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Abstract: The healthcare area is entirely different from other industries. It is of
the highly significant area and people supposed to gain the utmost care and facilities
irrespective of the cost. Reliable image detection and classification is considered a
significant capability in medical image investigation problems. The key challenge
is that the whole image has to be searched for a particular event and then classified
accordingly but it is necessary to ensure that any important piece of information or
instance shouldn’t be skipped. With regards to image analysis by radiologists, it is
quite restricted because of its partiality, the intricacy of the images, wide variations
that happen amongst various analysts and weariness. However, the introduction of
deep learning is a promising way to improve this situation by sorting out the issue
according to human leaning mechanism consequently it brings high-tech changes
in medical image classification problems. In this context, a new ensemble deep
learning topology is being proposed in the direction of a more precise classification
of musculoskeletal ailments. In this regard, a comparison has been accomplished
based on different learning rates, drop-out rates, and optimizers. This comparative
research proved to be a baseline to gauge the up-to-the-mark performance of the
proposed ensemble deep learning architecture.
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1. Introduction

Over the past few years, the requirements of medical imaging, such as Magnetic
resonance imaging (MRI), Computed tomography (CT) scans and X-rays, have
been significantly increased. The requirement and availability of medical imaging
for disease diagnosis, is rapidly beating the capability of radiologists especially
in low and middle-income countries. Hence this results in wrong decisions and
ineffective treatment. Still, this problem is substantially solved by the advancement
in artificial intelligence, which involves using the computer-aided system to analyze
and investigate medical images so that reliable and timely treatment can be made
possible [24]. While considering a roadmap from AI to deep learning, the phrase AI
is simply a universal term consisting of problem-solving processes and procedures.
Next, under the umbrella of AI, machine learning comes in which machines are
to be learned to solve specific problems based on the provided information [42].
Subsequently, such networks have emerged, which are grounded in deep learning.
Hence it may be stated that both ML and DL are the architectures of AI. Therefore
DL is an explicit sort of ML [17] with the difference of automated feature extraction
mechanism instead of the manual feature extraction process as in ML [31, 23, 29].
In the same way, DL networks outperform for massive datasets [39, 6] compared to
smaller ones in which ML is the most suitable process. The primary constituent of
the deep learning layer is the neuron, whose functionality is the imitation of human
neurons, which has weight and bias against each input connection [14, 21].

Although deep learning shows outstanding performance in medical image classi-
fication, some of the challenges have also been encountered in medical image classi-
fication applications. The first hindering element is the provision of the high-grade
annotated dataset. Deep learning algorithm yields excellent results by feeding the
huge and wide variety of datasets which is the biggest challenge in such scenarios
[18].

Even though several researchers have performed medical image classification
with pre-trained deep learning models on their selected medical image datasets
and improved the results and accuracies. Some applied ensemble learning but hy-
bridized the pre-trained models with DL standard networks. Nobody works to
develop their topology by the fusion of classic deep learning networks and perform
training from inception against radiographs datasets. There is no pre-trained net-
work available which has been trained, especially against medical image datasets
from scratch. Hence the key objective of this research is to produce the most
perfect and efficient mechanism with better-generalized behaviour. This motive
is achieved by merging the benefits of classic deep learning topologies in conjunc-
tion with ensemble learning and train it against radiographs datasets to generate
more competitive results. Hence an innovative ensemble product has been intro-
duced that will turn out to be the more effective and powerful means of performing
diagnosis, feature extraction, and classification against the radiograph datasets.
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2. Background

2.1 Ensemble learning

The idea of ensemble learning is based on the very old saying, “unity is strength”.
It is a powerful machine learning technique in which various weak learning algo-
rithms are blended appropriately in such a fashion to generate a powerful model. It
considerably boosts the generalization capacity of the ensemble model. Ensemble
learning starts with the selection of base models to be assembled. Ensemble mod-
els can be categorized as homogeneous and heterogeneous. The ensemble model
is termed homogeneous in a case; identical dilute models are trained in distinctive
manners [41]. The strong ensemble model is denoted as heterogeneous if divergent
topologies are blended to obtain improved performance. There are three significant
aggregating techniques in the direction of blending the base models. Bagging is one
of the benchmark methods based on the parallel but independent learning of homo-
geneous learning algorithms on different datasets and then combines the multiple
predictions generated by them. Boosting technique introduced the sequential ag-
gregation of weak homogeneous base topologies and then combined the predictions
in a very conclusive manner. Stacking methodology deals with the heterogeneous
weak models that learn them in parallel and link them by train a meta-model to
yield an estimation constructed on the different weak algorithms predictions [16].

2.2 Hyper-parameter selection

Expeditious and effective training of deep neural networks could be an art as far as
a science. The truth is that these queries couldn’t be answered. In deep learning or
machine learning cases, network effectiveness varies deeply based on the selection of
hyper-parameter values. Hyper-parameter interrogation aims to traverse different
hyper-parameter arrangements to discover the best one, which gives maximum
performance. Typically, the hyper-parameter interrogation process is exhaustively
manual. It is proved that the exploration area is massive, and the estimation of each
interrogation can be costly [14]. This section offers the summarized importance of
these hyper-parameter values in estimating any deep learning model’s performance.

2.2.1 Learning rate

The learning rate is an essential hyper-parameter, denoted by α (alpha). It is used
to fine-tune how accurately a network congregates on a result and can perform
classification or prediction. Moreover, the additional time causes raised in cloud
GPU costs. In the same way, elevated learning rates might create such a model
that could not perform reliable predictions. Therefore, the most authentic learning
rate is the one that can converge the network within a reasonable period [36].

2.2.2 Drop-out

Deep Learning networks are getting started even more deepened and broader. In
the deep neural network the goal is to attain the best accuracies with these extensive
networks. However, in such types of networks, the primary issue is the over-fitting

379



Neural Network World 6/2021, 377–393

problem. Hence, in 2012, the idea of drop-out arose, and this conception brought
a revolutionary change in deep learning [22]. It completely transformed the idea
of understanding the whole weights altogether to discover a small percentage of
weights in the network in every iteration process [8, 1]. This technique answered the
problem of over-fitting, which often occurs in large networks hence the possibility of
developing the larger complex. Still, more precise Deep Learning networks may be
increased [3, 38]. In advance of drop-out, regularization was considered a significant
research area. These regularizations are not sufficient enough to solve the problem
of over-fitting solely because of co-adaptation, which is the major problem of large
networks. The traditional L1 and L2 regularization couldn’t resolve this problem.
Moreover, they also perform predictive ability-based regularization. The critical
drawback of this technique would restrain the size and accuracy of the network
[38]. Later a new regularization technique evolved, which overcome the problem of
co-adaptation [22]. Now it may be possible to denser and broader networks that
completely participate in prediction.

2.2.3 Optimization algorithm

Let’s suppose the value of a cost function is updated against the performance
parameters trained during the training process. The cost function computes the
difference between forecasted values and estimated values [11]. This difference is an
error, which is the mean of the difference between predicted values and actual val-
ues [5]. Gradient descent is the first and foremost important algorithm, [15], which
is a significant way to calculate the optimum model’s performance with minimum
loss function values in neural networks [32]. The back-propagation method is used
to train a neural network. According to this technique, model propagate in a back-
ward direction along with the calculated gradient of the error function and update
weights accordingly [14]. Root mean square propagation optimizer (RMSprop) is
analogous to gradient descent except for methods of calculating the gradient. It
constrains the fluctuations along the y-axis; hence the learning rate can be in-
creased, and it may converge faster along the x-axis [19]. RMSprop differs from
AdaGrad because AdaGrad vanishes the learning rate vigorously because of the
increasing value of the denominator [27]. In this connection, there is an idea of
decaying the denominator and avoid its instant growth [40]. Adaptive gradient al-
gorithm (AdaGrad) permits the adjustment of the learning rate according to the
parameters permits by the algorithm. Hence it formulates huge updates for vari-
able settings and minor updates for normal parameters. It results in a learning rate
smaller and smaller, and convergence becomes slower and slower, which causes a
long time to train a model. Its main weakness is that its learning rate-η is always
decreasing and decaying [40, 12]. This issue of diminishing learning rate is resolved
in another algorithm called AdaDelta.

AdaDelta is the progression of AdaGrad, which settled the vanishing learning
rate issue of AdaGrad. Rather than collecting the entire earlier squared gradients,
it restrains to the specific number of previous gradients. It calculates the average at
a particular time t, then based on the past average, it generates the current gradient
[2]. Adaptive moment estimation (Adam) refers to Adaptive moment Estimation.
It is also one of the methods to calculate the learning rate against each parameter.
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Adam is amongst the most efficient algorithm as its convergence and learning speed
are faster than others [25]. It also resolves other issues like decaying learning
rate, slow convergence, high variance issues [40]. These problems may direct to
fluctuation in the error function. Adam is an adjustable learning rate method.
It merges the benefits of two SGD enhancements – (RMSProp) and (AdaGrad)
and calculates distinct adjustable learning rates for different parameters [12, 26].
Initially, Adam updates the rapidly growing averages of gradients and the squared
gradient. This algorithm first revises the exponential progressing averages of the
gradient and the squared gradient, which are the estimates of the first and second
moments [28].

3. Datasets

Large-scale datasets are considered as the fuel for the high-tech performance of deep
learning models. One of the most extensive available musculoskeletal datasets is
MURA. It consists of 14, 863 upper extremity musculoskeletal images from 12, 173
patients; among them, 9, 045 are labelled as standard, and the remaining 5, 818
are categorized as abnormal. Each finding consists of one or several images that
are manually labelled as either normal or abnormal. The upper extremity includes
the shoulder, humerus, elbow, forearm, wrist, hand, and finger [30]. Tab. II and
Fig. 2 depict the normal and abnormal image distribution against seven classes of
the MURA dataset and some of its sample images, respectively.

Foot Knee Hip Ankle

Normal 312 435 91 285
Abnormal 36 99 3 36
Total 348 534 94 321

Tab. I Image distribution against classes of LERA dataset.

Elbow Finger Forearm Hand Humerus Shoulder Wrist

Normal 3114 3275 1309 4225 818 4481 5981
Abnormal 2221 2196 805 1659 735 4323 4206
Total 5335 5471 2114 5884 1553 8804 10187

Tab. II Image distribution against classes of MURA dataset.

The MURA dataset has been collected by the institutional review board, HIPPA
compliant, and communication system (PACS) of Stanford University. This dataset
has been collected over a long period, i.e., from 2001 to 2012. Therefore, it consists
of a wide variety of musculoskeletal images. To cover the musculoskeletal images of
both upper and lower extremities, the second dataset, which has been adopted for
the training of the proposed DL model, is LERA (Lower extremity radio-graphs).
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This dataset also covers a broad range of bones and joint abnormalities of lower
extremity areas of the human body. It is also a diverse-natured dataset because of
its collection over a wide range of time from 2003 to 2014. It is also being released
HIPAA-compliant Stanford University Medical Center. Tab. I and Fig. 1 show
standard and anomalous image dissemination and sample images against the foot,
knee, ankle, or hip bones.

Fig. 1 Sample images belong to different classes of the LERA dataset [35].

Fig. 2 Sample images belong to different classes of the MURA dataset [30].

4. Applications of deep learning in fracture
detection

This section portrays the participation of different authors towards the contribu-
tion of deep learning models in fracture detection with the help of different types
of medical images. For this purpose, an extensive literature review has been con-
ducted and summarized in this section. A lot of research has been done in deep
learning, especially for the applications concerned with the interpretation and diag-
nosis of medical images [10]. These tasks may vary from identifying and detecting
diseases to the classification and analysis of abnormalities in medical images [20].
The development of a comprehensive deep learning network for medical images
requires huge but labeled datasets to train the network. Numerous researches have
revealed deep learning applications in fracture diagnosis. In [9], the author per-
formed abnormality detection through the DL model and trained it against the
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CT scans from the CQ500 and Qure25k datasets. The evaluation metrics of this
classification are based on sensitivity, specificity with approximately 0.9 values for
each. In [33] deep learning-based computer-aided diagnosis (CAD) system has
been developed to classify the bone fracture images. The U-Net-based Deep CNN
model has been trained to classify the MURA dataset and yielded better accuracies.
They claimed that such a model would become a helpful tool for radiologists and
doctors to analyze and investigate bone fractures. In [7], a comparative analysis
among the pre-trained and state-of-the-art deep learning models have been per-
formed in bone and joints against healthy vs unhealthy classification. As a result,
this study provides knowledge about the best-performing deep learning model in
this scenario. A large publically available musculoskeletal dataset named MURA
is used in this research. In [13], the researchers proposed a deep convolution neu-
ral network model for automated proximal femur segmentation with the help of
a dataset consisting of MR images and achieved very high scores for accuracies,
precision, and recall against manual segmentation scores. In [34], the investiga-
tive study explored computer-aided classification and tracking of wrist fractures
through the Inception-ResNet Faster R-CNN DL model. The ability of this model
has been tested against the evaluation matrices such as sensitivity and specificity
and achieved high scores of them, indicating the best performance of the pro-
posed model. In [4], the researchers suggested an ensemble deep CNN approach
to classifying the healthy and abnormal interstitial lungs through CT scans. The
resulting performance showed the sensitivity, specificity, geometric mean, and accu-
racy score 88.9%, 98.4%, 93.5%, 93.61%, respectively. In [37], the study analyzes
the recognition and identification of hip fractures with the help of deep learning
pre-trained models, Inception-V3 and ImageNet, and performed classification by
transfer learning. The performance of this transfer learning approach has been
measured based on the AUC-ROC curve with scores of 0.9944, accuracy values of
96.9%, and confusion matrix. Although several researchers have performed medical
image classification with pre-trained deep learning models, the proposed topology
excelled in many folds.

5. Implementation details of proposed ensemble
network

The proposed model has been trained and tested against the classes for LERA and
MURA. 70% of datasets is used for training in this connection, and the remaining
30% is utilized for testing. Some preprocessing has been done on both datasets
before launching training and testing. The images are labelled properly based on
normal and abnormal categories against each class so that the model could be
trained for both types of images and perform classification perfectly.

The proposed topology is a 51 layered model developed by aggregating two clas-
sic deep learning models: CNN and LSTM but in different arrangements. Tab. III
provides a complete picture of the arrangement and specifications of layers. The
layer’s arrangements have been performed either in series or parallel to attain the
optimum performance of the model. Unfortunately, there is no set of rules for
defining the best possible configuration of layers in the model. Instead, an experi-
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Layers
Arrangement

ConvBase
Specifications

ConvBase
Specifications

ConvBase
Specifications

Input sequence input layer(96*96*1)

sequenceFoldingLayer

Parallel

Convolution2dLayer
(3*3*8)

batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,2)

Convolution2dLayer
(3*3*16)

batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,2)

Convolution2dLayer
(3*3*32)

batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,2)

concatenationLayer(3)

Parallel

Convolution2dLayer
(3*3*8)

batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,2)
dropoutLayer

Convolution2dLayer
(3*3*16)

batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,2)
dropoutLayer

Convolution2dLayer
(3*3*32)

batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,2)
dropoutLayer

concatenationLayer(3)

Series

Convolution2dLayer
(3*3*8)

batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,2)
· · ·

Convolution2dLayer
(3*3*16)

batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,2)
· · ·

Convolution2dLayer
(3*3*32)

batchNormalizationLayer
reluLayer

maxPooling2dLayer(2,2)
dropoutLayer

sequenceUnfoldingLayer

flatten layers

Series Two lstmLayers

fullyConnectedLayer

softmax layer

Output outputLayer()

Tab. III Specifications of the proposed ensemble model.

mental approach has been adopted to attain the best one. This model starts with
the sequence input layer to ensure that the provided input must be in sequence
form. Later, after passing this sequenced input through sequencedFoldingLayer,
the input is ready to feed to 3 sets of convolution bases, which are arranged in a
parallel manner. Each convolution base comprises convolution2d, batch normal-
ization, relu, and maxpool2d layers. These initial convolution bases are used to
extract the low-level features, then the extracted feature matrix is concatenated
and handed over to 3 other parallel arranged convolution bases. Next to the parallel
arrangement of convolution bases, there exist three serially arranged convolution
bases. Finally, the convolution bases have identified enough feature details, so the
resultant map is submitted to the sequence unfolding layer, which is later connected
to the serially arranged two LSTM layers. After-ward, the LSTM layer delivered
the results to a classifier that performs the classification of musculoskeletal images.
This classifier consists of fully connected, softmax, and output layers.
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6. Proposed ensemble network training parame-
ters & performance analysis

There is no technique available to inquire about the best suitable values against
the following hyper-parameters. The only method is the hit and trial method. The
best parametric values for one dataset may work well for other datasets. However,
there are some rules of thumb available for finding suitable values. Hence the trial
and error approach is used in determining the best possible set of hyper-parameter
values, as described in Tab. IV, for the optimum performance of the proposed
model.

Datasets No of Epochs nLearning Rates MiniBatchSize Learning Algorithms Drop-out Rates

MURA 40
0.002
0.001

30
Adam
Sgdm

Rmsprop

0.1
0.3
0.5
0.8

LERA 150
0.002
0.001

30
Adam
Sgdm

Rmsprop

0.1
0.3
0.5
0.8

Tab. IV Proposed ensemble network training parameters.

The performance analysis of the proposed model has been performed by con-
sidering the best two learning rates, 0.001 and 0.002, against three optimization
algorithms. By taking into account four drop-out rates, training is accomplished.
Still, the mini-batch size remains kept constant, i.e., 30, and the number of epochs
for MURA and LERA datasets are set to be 40 and 150, respectively. Moreover,
it is also compared with the previously available scores.

Tab. V effectively summarizes the performance analysis of the proposed model
against all classes of LERA datasets at different values of hyper-parameters. Here
the AUC-ROC values are taken into consideration because of the comparison with
existing AUC-ROC values. The Foot class depicts that the AUC-ROC probabil-
ity values of the proposed network at drop-out rate 0.5 with learning rate 0.002
and for Adam optimizer show better performance compared to the existing value.
At the same time, the ankle class reveals its better performance compared to the
existing value at drop-out rate 0.5 with learning rate 0.001 and for Adam opti-
mizer. The comparison chart for hip class represents that at drop-out rate 0.3 with
learning rate 0.002 and for rmsprop optimizer the proposed model’s scores are the
best. Whether the knee class reveals that the AUC-ROC probability values of the
proposed network at drop-out rate 0.1 with learning rate 0.001 and for rmsprop
optimizer supports better performance compared to the existing value.

Tab. VI summarizes that for forearm and hand classes, the proposed model
exhibits its best performance at a drop-out rate of 0.5 with a learning rate of 0.002
and Adam optimizer. While in the case of the shoulder, wrist, and finger classes,
the proposed network’s accuracy at drop-out rate 0.5 with a learning rate of 0.001
and for Adam optimizer displays the maximum obtained scores. As far as humerus
class is concerned, it summaries that the best accuracies of the proposed model
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Dropout rate 0.1 Dropout rate 0.3 Dropout rate 0.5 Dropout rate 0.8

FOOT LR0.001 LR0.002 LR0.001 LR0.002 LR0.001 LR0.002 LR0.001 LR0.002
Adam 88.5714 90.1687 96.3500 97.4138 87.7843 97.0103 79.0169 89.7102
Sgdm 93.8188 87.6376 72.6889 91.4894 50 64.8936 50 50
Rmsprop 91.4343 89.2517 92.6999 94.8826 93.5620 92.9017 91.2326 92.2414
Highest Existing Scores [35] 88.7

HIP
Adam 80 80 80 82.2222 89.4444 84.4444 58.3333 42.7778
Sgdm 73.8889 81.6667 68.8889 76.6667 50 70.5556 50 50
Rmsprop 74.4444 92.2222 89.4444 100 76.6667 89.4444 46.1111 68.3333
Highest Existing Scores [35] 93.4

KNEE
Adam 96.3158 97.3684 97.3684 98.9474 98.7045 96.3968 53.0769 65.5061
Sgdm 84.6154 96.3158 67.6923 93.8057 60.7692 74.0486 50 50
Rmsprop 99.4737 94.8583 97.4089 95.2632 97.8947 98.9474 62.5506 85.3441
Highest Existing Scores [35] 90.5

ANKLE
Adam 92.8758 88.3007 92.4837 92.0261 98.0392 95.9477 89.5425 77.0588
Sgdm 82.3529 91.8954 57.7778 87.7124 81.7647 75.4902 50 50
Rmsprop 93.0065 93.0065 95.6863 95.817 97.9085 91.1111 58.6275 86.6013
Highest Existing Scores [35] 81.3

Tab. V Proposed ensemble network training results against all classes of LERA
dataset.

occur at drop-out rate 0.3 with learning rate 0.002 and for Adam optimizer. The
elbow class reviews that the proposed model accuracies at drop-out rate 0.5 with
learning rate 0.001 and for rmsprop optimizer validates the best results.

7. Simulation results

A confusion matrix is a technique for summarizing the performance of a classifica-
tion algorithm. Any classification algorithm can be analyzed based on a summary
generated by a confusion matrix. For example, if the dataset comprises several
classes with unequal images, then the classification algorithm misrepresenting the
accuracies; hence, the confusion matrix provides the understanding of errors and
the types of errors of the classifier. So this section comprises of simulation results
generated by the Deep Network Designer tool of MATLAB 2019. Confusion ma-
trices and simulation graphs have been generated against all the classes of both
datasets. Fig. 4 visualize the model performance through the graph and illustrate
the confusion matrix for a single run against the foot class of the LERA dataset,
respectively. The same is the case for Fig. 5 against the finger class of the MURA
dataset.

The Figs. 6 and 7 demonstrate the aggregate values of confusion matrices for
randomly selected 21 runs against the foot and finger class of LERA and MURA
datasets.
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Dropout rate 0.1 Dropout rate 0.3 Dropout rate 0.5 Dropout rate 0.8

FOREARM LR0.001 LR0.002 LR0.001 LR0.002 LR0.001 LR0.002 LR0.001 LR0.002
Adam 71.4511 68.6120 68.1038 70.6625 65.2997 74.0900 72.0820 67.3502
Sgdm 71.4511 62.7760 65.6151 61.9874 63.5647 63.7224 61.8297 54.5741
Rmsprop 72.8707 71.9243 70.1893 69.0852 70.9779 71.2934 64.6688 70.5047
Highest Existing Scores [30] 73.7

HAND
Adam 75.9207 73.5977 76.2040 75.2408 75.5241 76.1473 69.5751 72.6346
Sgdm 71.5581 74.2210 72.2946 71.9547 71.6714 69.2351 71.7847 71.7847
Rmsprop 73.8244 71.7847 75.7507 71.9547 72.5779 73.5977 69.4051 74.1643
Highest Existing Scores [30] 85.1

WRIST
Adam 75.3927 73.7893 75.8508 68.8482 78.1086 77.8796 70.6152 74.7055
Sgdm 74.9673 73.6911 71.0079 73.5929 63.3181 67.0484 62.8272 42.2448
Rmsprop 75.2618 74.8691 76.7343 75.8181 77.6505 77.6505 67.1466 69.1427
Highest Existing Scores [30] 93.1

HUMERUS
Adam 69.4624 70.1075 72.6882 74.1935 72.6882 72.4731 69.8925 68.8172
Sgdm 69.0323 67.3469 61.9355 61.2903 52.9032 56.3441 52.6882 52.6882
Rmsprop 69.6774 69.8900 70.3226 72.9032 72.6882 72.4731 66.4378 71.6129
Highest Existing Scores [30] 60.0

SHOULDER
Adam 68.0016 69.4834 71.1254 70.2843 71.871 69.2831 66.0793 65.8791
Sgdm 70.1241 69.0429 67.3608 70.4846 61.674 65.839 52.0224 56.2275
Rmsprop 66.8002 69.0028 69.964 70.4045 68.9227 71.7261 68.1618 67.4409
Highest Existing Scores [30] 72.9

FINGER
Adam 71.1152 69.7136 70.2620 71.7855 72.0293 69.3100 64.2291 68.3729
Sgdm 68.6167 68.0683 68.4948 70.2011 64.8995 66.7276 49.1164 40.8288
Rmsprop 71.7855 70.9324 71.1152 69.2261 71.7855 69.4089 69.4089 67.0323
Highest Existing Scores [30] 38.9

ELBOW
Adam 68.5300 71.7391 75.0518 73.4990 72.4638 71.8427 70.2899 69.6687
Sgdm 72.3602 70.7039 69.6687 70.2899 68.9441 68.9441 68.9441 68.9441
Rmsprop 70.7039 70.1863 74.0166 74.6377 75.7764 73.6025 70.2899 70.2899
Highest Existing Scores [30] 71.0

Tab. VI Proposed ensemble network training results against all classes of MURA
dataset.

8. Conclusion & future work

This research has been inspired by the diffusion of deep neural networks in the
medical imaging industry. Although several researchers have performed medical
image classification, they mostly use pre-trained models for this purpose and try
to achieve good accuracies. So in this study, a neoteric ensemble deep learning
approach is developed. Its much-improved performance is recorded because of the
best arrangements of layers and the combination of two different deep learning
models. Unfortunately, there is no particular pattern available for the arrange-
ment of layers and the combinations of classic models. Instead, the trial-and-error
methodology has been adopted to achieve the best medical image classification.
After discussing its detailed structure, a comparative analysis is being made based
on the better of the two learning rates and four drop-out rates for three optimizers
and concluded the best set of learning and drop-out rates and optimizer for each
class. The ensemble model represents much improved results for all classes in the
case of the LERA dataset.

387



Neural Network World 6/2021, 377–393

Fig. 3 Simulation result for foot class of the LERA dataset, generated by Deep
Network Designer tool of MATLAB 2019.

Fig. 4 Confusion matrices for foot class of the LERA and finger class of the MURA
datasets against the single run.

In contrast, the MURA dataset depicts the improvement for four classes (fore-
arm, finger, humerus, elbow), and scores for shoulder class are almost close to
existing values. In cases of wrist and hand classes, the results are satisfactory
but not improved. This comparative analysis proves that it is not recommended
that there should be a single optimum learning and drop-out rates, but it depends
upon varying factors. Hence it is concluded that for deep learning applications,
the best values for learning and drop-out rates should be nominated against the
best-selected optimizer for every class of a particular dataset.

For future work, we have planned to employ our proposed model against a
wide array of datasets. However, the number of hyper-parameters such as number
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Fig. 5 Simulation result for finger class of the MURA dataset, generated by Deep
Network Designer tool of MATLAB 2019.

Fig. 6 Confusion matrices for foot class of LERA dataset against the individual
run.

Fig. 7 Confusion matrices for finger class of MURA dataset against the individual
run.
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and size of filters, pooling window, and the stride is being set on a trial-and-
error basis and prior experience; hence, tuning the appropriate range of values is
a tremendous task an active research area. Furthermore, these hyper-parameters
values vary with respect to datasets and the deepness of DL model, so we have
intended to develop such a generic technique that will help investigate the scale of
values that are best suited against a particular dataset and for the variable depth
of deep learning models. Apart from the learning and drop-out rates, the number
of hidden nodes/layers and the size of the feature map, pooling window, and stride
also contribute significantly during training and affect accuracy.
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