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Abstract: Dynamic time warping (DTW) is a classical similarity measure for arbi-
trary length time series. As an effective improvement of DTW, dynamic time warp-
ing under limited warping path length (LDTW) oppresses the long-term patholog-
ical alignment problem and allows better flexibility. However, since LDTW in-
creases path lengths, it directly leads to higher time-consuming. In this paper,
a new method of similarity sequence measurement (ACO LDTW) is proposed by
the parallel computing characteristics of ant colony optimization (ACO) algorithm
with bio-inspired strategy and the idea of LDTW path restriction. This algorithm
searches the optimal path on the restricted distance matrix by simulating the be-
havior of ant colony parallel foraging. Firstly, the distance matrix is mapped to the
0− 1 matrix of grid method, and the search range of ants is limited by the warp-
ing path in LDTW. Secondly, the state transition probability function, pheromone
initialization and update mechanism of ACO algorithm are adapted. On the basis
of ensuring the accurate results, the convergence rate can be effectively improved.
The validity of ACO LDTW is verified by cases. In the 22 data sets of 1NN clas-
sification experiment, ACO LDTW has the lowest classification error rate in 16
data sets, and it is shorter than the calculation time of LDTW. At the same time,
it is applied to the field of mechanical fault diagnosis and has the ability to solve
practical engineering applications. Experiments show that ACO LDTW is more
effective in terms of accuracy and computation time.
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1. Introduction

Similarity measurement is an important method to evaluate the approximation
between objects. The more consistent objects are in attributes and status, the
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greater the similarity is. Moreover, similarity measurement is the core issue of
data mining, which combines with mining algorithm to complete different mining
tasks, including classification, estimation, prediction, association rules, clustering
and so on [1,2]. In literature [3], a sequence clustering algorithm based on weighted
sequence pattern similarity is proposed. This method makes the updated center
more suitable for the real cluster center, so the clustering quality is improved.
Literature [4] proposes a time series regression prediction method based on network
links. A large number of studies have shown that the correct measurement of
sequence similarity is the key to improve the efficiency and effectiveness of data
mining.

Classical similarity measures can be divided into two categories: lock-step mea-
sures and elasticity measures. Lock-step measures are one-to-one comparisons of
sequences, and the most common one is the Euclidean distance. However, due to
the complexity of data, these measurement methods have some limitations. Elastic
measures are one-to-many comparisons of sequences. As a very common mea-
sure of elasticity, dynamic time warping (DTW) allows points in a sequence to be
matched with equal length after self-replication, which overcomes the problem that
lock-step measures cannot be matched due to distortion of the sequence [5]. At
present, the application of DTW has developed from speech recognition to many
other fields, such as bioinformatics [4–6], online signature verification [7–9] and
gesture recognition [10–12].

Nowadays, as the number of data increases, the calculation time of the DTW
will also increase. At the same time, there has pathological alignment, that is, one
point in one sequence maps to the majority of points in another sequence, resulting
in a decrease in its accuracy. Many scholars have improved their accuracy and per-
formance. There are many classical improved algorithms, which can be divided into
two categories: (1) Consider the trend or shape characteristics of sequences. For
example, derivative DTW (DDTW) [13] obtains shape information by considering
the first derivative of the sequence, thereby reducing the occurrence of singulari-
ties, but does not consider the time and space complexity of the algorithm. (2)
Consider sequence path constraints. Fast DTW (FDTW) [14] considers its high
time complexity, and effectively deletes a large number of search candidates, thus
directly reduce the search cost. But using approximate methods, estimating the
time warping distance by using several fragments to represent a rough version of a
sequence, it is possible to miss the correct alignment. Quantitative DTW [15, 16]
uses the concept of the code word. In speech recognition, it no longer stores mul-
tiple templates of the same word, but stores a reference model for each word.
Comparing the unknown speech with the center of the reference model, the speed
of recognition is improved, but the recognition rate inevitably decreases. Flexible
DTW [17] gives extra points to reward one-to-one fragments, avoiding alignment
of adjacent points in one sequence with distant points in another. However, due
to additional rewards, the calculation time is increased. At present, the applica-
tions of DTW and its improved methods have expanded from speech recognition
to many fields. For example, in order to solve the problem of inaccurate handwrit-
ing recognition on mobile terminals, a dynamic handwriting recognition algorithm
based on DTW was proposed by Lei H. W et al [16]. DING J et al. [17] proposed
a design scheme based on joint position and joint angle, which can derive appro-
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priate size feature vectors for each gesture category of DTW reference template in
the database according to the activity characteristics of specific types of gestures.
Experiments show that the method using determined features is superior to the
traditional method what only considering joint position information.

Dynamic time warping under limited warping path length (LDTW) [18] is a
recently proposed method to improve DTW and proposes a new constraint on the
warping path. It limits the total number of links during the optimization process
of DTW. And LDTW not only oppresses the pathological alignment effectively but
also allows more flexibilities when measuring similarities. But LDTW is a recursive
calculation, in which an additional dimension (the current length of the warping
path) is used in the cumulative cost matrix to record the current number of steps,
resulting in a significant increase in computation time. Aiming at this problem, it
can be solved by parallel computing. As an effective parallel computing method, ant
colony optimization algorithm (ACO) [19] can be introduced into the calculation of
similarity between sequences. Therefore, ACO algorithm is utilized to replace the
recursive calculation of LDTW, to search for the optimal path in the cumulative
cost matrix.

In this paper, an approach for heuristic parallel LDTW distance optimization
method with bio-inspired strategy (ACO LDTW) is proposed. At the same time,
in order to make this method faster and more accurate, the state transition prob-
ability function, pheromone initialization and update mechanism of ant colony
algorithm are improved. The validity of the method is fully illustrated in the case.
Through the experiment of 1NN classification of UCR data set, the time is greatly
shortened when the accuracy is approximately equal to that of LDTW. Moreover,
the algorithm is applied to the field of mechanical fault diagnosis.

2. Materials and methods

2.1 DTW

In the 1990s, Berndt and Clifford introduced DTW [20] into time-series data min-
ing. By constructing the alignment matrix of the two sequences (Fig. 1(a)), a
shortest warping path can be found and matched in the alignment matrix for
alignment matching. The shortest path is used as the result of the two-sequence
distance metric. The local optimization method is used to obtain the optimal path
and simplify the complexity of the process. Consequently, this method can also
effectively deal with the similarity measure among the incomplete, abnormal or
abrupt data sequences.

(a) DTW. (b) Euclidean.

Fig. 1 DTW and Euclidean distance [21].
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Definition DTW Suppose two sequences X = {x1, x2, . . . , xm, . . . , xM} and
Y = {y1, y2, . . . , yn, . . . , yN}, the distance matrix between X and Y is defined as
follows:

DM(X,Y ) =

 dist(xM , y1) · · · dist(xM , yN )
...

. . .
...

dist(x1, y1) · · · dist(x1, yN )

 , (1)

where dist(xm, yn) is the distance between sequence elements xm and yn. In this
study, dist(xm, yn) = |xm − yn|. According to the distance matrix, the DTW
distance between the sequences can be defined as follows:

D(Xm, Yn) = dist(xm, yn) + min

 D(xm−1, yn)
D(xm, yn−1)
D(xm−1, yn−1)

 . (2)

In fact, the warping path is generated by certain rules, and different rules result
in different distances measurement. From this perspective, Euclidean distance can
also be seen as based on the alignment of two sequences, with its own rules for
curved paths. As shown in Fig. 1(b), Euclidean distance is strictly one-to-one
aligned, and the warping paths consist only of diagonal elements of the alignment
matrix.

Set the warping path W , and the k element of W is defined as wk = (m,n),
which defines the mapping of sequence X and Y . According to Eq. (2), the warping
path of DTW must satisfy the following three rules [20]:

1. Boundary constraint:

The starting point of the warping path W must be w1 = (1, 1) and end point
wk = (m,n).

2. Monotonicity constraint:

Given wk = (m,n), the next point wk+1 = (m′, n′) needs to satisfy (m′−m) ≥
0 and (n′ − n) ≥ 0. The point is limited in the warping path W which must
be monotonic with time.

3. Continuity constraint:

Given wk = (m,n), the next point wk+1 = (m′, n′) needs to satisfy (m′ −
m) ≥ 1 and (n′ − n) ≥ 1. It cannot cross a point to match, only aligning
with its adjacent points. It is to ensure that every point in the sequence X
and Y appears in the warping path W .

In DTW, dynamic programming is designed to search the shortest distance. It is
a multi-stage decision-making process. The local shortest distance in the process of
solving can be regarded as several interrelated stages, then each stage needs to make
a decision (depend on the distance dist(x, y) of the current two data points and the
minimum of the local optimal solution in the previous stage), so as to achieve the
best activity effect (the shortest distance) in the whole process. Generally speaking,
the decision-making in each stage has a sequence. The decision-making depends
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on the current state, and then causes the status to transfer. A decision-making
sequence is produced in the changing state, so it has the meaning of “dynamic”.
Therefore, the solution sought by DTW is a dynamic process in which the global
solution is achieved through the superposition of several local optima.

2.2 LDTW

However, there are some faults in DTW, such as pathological alignment, as shown
in Fig. 2, which illustrates a typical example of pathological alignment generated
by DTW, and several singularities (the red triangle in Fig. 2) can be found in the
graph. The singularity can be understood as a data point in one time series that
connects the large subsection of other time series. Obviously, the shortcoming of
pathological alignment (pathological matching) has a great impact on the accuracy
of similarity measurement. The restriction of LDTW [18] on the total number
of links in DTW optimization can effectively avoid the generation of singularity.
Unlike rigid constraints such as window constraints and the feature DTW [22–25],
LDTW can determine the number of links assigned to each data point and where to
place the links, allowing greater flexibility and thus reducing pathological alignment
risk.
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Fig. 2 A typical example of pathological alignment generated by DTW [18].

Definition LDTW In LDTW method, the constraint of the total link number is
used to limit the warping path length. To describe the method more intuitively, we
use the term “step count” (path length −1, denoted by s). Suppose two sequences
X = {x1, x2, . . . , xr, . . . , xR} and Y = {y1, y2, . . . , yc, . . . , yC}, the LDTW distance
between the sequences can be defined as follows:

D(Xr, Yc, s) = dist(xr, yc) + min

 D(Xr, Yc−1, s− 1)
D(Xr−1, Yc, s− 1)
D(Xr−1, Yc−1, s− 1)

 . (3)

The minimum number of steps is clearly r − 1 or c − 1, so the minimum step is
max(r, c) − 1. If the cell is in the bottom row r = 1 (r is the row index of the
cumulative cost matrix) or the left-most column c = 1 (c is the column index of
the cumulative cost matrix), then the maximum step is also equal to the larger one
between r−1 and c−1. Elsewhere, the maximum step is equal to (c−2)+1+(r−2) =
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r + c − 3. As shown in Fig. 3, we can see clearly that the shortest path to (4, 3)
by red line is 3 and the longest path to (4, 3) by blue line is 4.

Fig. 3 An example of maximum and minimum steps to reach a certain cell by
LDTW [18].

The only parameter of LDTW is the upper bound of warping path length LUB .
The effective range of LUB is finite according to the rules of DTW. If the lengths
of the two-time series are R and C, then max(R,C) + 1 ≤ LUB ≤ R + C − 2.
In our experiment, taking the 50 words dataset as an example, the length of the
time series length is 270, so the search space of LUB is [271, 538(270 + 270 − 2)].
Paper [18] learns an appropriate LUB on the training set through LOOCV (leave
one method for cross validation). During LOOCV, each candidate results in a 1NN
classification error count. When there is only one candidate with the least number
of errors, it is LUB . If the least number of errors is an area, the median of the
optimal zone is chosen as the optimal result LUB . It can be found that LDTW not
only limits the length of the warping path, but also keeps the flexibility of DTW.

Furthermore, each cell retains the only value in the cumulative cost matrix
of DTW, which is the global minimum cumulative cost between all possible path
lengths. In LDTW conversely, each cell must hold multiple values, each of which is
the minimum cumulative cost at the corresponding warping path length. Therefore,
its solution is to calculate the results of all warping paths and then select the
smallest of these results, but at the same time, it requires a higher computational
cost.

2.3 ACO

The method of grid map has the characteristics of small computation and easy
realization. It subdivides the search area into several cells of equal size, so that the
complexed problems of environment can be broken down into small problems that
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can be easily solved. As a new bio-inspired algorithm, the ant colony algorithm
has better parallelism, positive feedback and robustness. It’s inspired by the idea
of ants foraging for food. Ants will secrete the chemicals called pheromones during
their moving, and the behavior of the ant colony is regulated by this chemical
because they can sense the concentration of this substance in the environment and
they prefer to move in the direction of higher concentration, thus dominating the
whole colony.

The ACO algorithm based on the grid map uses the 0-1 matrix simulation
environment (“0” represents the free grids, and “1” represents the obstacle grids).
More specifically, (1) the algorithm is required to map the distance matrix into
the 0-1 matrix of the grid. The distance value between the corresponding points
for each grid is marked. (2) In order to ensure that the steps of searching for the
shortest path do not exceed the range of the corresponding steps. We restrict the
search area of ACO, where the grids are set to “1” as the obstacle grids, the search
area can be limited to a hexagonal region. This not only satisfies the steps limit
of LDTW but also greatly reduces the search range of ants, making the search
efficiency improved. (3) In the ACO algorithm, the direction of ants walking is not
constrained, but each step in LDTW can only follow three directions (as shown
in Fig. 4). Therefore, three restriction rules in LDTW are introduced to restrict
the area where ants can walk in three directions at each step, and the convergence
speed is also accelerated.

Fig. 4 The direction of each step.

3. The proposed method

3.1 Analysis

Based on related works, Eq. (3) can be seen that the current step count is introduced
to limit the warping path. Each cell must contain multiple values, and each value
is the minimum distance cumulative cost within the step range. This results in a
large time cost (O(LUB · R · C), where R is the length of the sequence X; C is
the length of the sequence Y ) for calculating LDTW. As shown in Fig. 5(a, b), the
optimal path of LDTW is similar to the optimal path of ACO in the grid map [26].
The former searches for the optimal path (the sum of unit values) in the distance
matrix (the corresponding value of each unit); the latter searches for the optimal
path (the shortest distance between the starting point and the ending point) in
the two-dimensional environment (0-1 matrix simulation environment) simulated
by the grid map. Because LDTW adopts the recursive linear idea, the computation
time is too much. However, ACO has the characteristics of concurrent computing,
information positive feedback and random search, which can contribute to reducing
the computation time.
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(a) ACO

(b) LDTW (c) ACO LDTW

Fig. 5 The optimal path of the three algorithms.

In general, ACO has certain advantages in computational efficiency and has
been widely used in mobile robot obstacle avoidance [27]. Therefore, this paper
considers using the search mechanism of ACO to replace the computer mechanism
of LDTW, and proposes a novel similarity measure ACO LDTW, to improve the
defect of excessive computation time.

In summary, ACO LDTW consists of two modules, ACO module and LDTW al-
gorithm module. Inspired by the autonomous foraging behavior of ants,
ACO LDTW uses ant colony optimization to obtain the shortest warping path
between sequences, which has the characteristics of heuristic and parallelization.
In this algorithm, the black barrier grid in the grid map is set up to restrict the ant
search path and induces the ant to find the optimal path under the pheromone’s
positive feedback strategy, so as to choose the optimal solution. The problem of
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high computation time cost of LDTW has been effectively solved in this algorithm,
which greatly reduces the computational overhead on the premise of ensuring the
accuracy of ACO LDTW calculation.

3.2 ACO LDTW algorithm

Based on the above analysis, ACO LDTW algorithm is proposed. Fig. 6 illustrates
the technical route of ACO LDTW.

Fig. 6 The technical route of ACO LDTW.
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Fitness function, state transition probability, limitation of the search area and
pheromone initialization and update mechanism are involved in the process of the
algorithm. ACO LDTW calculates distance matrix between sequences, and gen-
erates zero matrix, and obtains corresponding grid map. After setting the initial
parameters, the ant colony calculates the optimal path through fitness function and
state transition probability, then updates pheromone and iterates several returned
results.

3.2.1 State transition probability

Furthermore, considering the three constraint rules of LDTW, we limit the direction
of each ant walking area. As shown in Fig. 4, each ant can only select the next
access point in three grids at most. Traditional ACO algorithm usually uses the
following state transition probability to select the next access point [27]:

pkij(t) =


[τij(t)

α]·[ηij(t)β]∑
s⊂allowedk

[τis(t)
α]·[ηis(t)β]

, j ∈ allowedk

0, otherwise
, (4)

where pkij(t) is the probability of the ant k going to (i, j) in the t iteration; allowedk
is a set of three grids that ants can choose in the next step. τij (t) is the pheromone,
and ηij (t) is the heuristic factor. In this algorithm, the factor is the reciprocal
of the distance between the corresponding points in the two sequences. The α
and β are constants. The former is the weighted value of pheromone factor and
the latter is the weighted value of heuristic factor. In this research, the state
transition probability of the original ACO algorithm is improved to the dynamic
state transition probability. LDTW searches for the optimal path according to the
minimum of the three adjacent grids. If only the original state transition probability
is used, the optimal path cannot be found effectively. Therefore, by generating a
0-1 uniform random number rand() and a parameter p, when rand() > p, the next
access point is selected with the original state transition probability from Eq. (8).
Otherwise, the next access point is selected with a smaller value in the accessible
grid. The parameter p increases with time, and this paper mainly adopts the
incremental operator in bat algorithm [28]:

pt+1 = p0 [1− exp (− γt)] , (5)

where here γ is a constant and takes 0.9; p0 is usually limited to the range [0, 1].
It should be noted that with the passing of computing time, the parameter p will
get closer to p0. In the early stage, the cells are selected mainly according to the
original state transition probability, which ensures that the previous search has
randomness. And in the later stage, the cells with smaller values in the adjacent
grid are selected, which accelerates the convergence speed.

3.2.2 Fitness function

There are some differences in the application background between the ACO and
LDTW. Based on the grid map, the fitness function of ACO is usually to find
the shortest path from the starting point to the end point. Therefore, when the
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algorithm searches for a path in the grid map, the length of the path is converted
into the corresponding grid value. The fitness function is designed as follows:

F (Sk) =

n∑
i=1

dist(i), (1 < n ≤ LUB + 1), (6)

where Sk is a solution formed by the ant k going to the target position, dist(i) is
the value of the i-th grid passed by the ant k, and the value is the distance between
the corresponding points in the two sequences. n is the total number of grids in
the path solution.

3.2.3 Limitation of the search area

The step length in LDTW limits the range of bend path and avoids pathological
alignment problem. Eq. (3) shows that LDTW is calculated recursively from the
point (r, c) to (1, 1), and the step length cannot exceed the maximum step size. In
this study, the distance matrix is mapped to a 0-1 matrix in a grid map, and then
the optimal path is searched by the algorithm proposed in this research. When
the dimension is too large, the calculation efficiency of LDTW will be significantly
reduced. In order to improve the computation efficiency, this algorithm combines
the step length to restrict the search area of ants in a grid map. Therefore, for data
with a large number of dimensions, the search area can be restricted to a hexagon
by Eq. (7).

L = ceil [(Nstep max −Ndim)× ε] , (7)

where Nstep max is the maximum step, Ndim is the dimension, ceil[] is rounded
towards plus infinity, L is the two sides of the search area. As shown in Fig. 7, the
searchable area is limited to a hexagon by a black barrier.

Fig. 7 Mapping from a distance matrix to a grid map.
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The coefficient ε controls the scope of the search area, and the increase or
decrease of the coefficient leads to the increase or decrease of the search range. In
order to discuss the value range of the coefficient, the first dataset of Synthetic
Control with a dimension of 60× 60 in the fifth part is selected, and the maximum
step is 72. Set ε to a different value, and search with ACO LDTW. After calculating
the iteration 100 times, the effect obtained is shown in Fig. 8.

(a) ε = 0.4. (b) ε = 0.3.

(c) ε = 0.2. (d) ε = 0.1.

Fig. 8 Influence diagram of ε on search area.

The searchable range is limited to a narrow area in the middle by a black grid,
the red line represents a search solution, which is 0.4, 0.3, 0.2, and 0.1 in Fig. 8(a–
d), respectively. It can be seen that when the value of ε is large, the search range
is also large, the algorithm cannot effectively converge to the optimal solution, and
in the obtained result, the step size has exceeded the maximum steps; and the
value of ε is too small, the search range getting smaller, leading to the omission of
some good solutions. Therefore, ε is 0.2 in this research, which not only meets the
limited steps of LDTW but also improves the computational efficiency of the ACO
algorithm by narrowing the search area.

12
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3.2.4 Pheromone initialization and update mechanism

In addition, the ACO algorithm itself has some defects, such as falling into local
optimum, resulting in slow convergence. These defects are mainly reflected in the
related operations of pheromone. In the initialization of pheromone, traditional
ACO algorithm such as the MAX-MIN Ant System (MMAS) [29] initializes the
pheromone of each location to a constant c, which results in the decrease of the
search rate in the early stage. Therefore, in order to make the algorithm search
on the diagonal line as far as possible in the early stage, the pheromone on the
diagonal line is initialized to a constant c, and the pheromone content of the rest
is randomly selected in [0, c].

However, when the algorithm is running, the ant colony prefers to choose areas
with high pheromone, and it is easy to ignore areas with low pheromone. Espe-
cially, the updating operation of the original ACO algorithm will make pheromone
difference in different areas become larger and larger, leading to partial optimality
and even stagnation.

In order to solve this problem, this paper adopts an optimal path update opera-
tion proposed by Ning J [30]. In this method, the hybrid enhanced pheromone up-
dating mechanism is used to reduce the local optimal solution, and the pheromone
smoothing mechanism is used to solve the stagnation problem. Subsequently, the
pheromone values on this path are processed as follows:

τ2 = ρ ∗ (τmax − τ1), (8)

where τ1 is the current pheromone value on the stagnant path; τ2 is the pheromone
value processed by the smoothing mechanism; ρ is the pheromone evaporation
coefficient, taking ρ = 0.1. If the algorithm is in the middle of the calculation,
there is a stagnation phenomenon, which uses Eq. (8) to smooth the path.

The hybrid enhanced pheromone update mechanism is introduced to update
pheromones:

τij ← (1− ρ)τij + ∆τbestij + ∆τ ibestij , (9)

where ∆τbestij denotes the total number of pheromones on the current optimal path

and ∆τ ibestij denotes the pheromone increment generated by the new optimal path,
which expands the search space. When the new path is superior to the current
optimal path in this iteration, we add ∆τ ibestij to the pheromone update equation;
otherwise, the pheromone update is performed according to the original pheromone
update equation.

∆τ ibestij =

{ 1
F (Sibest)

if 〈i, j〉 ∈ Sibest

0 otherwise
, (10)

where F () is the fitness function and Sibest is the iterative optimal solution set.
When the algorithm approaches a defined stagnation state, the pheromone matrix
is reinitialized by a new pheromone smoothing mechanism to balance the concentra-
tion difference of pheromones. To balance the pheromone concentration difference
of the path, it helps ants to continue the search as it approaches stagnation.

The concrete steps of the ACO LDTW algorithm are as follows.
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Algorithm 1 Algorithm ACO LDTW.

Input
sequence X = {x1, x2, · · · , xi, · · · , xI}
sequence Y = {y1, y2, · · · , yj , · · · , yJ}
Fitness evaluation function: F()
Incremental factor: p = p0

Initial iterations: iter = 1
Maximum iterations: K

Output
Sbest : the optimal solution
Lstep: the length of the optimal solution

Begin
Computing grid map: Converting sequence X and Y into distance matrix shown in (1),
generating zero matrix of the same dimension as distance matrix, using (7) limiting the
zero matrix to 0-1 matrix, the grid map is obtained.
ACO algorithm parameter initialization: ηij is the heuristic factor. The constant α is
the weighted value of the pheromone factor, and the constant β is the weighted value of
the heuristic factor. Pheromone content on the counter-diagonal in grid map is τ∗ij = c,
and the pheromone content in other locations is between 0 and c: τij = c× rand().
while iter <= K do

// iter is the number of iterations, K is the maximum number

// of iterations.
for k do do

// ant k
if rand() > p then

// rand() is the uniform random number generated between

// 0 and 1.
Ants choose the location to be transferred on a grid map by (4).

else
Select the corresponding minimum grid in the grid map as the next transfer
location.

end if
Record the transfer position with the array Path[] until it moves to the target
position, forming a complete solution Skand a complete route Pathk

if F (Sk) < F (Sbest) then
Sbest ← Sk

Pathbest ← Pathk

end if
end for
τij ← update pheromone generated by (9) and (10)
if the search process approaches a defined stagnation state [29] then

Smoothing the pheromone on the stagnant path by (8)
end if
Increase p by (5)
iter = iter + 1

end while
return Sbest, Step = length

(
Pathbest

)
− 1

End

14
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4. Results and discussion

Grey incidence analysis (GIA) [31] is an important research area in grey theory. It
can effectively deal with a little sample, incomplete information. Grey incidence
degree (GID) is the calculation basis of GIA, which can decide the incidence ac-
cording to the geometry curve between sequences. The closer each sequence curve
approaches, the bigger the incidence degree of the corresponding sequence is. The
main purpose of DTW is to measure the similarity between numerical sequences.
Consequently, in this section, case experiments are used to evaluate the perfor-
mance of the LDTW method as a distance measurement by calculating the GID.

Given sequences X0 = {x0(1), x0(2), . . . , x0(m)} and Xi = {xi(1), xi(2), . . . ,
xi(n)}, ACO LDTW(X0, Xi) is LDTW distance between X0 and Xi. Then GID-
LDTW is defined as follow:

γ(X0, Xi) =
minmminn|x0(t0)− xi(ti)|+ ξmaxmmaxn|x0(t0)− xi(ti)|
ACO LDTW(X0, Xi)/λ+ ξmaxmmaxn|x0(t0)− xi(ti)|

. (11)

In Eq. (11), 1 < ti ≤ m, 1 < tj ≤ n and ξ is the distinguishing coefficient and
λ is the path length corresponds to ACO LDTW(X0, Xi). In general, usually set
ξ ∈ [0, 1], this paper uses ξ = 0.5.

In the case, China’s GDP of various industries from 2001 to 2005 (Tab. I, X0

represents the GDP value, X1 represents the primary industry value, X2 represents
the secondary industry value, X3 represents the tertiary industry value) is adopted.

Sequence 2001 (U100 billion) 2002 2003 2004 2005

X0 109.7 120.3 135.8 159.9 183.1
X1 15.5 16.2 17.1 21 23.1
X2 49.5 53.9 62.4 73.9 87
X3 44.6 50.2 56.3 65 73

Tab. I China’s GDP and the different industry output from 2001 to 2005 (unit,
U100 billion).

4.1 Equal length sequences

GID models between X0 and X1, X2, X3 is calculated, respectively and the results
of GID-ACO LDTW are compared with other GIDs. The steps are as follows:

1. Calculate the initial images of the original and zero images of start point:

X
′0
0 = (0, 0.0966, 0.2379, 0.4576, 0.6691),

X
′0
1 = (0, 0.0452, 0.1032, 0.3548, 0.4903),

X
′0
2 = (0, 0.0444, 0.2606, 0.4929, 0.7576),

X
′0
3 = (0, 0.1256, 0.2915, 0.4574, 0.6368).
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2. Calculate the distance matrix between sequences. The corresponding LDTW
distance and warping path length (λ) are calculated. The result is shown in
Fig. 9(a–c).

According to Fig. 9(a–c) and Eq. (11), we can get the GID of the sequences
based on ACO LDTW (ξ = 0.5):

γ(X0, X1) =
0 + 0.5× 0.6691

0.3802/6 + 0.5× 0.6691
= 0.8407,

γ(X0, X2) =
0 + 0.5× 0.7576

0.1542/5 + 0.5× 0.7576
= 0.9250,

γ(X0, X3) =
0 + 0.5× 0.6691

0.0859/5 + 0.5× 0.6691
= 0.9510.

(a)
ACO LDTW(X0, X1) = 0.3801, λ = 6

(b)
ACO LDTW(X0, X2) = 0.1542, λ = 5

(c)
ACO LDTW(X0, X3) = 0.0859, λ = 5

Fig. 9 Distance matrix of sequences with equal length and ACO LDTW distance.
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3. Performance comparison. Compared with five GID models, it can be clearly
shown that the results of Deng’s GID, Relative GID, GID-DTW, and GID-
ACO LDTW are more similar, but Absolute GID has an obvious mistake, as
is shown in Tab. II.

Sequence
Deng’s Absolute Relative

GID-DTW
GID-ACO

GID GID GID LDTW

(X0, X1) 0.5664 0.5488 0.8837 0.8071 0.8407
(X0, X2) 0.7875 0.7456 0.9725 0.9250 0.9250
(X0, X3) 0.8546 0.7112 0.9889 0.9510 0.9510

Tab. II The GID result using different methods between same-length sequences
with X0.

From Tab. II, Deng’s GID, Relative GID, GID- DTW, and GID-LDTW are
consistent with the conclusion of qualitative analysis (according to the rank-
ing of industrial value from high to low, it is the third industry, the second
industry and the first industry in turn.). Thus, it can be obtained that GID-
ACO LDTW has reliable performance when the sequence length is consistent.

4.2 Unequal length sequences

In order to evaluate the performance of different GID models when there are missing
sequences data (or unequal length sequences), partial missing processing (shown in
Tab. III) is carried out on the sequence data (from Tab. I).

Sequence 2001 (U100 billion) 2002 2003 2004 2005

X0 109.7 120.3 135.8 159.9 183.1
X1 15.5 16.2 17.1 21 23.1
X2 49.5 – 62.4 73.9 87
X3 44.6 50.2 – 65 73

Tab. III China’s GDP and the different industry output from 2001 to 2005 (partial
missing, unit: U100 billion).

1. Calculate the initial images of the original and zero images of start point:

X
′0
0 = (0, 0.0966, 0.2379, 0.4576, 0.6691),

X
′0
1 = (0, 0.0452, 0.1032, 0.3548, 0.4903),

X
′0
2 = (0, 0.2606, 0.4929, 0.7576),

X
′0
3 = (0, 0.1256, 0.4574, 0.6368).
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2. Calculate the distance matrix between sequences; the numbers marked on
each cell indicates the number of possible steps to that cell (shown in brack-
ets) and calculate the corresponding ACO LDTW distance and warping path
length (λ). The result is shown in Fig. 10(a–c).

According to Fig. 10 and Eq. (11), we can obtain GID of the sequences based
on ACO LDTW (ξ = 0.5):

γ(X0, X1) = 0.8407; γ(X0, X2) = 0.8863; γ(X0, X3) = 0.9058

(a)
ACO LDTW(X0, X1) = 0.3801, λ = 6

(b)
ACO LDTW(X0, X2) = 0.2431, λ = 5

(c)
ACO LDTW(X0, X3) = 0.1738, λ = 5

Fig. 10 Distance matrix of sequences with unequal length and ACO LDTW dis-
tance.

3. Performance comparison. Because Deng’s GID, Absolute GID, and Relative
GID require sequences with the same length, the mean value method is used
to fill in the missing data.
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Sequence
Deng’s Absolute Relative

GID-DTW
GID-ACO

GID GID GID LDTW

(X0, X1) 0.5664 0.5488 0.8837 0.8071 0.8407
(X0, X2) 0.8226 0.7367 0.9851 0.8863 0.8863
(X0, X3) 0.7297 0.7164 0.9805 0.9058 0.9058

Tab. IV The gid result using different methods with unequal length sequences and
X0.

As shown in Tab. IV, when the length of the sequence is not equal, artificial
complement has a great impact on the final analysis conclusion. In this
situation, the result of GID-ACO LDTW is consistent with the conclusion of
qualitative analysis. However, all of Deng’s GID, Absolute GID and Relative
GID all have made erroneous judgement. Therefore, GID-ACO LDTW is
more adaptive than other methods.

4.3 1NN (1-Nearest Neighbor, 1NN) classification

In this section, based on the 1NN classification experiment [17], the performance
of ACO LDTW as a distance measure is evaluated to effectively solve the problem
that the calculation time of LDTW is too long.

In order to compare with LDTW conveniently, the same data sets as those
in the literature [18] are also selected. Experiments are carried out on twenty-
two datasets from UCR time series classification archive [32]. It mainly includes
real-time series datasets and some synthetic datasets collected from various fields.
Tab. V summarizes the basic information of all the datasets, such as the number
of classes, the size of the training set, the size of the test set, and the length of the
time sequence. The number of classes is from 2 (such as Gun-Point and Wafer) to
50 (50Words). The length of time series ranges from 60 (Synthetic Control) to 637
(Lightning-2).

The relevant parameters of ACO LDTW are set as follows: α represents the
weight of the pheromone factor of the state transition probability, and is usually
set to 2; β represents the weight of the heuristic factor, and is usually set to 8. ρ is
the pheromone evaporation coefficient, and it is usually limited to the range [0, 1).
According to the parameter experiment in reference [30], ρ is set to 0.02.

In Tab. VI, the 1NN error rate of LDTW and the upper limit of the optimal
warping path length [17] have been given. We compare ACO LDTW with LDTW,
and the four most widely used distance metrics: Euclidean distance, naive DTW,
DTW under best Sakoe-Chiba band and DTW under best Itakura parallelogram.
From Tab. VI, it can be seen that ACO LDTW has the lowest error rate of 16
datasets among 22 datasets. In addition to Gun-Point, Face (all) and Lightning-
7, other datasets are consistent with LDTW. And the calculation time is shorter
than LDTW, which will be described in detail in the time complexity section.
These results prove the practicability of ACO LDTW. Because Euclidean distance
is based on a strict one-to-one matching method, there are some deviations in its
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Dataset
Number Size of Size of Time series
of classes training set testing set length

Synthetic Control 6 300 300 60
Gun-Point 2 50 150 150

CBF 3 30 900 128
Face (all) 14 560 1,690 131
OSU Leaf 6 200 242 427

Swedish Leaf 15 500 625 128
50Words 50 450 455 270

Trace 4 100 100 275
Two Patterns 4 1,000 4,000 128

Wafer 2 1,000 6,174 152
Face (four) 4 24 88 350
Lightning-2 2 60 61 637
Lightning-7 7 70 73 319

ECG 2 100 100 96
Adiac 37 390 391 176
Yoga 2 300 3,000 426
Fish 7 175 175 463

Plane 7 105 105 144
Car 4 60 60 577
Beef 5 30 30 470

Coffee 2 28 28 286
OliveOil 4 30 30 570

Tab. V The basic information of 22 datasets.

measurement results for time series. Time series are extended and shortened in
DTW to calculate the similarity between the two-time series. DTW allows points
in time series to be matched in equal length after self-replication, which overcomes
the problem that Euclidean distance cannot be matched because of time series
distortion. But DTW itself also has some problems. When matching a sequence,
one point in the sequence corresponds to several points in the other sequence, which
leads to deviation from the diagonal line too far, so there are deviations in the
application results of 1NN. Aiming at this problem, DTW under best Sakoe-Chiba
band and DTW under best Itakura parallelogram are the two most widely used
constrained window shape methods, the range of curved paths is rigidly limited
in them, thereby the curved path from deviating is avoided too far. Although the
problem of pathological alignment is avoided in this mandatory setting, there are
cases where the correct match is missed, resulting in unsatisfactory results in the
operation of 1NN. Unlike the two methods mentioned above, LDTW specifies how
many connections are allocated to each data point and where these links are placed
by a softer constraint than windowing constraint, instead of setting a rigid limit.
As a result, it allows more flexibilities and avoids the risk of missing the correct
alignment. From the experimental results, it can be seen that the application of
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1NN classification works well. However, the computation time cost of LDTW is
very high. On the premise of ensuring the accuracy of 1NN classification, the
linear recursive computing mechanism of ACO LDTW is replaced by the positive
feedback mechanism of information and the parallel computation of ant colony
optimization based on a grid map, so as to reduce the computation time cost.

A pairwise comparison of the 1NN error rate between ACO LDTW and the
other five methods in Fig. 11(a–e). One polyline is formed by the 1NN error rate
of ACO LDTW on different datasets, and the other represents other comparison
methods. Among them, the closer the point is to the center of the circle, the
smaller the error rate is, and vice versa. As we can see, most of the points in the
ACO LDTW method are closer to the center point of the circle, indicating that its
effect is still better. On each graph, the number of ACO LDTW closer to the center
of the circle and the number of other contrast methods closer to the center of the
circle is depicted, and the rest are the same number of distances from the center
of the circle. For example, in Fig. 11(a), ACO LDTW is superior to Euclidean
distance in 18 of 22 datasets, and is equal on 4 datasets, and is not inferior to
Euclidean distance on any dataset. These charts show intuitively the advantages
of ACO LDTW on various datasets.

4.3.1 Time complexity

Next, the time complexity of ACO LDTW is analyzed and the running time is
compared with other methods. LUB is the upper bound of the warping path in
ACO LDTW. The number of iterations of ACO LDTW is K, the number of ants
is M, and the time complexity is O(K ·M · LUB).

In order to compare the running time of different methods, on the basis of the
1NN classification experiment, five different datasets are recorded for the corre-
sponding calculation time, and Fig. 12 shows the running time. It can be seen that
ACO LDTW has shorter computation time than LDTW. Because the dynamic ad-
justment of state transition probability ensures that the previous search is random,
the convergence rate is accelerated at the later stage. And the ants do not need
to find the optimal path in the whole grid map. By limiting the search scope, the
smaller the scope, the shorter the calculation time, it can greatly save computing
time.

4.4 Mechanical fault diagnosis

Furthermore, ACO LDTW is applied to the field of mechanical fault diagnosis
to verify the practical application ability. The bearing fault data of Case Western
Reserve University [33] is used to simulate single point faults at different parts of the
bearing by electric discharge machining grooving. This data is mainly through the
setting of different groove width: 0.007, 0.014, 0.021 (1 inch = 2.54 cm), to simulate
bearing slight fault, moderate fault, and serious fault. Six kinds of fault vibration
signals of the driving end vibration bearing with spindle speed 1772 rpm, load 1
HP and sampling frequency 12000 Hz are selected for analysis in this experiment,
including slight faults of outer ring, slight faults of inner ring, slight faults of rolling
body, moderate faults of inner ring, serious faults of inner ring and serious faults
of rolling body. The main experimental steps are as follows:
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(a) Comparison with Euclidean distance.

(b) Comparison with DTW.
(c) Comparison with DTW
(best Sakoe–Chiba band).

(d) Comparison with DTW
(best Itakura parallelogram).

(e) Comparison with LDTW.

Fig. 11 Comparison of 1NN error rates between ACO LDTW and five competitors.

Step 1: In each fault state, 50 sets of samples are taken, each sample with 2048
points, 20 of which are used as training samples, and the remaining 30 are used as
test samples;
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Fig. 12 Running time of 1NN classification on five different datasets.

Step 2: 24 time-frequency domain statistical characteristics are extracted from
the vibration signal of each sample [34].

Step 3: Use the support vector machine (SVM) to classify the above samples.
First, the Gauss kernel function (RBF) is used as the kernel function in SVM, and
its expression is as follows:

K
(
Xi, Xj

)
= exp

[
−‖Xi −Xj‖2

2∂2

]
. (12)

Step 4: ‖Xi −Xj‖2 used to calculate the similar distance between samples in

Eq. (12). To verify the validity of the algorithm ‖Xi −Xj‖2 is replaced by ACO LD-
TW(Xi, Xj) to calculate the similar distance;

Step 5: Because the kernel parameter (δ) and penalty factor (C) have great
influence on its classification performance, the algorithm is used to optimize the
parameters of SVM [35]. The original Gaussian kernel function and the replaced
kernel function are used to adjust the parameters to get the optimal classification
accuracy.

The convergence curves of classification accuracy for two kernel functions are
shown in Fig. 13(a, b).

As can be seen from the above diagram, compared with RBF kernel function,
the improved kernel function can effectively improve the classification accuracy, the
average accuracy rate reached 99.1667 %, reflecting that the algorithm has a useful
application prospect in practical engineering problems. The similarity distance in
the improved kernel function brings the idea of LDTW into the grid map. The
most important feature of LDTW is that it limits the length of the warping path,
effectively reduces pathological alignment, and ensures the accuracy. But when us-
ing this improved kernel function to classify, we need to use ACO LDTW calculate
the similarity distance between sequences first. Compared with using RBF kernel
function, it brings some calculation costs.
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%

(a) RBF kernel function.

(b) Improved kernel function.

Fig. 13 Comparison of convergence curves.

4.5 Discussion

From the above experiments, it can be seen that ACO LDTW, as a basic method of
similarity metrics, maintains better processing accuracy in data prediction (equal or
unequal length sequences) and classification processing after combining with other
data mining models. In additional, in terms of time complexity, although there is
a certain increase compared with DTW, and a significant decrease compared with
LDTW, which is conducive to the further application of LDTW.
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5. Conclusions

In this paper, the intelligent heuristic search mechanism of ant colony algorithm is
introduced to LDTW to divide the complex data mining tasks to several parallel
sub tasks. Compared with LDTW and other similarity measurement methods,
ACO LDTW has the same accuracy with LDTW on most datasets and is superior
to other methods. At the same time, the calculation time is less than LDTW.
ACO LDTW is suitable for data mining application scenarios that need large-scale
data analysis, such as industrial manufacturing and Internet of things. It can meet
the requirements of high time efficiency.

In the future, as ACO LDTW may fall in the local optimal solution, the opti-
mal solution obtained by ACO LDTW will may be not the best. Enhancing the
algorithm’s global searching capability will be the main goal of the next stage.
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