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Abstract: Based on the theoretical analysis of Elman network, the short-term
load forecasting model of regional integrated energy system is established. The
structure and parameters of the model are determined through repeated off-line
training and experiments. The forecasting accuracy is significantly higher than
that of traditional BP network, and the prediction error is less than 3%, which
can meet the needs of coordination and scheduling of regional integrated energy
system.
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1. Introduction

The regional integrated energy system (RIES) can concentrate a variety of com-
plementary distributed energy in the same network. It can improve the energy
utilization, economy and stability of the whole regional energy system by using
clean energy such as solar energy, geothermal energy, air energy, natural gas and
wind energy. It can be applied to various parks, public buildings, industrial en-
terprises and other scenarios [1]. However, due to the uncertainty of clean energy
output and load demand in RIES, it brings huge risks and challenges to ensure
the stable and energy saving operation of RIES, robust optimal scheduling must
be adopted [2]. Short-term load forecasting (STLF) is the premise for the robust
optimal scheduling of RIES [3]. The production and consumption of energy is un-
dergoing profound changes with the progress of technology and the improvement
of people’s living standard and the coupling between energy sources is becoming
stronger and stronger, which puts forward higher requirements for the accuracy
and timeliness of STLF [4].

Many classical methods were used to study STLF, such as support vector ma-
chine [5] , neural network [6,7] and statistical methods [8–10]. Because of its strong
learning and mapping energy, neural network can simulate complex nonlinear re-
lationships with arbitrary accuracy, and it has become an important calculation
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tool for STLF [11]. The load of the system is not only affected by the external
weather and user usage, but also closely related to the load at the previous time.
This dynamic nature of load determines that static neural networks, such as radial
basis function (RBF) neural network, back propagation (BP) neural network and
wavelet neural network (WNN), cannot achieve the best effect [12].

Elman neural network (ENN) is a neural network formed by adding a context
layer on the basis of BP neural network. It is a dynamic model that can remember
the historical state. On each iteration, the context layer of ENN can feed back the
error to the input layer, and correct the input data of the input layer according
to the feedback error to reduce the error. Compared with BP neural network,
ENN has higher prediction accuracy [13]. In this paper, ENN is used to predict
the electric and heat or cooling load of regional integrated energy system, and the
prediction results are compared with BP neural network.

2. Elman neural network (ENN)

2.1 The structure of ENN

As shown in Fig. 1, ENN forms a new generation of neural network by adding
a context layer on the basis of the traditional neural network composed of input
layer, hidden layer and output layer. The neurons in the context layer are the same
as those in the hidden layer. The hidden layer outputs the data to the output layer
after weighted processing, and stores the data in the context layer. The data stored
in the context layer is input back to the hidden layer together with the data of the
next group of input layers, so as to reuse the data of the hidden layer and form a
recursive network [14].

Fig. 1 The structure of Elman neural network.
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In Fig. 1, the ENN has an n-dimensional input layer, and the input vector
at time t is x(t) = [x1(t), x2(t), . . . , xn(t)]. The number of neurons between the
hidden layer and the context layer is m, and they correspond to each other one
by one. The vector of the context layer is u(t) = [u1(t), u2(t), . . . , um(t)] ,and the
vector of the hidden layer is h(t) = [h1(t), h2(t), . . . , hm(t)]. In order to increase
the nonlinearity of the neural network model, sigmoid function is selected as the
activation function, and h(t) can be calculated according to the following formula:

hi(t) = f(vhi (t)) =
1

1 + exp(−(vhi (t))
, (i = 1, 2, . . . ,m), (1)

vhi (t) =

n∑
j=1

w1ij(t)xj(t) +

m∑
j=1

w2ij(t)uj(t), (i = 1, 2, . . . ,m), (2)

uj(t) = xj(t− 1), (j = 1, 2, . . . ,m). (3)

Here, w1(t) ∈ Rn×m is the weight matrix from the input layer to the hidden
layer and w2(t) ∈ Rm×m is the weight matrix of context layer to hidden layer.

Fig. 1 contains a k-dimensional output layer, and the output vector is expressed
as y(t) = [y1(t), y2(t), . . . , yk(t)], here t indicates tth output sequence. y(t) can be
computed by equations below:

yi(t) = f(voi (t)) =
1

1 + exp(−(voi (t))
, (i = 1, 2, . . . , k), (4)

voi (t) =

m∑
j=1

w3ij(t)hj(t), (i = 1, 2, . . . , k). (5)

Here, w3(t) ∈ Rm×k is the weight matrix of hidden layer to output layer.

2.2 Learning algorithm of ENN

Assuming that the actual output of the system is d(t) , the error between the
predicted value and the actual value of ENN is:

E(t) =
1

2
(d(t)− y(t))T(d(t)− y(t)). (6)

In order to minimize the error, the gradient descent method is adopted. When
the partial derivative of E(t) to the weight is equal to 0, the learning algorithm of
ENN can be obtained [15]:

△ w3ij(t) = η3hi(t)(dj(t)− yj(t)f
′(voi (t)), (i = 1, 2, . . . ,m)(j = 1, 2, . . . , k), (7)

△w2ij(t) = η2

k∑
l=1

(w3il(dj(t)− yj(t)f
′(voi (t)))f

′(vhi (t))hj(t− 1)

(i = 1, 2, . . . ,m; j = 1, 2, . . . ,m),

(8)

△w1ij(t) = η1xi(t)

k∑
l=1

(w3il(dj(t)− yj(t)f
′(voi (t)))f

′(vhi (t))

(i = 1, 2, . . . , n; j = 1, 2, . . . ,m),

(9)

here, η1, η2 and η3 are the learning rates of the w1, w2 and w3 respectively.
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2.3 Model evaluation

In order to determine the parameters of the model according to the prediction
accuracy of the model, the model average absolute percentage error (MAPE) of
the predicted value and the actual value is usually used to evaluate the prediction
effect of the model [16]:

MAPEk =
1

N

N∑
i=1

∣∣∣∣yki − ŷki
yki

∣∣∣∣. (10)

Here yki and ŷki, (k = 1, 2) represent the predicted and actual values of the electric
and heat or cooling load respectively, N is the number of samples. If the weights
of electric end thermal loads (or cooling load) are set to 0.6 and 0.4 respectively,
the average prediction accuracy (MA) is:

MA = 0.6× (1−MAPE1) + 0.4× (1−MAPE2). (11)

3. Short-term load forecasting

3.1 Prediction process

According to the historical data, weather data, course information and school cal-
endar data provided by the campus data platform of Jiangsu urban and rural
construction vocational college, the short-term load is learned offline and predicted
online by using ENN. The prediction process is shown in Fig. 2.

Fig. 2 Short-term load forecasting process of regional integrated energy system.

Through off-line training, the system determines the parameters of the ENN
model, and then forecasts the current electric, heat and cooling load through the
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real-time reading data. In order to effectively coordinate and mobilize the energy
system according to the demand side demand, the prediction is made at the interval
of one hour.

3.2 Sample data and preprocessing

Through the analysis of the data association of the college data platform in 2018,
the main factors affecting the load are taken as the input data, including:

• Historical data: the electric and heat or cooling load at the previous moment
(x1, x2); the electric and heat or cooling load at the same time of the previous
day (x3, x4), and the electric and heat or cooling load at the same time of
the previous week (x5, x6).

• Weather data: current outdoor air temperature (x7) and relative humidity
(x8).

• Course information: number of practical courses (x9) and theoretical courses
(x10) of the day.

• School calendar data: x11 takes 1,2 and 3 as teaching day, weekend and
holiday separately.

• Output data: current electric and thermal load (y1, y2).

Before running ENN for off-line learning and on-line prediction, all data must
be linearly normalized to the range [−1, 1]. The normalization method of input and
output data is as follows [17]:

xn
i =

xi − x̄i

σi
, (12)

ynj =
yj − ȳj

σj
, (13)

where x̄i and σi(i = 1, 2, . . . , 11) are the mean and standard deviation of input
variable samples, ȳj and σj(j = 1, 2) are the mean and standard deviation of
output variable samples.

3.3 Model selection and training

In order to predict the electric and cooling load of the system, 960 samples (sam-
pling time 1 hour) from September 1 to October 10, 2018 are selected for offline
learning, of which 720 samples from September 1 to 30, 2018 are the training set
and 240 samples from October 1 to 10, 2018 are the verification set. In order to
predict the electrical and heat load of the system, 960 samples (sampling time 1
hour) from December 2, 2018 to January 10, 2019 are selected for offline learning,
of which 720 samples from December 1 to 31, 2018 are the training set and 240
samples from January 1 to 10, 2019 are the verification set. All data come from
the data platform of Jiangsu urban and rural construction vocational college. The
learning rate is set to 0.1 and the number of iterations is set to 2,000. In Elman
neural network, the number of hidden neurons directly determines the prediction
effect [18]. The results of the two sample sets with several different numbers of
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neurons in the hidden layer are shown in Tab. I. The training results of both sam-
ples show that the Elman network with 22 hidden units (and 22 context units) is
the best in average prediction accuracy (MA).

The number of neurons 11 22 33 44

MA (cooling load) 0.9318 0.9768 0.9234 0.9012
MA (heat load) 0.9215 0.9644 0.9184 0.9088

Tab. I The relationship between the number of neurons in the hidden layer and the
prediction accuracy.

The hidden units (and context units) are set to 22. The change of training
and verification set accuracy during ENN iteration during electric and cooling load
forecasting of the system is shown in Fig. 3. The change of training and verifica-
tion set accuracy during ENN iteration during electric and heat load forecasting
of the system is shown in Fig. 4. The accuracy obtained meets the engineering
requirements.

Fig. 3 The change of training and verification set accuracy during ENN iteration
during electric and cooling load forecasting of the system.

Fig. 4 The change of training and verification set accuracy during ENN iteration
during electric and heat load forecasting of the system.
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When 22 neurons are selected in the hidden layer and the number of iterations
is 2,000, the verification set is shown in Fig. 5 – Fig. 8. Tab. II shows the MAPE
between the predicted and measured values using ENN and BP neural networks

Fig. 5 Verification of electric load forecasting from October 1 to 10, 2018.

Fig. 6 Verification of cooling load forecasting from October 1 to 10, 2018.
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during validation. Compared with BP neural network, ENN not only reduces the
MAPE of predicted and measured value by more than 1%, but also has stronger
computing power and network stability.

Fig. 7 Verification of electric load forecasting from January 1 to 10, 2019.

Fig. 8 Verification of heat load forecasting from January 1 to 10, 2019.
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Time interval October 1–10, 2018 January 1–10, 2019
Load type Electric load Cooling load Electric load Heat load

ENN MAPE (%) 2.3208 2.0919 2.4450 2.1250
BP MAPE (%) 4.1877 3.4553 4.2419 4.0865

Tab. II Average absolute percentage error between predicted value and measured
value.

4. Prediction results and analysis

In order to verify the prediction performance of ENN model in the process of rapid
climate change, the electric and heat load from March 1 to 14, 2019 are predicted
after rolling training of the model. The prediction results are shown in Fig. 9–
Fig. 10, in which the actual load value and BP neural network prediction value are
listed for comparison. Due to the great climate change, the MAPE of electric load
prediction is 2.701%, and that of heat load prediction is 2.355%. The predicted
MAPE is higher than the verified MAPE, but about 2% lower than that predicted
by BP neural network.Due to the influence of random factors, the MAPE of electric
load prediction and measurement is larger than that of heat loads, but not more
than 3%, which meets the requirements of short-term load prediction and can be
used for the coordinated dispatching of regional energy Internet energy system [19].

Fig. 9 Electric load forecast from March 1 to 14, 2019.
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Fig. 10 Heating load forecast from March 1 to 14, 2019.

5. Conclusion

In this paper, a short-term load forecasting method of regional Internet energy
system based on ENN is proposed. By setting the parameters and structure of
the model, and using the data from the data platform of Jiangsu urban and rural
construction vocational college to train the model, the electric and heat loads of the
campus are predicted. The following conclusions can be drawn from the research:

• The short-term load of regional integrated energy system is not only related
to meteorological data, data characteristics and regional activities, but also
closely related to time series. This dynamic characteristic of load can not
be well predicted by static neural network. Selecting ENN with dynamic
regression characteristics not only improves the computing electric of the
network and the stability of system operation, but also reduces the MAPE
of prediction by 2% compared with the traditional BP network.

• The prediction accuracy of ENN is closely related to the network structure
parameters such as the number of neurons in the hidden layer and the receiv-
ing layer. When there are few neurons in the hidden layer, the calculation
time is short, but the prediction accuracy is low; When there are many hid-
den layer neurons, not only the calculation time is very long, but also the
prediction accuracy is low. Experiments show that the prediction accuracy
is the highest when the number of hidden layer neurons is about twice the
number of input variables.

• When using ENN model to predict the short-term load of RIES, due to many
uncertain factors of electric load, the MAPE between the predicted value and
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the actual value is large, but not more than 3%, which can meet the needs
of coordinated dispatching of regional integrated energy system.
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