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Abstract: The subcellular localization of proteins is an essential characteristic
of human cells, which plays a vital part in understanding distinct functions and
cells’ biological processes. The abnormal protein subcellular localization affects
protein functionality and may cause many human diseases ranging from metabolic
disorders to cancer. Therefore, the prediction of subcellular locations of the proteins
is an important task. Artificial neural network has become a popular research
topic in machine learning that can achieve remarkable results in learning high-
level latent traits. This paper proposes a deep neural network (DNN) model to
predict the human protein subcellular locations. The DNN automatically learns
high-level representations of abstract features and proteins by examining nonlinear
relationships between different subcellular locations. The experimental results have
shown that the proposed method gave better results compared with the classical
machine learning techniques such as support vector machine and random forest.
This model also outperformed the similar model, which uses stacked auto-encoder
(SAE) with a softmax classifier.
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1. Introduction

The protein subcellular localization (PSL) prediction relies heavily on handcrafted
feature descriptors to specify proteins. Predicting the subcellular localization of a
protein is a critical task in bioinformatics studies, and the protein function relies
upon the compartment or organelle in which it is located because it affords a
physiological context for its purpose [1, 2]. Drug development, therapeutic target
identification, the study of protein function, and biological data research require
an understanding of subcellular localization of proteins [3].
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In the past decade, many researchers have focused on extensive applications
of many sequencing analysis techniques. These sequencing technologies generate a
large amount of data. This generated data is collected and analyzed with various
data analysis pipelines, which are used to identify diseases and perform sample
classification between different disease phenotypes for diagnostic and prognostic
purposes [4]. In this advanced era, facing such vast numbers of sequences, their PSL
experimental conclusions are extraordinarily ineffective and costly. Therefore, fast,
flexible, and memory-efficient computational methods are required to approach
these problems. In recent years, many computational methods have been proposed
for the prediction of PSL. Many of these analysis pipelines consist of tools, which
use machine learning algorithms in conjunction with various feature representations
to provide predictions [5, 6].

Most of the machine learning techniques for subcellular localization prediction
models are classified into two types: (1) sequence-based and (2) annotation-based;
The sequence-based models employ the information of the primary protein se-
quences, and the annotation-based models use most of the homology information
from different types of annotation including gene ontology (GO). These terms hold
the knowledge of cellular elements and molecular functions of genes [7,8]. Although
many machine learning techniques are proposed to improve localization prediction
accuracy, feature representation has still become a research challenge, which re-
quires handcrafted designation [9].

In the past few years, deep learning has shown the capability to learn useful
feature representations from the input data automatically. Based on depth, ar-
tificial neural networks (ANNs) can be broadly classified into two types: shallow
networks and deep networks. The networks with more hidden layers are more ca-
pable of learning complex nonlinear relationships between input and output [22].
ANNs with more than one hidden layer in their architecture is called deep neural
networks (DNNs). The DNNs have multiple layers between the input and output
layers, which is highly potential in efficiently describing the linear, nonlinear, and
complex relationships [10]. Moreover, deep learning has been applied in many fields
of computational biology. For example, in [12, 13], deep learning was applied to
predict eukaryotic PSL.

The authors Wen et al. [11] designed a deep learning-based framework for the
prediction of drug-target interaction. Further, the authors in [14] used deep neural
networks such as LeNet, ALEXNET, and VGG16 for underwater acoustic signal
processing. In writings, an embedding-based method is presented for predicting the
subcellular localization of proteins [25]. On the other hand, the authors in [26] pre-
sented a critical evaluation of web-based prediction tools against the same bench-
mark data set for human protein subcellular localization. The authors Sitao et
al. [27] designed a tunable recognition unit and developed an aptamer-based near-
infrared (NIR) light-responsive nanoplatform for manipulating the subcellular lo-
calization of specific proteins in their native states. Furthermore, the authors Yijie
et al. [28] proposed a fuzzy support vector machine based on kernelized neighbor-
hood representation (FSVM-KNR) to predict the subcellular localization of protein.
Moreover, the authors Xin et al. proposed a deep protein subcellular localization
predictor, consisting of a linear classifier and a deep feature extractor of convolu-
tion neural network (CNN) [29]. In this approach, the deep CNN feature extractor
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is first shared and pre-trained in a deep gene ontology annotation predictor, and
then is transferred to the subcellular localization predictor with fine-tuning using
protein localization samples. In this way, it enhanced the deep protein subcellular
localization predictor using transfer learning of GO annotation.

This paper proposes a deep neural network model for predicting and classifying
the localization sites of human proteins. The proposed work investigates existing
SAE performance, traditional techniques such as SVM and RF, and DNN in context
with the PSL dataset. It uses a multilayered neural network, which could overcome
few limitations of SAE. Fig. 1 shows a summary of the proposed workflow.

Fig. 1 Graphical representation of proposed workflow.

1.1 Roadmap

This paper is organized as follows: Section 2 provides the related work. The
dataset preparation and preprocessing details are explained in Section 3. Section
4 describes proposed model. Next, Section 5 provides the experimental results and
comparisons. Further, a detailed discussion is given in Section 6. Finally, Section
7 concludes the work.
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2. Related work

Auto encoder (AE) [19] is a type of neural network that learns to recreate the
input provided to the network. It achieves this by learning the mapping between
the input and output fed to the network, where the output of the network is the
input itself. The mapping is essentially a layer which ‘encodes’ the input in a
different dimension. The layers up to the encoding layer are collectively called
as an encoder, and the layers after the encoding layer up to the output layer are
collectively called as a decoder. The dimension of the encoding layer of an AE is
kept smaller than the input dimension. It is one of the methods for dimensionality
reduction. The learning process is almost similar to other neural network models,
with the exception that it employs unsupervised learning.

The AE encoder can be used to extract relevant low-level features of input since
it has already been trained in an unsupervised manner. This trained encoder can
further be used to train a different encoder of another AE. The decoder of AE is
only used to train encoders, and they do not take part in the final classification task.
The encoding layer of this new AE is of a smaller dimension than the encoding layer
of the previous AE. Similarly, a set of encoding layers are derived after training
multiple AEs. It is important to note that while training new AE for encoders with
encoding dimensions less than the previous AE, the input provided to the new AE
is the output of the previous encoder. These encoders are arranged in decreasing
order of their encoding dimensions and are fully connected to create a multi-layer
neural network. A fully connected softmax layer, which is a classifier with output
neurons, is connected to the output of the absolute encoder. The final classifier
network is then trained in a supervised manner using a backpropagation method
similar to other neural networks. This model is called as SAE because of the way
it is created.

3. Methods

This part briefly describes the methods used in the proposed work, such as dataset
preparation, preprocessing, and input feature representation.

3.1 Dataset preparation and preprocessing

For the dataset construction, a total of 11,898 human protein sequence data cov-
ering about 200 subcellular locations were collected from the famous UniProtKB
database1. The proposed method utilized the following top five locations after
counting the number of proteins at each site: membrane, nucleus, cytoplasm, cell
membrane, and secreted. Then, CD-HIT program [15] version-4 was applied to
exclude repetitive sequences by fixing the threshold to 0.7, whereas other param-
eters were set to default. By following the procedure in [12], the primary dataset
with 5,780 protein samples was retained. Tab. I describes the pattern details of
the protein subcellular locations and the 5 locations marked as five classes.

1https://www.uniprot.org/downloads
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Location Class label #Proteins

Nucleus 0 1504
Cytoplasm 1 1489

Cell membrane 2 753
Membrane 3 1619

Secreted 4 415

Total number of proteins: 5780

Tab. I Protein dataset details.

3.2 Input feature representation method

The proposed approach considers a popular feature descriptor based on protein
physicochemical properties to obtain features from the protein sequence data as
the input for the deep learning model. This robust feature representation captures
the following physicochemical properties holding the division of amino acids into
three different groups to represent peptide sequences [16]:

1. Hydrophobicity

• group-1 {RKEDQN}
• group-2 {GASTPHY}
• group-3 {CVLIMFW}

2. Normalized van der waals colume

• group-1 {GASCTPD}
• group-2 {NVEQIL}
• group-3 {MHKFRYW}

3. Polarity

• group-1 {LIFWCMVY}
• group-2 {PATGS}
• group-3 {HQRKNED}

4. Polarizability

• group-1 {GASDT}
• group-2 {CPNVEQIL}
• group-3 {KMHFRYW}

5. Charge

• group-1 {KR}
• group-2 {ANCQGHILMFPSTWYV}
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• group-3 {DE}

6. Surface tension

• group-1 {GQDNAHR}
• group-2 {KTSEC}
• group-3 {ILMFPWYV}

7. Secondary structure

• group-1 {EALMQKRH}
• group-2 {VIYCWFT}
• group-3 {GNPSD}

8. Solvent accessibility

• group-1 {ALFCGIVW}
• group-2 {RKQEND}
• group-3 {MPSTHY}

Using these properties, we elicited a collection of 188 useful features that rep-
resent the protein sequence based on amino acids (AAs) distribution with cer-
tain physicochemical properties [17, 18]. For each property, we assumed S =
P1, P2, P3, P4, . . . , PN represents a protein sequence, where Pi is the amino acid
in position i, and N denotes the number of amino acids, (i.e., sequence length).
The 20 amino acids can be expressed as follows.

AA = {A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y }. (1)

In the first step, the respective quantities of 20 AAs such as AA1, AA2, AA3, . . . ,
AA20 were calculated as m1,m2,m3, . . . ,m19,m20. By using these values to rep-
resent a specific protein sequence, the feature vector (FV )(1− 20) is denoted as:

(FV1, FV2, FV3, . . . , FV20) =
(m1

N
,
m2

N
, . . . ,

m20

N

)
, (2)

where N represents the sequence length, mi (i = 1, 2, 3, 4, . . . , 20) represents the

quantity of an AA in the protein sequence, and
∑20

i=1 FV i = 1.
Further, the peptide sequence is encoded by considering the AA composition of

the content(C), distribution (D), and bivalent frequency (F) of AAs as three aspects
of descriptors for each physicochemical property. The AAs descriptors were used
to describe the protein properties. For example, by considering hydrophobicity (H)
property:

• The AAs were classified as RKEDQN, GASTPHY, and CVLIMFW classes.
By utilizing the size of 3 classes (CH1, CH2, and CH3), the calculated FV (21−
23) as follows:

(FV21, FV22, FV23) =

(
CH1

N
,
CH2

N
,
CH3

N

)
. (3)
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• Then, the chain length is calculated as DHij(i = 1, 2, 3; j = 1, 2, 3, 4, 5),
wherein the first, 25 %, 50 %, 75 %, and 100 % of AAs chain belongs to a
specific property were located, respectively. Then the defined FV (24 − 38)
was denoted as follows:

(FV24, . . . , FV28;FV29, . . . , FV33;FV34, . . . , FV38) =

(
DH11

N
, . . . ,

DH15

N
;
DH21

N
, . . . ,

DH25

N
;
DH31

N
, . . . ,

DH35

N

)
.

(4)

• In the final step, the number of bivalent seeds were represented as (N −
1). Then counted the number of respective bivalent seeds that contain 2
AAs from various classes and obtained the defined FH1, FH2, and FH3

parameters as follows:

(FV39, FV40, FV41) =

(
FH1

N − 1
,
FH2

N − 1
,
FH3

N − 1

)
. (5)

All these 21 feature vectors were calculated for each property and finally extracted
all 188 feature vectors (i.e., 20 + (21 ∗ 8) = 188) after completing the complete
analysis of properties.

4. Proposed method

The proposed method comprises of three stages: 1. Model creation, 2. Model
training, and 3. Model testing.

4.1 Model creation

The proposed model has ten layers, including a 1-input layer, 8-hidden layers,
and 1-output layer. Fig. 2 shows the architecture of the proposed model. The
input layer has a dimension of 188 for the normalized float values of a sample
from the dataset processed during the data preprocessing step. All eight layers
are fully connected layers with dimensions of 256, 512, 1024, 2048, 512, 128, 64,
and 32. These hidden layers also employ dropout as a regularization method, and
the dropout probability used is 0.15. These layers use ReLU (Rectified Linear
Unit) [23] as an activation function. The output layer is a fully-connected layer
with five output neurons representing 5 class labels. It uses the softmax activation
function as given in Eq. 6 to normalize the outputs of these five neurons and
therefore give 5 class probabilities.

σ(x)j =
exj∑N

n=1 e
xn

, (6)

where x is the input vector to the output layer. j is the index ranging from 1 to
N.

The categorical cross-entropy loss function was used for the calculation of loss
in classification tasks. The method used for model optimization is Adam (Adap-
tive moment estimation) [24]. Adam is one of the latest algorithms in the family
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Fig. 2 Architecture of the proposed deep neural network model.

of optimizers for model training. It combines two powerful optimizers, namely:
RMSProp (Root Mean Square Propagation) and AdaGrad (Adaptive Gradient).
Unlike other optimizers, Adam uses a different learning rate for every parameter
in the network and then adjusts it along with the parameter as training proceeds.
The proposed model summary with a layerwise number of parameters is described
in Fig. 3.

4.2 Model training

The dataset is divided into two sets after random shuffling, with 80 % samples
belonging to the training set and 20 % samples belonging to the test set. The
corresponding training labels were converted to 5-dimensional vectors using the
one-hot encoding method. The model was trained using the training set for 250
epochs having a batch size of 500 samples.

4.3 Model testing

Testing is necessary for measuring the classification accuracy on a set of testing
data. The test set consisting of 20 % of the data was used to test the model. The
model was also tested with another reliable performance measure, such as the k-fold
cross-validation method.
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Fig. 3 The proposed model summary with layer wise number of parameters.

5. Results

The proposed model is implemented in Python version 3, using Keras with Ten-
sorFlow backend and Scikit Learn. The average results were taken after executing
the models ten times. The obtained proposed model’s training and testing accu-
racies are 49.58 % and 45.24 %. Furthermore, k-fold cross-validation with k = 3
and k = 5 were used to evaluate the model. Mean 3-fold cross-validation accu-
racy of the model was 45.78 % with a standard deviation of 0.44 and mean 5-fold
cross-validation accuracy of the model was 45.76 % with a standard deviation of
0.51.

The other model used to compare the proposed model’s performance on the
dataset is the SAE classifier used in DeepPSL [12]. The proposed model showed
better results when compared with DeepPSL. This model had a training and testing
accuracy of 45.13 % and 44.64 %, respectively. The mean k-fold (k = 3) validation
accuracy came out to be 45.73 % with a standard deviation of 0.85, and the mean
k-fold (k = 5) validation accuracy came out to be 45.74 % with a standard deviation
of 0.44.

The proposed model was also compared with two other traditional machine
learning methods. At first, random forest (RF) with bootstrapping and a maxi-
mum depth of six were used to perform the dataset classification. The accuracy
obtained for the training set was 12.59 %, and for the testing set was 10.47 %. The
obtained mean k-fold (k = 3) validation accuracy was 9.72 % with a standard de-

37



Neural Network World 1/2021, 29–45

viation of 0.33, and the mean k-fold (k = 5) validation accuracy was 9.83 % with a
standard deviation of 0.31. The other method used was the support vector machine
(SVM) with RBF (radial basis function) kernel. Its accuracy for the training set
is 33.41 %, and for the testing set is 36.07 %. The mean k-fold (k = 3) validation
accuracy is 29.07 % with a standard deviation of 0.07, and the mean 5-fold cross-
validation accuracy is 31.31 % with a standard deviation of 0.45. Tab. II shows the
classification results summary, and Fig. 4 visualizes the comparison of results. The
performance of the classifier models was evaluated after getting the true positive
(TP), false positive (FP), true negative (TN), and false negative (FN) values. The
formulae to calculate the performance measures are as follows:

Precision =
TP

TP + FP
, (7)

NPV =
TN

TN + FN
, (8)

Recall =
TP

TP + FN
, (9)

Specificity =
TN

TN + FP
, (10)

FPR =
FP

TN + FP
, (11)

Accuracy =
TP + TN

TP + TN + FP + FN
, (12)

f1− score = 2 ∗ precision ∗ recall
precision+ recall

. (13)

Tab. III depicts the confusion matrix of the test data for the proposed model.
In Tabs. IV, V and VI, the confusion matrices, precision, recall, f1-score, and
support of the test data for SAE, SVM, and RF models were displayed, respectively.
Support represents the number of samples present in test data. Moreover, the area
under curve (AUC) is also calculated, which is the trade-off between sensitivity
and specificity and provides a valuable parameter for comparing test performance.
In Tab. VII the details of sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), false positive rate (FPR), and AUC of classifier
models for a single test run were displayed.

6. Discussion

The SAE method was applied in DeepPSL [12] for the classification of PSL with ten
classes. For a comparison between models, this method is applied to our dataset
with 5 classes. The number of AEs is not mentioned in [12]. However, for our
dataset, which has 188 input dimensions, two AEs were trained successively to
derive two encoders. Moreover, dropout [20] was used as regularizer in all the
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Fig. 4 Comparision of results using different performance measures.

layers constructed in the SAE. We used 0.15 as dropout probability. The encoders
were then connected, and a fully-connected softmax output layer was connected to
the output of the second encoder. This final layer was trained to create an SAE
classifier with multiple layers. The whole training process visualized in Fig. 5.

The DeepPSL model used SAE as a feature extraction method, which is com-
bined with a classifier at the last layer to perform classification. The number of

Fig. 5 Training process of Stacked Auto Encoder using two Auto Encoders.

42



Samson A.B.P., Chandra S.R.A., Manikant M.: A DNN approach to predict. . .

hidden layers constructed with SAE is equal to the number of AEs used in con-
structing the model. In our SAE implementation, we used two AEs (i.e., two
hidden layers) for this purpose. However, the layers were individually trained.
The proposed model has eight hidden layers, and that can learn more complex
input-output relationships provided the number of epochs, batch size, and other
hyperparameters is appropriately set. As shown in Fig. 3, the convergence of the
proposed model is comparatively slow and requires many parameters (weights).

The data used in the proposed work has data points with 188-dimension size.
However, the paper [12] uses a 588-dimension input size and has a number of
instances= 13978. Therefore, the SAE used in the proposed work is undoubtedly
different from the one used by the authors of the paper [12]. Furthermore, the
proposed work dataset has five classes compared to 10 classes in the paper [12].
However, the dataset used should not affect the generalizability of the model used.
It established that the proposed work model for simulating DeepPSL (SAE) is
different from the SAE used in the proposed work. The dimensions of the SAE
model used in the proposed work as follows. An AE of a single layer with a latent
dimension of 80 and input/output dimension of 188 is used using the process as
discussed before to create the first layer of the model. The next layer of dimension
16 is created similarly, followed by the softmax layer of dimension 5. Number of
parameters (weights and bias) are as follows:

• The network has (188 ∗ 80 + 80 ∗ 16 + 16 ∗ 5) weights + (80 + 16 + 5) bias =
16501 parameters.

Moreover, the proposed work investigates the performance of SAE, traditional
techniques such as SVM and RF, and Deep Neural Networks in context with the
PSL dataset. The results of the experiments provide clarity on their classification
performance. Upon comparing the results, the following two limitations of SAE
are found, which affects its performance:

• The layer-wise pre-training of the SAE is done in an unsupervised manner,
and therefore label of any given instance in the dataset is not used for feature
learning.

• The learned features are indiscriminative, and it affects the classification
accuracy.

The proposed work uses a multilayered neural network that is devoid of the limi-
tations mentioned above of SAE.

7. Conclusion

This paper proposed a DNN model that automatically learns high-level represen-
tations of abstract input features and predicts the human protein subcellular loca-
tions. The proposed method extracts 188 features for 5,780 proteins and attempted
to classify them into five different categories. The proposed method is evaluated,
and the results are compared with the DeepPSL model and traditional machine
learning techniques: SVM and RF. The proposed method’s performance showed
better results due to its usage of more layers and less complexity than the existing
DeepPSL model, which uses SAE with a softmax classifier.
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