optimal solution set in probability if and only if

lim
G→∞

p{Y (G) ∩ S∗ε 6= ∅} = 1, (4)

where p denotes the probability of an event. Now we can prove the following
theorem.

Theorem 1. Let us suppose that for each population Y (G) of a differential evolu-
tion algorithm there exists at least one individual y such that

p{y ∈ S∗ε} ≥ α > 0,

where α is a small positive value. Then the algorithm converges to the optimal
solution set S∗ε in probability. That is the relation (4) holds.

Here p{y ∈ S∗ε} denotes the probability that y belongs to the optimal solution
set S∗ε . For the proof of the theorem and relevant details see the article [11].

253



Neural Network World 4/2020, 249–263

4. Sampling of the search space by random
individuals

The operations of algorithms CDEA and MDEA are relatively straightforward to
describe. For details see articles [9] or alternatively [10]. On the other hand their
exact theoretical analysis is relatively demanding and up to now not available in any
publications. Nevertheless, the analysis of the role of random individuals in MDEA
is relatively simple. By a random individual we mean here a random point from the
search space S. Since these random individuals are the part of the algorithm that
ensures the asymptotic convergence to the global minimum of the cost function in
probability, it definitely has sense to have a clear idea about how this feature of
MDEA works. That is the reason we focus in this part on the mechanism how
random individuals contribute to the identification of the global minimum of the
cost function.

From the description of CDEA and MDEA (see subsection 3.1 pseudocode part
(3)(a)(iv)), it is apparent that both algorithms are greedy in the following sense:
When they attain a point in the search space with a small value of the cost function
they will not lose it unless they replace it by another point with even smaller value
of the cost function.

This feature complements conveniently with the random sampling part in the
MDEA (see subsection 3.2 pseudocode part (3)(c)). The random sampling explores
the search space and can be characterized by the fact that more random individuals
provide more detailed exploration of the search space. Technically speaking, when
performing a practical calculation, the random sampling can bring the MDEA close
to the global or very low (acceptable) local minimum and the mechanism of the
differential evolution ensures the effective convergence to this minimum.

4.1 Probabilistic convergence analysis

Let us suppose we have identified before a local minimum of the cost function f
at the point xL with the cost function value f(xL) (index L stands here for Local).
We would like to try the possibility to find a better local minimum or preferably
the global minimum of the cost function f .

We formulate a null hypothesis H0 that there exists a part of the search space
S with cost function values lower than f(xL). We denote this part of the search
space S as the target region σ

σ = {x ∈ S : f(x) < f(xL)}. (5)

We denote the measure of the target region σ as µ(σ). Additionally, we suppose
µ(σ) > 0. By the symbol µ(S) we understand the measure of the whole search
space S. The target region σ is thus the part of the search space S that according
to our assumption contains a minimum or minima with lower cost function values
than f(xL).

Subsequently, we use the algorithm MDEA that includes the generation of ran-
dom individuals, that is a random sampling. The probability p0 that we hit the
target region σ with one random individual is given by the ratio of µ(σ) and µ(S)
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p0 =
µ(σ)

µ(S)
(6)

according to the usual concept of geometrical probability introduced for instance
in book [2].
The hypothesis H0 can be expressed symbolically as

H0 : p = p0, (7)

where p denotes the probability to hit the target region σ with one random in-
dividual. In principle, we can confirm or reject the hypothesis H0 by generating
a quantity of random individuals and monitoring whether some of them hit the
target region σ or not.

The number k of random individuals that should hit the target region σ is
described by the binomial distribution (for details see [2], page 140)

Bi(n, k, p0) =

(
n

k

)
pk0(1− p0)n−k. (8)

After we generated n random individuals there exist two possible principally dif-
ferent results:

1. We got some individuals from the target region σ. This means we have found
some points xB with cost function values f(xB) lower than f(xL) (index B
here stands for Better). This result is considered positive and we can decide
whether the lowest value f(xB) is acceptable or whether to continue with the
search for even better cost function values.

2. No random individuals hit the target region σ, that is we did not find any
points xB. What conclusion can we make based on this negative result?
There are in principle three possible alternatives:

• The target region σ does not exists at all.

• The target region σ does exist but its measure µ(σ) is smaller than we
have supposed. This implies that the probability to hit the target region
σ with one random individual is smaller than p0.

• The target region σ does exist and the estimate of its measure µ(σ) is in
principle right but we did not hit it accidentally since we used exclusively
random individuals that missed the target region.

The probability that the target region σ should not be hit even once after
generating n random individuals is according to (8)

Bi(n, 0, p0) = (1− p0)n. (9)

It is obvious that this probability converges to 0 with the increasing n for p0 > 0.
Even if the random individuals indicate that the probability p to hit the target
region σ is close to 0 or at least significantly smaller that the value p0 we do not
know this for sure just because the generated individuals are random. We can
claim this only with a relative certainty.
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At this point, it is suitable to utilize some terminology from the area of statisti-
cal hypotheses testing. It is necessary to set a fixed significance level αS. Quantity
αS represents the probability that we decline the hypothesis H0 although it is true.
Symbolically,

αS = P (H0 true, but declined), (10)

where P denotes the probability of the event.
The value of αS depends on circumstances and in particular on the fact what

quantity of risk to reject the right hypothesis is for us acceptable. It is usually
chosen 0.05, 0.01, 0.005, . . . but in fact it can be set arbitrarily. The significance
level αS is sometimes termed as the error of the first kind in statistical hypotheses
testing.

The logic of the hypotheses testing is that we determine some part of the bi-
nomial distribution Bi(n, k, p0) with a small probability αS and declare this part
of the distribution as critical. Since the probability αS is small it is relatively im-
probable that we hit the critical part. In our case the critical part corresponds to
the ”no hit of the target region σ” area that is to the result Bi(n, 0, p0). Since the
value Bi(n, 0, p0) is according to (9) decreasing with increasing n and p0 > 0 we
have to take the number n in such a way that the result Bi(n, 0, p0) is a part of
the binomial distribution Bi(n, k, p0) with probability equal to or less than αS.

Now, it is possible to determine the smallest such n that we denote by n0.
Number n0 can be calculated from the equation

(1− p0)n0 = αS

as the minimal number guaranteeing to attain the significance level αS which gives

n0 =

⌈
log(αS)

log(1− p0)

⌉
, (11)

where log(x) stands here for the decadic logarithm of the positive real number x
and the delimiters de stand for the upper integer part of the enclosed real number.

From the considerations above it follows that if we generate n ≥ n0 random
individuals and none of them hits the target region σ we can claim that the prob-
ability p to hit the target region σ is p < p0 with the risk αS at most. We finally
introduce the concept of the relative certainty CR by the relation

CR = 1− αS. (12)

Now, we can formulate the following proposition.

Proposition 2. Let us assume that we generate n ≥ n0 random individuals, where
n0 is defined by the relation (11), and not even one hits the target region σ. Then
we can claim that with relative certainty CR ≥ 1−αS the actual probability p to hit
the target region with one random individual is less than p0. This implies that the
measure of the target region is smaller than µ(σ) with the same relative certainty
CR.

Proof. The proof follows easily from the meaning of the significance level αS and
the value n0 given by the relation (11). Suppose we generated n ≥ n0 random
individuals and not even one hits the target region σ. Since it definitely holds
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n ≥ n0 =
log(αS)

log(1− p0)
,

we have

n log(1− p0) ≤ n0 log(1− p0) = log(αS),

which implies

(1− p0)n ≤ (1− p0)n0 = αS.

The last relation expresses the fact that when the hypothesis H0 is true then
the probability that no random individual out of n hits the target region σ is
smaller than αS. Since the value αS is relatively small we declare this situation as
relatively improbable and accept the risk αS to decline the hypothesis H0 with a
relative certainty CR = 1 − αS. In other words we say that since this situation is
on the assumption p = p0 relatively improbable its occurrence is caused rather by
the fact that p < p0.

Remark. It is apparent from the relation (11) that the number n0 is dependent on
the significance level αS and on the assumed probability p0.

4.2 More probabilistic estimates

In spite of the fact that the formula (11) is relatively simple, it can be further
simplified. Let us introduce an auxiliary quantity

ψ = np0 (13)

that expresses the relation between the number n of generated random individuals
and the assumed probability to hit the target region p0 defined by (6). Now, we
can express the probability that not even one random individual out of n hits the
target region σ in the following way

(1− p0)n = (1− p0)
ψ
p0 =

[
(1− p0)

1
p0

]ψ
.

When we again make use of the significance level αS defined by the relation (10)
we can write [

(1− p0)
1
p0

]ψ
≤ αS.

Introducing the quantity ψ0 as a minimal value of ψ complying with the previous
inequality we get and equation[

(1− p0)
1
p0

]ψ0

= αS.

We need to estimate in a suitable way the term in the square brackets. The
task can be reformulated in the following way: Find the supreme of the function
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g : y = (1− x)
1
x

with the domain D(g) = (0, 1〉. Elementary analysis gives us the estimation (see
for instance [17], page 63)

(1− p0)
1
p0 ≤ 1

e
.

Using this estimate gives (
1

e

)ψ0

= αS.

From this relation we immediately get

ψ0 = − ln(αS), (14)

where ln(x) stands for the natural logarithm of the positive real number x. The
quantity ψ0 gives us a useful representation for the term

ψ0 = N0p0.

The last relation expresses the fact that when we assume the hypothesis H0 :
p = p0 and no random individual hits the target region σ we need to take N0 in
such a way that

N0p0 ≥ − ln(αS)

to be entitled to claim that H0 : p = p0 does not hold implying p < p0. In case we
need explicitly to express the number of individuals not hitting the target region
σ we can use the formula (13) and get

N0 =

⌈
− 1

p0
ln(αS)

⌉
. (15)

Analogously to Proposition 2 we can state the following:

Proposition 3. Let us assume we generate n ≥ N0 random individuals where N0

is defined by the formula (15) and not even one individual hits the target region
σ. Then we can claim with the relative certainty CR ≥ 1 − αS that the actual
probability p to hit the target region is less than p0. This implies that the measure
of the target region is smaller than µ(σ) with the same relative certainty CR.

Proof. The proof follows from the preceding considerations.

It is not complicated to verify that the formulas (11) and (15) for the numbers n0
and N0 are equivalent under the condition p0 � 1.

Lemma 4. The formulas (11) and (15) are equivalent on the assumption p0 � 1.
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Proof. The following formula holds for logarithms with different bases

loga(x) · logb(a) = logb(x).

Using this formula in our context gives

log10(αS) · ln(10) = ln(αS),

where ln(x) denotes the natural logarithm of a positive real number x.
Substituting the last formula into the (11) gives

n0 =
log(αS)

log(1− p0)
=

ln(αS)

log(1− p0) · ln(10)
=

ln(αS)

ln(1− p0)
.

When we suppose p0 � 1 we can approximate using the Taylor’s expansion (for
details see [17], page 110)

ln(1− p0) ≈ −p0.

Using the last approximation gives

n0 ≈
ln(αS)

−p0
= N0,

which was to proove.

It is interesting to note that the Proposition 2 and its equivalent Proposition 3 can
be reformulated in another rather unexpected way.

Corollary. Let us assume that the probability p to hit the target region σ with
one random individual is equal to p0. When we consider n random individuals we
denote by P1 the probability to hit the target region σ with at least one individual.
The probability P1 is obviously

P1 = 1− (1− p0)n.

When none of the n random individuals hits the target region σ, we can claim with
relative certainty CR = P1 that the probability p < p0 implying that the measure of
the target region is smaller than µ(σ).

Proof. The probability P0 that none out of n random individuals hits the target
region σ is apparently

P0 = (1− p0)n.

The probability P1 is obviously given by

P1 = 1− P0 = 1− (1− p0)n.

But by considerations in Proposition 2 it holds (1 − p0)n = αS and the relative
certainty CR is given by CR = 1− αS implying

CR = P1.
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5. Utilization of the probabilistic estimates of the
MDEA convergence

In general, using MDEA for an optimization task provides two principle advantages
compared to utilization of CDEA.

1. From the theoretical point of view, according to Theorem 1 the asymptotic
convergence to the global minimum of the cost function is assured provided
relatively weak requirements on the cost function are satisfied.

2. From the practical point of view, the Propositions 2 and 3 give useful es-
timates of the measure of the target region. More specifically, when more
and more generations of MDEA are constructed and these generations do
not provide any improvement of the attained minimum of the corresponding
cost function, we can use this negative result as a base for the probabilistic
estimates of the size of the target region according to Propositions 2 and 3.

To illustrate the dependence of the quantities ψ0 (see 14) and N0 (see 15)
on values αS for three different levels of the probability p0 we summarized these
quantities in Tab. I.

αS CR ψ0 N0 N0 N0

p0 = 10−6 p0 = 10−9 p0 = 10−12

0.1 0.9 2.302 586 2 302 586 2 302 586 000 2 302 586 000 000

0.05 0.95 2.995 733 2 995 733 2 995 733 000 2 995 733 000 000

0.01 0.99 4.605 171 4 605 171 4 605 171 000 4 605 171 000 000

0.005 0.995 5.298 318 5 298 318 5 298 318 000 5 298 318 000 000

0.001 0.999 6.907 756 6 907 756 6 907 756 000 6 907 756 000 000

0.000 5 0.999 5 7.600 903 7 600 903 7 600 903 000 7 600 903 000 000

0.000 1 0.999 9 9.210 341 9 210 341 9 210 341 000 9 210 341 000 000

0.000 05 0.999 95 9.903 488 9 903 488 9 903 488 000 9 903 488 000 000

0.000 01 0.999 99 11.512 926 11 512 926 11 512 926 000 11 512 926 000 000

0.000 005 0.999 995 12.206 073 12 206 073 12 206 073 000 12 206 073 000 000

0.000 001 0.999 999 13.815 511 13 815 511 13 815 511 000 13 815 511 000 000

Tab. I Values ψ0 and N0 corresponding to different values αS and probabilities p0.

The Tab. I demonstrates the fact that when we suppose a fixed value of probability
p = p0 and perform N0 experiments with a negative result we can claim with a
relative certainty CR that p < p0. The higher relative certainty we require the more
experiments have to be performed, in other words the more random individuals
have to be generated.
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6. Conclusions

During the study and utilization of differential evolution algorithms we revealed the
principle limitations of the standard differential evolution algorithm CDEA. This
fact was the base to construct an improved algorithm MDEA with substantially
better prospective to identify successfully the global minimum of the cost func-
tion. In this paper we concentrate specifically on the role of random individuals in
MDEA. We can recapitulate the main results in the following summary:

• CDEA can converge to a local minimum of the cost function as a result of
the premature convergence. This fact constitutes the principal weakness of
CDEA.

• MDEA converges asymptotically to the global minimum of the cost function
in probability on the assumption that the cost function satisfies the condition
(3) where µ(S∗ε ) > 0.

• In the real optimization task we are usually able to find a minimum of the
cost function. Let us denote this minimum as the optimized minimum. But
the principal question is whether this optimized minimum is only local or
global (there can be more equivalent global minima).

• MDEA solves this question by random individuals formed in each generation
of the algorithm. The random individuals explore the search space of the
optimization task and not only the neighbourhood of the optimized minimum
in each generation.

• If the random individuals identify a region with lower (better) minimum than
the optimized minimum we made a useful step towards the global minimum.
Of course this new minimum can be just another local minimum. Neverthe-
less, we found a more optimized state and this can be considered a partial
success.

• In the negative case when more and more random individuals are generated
and we do not get any improved optimized minimum we do not achieve
any improved state (better optimized minimum). Nevertheless, we can state
with a determined probability that any minimum with lower value than the
optimized minimum does not exist. This probability can be made arbitrarily
close to 1 if we generate sufficiently large number of random individuals.

We believe that the presented statements contribute to better understanding
of the convergence process of MDEA and subsequently to its broader utilization in
practical optimization tasks.
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