
AUTOMATED REVERSE ENGINEERING OF
CAN PROTOCOLS

N. Weiß∗, E. Pozzobon∗, J. Mottok∗, V. Matoušek†,

Abstract: Car manufacturers define proprietary protocols to be used inside their
vehicular networks, which are kept an industrial secret, therefore impeding inde-
pendent researchers from extracting information from these networks. This article
describes a statistical and a neural network approach that allows reverse engi-
neering proprietary controller area network (CAN)-protocols assuming they were
designed using the data base CAN (DBC) file format. The proposed algorithms
are tested with CAN traces taken from a real car. We show that our approaches
can correctly reverse engineer CAN messages in an automated manner.

Key words: controller area networks, statistical analysis, neural networks

Received: February 7, 2021 DOI: 10.14311/NNW.2021.31.015
Revised and accepted: August 30, 2021

1. Introduction

The major communication technology for real-time data exchange in modern cars
are CANs [7]. CAN is a message-based communication protocol with an identifier
field and eight bytes of payload. During the normal operation of a car, the identifier
field of a CANmessage is used to specify the type of the transported data. The eight
bytes data field contains various real-time values. Every message is broadcast on
a shared bus. An electronic control unit (ECU) can filter on the message identifier
to evaluate if a message is relevant for its internal functionality. To define the
data which is transported over CAN, original equipment manufacturers (OEMs)
are using DBC files or similar description formats for their internal development.
These DBC files are proprietary and usually not available to the public.

1.1 CAN data

Exchange of real-time values between ECUs is done through CAN messages. Dur-
ing a black box security investigation of a modern car, this traffic can be recorded
with various tools. A well-known open-source tool to record CAN-communication
data is candump [2]. A candump log entry consists of a timestamp, an interface
description, and the CAN-frame with identifier and payload. Listing 1 shows an

∗Nils Weiß, Enrico Pozzobon, Jürgen Mottok; University of Applied Sciences in Regensburg,
Germany, E-mail: nils2.weiss@othr.de, enrico.pozzobon@othr.de, juergen.mottok@othr.de

†Václav Matoušek; University of West Bohemia in Pilsen, Faculty of Applied Sciences, Czech
Republic E-mail: matousek@kiv.zcu.cz

©CTU FTS 2021 279

mailto:nils2.weiss@othr.de
mailto:enrico.pozzobon@othr.de
mailto:juergen.mottok@othr.de
mailto:matousek@kiv.zcu.cz

Neural Network World 4/2021, 279–295

exemplary output of candump. Log files store one CAN message per line. A line
contains a timestamp, the interface name, and the CAN message with identifier
and data, both in hexadecimal representation. The number sign (#) is used to
separate the identifier from the data.

(1526379707.348777) can0 22A#8D8802

(1526379707.355973) can0 0C5#F1CD73D3B1D5F242

(1526379707.355975) can0 0D1#C000FFFD00FD00

(1526379707.355975) can0 185#1808

Listing 1 candump log file format output.

1.2 DBC file format

The DBC file format describes the payload data of a CAN-frame [3]. Listing 2
shows an exemplary data definition for a status message of a battery management
system [4]. This example contains the following definitions:

• B0 defines a CAN-frame of length 8 with the identifier 341 as data object
BMS 1.

• This data object contains three different signals, SG climit, SG current, and
SG soc.

• The signal SG climit contains the following definitions:

– 7|8: This signal starts at bit position 7 and has a length of 8 bits.

– @0+: The endianness of the signal is big-endian and the transferred value
is unsigned.

– (5,0): The transferred value has a scaling factor of 5 and the offset
value 0.

– [0|35]: The transferred value has a value range from 0 to 35.

– ‘‘A’’: The unit of the transferred value is labeled with “A”.

On top of the CAN-communication described by DBC files, diagnostic
CAN-frames can also be present on the bus. Automotive diagnostic communi-
cation is transported via ISO Transport Protocol (ISO-TP) [6]. This ensures are
direct communication between two communication partners. Since ISO-TP uses
a specific transport protocol and fixed CAN-identifiers for source and destination
specification, these messages can be distinguished easily from CAN messages that
transport real-time data.

BO_341 BMS_1: 8 XXX

SG_climit : 7|8@0+ (5,0) [0|35] "A" XXX

SG_current: 11|12 @0+ (-0.25 ,500) [-500|1000] "A" XXX

SG_soc : 39|16@0+ (0.0025 ,0) [0|100] "%" XXX

Listing 2 DBC file format example.

280

WeißN. et al.: Automated Reverse Engineering of CAN Protocols

1.3 Reverse engineering goals

Open security research on automotive systems often requires knowledge of the
transported data on a CAN-bus. Nowadays, no OEM reveals their internal DBC
file formats, which would provide the necessary insights into the protocol defini-
tions of the transferred data. Therefore the only way to obtain information about
the vehicle internal communication is reverse engineering. In general, reverse en-
gineering is a very time-consuming and therefore expensive task. The following
two kinds of information need to be extracted from CAN-traffic, to allow further
research on automotive systems:

• The position and format of CAN-signals in a CAN-data field. According
to DBC, CAN-signals can start at any bit position and can have a variable
length, often not aligned to any usual value, for example, 8, 16, 32. Further-
more, the signals can be encoded either using big-endian or little-endian.

• Every CAN-identifier specifies a DBC signal group, and therefore the kind of
transported information. For example, the vehicle speed will always be trans-
ferred on CAN messages with a fixed CAN-identifier. A researcher needs to
know which CAN-identifiers transports the demanded information. Therefore
a mapping of transported information to CAN-identifier is necessary.

Our work provides a statistical reverse engineering method and neural-network-
based method to automate the described goals. With statistical methods, we show
a possibility to identify data fields in CAN-frames. Neural networks are used to
identify the transported real-time data per CAN-identifier. We aim to support
research on automotive systems through time savings in the reverse engineering
process. Parts of our work are published as open-source software [9].

2. Statistical reverse engineering

Statistical methods are applicable for reverse engineering of a DBC file format
from CAN-traffic. This section introduces basic and advanced methods. The goal
of statistical reverse engineering is the identification of CAN-signals described in
DBC files.

2.1 Feature extraction

The CAN-protocol and the DBC specification allow various early-stage filtering of
captured log data. All messages can be grouped by the CAN-identifier since the
identifier describes the data transferred in the CAN-frames data payload. Further
group-specific features can be extracted. All further explanations are only applied
on CAN-frames grouped by their identifier. Useful features are:

• the total number of messages per identifier,

• the number of different values of the CAN-data field,

• the frequency of a CAN message with a specific identifier,

281

Neural Network World 4/2021, 279–295

• the variance of the time difference between the transfer of two consecutive
CAN-frames with the same identifier.

Only CAN-identifiers that fulfill the following requirements are suitable for an
advanced analysis:

• the total number of messages per identifier should be reasonably high, to
allow statistical analysis,

• the number of different values of the entire CAN-data field should be reason-
ably high,

• real-time data is communicated periodically. Higher frequencies indicate
more important data,

• the variance of the communication frequency should be very low.

2.2 Transition Aggregation Vector

A powerful feature for statistical analysis of CAN-data is the Transition Aggrega-
tion Vector (TAV) of a CAN-identifier group. Let GF (2) = F2 = {0, 1} = Z/2
be a finite field, containing the elements one and zero. Further, let the vector
x := (b63, b62, . . . , b0) ∈ F64

2 define the data bits of a CAN-frame. Through the
selection of a specific CAN-identifier, it’s ensured that every CAN-data payload
has the same length. A group of CAN-frames with identical CAN-identifier can be
represented as a matrix

X =

b63,0 b62,0 . . . b0,0
b63,1 b62,1 . . . b0,1
...

...
. . .

...
b63,n b62,n . . . b0,n

 ∈ F64×n
2 . (1)

The matrix X represents all CAN-data frames of an entire log file. The Tran-
sition Aggregation Vector (TAV) of all data bits is computed by the following
equation:

yj =

n∑
i=1

(xj,i−1 ⊕ xj,i) y ∈ N64
0 , (2)

where n is the number of messages in a group. j defines the bit index.

2.2.1 Example

Fig. 1 shows the TAV for all CAN messages with identifier 0x3d. A manual analysis
of this TAV shows various observations. The exponential behavior of the transitions
in the first 48 bits indicates that integer-like values are transmitted in these bit
areas. Another interesting behavior can be observed on bits 53 and 54. Bit 54 has a
transition on every CAN message and bit 53 has a transition on every second CAN

282

WeißN. et al.: Automated Reverse Engineering of CAN Protocols

0 10 20 30 40 50 60
Bit index

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
tra

ns
iti

on
s

ID: 0x03d, (0, 64)

Fig. 1 TAV of data bits from a group of CAN-frames with identifier 0x3d. The
x-axis indicates the bit position inside the CAN-frame. The y-axis indicates the
number of bit transitions (bit-flips) between two consecutive CAN-frames.

message. These two bits, combined in a field, show the behavior of a multiplexer
field. This multiplexer manipulates the data represented in the bit areas 55 to 63.
For further time series analysis, a demultiplexing into four individual data streams
has to be performed. Another indicator that these two bits act as a multiplexer field
is the predictability of the bit flips. In vehicular applications, a multiplexer shows
the behavior of an incremental counter, which increments on every CAN message.
This behavior allows easy identification of multiplexer fields in CAN-traffic. The
last remarkable observation of this TAV are constant bits. Constant bits are easy
to identify since the number of bit-flips during capture is zero.

2.2.2 Summary

The following observations can be gathered from a TAV:

1. The exponential behavior of neighbored bit transitions indicates integer value
fields

yj ≈ 2yj±1. (3)

2. Multiplexer fields have a width between 2 and 4 bits. The least significant
bit (LSB) of a multiplexer field has to flip on every CAN-frame. Let n be the
number of CAN-frames in an identifier group.

yj ≈ n, 2yj ≈ yj−1. (4)

3. Constant fields have zero transitions

yj = 0. (5)

4. Constant fields and multiplexer fields split data fields.

283

Neural Network World 4/2021, 279–295

2.3 Bit-Correlation-Over-Time

All observations on the TAV only consider the bit-flips between two consecutive
frames. To fill the gap of the TAV, not be able to take the behavior in a time
series into consideration, we introduce a novel method to correlate the behavior of
neighboring bits over time. Let

A =

b63,0 b62,0 . . . b0,0
b63,1 b62,1 . . . b0,1
...

...
. . .

...
b63,n b62,n . . . b0,n

 ∈ F64×n
2 (6)

be a matrix, representing the time series of length n. Each point in time, a row of
A, can be represented as a 64-bit vector v = (b63, b62, . . . , b0) ∈ F64

2 . As the first
operation, the discrete difference over all the 64 columns of A is computed.

bj,i = (aj,i ⊕ aj,i+1) j=0,...,64 i=0,...,n−1. (7)

We call the result of this operation matrix B.

B =

b63,0 b62,0 . . . b0,0
b63,1 b62,1 . . . b0,1
...

...
. . .

...
b63,n−1 b62,n−1 . . . b0,n−1

 ∈ F64×n−1
2 . (8)

Let m be the convolution length and

V = 1 ∈ F64×m
2 (9)

the convolution matrix of length m. Let’s define b and v as vectors, representing
columns of B and V. The convolution between b and v can be computed through
the linear discrete convolution function

ci = (bi ∗ vi) i=0,...,64 (10)

The result of equation 10 applied on every column of B is stored as a matrix

C =

b63,0 b62,0 . . . b0,0
b63,1 b62,1 . . . b0,1
...

...
. . .

...
b63,n−1+m b62,n−1+m . . . b0,n−1+m

 ∈ F64×n−1+m
2 . (11)

Let the result of this discrete linear convolution function be the matrixC64×n−1+m.
As the last step, the Pearson correlation coefficient [5] is applied on two consecutive
columns of C to obtain the degree of correlation between two bits.

ρci,ci+1
=

cov(ci, ci+1)

σciσci+1

i = 0, . . . , 63. (12)

The result of this operation is a vector ρ of length 63. Every element of this vector
has a value between −1 and 1 and describes the correlation between two consecutive
bits over time. Fig. 2 provides an example for messages with CAN-identifier 0x3d.

284

WeißN. et al.: Automated Reverse Engineering of CAN Protocols

15 20 25 30 35 40 45
Bit neighborhood index

0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n

co
rre

la
tio

n
co

ef
fic

ie
nt

ID: 0x03d, corrcoeffs

Fig. 2 Bit-Correlation-Over-Time (BCOT) of all CAN-frames with identifier 0x3d.
The x-axis indicates the position between two bits. The represented field is identical
to the field shown in Fig. 3.

2.4 Combination of TAV and BCOT

Since the TAV contains 64 individual data points related to a single bit and the
BCOT contains 63 individual data points related to the behavior of two neighboring
bits in a CAN-data frame, the derivative of a TAV needs to be computed to combine
both metrics. An example is given by the CAN-frames with identifier 0x03d. The
TAV and its derived transition aggregation vector (DTAV) are shown in Fig. 3.
An obvious feature of the DTAV are negative values. These negative values are
indicators for separated data fields. The example in Fig. 3 shows the TAV of a data
field from bit 16 to bit 48. The TAV strongly indicates four different 8-bit wide
integer fields. The DTAV (represented from the dashed line) indicates separations
after the bits 23, 31, and 39. The combination of both metrics can be used with
outlier detection algorithms to identify independent data fields in a CAN-frame. In
Fig. 4 a K-means algorithm is used to demonstrate the identification of separators
of data fields.

3. Reverse engineering with neural networks

To improve the reverse engineering efforts of CAN-log-data, we evaluate the ap-
plication of neural networks. This application aims to further increase automated
reverse engineering capabilities. While the statistical methods described before
were restricted to guessing a field in a single CAN-identifier, another important
real-world problem is finding a field in a CAN message belonging to a large num-
ber of different CAN-identifiers.

285

Neural Network World 4/2021, 279–295

15 20 25 30 35 40 45
Bit index

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

No
rm

al
ize

d
tra

ns
iti

on
s

Derivative

Fig. 3 The DTAV and normalized TAV of all data bits from the group of
CAN-frames with identifier 0x03d. The x-axis indicates the bit position of the
CAN-frame. The y-axis indicates the normalized number of transitions. The dashed
line marks the DTAV.

0.0 0.2 0.4 0.6 0.8 1.0
Pearson correlation coefficient

0.08

0.06

0.04

0.02

0.00

0.02

De
riv

at
iv

e
of

 n
or

m
al

ize
d

tra
ns

iti
on

s 15|16

23|24

31|3239|40
47|48

Fig. 4 Scatter plot of identifier 0x3d with two clusters, computed by a K-means
algorithm. The x-axis represents the BCOT. The y-axis represents the values of
the DTAV. Yellow data points represent separators for the analyzed field from bit
15 to bit 48. Purple data points are bit neighborhood indices that do not separate a
data field.

286

WeißN. et al.: Automated Reverse Engineering of CAN Protocols

3.1 Method Description

A reasonably large capture of CAN-traffic is taken during a real-world driving
scenario. Some quantities of the car (e.g. the speed of the car, the pressure on
the brake pedal, etc.) are recorded through On Board Diagnostic II (OBD-II)
queries [8]. A neural network is then trained to predict an estimation on the
known measured quantity given the latest frame of each identifier. To understand
which identifiers contain the searched values, two approaches are possible:

1. The weights of the trained network are examined to check which bits of which
CAN-identifier have been more important for the correct estimation.

2. Different networks are trained for different CAN-identifiers and the network
that obtains the best prediction is associated with the searched identifier.

3.2 Data collection and data-set shaping

The car under test was a Mercedes Class A, year of build 2019. The car was driven
for approximately half an hour around the city, while all CAN-frames were captured
from the OBD-II connector. All available OBD-II parameter identifiers (PIDs) were
also collected, with a sampling rate of approximately 1.3 s−1. In total, the drive
took 1700 seconds and S = 2197 OBD-II samples were collected for each available
PID. In our reverse engineering process, only one measured parameter is considered
at a time. For example, let’s focus on OBD-II PID 0x0D, which measures the
vehicle speed in km/h. A neural network has the objective to identify which CAN-
identifier contains information about the vehicle speed. The value of the measured
parameter will be indicated as y(t), where t is the time when the parameter was
sampled. The captured CAN-frames were grouped by CAN-identifier, and every
constant bit capture is removed from the dataset. All CAN-identifiers that were
transmitted with a frequency less than 1Hz are also ignored. After filtering all
rare identifiers and identifiers with constant values, we obtained a dataset of 92
CAN-identifiers with an average of 24 bits used for information encoding. For
every arrival time t of sample y(t), a point x(t) is created in the dataset, which
includes the last captured CAN-frame for every identifier before time t. Each
dataset point x(t) contains W = 2234 bits coming from the 92 different identifiers.
This preparation step is necessary since the labeled data gathered from OBD-II
PIDs have a lower resolution than the captured data from CAN frames. After this
preparation, every labeled sample from OBD-II maps to a snapshot containing all
current CAN frames. A graphical representation of this dataset and the correlation
to the vehicle speed is illustrated in Fig. 5. Different neural networks will be trained
to perform an estimation ŷ(t) of the value of y(t) given the input x(t), that is,
estimate the vehicle speed given at time t given the last CAN-frame received up
to that moment on each CAN-identifier. We select three different neural network
models for further evaluation. In general, there is a trade-off to make between the
complexity of the model and its effectiveness. Given that the number of samples
recorded during the drive is quite low, a model with a minimal number of weights
should be chosen, to not cause overfitting during the training step.

287

Neural Network World 4/2021, 279–295

Neural Network World ?/2021, ?–?

Fig. 5: Normalized vehicle speed (top) and the states of the bits of the last CAN-
frame for each identifier at the arrival times of the samples represented as an image
(bottom). In the image, the color yellow represents a bit set to 1, and purple
represents a bit set to 0. Each column of this image is a point x(t) in the dataset.
It is interesting to note that some bits relate over time to the speed of the car, and
are silent when the car is stopped. These bits are good candidates for containing
the vehicle speed.

10

Fig. 5 Normalized vehicle speed (top) and the states of the bits of the last CAN-
frame for each identifier at the arrival times of the samples represented as an
image (bottom). In the image, the color yellow represents a bit set to 1, and purple
represents a bit set to 0. Each column of this image is a point x(t) in the dataset.
It is interesting to note that some bits relate over time to the speed of the car, and
are silent when the car is stopped. These bits are good candidates for containing
the vehicle speed.

Prevention of Overfitting A big source of overfitting for any neural network
attempting this regression is time. Some CAN-identifiers will contain bits that
encode the current time or the time since when the car was started. Other identifiers

288

WeißN. et al.: Automated Reverse Engineering of CAN Protocols

will contain bits encoding information that directly correlates with time (e.g. engine
temperature which will increase over time, GPS coordinates which will change
over time, etc.). The side effect of having time-related information encoded in
CAN-frames is that the neural network can end up “learning” the speed of the
vehicle at every moment in time in the training data and using the time information
in x(t) to fit y(t). To avoid overfitting, the neural network will be trained only from
samples taken from a continuous-time interval t0 < t < tT, and will be tested on a
different time interval tT < t < tEND. This ensures that any time-related overfitting
within the first interval will be detected in the testing phase.

3.3 Description of tested neural networks

Three different neural network topologies were tested for the problem of reverse
engineering CAN-identifiers according to the transported information. An overview
of these three neural networks is given in Fig. 6. The results of these three neural
networks are evaluated by comparing the MAE and RMSE of their predictions [1].

Topology A: Fully connected A first naive approach is to create one big fully
connected neural network which includes all bits of all CAN-identifiers as inputs
and has a single output (as shown in Fig. 6a). The hidden layer uses the rectified
linear unit (ReLU) activation function and the output layer uses a linear activation
function. The number of nodes in the hidden layer was empirically chosen to be
12 since it turned out to be a good compromise between training time and the
precision of the estimation. Such a network works well enough to estimate the
searched value y(t) given the bits x(t), sometimes with a low error. The problem
with this network is that guessing which CAN-identifier is containing the searched
value is not easy, since this network mixes values from different identifiers.

Identifier 1

Identifier 2

Identifier 3

Identifier N

...

Input Layer Hidden Layer Output Layer

(a) Topology A

Identifier 1

Identifier 2

Identifier 3

Identifier N

...

Input Layer Hidden Layer Output Layer

(b) Topology B

Identifier 1

Identifier 2

Identifier 3

Identifier N

...

Input Layer Hidden Layer 1 Output LayerHidden Layer 2

(c) Topology C

Fig. 6 Tested neural network topologies.

289

Neural Network World 4/2021, 279–295

Topology B: One network for each CAN identifier A good way to extract
the CAN-identifier that carries the desired information y(t) is to train one neural
network on each CAN-identifier, and then compare the estimations ŷi(t) made by
each network to y(t) and see which performs better. The network trained on the
correct CAN-identifier will be the one with the lowest error. Since the networks
are completely separated from each other, it is possible to train them on different
systems, leading to a good parallelizability of the algorithm.

Topology C: Linear combination of networks trained on individual CAN
identifiers By combining all the networks of the previously described topology B
and making a linear combination of their outputs, a new neural network topology
is obtained that has a second hidden layer. The activation functions of the second
hidden layer and the output layer are linear, meaning that the output is a linear
combination of the outputs of the first hidden layer, and therefore the second
hidden layer can be eliminated by fully connecting the single output node to the
first hidden layer. The identifier that contains the searched information y(t) is
found by evaluating all the contributions to the last linear combination and finding
which one correlates the most to y(t).

Evaluation Fig. 7 shows the real measured vehicle speed y(t) alongside the es-
timated vehicle speed ŷ(t) from the three described neural network topologies and
the estimation error. The training algorithm was executed 100 times for topologies
A and C, and 20 times for topology B, since each network in topology B has a
much lower number of weights to train. The executions were performed on the
first two-thirds of the measurements in the dataset (1464 samples out of 2197 sam-
ples). This is visible from the error, which increases after the 3

4 mark, revealing
that some overfitting is happening. When considering the error in the estimations,
neural networks with topology A and C perform very similarly and take similar
resources for training. Topology A averaged a mean absolute error (MAE) of 0.038
and an root mean square error (RMSE) of 0.057 when a regression is successful.
Topology C averaged an MAE of 0.043 and a RMSE of 0.067 when a regression is
successful. Topology B outperforms the others in terms of error and immunity to
overfitting but required much more computational power since all the individual
networks need to be compiled, initialized, and trained separately. However, since
it would benefit more in terms of speed from parallelization, it would also be the
faster algorithm when distributed to a large number of processors.

For some searched data, neural networks weren’t able to find a correlation. This
can be caused by two reasons:

1. Only a small number of the measured values with the data present in the
CAN-frames could be recorded.

2. Since the CAN traces were recorded from the OBD-II connector, which is
connected to only one of many CAN-buses in the car, it is possible that the
searched data was present in a different CAN-bus that was not recorded.

290

WeißN. et al.: Automated Reverse Engineering of CAN Protocols

Neural Network World ?/2021, ?–?

Fig. 7: Estimation of vehicle speed vs. real vehicle speed and absolute error from
the three tested network topologies.

14

Fig. 7 Estimation of vehicle speed vs. real vehicle speed and absolute error from
the three tested network topologies.

291

Neural Network World 4/2021, 279–295

3.4 Results

As anticipated, the results obtained from neural networks with topology A were
not suitable for reverse engineering, since the information from all identifiers was
mixed in the hidden layer. By training the multiple subnetworks considered in
the topology B, one can guess which identifier contains the searched information
by choosing the identifier whose subnetwork gave the least error when testing it
against the last third of the dataset. From the results in Fig. 8, it can be seen that
CAN-identifier 0x098 is the best match for the vehicle speed, and CAN-identifier
0x087 is a bad match. Interestingly, CAN-identifier 0x14b estimates the speed
somewhat correctly in the training data, but the error increases a lot in the data
the network was not trained on, which indicates a case of overfitting.

In topology C, the identifier which contains the searched information is guessed
by looking at the intermediate output of each node of the second hidden layer
and choosing which one has the highest Pearson correlation coefficient with the
searched information. Another equally valid metric is to look at the weights of
the last linear combination and choosing the identifier that provides the biggest
contribution.

Tab. I shows some of the reverse-engineered CAN-identifiers, along with the
RMSE. A lower error means there is higher confidence in the quality of the detec-
tion. This demonstrates the application of neural networks with topology B for
CAN-protocol reverse engineering.

Searched measurement OBD-II PID CAN id. RMSE

Calculated engine load 0x04 0x0b1 0.101264
Engine coolant temperature 0x05 0x2b9 0.051074
Short term fuel trim—Bank 1 0x06 0x0ae 0.191312
Long term fuel trim—Bank 1 0x07 0x0b1 0.161904
Intake manifold absolute pressure 0x0B 0x0ae 0.120086
Engine RPM 0x0C 0x0b1 0.077556
Vehicle speed 0x0D 0x098 0.050594
Timing advance 0x0E 0x03d 0.253927
Intake air temperature 0x0F 0x2b9 0.175567
Throttle position 0x11 0x03d 0.096419
Fuel Rail Gauge Pressure 0x23 0x147 0.135893
Relative throttle position 0x45 0x03d 0.108917
Ambient air temperature 0x46 0x339 0.034543
Absolute throttle position B 0x47 0x03d 0.116226
Accelerator pedal position D 0x49 0x03d 0.071383
Commanded throttle actuator 0x4C 0x03d 0.096537

Tab. I Results of reverse-engineering of CAN-identifiers through neural networks
with topology B.

292

WeißN. et al.: Automated Reverse Engineering of CAN Protocols

N. Weiß: Automated Reverse Engineering of CAN Protocols

Fig. 8: Estimation of vehicle speed vs. real vehicle speed and absolute error from
the three subnetworks in topology B, each associated with three different identifiers.

15

Fig. 8 Estimation of vehicle speed vs. real vehicle speed and absolute error from
the three subnetworks in topology B, each associated with three different identifiers.

293

Neural Network World 4/2021, 279–295

4. Conclusion

This article shows the capabilities of statistical and neural network reverse engineer-
ing methods. We demonstrated the localization of data fields within a CAN-frame
through advanced statistical methods. All examples were performed on real-world
data, captured during a 30-minute test drive.

TAV, DTAV, and BCOT are statistical metrics that can identify individual data
fields in a CAN-frame. This identification is an important step in the reverse engi-
neering process. For further research involving time-series analysis, all individual
fields in a CAN-frame need to be known.

Neural networks are a valid tool for reverse engineering a proprietary CAN-bus
protocol. While a conventional approach like an exhaustive search of the fields
and correlation of the searched measurements with their values would also work
and could be optimized to use less computational power, the advantage of neu-
ral networks is that they reduce development time since the algorithm is already
implemented in the library and the only work necessary is building the dataset
and specifying the network topology. The performance of the presented algorithm
could be improved by using more specific neural network models, for example re-
curring neural networks, which are specialized for processes that evolve in time.
However, the naive presented approach was able to produce usable results with an
extremely small dataset, and using more advanced types of neural networks would
surely require recording measurements for a much longer time.

Acknowledgement

The present work as part of the PetS3 project was funded by the Bavarian Ministry
of Economic Affairs, Regional Development and Energy (Bayerisches Staatsmin-
isterium für Wirtschaft, Landesentwicklung und Energie) under grant number
IUK-1711-0018. The authors are responsible for the content of this publication.
Furthermore, this research was conducted during the doctoral studies of Nils Weiß
and Enrico Pozzobon at the Faculty of Applied Sciences, University of West Bo-
hemia in Pilsen, CZ.

References

[1] BISHOP C.M. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Berlin, Heidelberg: Springer-Verlag, 2006, doi: 10.5555/1162264.

[2] HARTKOPP O. SocketCAN userspace utilities and tools [software]. 2021-06-28 [accessed
2021-07-09]. Available from: https://github.com/linux-can/can-utils

[3] VECTOR INFORMATIK GMBH DBC File Format Documentation. Vector Informatik
GmbH, 2008.

[4] Open Vehicles Monitoring System: DBC Introduction [online]. Open Vehicles Developers
Revision 5565dbf9 [viewed 2021-07-09]. Available from: https://docs.openvehicles.com/

en/latest/components/vehicle_dbc/docs/dbc-primer.html

[5] PEARSON K. Notes on Regression and Inheritance in the Case of Two Parents. In: Pro-
ceedings of the Royal Society of London, 1895, pp. 240–242, doi: 10.1098/rspl.1895.0041.

[6] WEISS N., RENNER S., MOTTOK J., MATOUŠEK V. Automated Threat Evaluation of
Automotive Diagnostic Protocols. In: Proceedings of the Embedded Security in Cars Work-
shop (ESCAR), Virtual, 2021.

294

http://dx.doi.org/10.5555/1162264
https://github.com/linux-can/can-utils
https://docs.openvehicles.com/en/latest/components/vehicle_dbc/docs/dbc-primer.html
https://docs.openvehicles.com/en/latest/components/vehicle_dbc/docs/dbc-primer.html
http://dx.doi.org/10.1098/rspl.1895.0041

WeißN. et al.: Automated Reverse Engineering of CAN Protocols

[7] ISO Central Secretary. ISO 11898-1:2015: Road vehicles – Controller area network (CAN) —
Part 1: Data link layer and physical signalling [online]. International Organization for Stan-
dardization. 2015 [viewed 6 July 2021]. Available from: https://www.iso.org/standard/

63648.html

[8] ISO Central Secretary. ISO 27145-3:2012: Road vehicles – Implementation of World-Wide
Harmonized On-Board Diagnostics (WWH-OBD) communication requirements – Part 3:
Common message dictionary [online]. International Organization for Standardization. 2012
[viewed 6 July 2021]. Available from: https://www.iso.org/standard/46277.html

[9] EMUNDO GMBH. revdbc [software]. 2020 [accessed 2021-07-15]. Available from: https:

//github.com/emundo/revdbc

295

https://www.iso.org/standard/63648.html
https://www.iso.org/standard/63648.html
https://www.iso.org/standard/46277.html
https://github.com/emundo/revdbc
https://github.com/emundo/revdbc

