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Abstract: A boundary vector generator is a data barrier amplifier that improves
the distribution model of the samples to increase the classification accuracy of the
feed-forward neural network. It generates new forms of samples, one for ampli-
fying the barrier of their class (fundamental multi-class outpost vectors) and the
other for increasing the barrier of the nearest class (additional multi-class outpost
vectors). However, these sets of boundary vectors are enormous. The reduced
boundary vector generators proposed three boundary vector reduction techniques
that scale down fundamental multi-class outpost vectors and additional multi-class
outpost vectors. Nevertheless, these techniques do not consider the interval of the
attributes, causing some attributes to suppress over the other attributes on the Eu-
clidean distance calculation. The motivation of this study is to explore whether six
normalization techniques; min-max, Z-score, mean and mean absolute deviation,
median and median absolute deviation, modified hyperbolic tangent, and hyper-
bolic tangent estimator, can improve the classification performance of the boundary
vector generator and the reduced boundary vector generators for maximizing class
boundary. Each normalization technique pre-processes the original training set be-
fore the boundary vector generator or each of the three reduced boundary vector
generators will begin. The experimental results on the real-world datasets gener-
ally confirmed that (1) the final training set having only FF-AA reduced boundary
vectors can be integrated with one of the normalization techniques effectively when
the accuracy and precision are prioritized, (2) the final training set having only the
boundary vectors can be integrated with one of the normalization techniques effec-
tively when the recall and F1-score are prioritized, (3) the Z-score normalization
can generally improve the accuracy and precision of all types of training sets, (4)
the modified hyperbolic tangent normalization can generally improve the recall of
all types of training sets, (5) the min-max normalization can generally improve the
accuracy and F1-score of all types of training sets, and (6) the selection of the nor-
malization techniques and the training set types depends on the key performance
measure for the dataset.
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1. Introduction

Machine learning, a computerized learning method, automates analytical model
building without following step-by-step algorithms. Supervised learning is one of
the categories of machine learning tasks. A computing unit is presented with the
inputs and the preset outputs. The goal is to learn a rule that maps the inputs
to corresponding outputs. Example supervised learning models include artificial
neural network, k -nearest neighbor algorithm [1], näıve Bayes classifier [2], and
support vector machine [3]. Artificial neural network (ANN) is widely used in
many real-world applications that involve pattern identification, regression analysis,
classification, data processing. A feed-forward neural network (FFNN) is an ANN
wherein connections in consecutive layers between the neurons never form a cycle.
Factors influencing the accuracy of this class prediction model include the training
parameter adjustment and the quality of the training set. Regarding the training
parameter adjustment, the neural network repeatedly adjusts the weights between
consecutive neurons to reduce the value of the error function by some small amount.
Relating to the quality, the representativeness of the training set is a necessary
condition for an excellent neural network generalization.

Many techniques were proposed to improve the distribution model of the data
by assisting the neural network to classify the problem that is linearly separable
non-linearly. Researches [4–6] are based on barrier detection. Researches [7, 8] are
based on cluster centroid detection. Nevertheless, these techniques do not conserve
the distribution model of the samples accurately. Multi-class contour preserving
classification (MCOV generator) [9] is a data barrier amplifying technique based on
Euclidean distance function that generates the boundary vectors to help preserve
and improve the distribution model of the samples for the FFNN. It generates two
forms of boundary vectors; one for amplifying the barrier of their class (funda-
mental multi-class outpost vectors) and the other for increasing the barrier of the
nearest class (additional multi-class outpost vectors). Nevertheless, the number of
generated fundamental multi-class outpost vectors and additional multi-class out-
post vectors in the training set is tremendous, resulting in significantly prolonged
training time. Reduced multi-class contour preserving classification (RMCOV
generators) [10] adapted [9] by scaling down the sets of fundamental multi-class
outpost vectors and additional multi-class outpost vectors. It proposes three re-
duced boundary vector generators to scale down these sets of boundary vectors; (1)
FAF-AFA reduced boundary vector generator (FF-AA RMCOV), (2) FF-AF re-
duced boundary vector generator (FF-AA RMCOV), and (3) FA-AF reduced bound-
ary vector generator (FAF-AFA RMCOV), that apply one-to-rest strategy.

When the boundary vector generator and the reduced boundary vector gener-
ators were applied to the real-world datasets, the problem regarding the attribute
intervals and units was encountered. It is known that real-world datasets occa-
sionally have multiple attributes. Some attributes have smaller intervals and units
than others. Expressing the attributes in imbalanced intervals and measurement
units may give some attributes a stronger weight or effect than the others on the
Euclidean distance calculation. In other words, these attributes may suppress the
other attributes on the Euclidean distance calculation. Therefore, the training set
should be processed by altering all attributes to fall within a regular interval such
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as [0.0, 1.0] or [-1.0, 1.0] before applying the Euclidean distance function to avoid
reliance on the choice of intervals and measurement units. This alteration, called
normalization, helps prevent the attributes with initially large intervals (e.g., in-
come, credit card limit) from overweighing or prevailing the attributes with initially
smaller intervals (e.g., binary or ternary attributes). Therefore, it can alleviate the
issue above. Besides, normalization is helpful for classification algorithms involv-
ing neural networks because it helps speed up the learning phase, resulting in an
improved computational capability.

The objective of this research is to study the integration of each of the six nor-
malization techniques; (1) min-max normalization, (2) Z-score normalization, (3)
mean and mean absolute deviation normalization, (4) median and median absolute
deviation normalization, (5) modified hyperbolic tangent normalization, and (6) hy-
perbolic tangent estimator normalization, with the boundary vector generator [9]
and the reduced boundary vector generators [10] for maximizing class boundary.
Its goal is to reveal whether any normalization techniques can improve the classi-
fication performance of the original data boundary amplifier for the feed-forward
neural network with an emphasis on accuracy, precision, recall, and F1-score. The
proposed methodology adds a data normalization as a new step before the data
set will be reduced by the boundary vector generators and the reduced boundary
vector generators.

This paper presents the following major contributions:

• The final training set having only FF-AA reduced boundary vectors can be
integrated with one of the normalization techniques effectively when the ac-
curacy and precision are prioritized.

• The final training set having only the boundary vectors can be integrated with
one of the normalization techniques effectively when the recall and F1-score
are prioritized.

• The Z-score normalization can generally improve the accuracy and precision
of all types of training sets.

• The modified hyperbolic tangent normalization can generally improve the
recall of all types of training sets.

• The min-max normalization can generally improve the accuracy and F1-score
of all types of training sets.

• The selection of the normalization techniques and the training set types de-
pends on the key performance measure for the dataset.

After this section, Section 2 summarizes the preliminaries. Section 3 explains
the experimental methodology and parameters. Section 4 shows the experimen-
tal results carried out on the real-world datasets from the UCI database and the
ELENA project and discussion. Section 5 presents the conclusions.
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2. Preliminaries

This section strives to present the research works related to this study. It comprises
the research on contour preserving classification [4], the research on boundary vec-
tor generator [9], and the research on reduced boundary vector generators [10]
which are presented in Sections 2.1, 2.2, and 2.3, respectively. Besides, the six
normalization techniques are briefly summarized in Sections 2.4, 2.5, 2.6, 2.7, 2.8,
and 2.9.

2.1 Contour preserving classification

Contour preserving classification (COV) [4] increases the fault tolerance and ro-
bustness of the neural network. The technique assists the neural network to non-
linearly classify the linearly solvable problem to supplement the leeway between
the hyperplane and samples. The technique generates two new forms of bound-
ary vectors; one is named fundamental outpost vector (defined by FOV), and the
other is named additional outpost vector (defined by AOV), which are located at
the center between the decision barrier of consecutive data of different classes for
improving the distribution model of the samples having two classes. The FOV
declares the decision barrier between a sample in one class and the nearest sample
in another class. In comparison, the AOV declares the decision barrier between a
sample belonging to one class and the paired vector of that sample. These new
samples are generated at the middle between the decision barrier of consecutive
data of different classes to improve the distribution model of the samples and aid
the neural network to classify a linearly solvable problem non-linearly.

FOVs, AOVs, sample’s barrier, and sample’s counter barrier are depicted in
Fig. 1 using a 2D two-class problem. Solid circles represent the decision barrier of
a sample that clarifies the terrain of the sample for setting its FOV and the AOV
of its pair vector. Dot circles represent the counter barrier of a paired vector that
helps clarify the terrain of the paired vector versus the terrain of a sample in the
reversed direction. The counter barrier can amplify clearance between the decision
barrier of a paired vector and the decision barrier of a sample in the reversed
direction only.

2.2 Multi-class contour preserving classification

One of the significant problems in contour preserving classification in Section 2.1
is its inability to cope with multi-class data. This section summarizes the multi-
class outpost vector generation technique [9], a data barrier amplifying technique,
which is a boundary vector generator that does conserve the distribution model
of the data and aid the neural network to classify the linearly solvable problem
non-linearly. Its goal is to supplement the leeway between the hyperplane and
the samples. It improves [4] to make it support data with two or more classes.
This method generates new forms of boundary vectors; one is named fundamental
multi-class outpost vector (delineated as FMCOV), the other is named additional
multi-class outpost vector (delineated as AMCOV). Both FMCOVs and AMCOVs
are located at the decision barrier of data in different classes to improve the data
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Fig. 1 FOVs are represented with small rectangles. AOVs are represented with
small triangles. Sample’s barrier is represented by a solid circle. Sample’s counter
barrier is represented by dash circle.

distribution model with two or more classes. The anatomies of both FMCOV and
AMCOV generators are described as follows.

• FMCOV generator generates a new boundary vector to declare the decision
barrier between a sample in one class and the nearest sample from another
class. Assume Ai is a sample i in class A, Bj is a sample j in class B, and
A ∩ B = ∅. The terrain of Ai is established by spotting Bj that is nearest
to Ai. Bj is a pair vector of Ai (defined by ϕ(i)). Then, the terrain of Ai is
declared in the middle between Ai and Bj . Then, the counter terrain of Bj is
also declared in the middle between Ai and Bj too. Consequently, the radius
of the terrain of Ai is set at the center of the distance between Ai and Bj .
This radius assures that the distance from either Ai or Bj to the hyperplane
will be at the maximum if Bj sets its terrain using the same radius. Finally,
Ai’s FMCOV (defined by o(Ai) is generated at the decision barrier of Ai’s
in reversed direction to Bj . Space (defined by κ) is added at the decision
barrier between the terrain of Ai and the counter terrain of Bj to give a little
leeway between FMCOVs and AMCOVs in diverse classes.

• AMCOV generator generates a new boundary vector to declare the de-
cision barrier between a sample in one class and the paired vector of that
sample. Assume Ai is a sample i in class A, while Bj is Ai’s pair vector.
Ai’s AMCOV (defined by o′(i)) is generated at the decision barrier of Bj
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in reversed direction to Ai. Regarding the territories of Ai and Bj , the ra-
dius of the feature s of Ai’s pair vector (defined by r̄(ϕ(i)s)) is adapted for
synthesizing feature s of Ai’s AMCOV.

FMCOVs, AMCOVs, sample’s barrier, and sample’s counter barrier are de-
picted in Fig. 2 using a 2D three-class problem. Solid circles represent the decision
barrier of a sample that clarifies the terrain of the sample for setting its pair vector’s
FMCOV and AMCOVs. Dot circles represent the paired vector’s counter barrier
that helps clarify the terrain of the paired vector versus the terrain of a sample in
the reversed direction. The counter barrier can amplify the clearance between the
decision barriers of a paired vector and a sample in the reversed direction only.

18.2 mm

16.2 mm

       C*(B*(Ai))

      C*(B*(Ai))’s 
  territory

AMCOV of C*(B*(Ai)) 
against B*(Ai)

AMCOV of Aj 

against C*(B*(Ai)) 

Boundary of Aj

Boundary of C*(B*(Ai))

B*(Ai)’s 
territory

  B*(Ai)

      Ai’s 
territory

          Ai

AMCOV of B*(Ai) 
against Ai

FMCOV of B*(Ai) taking 
C*(B*(Ai)) as the nearest 
vector

FMCOV of Ai 
taking B*(Ai) as the 
nearest vector

Boundary of Ai

Boundary of B*(Ai)

27.5 mm

18.2 mm

Aj’s 
territory

        Aj

B*(Aj)’s 
territory

               B*(Aj)
16.2 mm

Boundary of B*(Aj)

FMCOV of Aj taking B*(Aj) as the 
nearest vector

FMCOV of C*(B*(Ai)) 
taking Aj as the 
nearest vector

FMCOV of B*(Aj) taking Aj as 
the nearest vector

23.0 mm

Space (𝜅)

23.0 mm

27.5 mm

Counter Boundary of 
B*(Ai) against Ai

Counter Boundary of 
C*(B*(Ai)) 
against B*(Ai)

Counter Boundary of Aj 
against C*(B*(Ai))

Fig. 2 FMCOVs are represented with small rectangles. AMCOVs are represented
with small triangles. Sample’s barrier is represented by a solid circle. Sample’s
counter barrier is represented by dash circle.

The experimental results on the real-world datasets from the UCI database
confirmed that the boundary vector generator could improve the performance of the
classification of the feed-forward neural network on most datasets [9]. In contrast,
the report excluded analysis of meaningful performance measures such as precision,
recall, and F1-score.
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2.3 Reduced multi-class contour preserving classification

One of the significant problems in the boundary vector generator in Section 2.2
is the enormous size of the sets of boundary vectors. This section summarizes
the reduced boundary vector generators [10] which present three boundary vec-
tor reduction methods for the boundary vectors generated by [9] with one-to-rest
strategy. Section 2.3.1 presents the FF-AA reduced boundary vector generator
(FF-AA RMCOV generator). Section 2.3.2 presents the FA-AF reduced boundary
vector generator (FA-AF RMCOV generator). Section 2.3.3 presents the FAF-AFA
reduced boundary vector generator (FAF-AFA RMCOV generator).

2.3.1 FF-AA reduced boundary vector generator

This method (FF-AA RMCOV generator) generates a set of reduced boundary
vectors (RMCOVs) by FF RMCOV generator, which processes an FMCOV in a
class versus all FMCOVs in other classes, and AA RMCOV generator, which pro-
cesses an AMCOV in a class versus all AMCOVs in other classes. Fig. 3 highlights
FF-AA RMCOV generator’s framework. This method finds a minimum Euclidean
distance between FMCOV in a class (defined by S) and FMCOVs in other classes

RFMCOVs

Generate
FF RMCOV

RAMCOVs

Generate
AA RMCOV

MERGE

FF-AA 
RMCOVs

RAW 
DATA

AMCOVs

Generate 
FMCOVs

FMCOVs

Generate 
AMCOVs

MCOV 
GENERATOR

FF-AA RMCOV 
GENERATOR

AMCOVsFMCOVs

Fig. 3 A framework of FF-AA reduced boundary vector generator.
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(defined by D). The AA RMCOV generator finds a minimum Euclidean distance
between AMCOV in a class (defined by S) and AMCOVs in other classes (defined
by D). Both FF RMCOV and AA RMCOV generators combine all Ds to form a
set of RMCOVs.

1. FF RMCOV generator calculates a Euclidean distance between FMCOV
in a class and FMCOVs in other classes. Assume o(i) is i’s FMCOV and
o(j) is j’s FMCOV, o(j) which has a minimum distance to o(i) is denoted by
RFMCOV (defined by or(i)).

2. AA RMCOV generator calculates a Euclidean distance between AMCOV
in a class and AMCOVs in other classes. Assume o′(i) is i’s AMCOV and
o′(j) is j’s AMCOV, o′(j) which has a minimum distance to o′(i) is denoted
by RAMCOV (defined by o′r(i)).

Both RMCOVs are uniquely consolidated to generate an FF-AA RMCOV set.
The class of or(i) equals the class of o(j). The class of o′r(i) equals the class of
o′(j).

2.3.2 FA-AF reduced boundary vector generator

This method (FA-AF RMCOV generator) generates a set of reduced boundary vec-
tors (RMCOVs) by FA RMCOV generator, which processes an FMCOV in a class
versus all AMCOVs in other classes, and AF RMCOV generator, which processes
an AMCOV in a class versus all FMCOVs in other classes. Fig. 4 highlights FA-AF
RMCOV generator’s framework. This method finds a minimum Euclidean distance
between FMCOV in a class (defined by S) and AMCOVs in other classes (defined
by D). The AF RMCOV generator finds a minimum Euclidean distance between
AMCOV in a class (defined by S) and FMCOVs in other classes (defined by D).
Both FA RMCOV and AF RMCOV generators combine all Ds to form a set of
RMCOVs.

1. FA RMCOV generator calculates a Euclidean distance between FMCOV
in a class and AMCOVs in other classes. Assume o(i) is i’s FMCOV and
o′(j) is j’s AMCOV, o′(j) which has a minimum distance to o(i) is denoted
by RAMCOV (defined by o′r(i)).

2. AF RMCOV generator calculates a Euclidean distance between AMCOV
in a class and FMCOVs in other classes. Assume o′(i) is i’s AMCOV and
o(j) is j’s FMCOV, o(j) which has a minimum distance to o′(i) is denoted
by RFMCOV (defined by or(i)).

Both RMCOVs are uniquely consolidated to generate an FA-AF RMCOV set.
The class of o′r(i) equals the class of o′(j). The class of or(i) equals the class of
o(j).

2.3.3 FAF-AFA reduced boundary vector generator

This method (FAF-AFA RMCOV) generates reduced boundary vectors (RMCOVs)
by FAF RMCOV generator, which processes an FMCOV in a class versus all
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Fig. 4 A framework of FA-AF reduced boundary vector generator.

MCOVs in other classes, and AFA RMCOV generator, which processes an AMCOV
in a class versus all MCOVs in other classes. Fig. 5 highlights FAF-AFA RMCOV
generator’s framework. This method finds a minimum Euclidean distance between
FMCOV in a class (defined by S) and MCOVs in other classes (defined by D). The
AFA RMCOV generator finds a minimum Euclidean distance between AMCOV in
a class (defined by S) and MCOVs in other classes (defined by D). Both FAF
RMCOV and AFA RMCOV generators combine all Ds to form a set of RMCOVs.

1. FAF RMCOV generator calculates a Euclidean distance between FMCOV
in a class and AMCOVs and FMCOVs in other classes. Assume o(i) is i’s
FMCOV, o′(j) is j’s AMCOV, o(k) is FMCOV of k, either o′(j) or o(k) which
has a minimum distance to o(i) is denoted by RFMCOV (defined by or(i)).

2. AFA RMCOV generator calculates a Euclidean distance between AM-
COV in a class and FMCOVs and AMCOVs in other classes. Assume o′(i) is
i’s AMCOV, o(j) is j’s FMCOV, o′(k) is AMCOV of k, either o(j) or o′(k)
which has a minimum distance to o′(i) is denoted by RAMCOV (defined by
o′r(i)).

Both RMCOVs are uniquely consolidated to generate a FAF-AFA RMCOV set.
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Fig. 5 A framework of FAF-AFA reduced boundary vector generator.

The class of or(i) equals the class of either o(j) or o
′(k) (depending on the sample).

The class of o′r(i) equals the class of either o
′(j) or o(k) (depending on the sample).

The complete results assured that all reduced boundary vector generators sig-
nificantly reduced the set of fundamental multi-class outpost vectors and the set
of additional multi-class outpost vectors [10].

2.4 Min-max normalization

Min-max normalization [11] is a data scaling technique that executes a linear trans-
formation on the given samples while conserving the relationships among the sam-
ple values. As a result, the distribution model of the sample distribution will not
change. Eq. (1) describes the min-max normalization.

v′i =

(
vi −mini

maxi −mini
× (max′i −min′i)

)
+min′i. (1)

Given that mini and maxi are the minimum value and maximum value of an
attribute i, the min-max normalization transforms a value v of an attribute i (de-
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noted by vi) to a value in the new interval [min′i, max′i] (denoted by v′i) (e.g., from
interval [1, 100] to interval [0.0, 1.0]).

2.5 Z-score normalization

Z-score normalization or standard score normalization [11] is a data scaling tech-
nique that executes a linear transformation on the given samples based on the mean
and standard deviation. Eq. (2) describes the Z-score normalization.

v′i =
vi − µi

σi
, (2)

where vi is the value in attribute i of point v, µi is the mean value of an attribute
i, and σi is the standard deviation value of an attribute i.

The standard score is helpful when the actual minimum value and the actual
maximum value of attribute i are unknown or when some outliers prevail the min-
max normalization.

2.6 Mean and mean absolute deviation normalization

Mean absolute deviation (MAD) measures the variability of a univariate sample of
quantitative data. It is the average of the absolute value of the deviations from
the mean. Mean MAD [12] is an absolute deviation technique that is insensitive to
outliers where the points are at the extreme ends of the distribution. As a result,
a normalization using mean MAD is robust. Eq. (3) describes the mean absolute
deviation (MADmeani

) of an attribute i. Eq. (4) describes the mean and mean
absolute deviation normalization.

MADmeani =
1

n

n∑
x=1

|vx − µi|, (3)

v′i =
vi − µi

MADmeani

, (4)

where vi is the value in attribute i of point v, n is the number of points, and µi is
the mean value of an attribute i.

2.7 Median and median absolute deviation normalization

Median absolute deviation (MedAD) measures the variability of a univariate sample
of quantitative data. It is the middle of the absolute value of the deviations from
the median. Median MedAD [12] is an absolute deviation technique that is also
insensitive to outliers. As a result, a normalization using Median MedAD is robust.
Eq. (5) describes the median absolute deviation (MedADmedian) of an attribute i.
Eq. (6) describes the median and median absolute deviation normalization.

MedADmediani = median(|vi −mediani|), (5)
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v′i =
vi −mediani
MedADmediani

, (6)

where vi is the value in attribute i of point v and mediani is the median value of
an attribute i.

2.8 Hyperbolic tangent estimator normalization

Hyperbolic tangent estimator [13] has been used in normalization [14]. This tech-
nique is insensitive to outliers. Eq. (7) describes the hyperbolic tangent estimator
normalization.

v′i =
1

2
×
(
tanh

(
0.01× vi − µGH

σGH

)
+ 1

)
. (7)

µGH is the mean value of the genuine score distribution. σGH is the standard
deviation value of the genuine score distribution.

2.9 Modified hyperbolic tangent normalization

Given the complexity of the genuine score calculation given by Hampel estimator
[13], the hyperbolic tangent estimator was modified [12] to avoid this complicated
calculation. Eq. (8) describes the modified hyperbolic tangent normalization that
omits the Hampel calculation.

v′i =
1

2
×
(
tanh

(
0.01× vi − µi

σi

)
+ 1

)
, (8)

where vi is the value in attribute i of point v, µi is the mean value of an attribute
i, and σi is the standard deviation value of an attribute i.

3. Methodology

This section presents the implementation of each of the six normalization tech-
niques; min-max normalization, Z-score normalization, mean and mean absolute
deviation, median and median absolute deviation, modified hyperbolic tangent nor-
malization, and hyperbolic tangent estimator normalization, with the boundary
vector generator [9] mentioned in Section 2.2 and the three reduced boundary vec-
tor generators [10] mentioned in Sections 2.3.1, 2.3.2, and 2.3.3. This experiment
aims to improve the classification performance of the feed-forward neural network
on real-world datasets after each of the six normalization techniques pre-processes
the original training set of all boundary vector generators.

Regarding the data, ten real-world datasets were picked from the UCI database
[15] and the ELENA Project database [16]. They consisted of Default of Credit
Card Clients1, Bank Marketing2, Nursery3, Optical Recognition of Handwritten

1https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
2https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
3https://archive.ics.uci.edu/ml/datasets/Nursery
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Digits4, Poker Hand5, Pen-Based Recognition of Handwritten Digits6, Statlog
(Shuttle)7, Statlog (Landsat Satellite)8, Phoneme9, and Texture10. Diverse num-
bers of classes, attributes, and class balance were considered during dataset se-
lection. The components of these datasets are shown in Tab. I. Tabs. II and III
present the class balance of the training set and the testing set of all datasets.
Three datasets (D4, D5, D10) were a balanced class; while the others were im-
balanced class. All nominal attributes were transformed into numeric attributes
by MATLAB grp2idx function. The test sets were divided from the dataset by
MATLAB dividerand function.
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D1 Bank Marketing Integer 2 20 4,119 41,188
D2 Default of Credit Card Integer 2 23 21,000 9,000
D3 Nursery Categorical 5 8 9,072 3,888
D4 Optical Recognition Integer 10 64 3,823 1,797
D5 Pen-Based Recognition Integer 10 16 7,494 3,498
D6 Poker Hand Integer/ 10 10 25,010 1,000,000

Categorical
D7 Statlog (Landsat Sat.) Integer 6 36 4,435 2,000
D8 Statlog (Shuttle) Integer 7 9 43,500 14,500
D9 Phoneme Real 2 5 4,053 1,351
D10 Texture Real 11 40 5,500 1,375

Tab. I Characteristics of the selected real-world datasets.

3.1 Normalization

For each dataset, its original training set was normalized by each of the following
six normalization techniques.

4https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+

Digits
5https://archive.ics.uci.edu/ml/datasets/Poker+Hand
6https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+

Digits
7https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
8https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)
9https://www.elen.ucl.ac.be/neural-nets/Research/Projects/ELENA/databases/REAL/

phoneme/
10https://www.elen.ucl.ac.be/neural-nets/Research/Projects/ELENA/databases/REAL/

texture/
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1. N0 = No normalization

2. N1 = Min-max normalization

3. N2 = Z-score normalization

4. N3 = Mean and mean absolute deviation normalization

5. N4 = Median and median absolute deviation normalization

6. N5 = Modified hyperbolic tangent normalization

7. N6 = Hyperbolic tangent estimator normalization

The output of each normalization is called the normalized original training set
(defined by NORG). To simplify the representation of the output of this step, the
term “normalized original training set” is also used even when no normalization is
applied (N0).

Class D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

1 89.05 77.50 00.01 09.84 10.41 49.95 23.40 00.03 70.49 08.82
2 10.95 22.50 32.62 10.18 10.39 42.38 24.17 78.41 29.51 09.50
3 33.60 09.94 10.41 04.82 10.80 00.09 09.04
4 02.63 10.18 09.59 02.05 21.67 00.30 08.82
5 31.14 10.12 10.41 00.37 09.36 15.51 09.19
6 09.84 09.61 00.22 10.60 05.65 09.04
7 09.86 09.61 00.14 00.01 09.58
8 10.12 10.38 00.02 08.73
9 09.94 09.59 00.02 09.16
10 09.99 09.59 00.02 08.90
11 09.21

Tab. II The class balance of the original training set of all datasets.

Class D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

1 88.73 78.78 00.03 09.91 10.38 50.12 23.50 00.01 71.13 09.89
2 11.27 21.22 33.62 10.13 10.41 42.25 23.05 79.16 28.87 07.85
3 32.72 09.85 10.41 04.76 11.20 00.09 09.24
4 02.29 10.18 09.61 02.11 19.85 00.27 09.89
5 31.35 10.07 10.41 00.39 10.55 14.86 08.80
6 10.13 09.58 00.20 11.85 05.58 09.24
7 10.07 09.61 00.14 00.03 07.64
8 09.96 10.41 00.02 10.18
9 09.68 09.61 00.00 08.87
10 10.02 09.61 00.00 09.67
11 08.73

Tab. III The class balance of the test set of all datasets.
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3.2 Boundary vector generators

Each normalized original training set produced in Section 3.1 was processed to
synthesize a set of boundary vectors (defined by OV1) and three sets of reduced
boundary vectors (defined by OV2, OV3, OV4).

1. OV1 = a set of fundamental multi-class outpost vectors and additional multi-
class outpost vectors (κ = 5%).

2. OV2 = a set of FF-AA reduced boundary vectors (FF-AA RMCOVs)
(κ = 5%).

3. OV3 = a set of FA-AF reduced boundary vectors (FA-AF RMCOVs)
(κ = 5%).

4. OV4 = a set of FAF-AFA reduced boundary vectors (FAF-AFA RMCOVs)
(κ = 5%).

3.3 Final training set generation

The sets of boundary vectors (OV1) and reduced boundary vectors (OV2, OV3,
OV4) in Section 3.2 were combined with the normalized original training set pro-
duced in Section 3.1 to construct eight final training sets (defined by T1, T2, T3,
T4, T5, T6, T7, T8).

1. T1 = a set of the normalized original training set and all boundary vectors
(MCOVs).

2. T2 = a set of all boundary vectors (MCOVs).

3. T3 = a set of the normalized training set and all FF-AA reduced boundary
vectors (FF-AA RMCOVs).

4. T4 = a set of the normalized original training set and all FA-AF reduced
boundary vectors (FA-AF RMCOVs).

5. T5 = a set of the normalized original training set and all FAF-AFA reduced
boundary vectors (FAF-AFA RMCOVs).

6. T6 = a set of all FF-AA reduced boundary vectors (FF-AA RMCOVs).

7. T7 = a set of all FA-AF reduced boundary vectors (FA-AF RMCOVs).

8. T8 = a set of all FAF-AFA reduced boundary vectors (FAF-AFA RMCOVs).

Tab. IV presents the components of all final training sets produced by each of
the six normalization techniques.
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Final Training Set NORG OV1 OV2 OV3 OV4

T1 ✓ ✓ - - -
T2 - ✓ - - -
T3 ✓ - ✓ - -
T4 ✓ - - ✓ -
T5 ✓ - - - ✓
T6 - - ✓ - -
T7 - - - ✓ -
T8 - - - - ✓

Tab. IV Components of the eight final training sets.

3.4 Training

Regarding the classifier, the experiments were implemented with:

• Application: MATLAB R2017a

• Toolboxes: Neural Network Toolbox, Signal Processing Toolbox, Statistics
and Machine Learning Toolbox, Parallel Computing Toolbox

• Model: Feed-Forward Neural Network

• Hidden layer = 1

• Hidden neurons = 20, 23, 8, 64, 16, 10, 36, 9 (depend on the number of
features of each dataset)

• Output neurons = 2, 2, 5, 10 10, 10, 6, 7 (depend on the number of classes
of each dataset)

• Training function = Levenberg-Marquardt Backpropagation

• Transfer function = Log-sigmoid or Tan-sigmoid (depend on the type of the
attributes of each dataset)

• Maximum epochs = 1,000

• Performance Goal = 0.01

• Minimum Gradient: 0.0000001

• Maximum Validation Checks: 100

• Mu: 0.001

• Mu Decrease Ratio: 0.1

• Mu Increase Ratio: 10

• Maximum mu: 10,000,000,000
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The experimental results were evaluated with four performance measures [17];
Accuracy, Recall, Precision, and F1-score, to confirm the classification performance
of all boundary vector generators when applied with and without each of the six
normalization techniques. Accuracy is a comprehensive performance of the clas-
sifier (described in Eq. (9)). Precision is the actual ratio of the number of the
correctly classified positive samples to the number of samples labeled as positive
by the classifier. It is a good measure to determine when the costs of false-positive
are high (described in Eq. (10)). Recall is the ratio of the number of correctly
classified positive samples to the number of positive samples. It is a good measure
to determine when there is a high cost associated with a false negative (described
in Eq. (11)). F-score is the weighted harmonic mean of the recall and precision.
It is a good measure to determine when a balance between Precision and Recall is
needed, and there is an uneven class distribution (described in Eq. (12)). The β
was initialized to one because the recall and precision were equally weighted, called
F1-score.

Accuracy =

∑l
i=1

tpi+tni

tpi+fni+fpi+tni

l
, (9)

Precision =

∑l
i=1

tpi

tpi+fpi

l
, (10)

Recall =

∑l
i=1

tpi

tpi+fni

l
, (11)

Fβ = (1 + β2)× Precision× Recall

β × Precision + Recall
, (12)

where tpi is the number of the positive samples classified in class i correctly, fpi
is the number of the positive samples classified in class i incorrectly, tni is the
number of the negative samples classified in class i correctly, fni is the number of
the negative samples classified in class i incorrectly, and l is the number of classes
of data.

4. Experimental results and discussion

This section presents the classification performance of the boundary vector gener-
ator and the reduced boundary vector generators in Section 3 when the original
training set was normalized with min-max normalization, Z-score normalization,
mean and mean absolute deviation normalization, median and median absolute de-
viation normalization, modified hyperbolic tangent normalization, and hyperbolic
tangent estimator normalization. Sections 4.1, 4.2, 4.3, and 4.4 report the experi-
mental results in terms of accuracy, precision, recall, and F1-score, respectively.

For each final training set, the training and evaluation were conducted ten
times to avoid the effect of the random initial weights of the feed-forward neural
network. The experimental results present the averaged values of the accuracy,
precision, recall, and F1-score.
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4.1 Accuracy

Tab. V reports the accuracy of the boundary vector generator and the reduced
boundary vector generators without normalization (N0) and with normalization
(N1-N6) on all datasets (D1-D10). Bold values indicate that the specified nor-
malization technique can improve the accuracy of the related boundary vector
generator or the related reduced boundary vector generators.

Regarding the boundary vector generator (T1, T2), the normalization tech-
niques that mostly improved the accuracy of the feed-forward neural network on:

• The T1 final training set (the final training set having the normalized original
training set and the boundary vectors) included the min-max normalization
(N1) and Z-score normalization (N2). They yielded a higher accuracy on 6
datasets than those without normalization.

• The T2 final training set (the final training set having only the boundary vec-
tors) included the Z-score normalization (N2) and mean and mean absolute
deviation normalization (N3). They yielded a higher accuracy on 7 datasets
than those without normalization.

In sum, the Z-score normalization (N2) was the generalized technique that could
best improve the accuracy of the boundary vector generator.

Regarding the reduced boundary vector generators (T3, T4, T5, T6, T7, T8),
the normalization technique(s) that mostly improved the accuracy of the feed-
forward neural network on:

• The T3 final training set (the final training set having the normalized original
training set and the FF-AA reduced boundary vectors) included the min-max
normalization (N1). It yielded a higher accuracy on 5 datasets than those
without normalization.

• The T4 final training set (the final training set having the normalized original
training set and the FA-AF reduced boundary vectors) included the mean and
mean absolute deviation normalization (N3) and modified hyperbolic tangent
normalization (N5). They yielded a higher accuracy on 5 datasets than those
without normalization.

• The T5 final training set (the final training set having the normalized orig-
inal training set and the FAF-AFA reduced boundary vectors) included the
Z-score normalization (N2). It yielded a higher accuracy on 6 datasets than
those without normalization.

• The T6 final training set (the final training set having only the FF-AA re-
duced boundary vectors) included the mean and mean absolute deviation
normalization (N3). It yielded a higher accuracy on 8 datasets than those
without normalization.

• The T7 final training set (the final training set having only the FA-AF reduced
boundary vectors) included the min-max normalization (N1). It yielded a
higher accuracy on 6 datasets than those without normalization.
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• The T8 final training set (the final training set having only the FAF-AFA re-
duced boundary vectors) included the median and median absolute deviation
normalization (N4). It yielded a higher accuracy on 6 datasets than those
without normalization.

In sum, the min-max normalization (N1) and Z-score normalization (N2) were
the generalized technique that could mainly improve the accuracy of all reduced
boundary vector generators.

4.2 Precision

Tab. VI reports the precision of the boundary vector generator and the reduced
boundary vector generators without normalization (N0) and with normalization
(N1-N6) on all datasets (D1-D10). Bold values indicate that the specified nor-
malization technique can improve the precision of the related boundary vector
generator or the related reduced boundary vector generators.

Regarding the boundary vector generator (T1, T2), the normalization tech-
niques that improved the precision of the feed-forward neural network on:

• The T1 final training set (the final training set having the normalized original
training set and the boundary vectors) included the mean and mean absolute
deviation normalization (N3). It yielded a higher precision on 6 datasets than
those without normalization.

• The T2 final training set (the final training set having only the boundary vec-
tors) included the min-max normalization (N1), Z-score normalization (N2),
and mean and mean absolute deviation normalization (N3). They yielded a
higher precision on 5 datasets than those without normalization.

In sum, the mean and mean absolute deviation normalization (N3) was the
generalized technique that could best improve the precision of the boundary vector
generator.

Regarding the reduced boundary vector generators (T3, T4, T5, T6, T7, T8),
the normalization technique that improved the precision of the feed-forward neural
network on:

• The T3 final training set (the final training set having the normalized original
training set and the FF-AA reduced boundary vectors) included the min-max
normalization (N1). It yielded a higher precision on 7 datasets than those
without normalization.

• The T4 final training set (the final training set having the normalized original
training set and the FA-AF reduced boundary vectors) included the Z-score
normalization (N2) and mean and mean absolute deviation normalization
(N3). They yielded a higher precision on 8 datasets than those without
normalization.

• The T5 final training set (the final training set having the normalized orig-
inal training set and the FAF-AFA reduced boundary vectors) included the
Z-score normalization (N2). It yielded a higher precision on 7 datasets than
those without normalization.
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• The T6 final training set (the final training set having only the FF-AA re-
duced boundary vectors) included the mean and mean absolute deviation
normalization (N3), modified hyperbolic tangent normalization (N5), and
hyperbolic tangent estimator normalization (N6). They yielded a higher pre-
cision on 8 datasets than those without normalization.

• The T7 final training set (the final training set having only the FA-AF reduced
boundary vectors) included the min-max normalization (N1). It yielded a
higher precision on 6 datasets than those without normalization.

• The T8 final training set (the final training set having only the FAF-AFA re-
duced boundary vectors) included the Z-score normalization (N2). It yielded
a higher precision on 6 datasets than those without normalization.

In sum, the Z-score normalization (N2) was the generalized technique that could
mainly improve the precision of all reduced boundary vector generators.

4.3 Recall

Tab. VII reports the recall of the boundary vector generator and the reduced bound-
ary vector generators without normalization (N0) and with normalization (N1-N6)
on all datasets (D1-D10). Bold values indicate that the specified normalization
technique can improve the recall of the related boundary vector generator or the
related reduced boundary vector generators.

Regarding the boundary vector generator (T1, T2), the normalization tech-
niques that improved the recall of the feed-forward neural network on:

• The T1 final training set (the final training set having the normalized origi-
nal training set and the boundary vectors) included the Z-score normalization
(N2). It yielded a higher recall on 6 datasets than those without normaliza-
tion.

• The T2 final training set (the final training set having only the boundary
vectors) included the mean and mean absolute deviation normalization (N3),
median and median absolute deviation normalization (N4), modified hyper-
bolic tangent normalization (N5), and hyperbolic tangent estimator normal-
ization (N6). They yielded a higher recall on 6 datasets than those without
normalization.

In sum, the Z-score normalization (N2) was the generalized technique that could
best improve the recall of the boundary vector generator.

Regarding the reduced boundary vector generators (T3, T4, T5, T6, T7, T8),
the normalization technique(s) that improved the recall of the feed-forward neural
network on:

• The T3 final training set (the final training set having the normalized original
training set and the FF-AA reduced boundary vectors) included the min-max
normalization (N1). It yielded a higher recall on 4 datasets than those without
normalization.
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• The T4 final training set (the final training set having the normalized original
training set and the FA-AF reduced boundary vectors) included the mean
absolute deviation normalization (N3). It yielded a higher recall on 5 datasets
than those without normalization.

• The T5 final training set (the final training set having the normalized orig-
inal training set and the FAF-AFA reduced boundary vectors) included the
Z-score normalization (N2). It yielded a higher recall on 5 datasets than
those without normalization.

• The T6 final training set (the final training set having only the FF-AA re-
duced boundary vectors) included the modified hyperbolic tangent normal-
ization (N5). It yielded a higher recall on 7 datasets than those without
normalization.

• The T7 final training set (the final training set having only the FA-AF reduced
boundary vectors) included the Z-score normalization (N2), modified hyper-
bolic tangent normalization (N5), and hyperbolic tangent estimator normal-
ization (N6). They yielded a higher recall on 4 datasets than those without
normalization.

• The T8 final training set (the final training set having only the FAF-AFA
reduced boundary vectors) included the median and median absolute devia-
tion normalization (N4). It yielded a higher recall on 6 datasets than those
without normalization.

In sum, the Z-score normalization (N2) was the generalized technique that could
mainly improve the recall of all reduced boundary vector generators.

4.4 F1-score

Tab. VIII reports the F1-score of the boundary vector generator and the reduced
boundary vector generators without normalization (N0) and with normalization
(N1-N6) on all datasets (D1-D10). Bold values indicate that the specified normal-
ization technique can improve the F1-score of the related boundary vector generator
or the related reduced boundary vector generators.

Regarding the boundary vector generator (T1, T2), the normalization tech-
niques that improved the F1-score of the feed-forward neural network on:

• The T1 final training set (the final training set having the normalized original
training set and the boundary vectors) included the Z-score normalization
(N2) and modified hyperbolic tangent normalization (N5). They yielded a
higher F1-score on 6 datasets than those without normalization.

• The T2 final training set (the final training set having only the boundary
vectors) included the Z-score normalization (N2). It yielded a higher F1-score
on 8 datasets than those without normalization.

In sum, the Z-score normalization (N2) was the generalized technique that could
best improve the recall of the boundary vector generator.
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Regarding the reduced boundary vector generators (T3, T4, T5, T6, T7, T8),
the normalization technique(s) that improved the F1-score of the feed-forward neu-
ral network on:

• The T3 final training set (the final training set having the normalized original
training set and the FF-AA reduced boundary vectors) included the min-max
normalization (N1). It yielded a higher F1-score on 6 datasets than those
without normalization.

• The T4 final training set (the final training set having the normalized original
training set and the FA-AF reduced boundary vectors) included the min-max
normalization (N1). It yielded a higher F1-score on 5 datasets than those
without normalization.

• The T5 final training set (the final training set having the normalized orig-
inal training set and the FAF-AFA reduced boundary vectors) included the
Z-score normalization (N2). It yielded a higher F1-score on 6 datasets than
those without normalization.

• The T6 final training set (the final training set having only the FF-AA re-
duced boundary vectors) included mean absolute deviation normalization
(N3), median and median absolute deviation normalization (N4), and hyper-
bolic tangent estimator normalization (N6). They yielded a higher F1-score
on 6 datasets than those without normalization.

• The T7 final training set (the final training set having only the FA-AF reduced
boundary vectors) included the min-max normalization (N1) and median
and median absolute deviation normalization (N4). They yielded a higher
F1-score on 6 datasets than those without normalization.

• The T8 final training set (the final training set having only the FAF-AFA re-
duced boundary vectors) included the median and median absolute deviation
normalization (N4). It yielded a higher F1-score on 6 datasets than those
without normalization.

In sum, the min-max normalization (N1) and median and median absolute
deviation normalization (N4) were the generalized technique that could mainly
improve the F1-score of all reduced boundary vector generators.

4.5 Discussion

Tab. IX summarizes the classification performance of the six normalization tech-
niques with the boundary vector generator and the reduced boundary vector gen-
erators based on the experimental results reported in Sections 4.1, 4.2, 4.3, and 4.4.
Bold values indicate the number of datasets of each experimental setup that yielded
the highest accuracy, precision, recall, or F1-score. It is seen that min-max nor-
malization can be recommended as a default function when accuracy and F1-score
are prioritized, i.e., the nearness of a measured value to the standard value and
the test’s accuracy. The Z-score normalization can be a default function when pre-
cision is prioritized, i.e., the relevance of selected items. The modified hyperbolic
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FTS Norm D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Total

T1 N0 0.742 0.736 0.824 0.861 0.787 0.846 0.859 0.503 0.681 0.906 0
T1 N1 0.782 0.716 0.716 0.860 0.787 0.906 0.862 0.516 0.688 0.904 6
T1 N2 0.783 0.708 0.719 0.856 0.788 0.907 0.864 0.505 0.679 0.907 6
T1 N3 0.770 0.701 0.795 0.857 0.786 0.904 0.854 0.506 0.685 0.907 5
T1 N4 0.801 0.691 0.099 0.860 0.784 0.091 0.855 0.505 0.682 0.907 4
T1 N5 0.789 0.699 0.719 0.858 0.773 0.907 0.864 0.512 0.672 0.906 4
T1 N6 0.790 0.708 0.721 0.856 0.786 0.906 0.856 0.509 0.673 0.906 3

T2 N0 0.641 0.497 0.876 0.845 0.768 0.894 0.802 0.457 0.581 0.905 0
T2 N1 0.762 0.489 0.164 0.842 0.765 0.879 0.815 0.476 0.598 0.906 5
T2 N2 0.779 0.528 0.157 0.845 0.767 0.904 0.814 0.477 0.595 0.905 7
T2 N3 0.764 0.503 0.185 0.841 0.766 0.901 0.810 0.475 0.591 0.906 7
T2 N4 0.808 0.719 0.176 0.839 0.767 0.091 0.788 0.471 0.584 0.905 5
T2 N5 0.782 0.489 0.171 0.844 0.767 0.904 0.798 0.474 0.571 0.905 4
T2 N6 0.753 0.502 0.099 0.843 0.765 0.812 0.818 0.477 0.594 0.906 6

T3 N0 0.819 0.738 0.873 0.869 0.808 0.906 0.869 0.504 0.752 0.907 0
T3 N1 0.814 0.745 0.717 0.872 0.811 0.907 0.868 0.520 0.752 0.906 5
T3 N2 0.817 0.746 0.716 0.869 0.807 0.907 0.869 0.512 0.751 0.906 3
T3 N3 0.782 0.716 0.794 0.865 0.802 0.900 0.859 0.513 0.728 0.886 1
T3 N4 0.798 0.689 0.098 0.866 0.796 0.090 0.853 0.506 0.735 0.895 1
T3 N5 0.747 0.720 0.718 0.865 0.804 0.903 0.867 0.500 0.728 0.884 0
T3 N6 0.817 0.697 0.723 0.867 0.779 0.907 0.852 0.509 0.724 0.896 2

T4 N0 0.819 0.734 0.795 0.862 0.797 0.816 0.852 0.497 0.725 0.896 0
T4 N1 0.754 0.714 0.717 0.872 0.793 0.874 0.859 0.507 0.721 0.888 4
T4 N2 0.793 0.704 0.716 0.867 0.795 0.907 0.858 0.506 0.718 0.895 4
T4 N3 0.755 0.719 0.791 0.866 0.782 0.904 0.865 0.499 0.744 0.892 5
T4 N4 0.805 0.674 0.107 0.869 0.786 0.067 0.850 0.497 0.724 0.895 2
T4 N5 0.814 0.713 0.721 0.870 0.788 0.899 0.855 0.508 0.735 0.890 5
T4 N6 0.767 0.710 0.713 0.869 0.783 0.884 0.861 0.506 0.709 0.894 4

T5 N0 0.779 0.728 0.782 0.850 0.741 0.815 0.829 0.458 0.569 0.892 0
T5 N1 0.770 0.499 0.722 0.844 0.742 0.885 0.851 0.495 0.575 0.892 5
T5 N2 0.725 0.469 0.711 0.839 0.743 0.907 0.849 0.492 0.590 0.893 6
T5 N3 0.697 0.487 0.782 0.826 0.714 0.857 0.845 0.484 0.538 0.883 3
T5 N4 0.773 0.661 0.104 0.821 0.711 0.021 0.827 0.477 0.544 0.881 1
T5 N5 0.719 0.471 0.713 0.822 0.699 0.834 0.837 0.497 0.553 0.884 3
T5 N6 0.681 0.517 0.724 0.828 0.710 0.905 0.841 0.495 0.551 0.886 3

T6 N0 0.381 0.532 0.843 0.818 0.689 0.820 0.753 0.432 0.472 0.740 0
T6 N1 0.605 0.453 0.081 0.815 0.681 0.804 0.759 0.456 0.402 0.777 4
T6 N2 0.513 0.505 0.199 0.839 0.690 0.835 0.736 0.452 0.455 0.796 6
T6 N3 0.617 0.493 0.165 0.843 0.716 0.844 0.775 0.464 0.484 0.790 8
T6 N4 0.806 0.716 0.176 0.821 0.692 0.091 0.723 0.456 0.480 0.798 7
T6 N5 0.524 0.529 0.160 0.833 0.709 0.863 0.730 0.455 0.447 0.809 6
T6 N6 0.628 0.540 0.122 0.834 0.730 0.801 0.738 0.455 0.556 0.812 7

T7 N0 0.533 0.504 0.838 0.828 0.667 0.878 0.754 0.422 0.523 0.754 0
T7 N1 0.667 0.478 0.170 0.825 0.668 0.696 0.766 0.441 0.567 0.757 6
T7 N2 0.507 0.369 0.151 0.841 0.636 0.780 0.765 0.451 0.479 0.762 4
T7 N3 0.528 0.420 0.179 0.844 0.626 0.832 0.776 0.453 0.476 0.783 4
T7 N4 0.807 0.719 0.186 0.825 0.658 0.091 0.738 0.447 0.481 0.776 4
T7 N5 0.535 0.574 0.166 0.836 0.617 0.788 0.740 0.450 0.484 0.770 5
T7 N6 0.517 0.440 0.085 0.837 0.643 0.810 0.767 0.444 0.493 0.785 4

T8 N0 0.201 0.270 0.747 0.666 0.315 0.520 0.633 0.389 0.216 0.744 0
T8 N1 0.220 0.223 0.130 0.624 0.345 0.342 0.709 0.388 0.228 0.714 4
T8 N2 0.179 0.225 0.180 0.632 0.336 0.410 0.702 0.388 0.229 0.708 3
T8 N3 0.159 0.224 0.170 0.635 0.320 0.875 0.721 0.388 0.225 0.729 4
T8 N4 0.805 0.716 0.174 0.668 0.306 0.091 0.673 0.383 0.232 0.748 6
T8 N5 0.152 0.224 0.170 0.634 0.335 0.494 0.683 0.387 0.224 0.720 3
T8 N6 0.163 0.222 0.072 0.623 0.348 0.777 0.677 0.386 0.218 0.713 4

* FTS stands for “Final Training Set”. Norm stands for “Normalization”. Bold values indicate the
better accuracy than the original training set including discarded digits.

Tab. V The accuracy of the feed-forward neural network on the final training sets
T1-T4.

147



Neural Network World 2/2021, 125–157

FTS Norm D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Total

T1 N0 0.592 0.587 0.823 0.861 0.771 0.496 0.676 0.122 0.621 0.907 0
T1 N1 0.580 0.576 0.794 0.860 0.772 0.600 0.664 0.123 0.647 0.904 4
T1 N2 0.605 0.578 0.798 0.857 0.776 0.614 0.669 0.124 0.607 0.907 5
T1 N3 0.596 0.578 0.873 0.857 0.772 0.418 0.669 0.129 0.624 0.907 6
T1 N4 0.473 0.460 0.100 0.860 0.769 0.180 0.700 0.128 0.645 0.907 4
T1 N5 0.585 0.569 0.797 0.859 0.762 0.638 0.681 0.127 0.633 0.907 4
T1 N6 0.593 0.566 0.800 0.856 0.771 0.506 0.651 0.128 0.612 0.907 3

T2 N0 0.600 0.539 0.877 0.846 0.755 0.497 0.642 0.114 0.561 0.905 0
T2 N1 0.621 0.497 0.169 0.842 0.753 0.595 0.644 0.111 0.580 0.906 5
T2 N2 0.616 0.498 0.156 0.845 0.756 0.598 0.632 0.112 0.577 0.906 5
T2 N3 0.619 0.497 0.188 0.841 0.754 0.404 0.645 0.115 0.572 0.906 5
T2 N4 0.469 0.468 0.177 0.840 0.753 0.160 0.621 0.111 0.582 0.906 2
T2 N5 0.620 0.498 0.173 0.845 0.754 0.613 0.637 0.107 0.576 0.905 4
T2 N6 0.583 0.489 0.101 0.843 0.753 0.433 0.629 0.108 0.571 0.906 2

T3 N0 0.571 0.588 0.873 0.870 0.790 0.522 0.663 0.117 0.719 0.907 0
T3 N1 0.582 0.597 0.796 0.872 0.794 0.529 0.675 0.120 0.718 0.906 7
T3 N2 0.583 0.596 0.795 0.870 0.790 0.591 0.653 0.126 0.714 0.906 5
T3 N3 0.582 0.584 0.872 0.866 0.783 0.458 0.647 0.117 0.688 0.886 2
T3 N4 0.465 0.458 0.099 0.867 0.781 0.189 0.659 0.119 0.703 0.895 1
T3 N5 0.580 0.590 0.797 0.865 0.786 0.549 0.639 0.111 0.699 0.884 3
T3 N6 0.575 0.580 0.801 0.868 0.768 0.568 0.668 0.123 0.686 0.896 4

T4 N0 0.574 0.575 0.795 0.862 0.776 0.450 0.605 0.116 0.685 0.896 0
T4 N1 0.568 0.583 0.795 0.872 0.778 0.605 0.646 0.118 0.693 0.888 7
T4 N2 0.609 0.582 0.794 0.868 0.777 0.629 0.640 0.124 0.685 0.895 8
T4 N3 0.576 0.585 0.868 0.866 0.769 0.485 0.629 0.124 0.704 0.892 8
T4 N4 0.469 0.453 0.110 0.870 0.775 0.165 0.654 0.118 0.675 0.895 3
T4 N5 0.572 0.579 0.800 0.870 0.771 0.600 0.652 0.117 0.702 0.891 7
T4 N6 0.572 0.580 0.791 0.869 0.766 0.539 0.653 0.119 0.676 0.894 5

T5 N0 0.565 0.578 0.783 0.850 0.731 0.584 0.691 0.114 0.539 0.892 0
T5 N1 0.579 0.487 0.801 0.845 0.724 0.618 0.708 0.115 0.565 0.892 6
T5 N2 0.581 0.486 0.789 0.840 0.729 0.664 0.696 0.117 0.573 0.893 7
T5 N3 0.555 0.493 0.860 0.826 0.704 0.469 0.708 0.120 0.521 0.883 3
T5 N4 0.462 0.440 0.107 0.821 0.699 0.171 0.756 0.122 0.528 0.881 2
T5 N5 0.554 0.461 0.792 0.822 0.689 0.686 0.702 0.118 0.544 0.885 5
T5 N6 0.531 0.494 0.802 0.828 0.700 0.576 0.643 0.120 0.523 0.886 2

T6 N0 0.426 0.514 0.844 0.817 0.673 0.385 0.563 0.099 0.460 0.739 0
T6 N1 0.516 0.457 0.080 0.814 0.667 0.556 0.607 0.103 0.414 0.775 5
T6 N2 0.486 0.468 0.205 0.838 0.678 0.575 0.589 0.107 0.429 0.796 7
T6 N3 0.540 0.466 0.167 0.843 0.695 0.391 0.592 0.105 0.477 0.790 8
T6 N4 0.464 0.469 0.177 0.822 0.686 0.177 0.555 0.103 0.430 0.797 5
T6 N5 0.525 0.468 0.160 0.832 0.678 0.596 0.589 0.109 0.481 0.808 8
T6 N6 0.490 0.467 0.125 0.833 0.711 0.452 0.602 0.104 0.485 0.811 8

T7 N0 0.525 0.512 0.837 0.828 0.622 0.433 0.556 0.104 0.444 0.753 0
T7 N1 0.578 0.461 0.172 0.825 0.634 0.511 0.595 0.102 0.494 0.756 6
T7 N2 0.494 0.460 0.146 0.840 0.604 0.562 0.606 0.103 0.469 0.762 5
T7 N3 0.520 0.473 0.182 0.844 0.586 0.429 0.637 0.104 0.413 0.784 4
T7 N4 0.469 0.467 0.190 0.825 0.637 0.191 0.553 0.105 0.452 0.777 4
T7 N5 0.507 0.473 0.166 0.836 0.583 0.580 0.613 0.105 0.428 0.770 5
T7 N6 0.474 0.463 0.087 0.837 0.600 0.403 0.580 0.099 0.411 0.784 3

T8 N0 0.364 0.451 0.747 0.664 0.324 0.422 0.552 0.098 0.249 0.743 0
T8 N1 0.447 0.337 0.125 0.622 0.354 0.469 0.598 0.096 0.249 0.715 4
T8 N2 0.412 0.343 0.183 0.631 0.346 0.488 0.614 0.100 0.271 0.708 6
T8 N3 0.385 0.337 0.168 0.633 0.328 0.389 0.624 0.098 0.258 0.730 4
T8 N4 0.469 0.466 0.175 0.668 0.322 0.192 0.613 0.097 0.249 0.749 5
T8 N5 0.402 0.341 0.172 0.633 0.345 0.502 0.584 0.096 0.252 0.721 5
T8 N6 0.350 0.329 0.069 0.622 0.354 0.372 0.579 0.095 0.238 0.715 2

* FTS stands for “Final Training Set”. Norm stands for “Normalization”. Bold values indicate the
better precision than the original training set including discarded digits.

Tab. VI The precision of the feed-forward neural network on the final training sets
T1-T4.
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FTS Norm D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Total

T1 N0 0.586 0.655 0.822 0.862 0.773 0.668 0.786 0.313 0.664 0.906 0
T1 N1 0.605 0.631 0.797 0.861 0.773 0.693 0.789 0.325 0.649 0.904 5
T1 N2 0.609 0.618 0.800 0.858 0.774 0.741 0.787 0.318 0.639 0.907 6
T1 N3 0.592 0.620 0.874 0.858 0.772 0.762 0.789 0.306 0.648 0.907 5
T1 N4 0.784 0.693 0.122 0.861 0.770 0.081 0.784 0.306 0.654 0.907 3
T1 N5 0.612 0.614 0.796 0.859 0.763 0.733 0.808 0.323 0.645 0.907 5
T1 N6 0.612 0.628 0.804 0.857 0.772 0.825 0.796 0.333 0.642 0.906 4

T2 N0 0.532 0.521 0.877 0.847 0.754 0.595 0.716 0.293 0.579 0.905 0
T2 N1 0.595 0.492 0.184 0.842 0.753 0.646 0.716 0.333 0.581 0.906 5
T2 N2 0.606 0.499 0.140 0.846 0.755 0.674 0.707 0.287 0.581 0.905 5
T2 N3 0.596 0.495 0.268 0.843 0.754 0.756 0.718 0.320 0.583 0.906 6
T2 N4 0.795 0.712 0.169 0.841 0.755 0.088 0.699 0.300 0.594 0.905 6
T2 N5 0.615 0.499 0.177 0.846 0.755 0.689 0.708 0.322 0.585 0.905 6
T2 N6 0.590 0.496 0.080 0.845 0.753 0.674 0.742 0.329 0.585 0.906 6

T3 N0 0.708 0.654 0.874 0.871 0.798 0.800 0.815 0.334 0.718 0.907 0
T3 N1 0.686 0.668 0.796 0.873 0.801 0.731 0.809 0.365 0.718 0.906 4
T3 N2 0.688 0.672 0.796 0.870 0.794 0.781 0.790 0.338 0.717 0.906 2
T3 N3 0.675 0.652 0.873 0.867 0.793 0.785 0.781 0.337 0.688 0.880 1
T3 N4 0.778 0.692 0.120 0.868 0.787 0.057 0.794 0.341 0.703 0.897 3
T3 N5 0.674 0.652 0.795 0.867 0.793 0.721 0.798 0.373 0.699 0.889 1
T3 N6 0.707 0.647 0.799 0.868 0.770 0.763 0.787 0.290 0.687 0.900 0

T4 N0 0.718 0.655 0.803 0.863 0.788 0.750 0.814 0.333 0.684 0.899 0
T4 N1 0.658 0.647 0.794 0.872 0.786 0.711 0.800 0.364 0.689 0.886 3
T4 N2 0.667 0.646 0.790 0.868 0.785 0.785 0.795 0.303 0.689 0.897 3
T4 N3 0.667 0.649 0.869 0.867 0.783 0.815 0.802 0.336 0.708 0.895 5
T4 N4 0.787 0.688 0.138 0.870 0.780 0.050 0.800 0.319 0.684 0.890 3
T4 N5 0.672 0.643 0.794 0.871 0.777 0.751 0.793 0.356 0.700 0.894 4
T4 N6 0.669 0.650 0.798 0.870 0.780 0.793 0.822 0.334 0.682 0.889 4

T5 N0 0.612 0.643 0.778 0.851 0.738 0.669 0.704 0.313 0.535 0.896 0
T5 N1 0.608 0.502 0.794 0.846 0.732 0.668 0.769 0.307 0.531 0.887 2
T5 N2 0.580 0.476 0.788 0.841 0.737 0.758 0.750 0.312 0.565 0.896 5
T5 N3 0.542 0.479 0.863 0.830 0.709 0.771 0.708 0.283 0.522 0.889 3
T5 N4 0.775 0.669 0.110 0.822 0.710 0.035 0.716 0.281 0.533 0.878 3
T5 N5 0.565 0.474 0.795 0.823 0.699 0.731 0.764 0.276 0.534 0.891 3
T5 N6 0.531 0.472 0.798 0.829 0.714 0.789 0.752 0.330 0.517 0.883 4

T6 N0 0.467 0.496 0.847 0.822 0.691 0.480 0.689 0.358 0.468 0.771 0
T6 N1 0.510 0.421 0.102 0.819 0.695 0.495 0.652 0.347 0.427 0.785 4
T6 N2 0.487 0.478 0.178 0.841 0.702 0.527 0.641 0.274 0.447 0.801 5
T6 N3 0.526 0.476 0.142 0.846 0.709 0.607 0.683 0.352 0.461 0.791 5
T6 N4 0.788 0.706 0.169 0.817 0.703 0.070 0.658 0.352 0.459 0.796 4
T6 N5 0.481 0.498 0.178 0.835 0.702 0.581 0.651 0.321 0.482 0.801 7
T6 N6 0.531 0.491 0.097 0.837 0.724 0.606 0.648 0.332 0.489 0.803 6

T7 N0 0.536 0.502 0.844 0.832 0.679 0.517 0.702 0.328 0.459 0.766 0
T7 N1 0.545 0.494 0.162 0.831 0.673 0.537 0.648 0.287 0.531 0.756 3
T7 N2 0.493 0.485 0.143 0.842 0.658 0.484 0.643 0.349 0.459 0.780 4
T7 N3 0.504 0.447 0.195 0.846 0.638 0.543 0.674 0.310 0.444 0.793 3
T7 N4 0.790 0.712 0.217 0.827 0.671 0.071 0.687 0.321 0.438 0.790 3
T7 N5 0.496 0.533 0.268 0.839 0.648 0.549 0.645 0.324 0.406 0.773 4
T7 N6 0.525 0.485 0.128 0.839 0.664 0.704 0.679 0.341 0.409 0.788 4

T8 N0 0.306 0.425 0.762 0.672 0.405 0.389 0.559 0.262 0.245 0.758 0
T8 N1 0.311 0.285 0.130 0.631 0.433 0.447 0.641 0.252 0.261 0.721 5
T8 N2 0.253 0.288 0.181 0.638 0.427 0.377 0.598 0.223 0.257 0.720 3
T8 N3 0.232 0.288 0.137 0.641 0.412 0.584 0.588 0.237 0.253 0.742 4
T8 N4 0.787 0.706 0.146 0.671 0.415 0.061 0.586 0.229 0.266 0.766 6
T8 N5 0.212 0.286 0.194 0.641 0.435 0.435 0.618 0.241 0.253 0.727 4
T8 N6 0.256 0.294 0.032 0.633 0.439 0.661 0.594 0.238 0.245 0.738 3

* FTS stands for “Final Training Set”. Norm stands for “Normalization”. Bold values indicate the
better recall than the original training set including discarded digits.

Tab. VII The recall of the feed-forward neural network on the final training sets
T1-T4.
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FTS Norm D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Total

T1 N0 0.588 0.626 0.822 0.861 0.772 0.680 0.810 0.235 0.609 0.907 0
T1 N1 0.582 0.600 0.797 0.860 0.772 0.772 0.813 0.237 0.633 0.905 5
T1 N2 0.599 0.587 0.800 0.856 0.775 0.785 0.812 0.236 0.604 0.907 6
T1 N3 0.585 0.583 0.873 0.857 0.771 0.777 0.805 0.237 0.615 0.907 5
T1 N4 0.829 0.764 0.114 0.860 0.769 0.081 0.794 0.231 0.631 0.907 4
T1 N5 0.590 0.586 0.801 0.858 0.767 0.796 0.817 0.242 0.625 0.907 6
T1 N6 0.597 0.599 0.805 0.855 0.771 0.768 0.807 0.231 0.604 0.907 2

T2 N0 0.516 0.464 0.877 0.845 0.754 0.659 0.739 0.224 0.517 0.905 0
T2 N1 0.596 0.466 0.178 0.844 0.752 0.747 0.741 0.258 0.539 0.906 7
T2 N2 0.604 0.468 0.163 0.844 0.754 0.755 0.741 0.230 0.536 0.906 8
T2 N3 0.595 0.453 0.224 0.841 0.753 0.832 0.745 0.245 0.529 0.906 6
T2 N4 0.832 0.783 0.151 0.839 0.753 0.078 0.721 0.224 0.528 0.906 5
T2 N5 0.608 0.449 0.204 0.844 0.753 0.760 0.732 0.240 0.522 0.905 5
T2 N6 0.599 0.477 0.123 0.843 0.752 0.663 0.758 0.253 0.522 0.906 7

T3 N0 0.603 0.606 0.873 0.870 0.793 0.724 0.807 0.270 0.718 0.907 0
T3 N1 0.611 0.618 0.803 0.872 0.796 0.732 0.795 0.283 0.718 0.906 6
T3 N2 0.619 0.617 0.873 0.870 0.792 0.729 0.821 0.239 0.718 0.906 5
T3 N3 0.600 0.596 0.872 0.865 0.786 0.775 0.806 0.277 0.688 0.886 2
T3 N4 0.822 0.763 0.106 0.866 0.782 0.071 0.799 0.248 0.701 0.899 2
T3 N5 0.570 0.602 0.797 0.864 0.788 0.702 0.800 0.252 0.696 0.893 0
T3 N6 0.643 0.581 0.807 0.867 0.772 0.750 0.801 0.248 0.686 0.901 2

T4 N0 0.643 0.626 0.794 0.861 0.778 0.648 0.799 0.335 0.683 0.900 0
T4 N1 0.574 0.597 0.794 0.872 0.779 0.681 0.814 0.265 0.689 0.898 5
T4 N2 0.617 0.589 0.791 0.867 0.779 0.725 0.804 0.241 0.682 0.899 4
T4 N3 0.580 0.599 0.868 0.866 0.769 0.762 0.799 0.235 0.706 0.896 4
T4 N4 0.830 0.750 0.098 0.870 0.781 0.054 0.787 0.236 0.679 0.899 4
T4 N5 0.598 0.595 0.803 0.870 0.767 0.694 0.786 0.230 0.700 0.894 4
T4 N6 0.587 0.591 0.791 0.869 0.774 0.723 0.804 0.226 0.675 0.898 3

T5 N0 0.603 0.626 0.781 0.850 0.728 0.639 0.753 0.226 0.503 0.897 0
T5 N1 0.575 0.474 0.801 0.844 0.722 0.789 0.795 0.244 0.527 0.896 5
T5 N2 0.555 0.430 0.788 0.839 0.726 0.761 0.792 0.233 0.539 0.898 6
T5 N3 0.523 0.437 0.860 0.825 0.703 0.695 0.782 0.223 0.491 0.884 3
T5 N4 0.809 0.737 0.115 0.820 0.696 0.022 0.760 0.205 0.498 0.888 3
T5 N5 0.526 0.475 0.795 0.821 0.682 0.765 0.786 0.206 0.510 0.879 4
T5 N6 0.496 0.454 0.808 0.827 0.698 0.754 0.796 0.219 0.504 0.887 4

T6 N0 0.332 0.476 0.844 0.816 0.675 0.571 0.681 0.245 0.424 0.762 0
T6 N1 0.459 0.379 0.089 0.818 0.667 0.574 0.666 0.230 0.351 0.826 4
T6 N2 0.404 0.406 0.201 0.838 0.671 0.622 0.657 0.219 0.398 0.834 4
T6 N3 0.476 0.414 0.176 0.843 0.692 0.723 0.703 0.242 0.422 0.826 6
T6 N4 0.826 0.782 0.151 0.826 0.679 0.084 0.679 0.265 0.414 0.835 6
T6 N5 0.408 0.467 0.177 0.833 0.666 0.634 0.663 0.225 0.435 0.850 5
T6 N6 0.481 0.455 0.132 0.838 0.709 0.609 0.650 0.236 0.453 0.851 6

T7 N0 0.456 0.460 0.838 0.827 0.604 0.627 0.705 0.204 0.434 0.785 0
T7 N1 0.523 0.442 0.189 0.829 0.640 0.532 0.665 0.240 0.513 0.796 6
T7 N2 0.394 0.329 0.159 0.840 0.588 0.511 0.671 0.244 0.453 0.788 4
T7 N3 0.402 0.388 0.188 0.844 0.562 0.702 0.678 0.237 0.431 0.817 4
T7 N4 0.831 0.781 0.191 0.824 0.634 0.084 0.684 0.224 0.450 0.812 6
T7 N5 0.423 0.507 0.167 0.835 0.559 0.581 0.661 0.229 0.428 0.808 4
T7 N6 0.459 0.416 0.074 0.837 0.580 0.708 0.677 0.237 0.405 0.820 5

T8 N0 0.175 0.246 0.747 0.660 0.292 0.361 0.570 0.157 0.213 0.768 0
T8 N1 0.183 0.205 0.132 0.618 0.328 0.326 0.637 0.177 0.212 0.725 4
T8 N2 0.156 0.208 0.197 0.629 0.314 0.335 0.628 0.154 0.225 0.712 3
T8 N3 0.138 0.205 0.192 0.631 0.302 0.689 0.645 0.162 0.222 0.743 5
T8 N4 0.830 0.780 0.153 0.664 0.283 0.074 0.596 0.166 0.212 0.770 6
T8 N5 0.132 0.206 0.163 0.633 0.317 0.412 0.617 0.159 0.219 0.743 5
T8 N6 0.164 0.226 0.078 0.622 0.330 0.641 0.609 0.156 0.203 0.748 3

* FTS stands for “Final Training Set”. Norm stands for “Normalization”. Bold values indicate the
better f1-score than the original training set including discarded digits.

Tab. VIII The F1-score of the feed-forward neural network on the final training
sets T1-T4.
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N1 MIN-MAX 6 5 5 4 5 4 6 4 39
N2 Z-SCORE 6 7 3 4 6 6 4 3 39
N3 MEAN MAD 5 7 1 5 3 8 4 4 37
N4 MEDIAN MedAD 4 5 1 2 1 7 4 6 30
N5 TANH (MODIFIED) 4 4 0 5 3 6 5 3 30
N6 TANH HAMPEL 3 6 2 4 3 7 4 4 33
Total 28 34 12 24 21 38 27 24

P
re
c
is
io
n

N1 MIN-MAX 4 5 7 7 6 5 6 4 44
N2 Z-SCORE 5 5 5 8 7 7 5 6 48
N3 MEAN MAD 6 5 2 8 3 8 4 4 40
N4 MEDIAN MedAD 4 2 1 3 2 5 4 5 26
N5 TANH (MODIFIED) 4 4 3 7 5 8 5 5 41
N6 TANH HAMPEL 3 2 4 5 2 8 3 2 29
Total 26 23 22 38 25 41 27 26

R
e
c
a
ll

N1 MIN-MAX 5 5 4 3 2 4 3 5 31
N2 Z-SCORE 6 5 2 3 5 5 4 3 33
N3 MEAN MAD 5 6 1 5 3 5 3 4 32
N4 MEDIAN MedAD 3 6 3 3 3 4 3 6 31
N5 TANH (MODIFIED) 5 6 1 4 3 7 4 4 34
N6 TANH HAMPEL 4 6 0 4 4 6 4 3 31
Total 28 34 11 22 20 31 21 25

F
1
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c
o
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N1 MIN-MAX 5 7 6 5 5 4 6 4 42
N2 Z-SCORE 6 8 5 4 6 4 4 3 40
N3 MEAN MAD 5 6 2 4 3 6 4 5 35
N4 MEDIAN MedAD 4 5 2 4 3 6 6 6 36
N5 TANH (MODIFIED) 6 5 0 4 4 5 4 5 33
N6 TANH HAMPEL 2 7 2 3 4 6 5 3 32
Total 28 38 17 24 25 31 29 26

* Bold values indicate the number of datasets of each experimental setup that yielded the highest
number of accuracy, precision, recall, or F1-score.

Tab. IX The number of data sets that a specified normalization technique (N1-N6)
improved the performance measure of the related final training sets (T1-T8).

tangent normalization can be a default function when a recall is prioritized, i.e.,
selecting relevant items. In addition, the T6 final training set (the final training
set having only the FF-AA reduced boundary vectors) can be a default training set
type when accuracy and precision are prioritized. The T2 final training set (the
final training set having only the boundary vectors) can be a default training set
type when recall and F1-score are prioritized.

Alternatively, one of many ways to help decide which type of the final train-
ing set should be generally selected first is to consider the cumulative numbers of
the datasets that the implementation of each of the six normalization techniques
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yielded higher accuracy, precision, recall, or F1-score than the other normalization
techniques, which is summarized in Figs. 6 and 7. Regarding the boundary vector
generator (T1, T2), the T2 MCOV training set gained the highest accuracy, recall,
and F1-score improvement. The T1 ORG+MCOV training set gained the highest
precision improvement. Regarding the reduced boundary vector generators (T3,
T4, T5, T6, T7, T8), the T6 FF-AA MCOV training set gained the highest accu-
racy, precision, recall, and F1-score improvement. These training set types should
be generally selected first.

Besides, another way to help decide which normalization technique should
be generally selected first is to consider the cumulative numbers of the datasets
that each normalization technique yielded higher accuracy, precision, recall, and
F1-score than the other techniques, which is summarized in Figs. 8 and 9. It is
noticeable that the min-max (N1) normalization and Z-score (N2) normalization
techniques generally improved the accuracy of all types of training sets. The Z-score
(N2) normalization technique generally improved the precision of all types of train-
ing sets. The modified hyperbolic tangent (N5) normalization technique generally
improved the recall of all types of training sets. The min-max (N1) normalization
technique generally improved the F1-score of all types of training sets.
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Fig. 6 The cumulative numbers of the final training sets that the implementation
of any normalization techniques yielded higher (a) accuracy and (b) precision than
without the implementation of any normalization techniques.
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Fig. 7 The cumulative numbers of the final training sets that the implementation
of any normalization techniques yielded higher (a) recall and (b) F1-score than
without the implementation of any normalization techniques.
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Fig. 8 The cumulative numbers of the final training sets that each normalization
technique yielded higher (a) accuracy and (b) precision than the same type of the
final training set without normalization.
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Fig. 9 The cumulative numbers of the final training sets that each normalization
technique yielded higher (a) recall and (b) F1-score than the same type of the final
training set without normalization.

5. Conclusions

The feed-forward neural network is a prediction model widely used in a signifi-
cant number of real-world implementations that involve pattern identification and
classification. Factors influencing the accuracy of this class prediction model in-
clude the training parameter adjustment and the quality of the training set. The
boundary vector generator is a data barrier amplifying technique that improves
the distribution model of the samples to increase the classification performance of
the feed-forward neural network. This method generates new forms of boundary
vectors; one is named fundamental multi-class outpost vector, the other is named
additional multi-class outpost vector. They are used to amplify the strength of
the class barrier. However, these sets of boundary vectors are enormous. The re-
duced boundary vector generators present three techniques to reduce the number
of fundamental multi-class outpost vectors and additional multi-class outpost vec-
tors. Nevertheless, these techniques do not consider the interval of the attributes,
causing some attributes to suppress the other attributes on the Euclidean distance
calculation. This paper studies whether six normalization techniques; min-max,
Z-score, mean and mean absolute deviation, median and median absolute devia-
tion, modified hyperbolic tangent, and hyperbolic tangent estimator, can improve
the classification performance on four primary performance measures of the bound-
ary vector generator and the reduced boundary vector generators for maximizing
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class boundary; accuracy, precision, recall, and F1-score. Each normalization tech-
nique pre-processes the original training set before the boundary vector generator,
or each of the three reduced boundary vector generators will begin. The experi-
mental results on the real-world datasets from the UCI database and the ELENA
project confirmed that

(1) the final training set having only FF-AA reduced boundary vectors (T6) can
be integrated with one of the normalization techniques effectively when the
accuracy and precision are prioritized,

(2) the final training set having only the boundary vectors (T2) can be inte-
grated with one of the normalization techniques effectively when the recall
and F1-score are prioritized,

(3) the Z-score normalization can generally improve the accuracy and precision
of all types of training sets,

(4) the modified hyperbolic tangent normalization can generally improve the re-
call of all types of training sets,

(5) the min-max normalization can generally improve the accuracy and F1-score
of all types of training sets, and

(6) the selection of the normalization techniques and the training set types de-
pends on the key performance measure for the dataset.

List of abbreviations

• AA (additional-to-additional outpost vector)

• AF (additional-to-fundamental outpost vector)

• AFA (additional-to-fundamental/additional outpost vector)

• COV (contour preserving classification)

• FA (fundamental-to-additional outpost vector)

• FAF (fundamental-to-additional/fundamental outpost vector)

• FF (fundamental-to-fundamental outpost vector)

• FF-AA RMCOV (FF-AA reduced boundary vector)

• FF-AA RMCOV generator (FF-AA reduced boundary vector generator)

• FA-AF RMCOV (FA-AF reduced boundary vector)

• FA-AF RMCOV generator (FA-AF reduced boundary vector generator)

• FAF-AFA RMCOV (FAF-AFA reduced boundary vector)

• FAF-AFA RMCOV generator (FAF-AFA reduced boundary vector generator)
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• FFNN (Feed-Forward Neural Network)

• MCOV (multi-class outpost vector / boundary vector)

• MCOV generator (boundary vector generator)

• RMCOV (reduced boundary vector)

• RMCOV generator (reduced boundary vector generator)

• MAD (mean absolute deviation)

• MedAD (median absolute deviation)
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