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Abstract: Nanomaterials draw attention because of their unique physical, chemi-
cal and biological properties in areas such as catalysis, electronic, optics, medicine,
solar energy conversion and water treatment. Green synthesis of silver nanoparti-
cles has many superiorities compared to physical and chemical methods such as low
cost, nontoxicity, eco-sensitive. In this paper, experimental conditions related to
green synthesis of silver nanoparticles by honey were modelled using artificial neu-
ral network (ANN). While agitation time, agitation rate, pH, temperature, honey
concentration, AgNO3 concentration were selected as input parameters, production
of silver nanoparticles was used as an output parameter. According to the results,
optimum hidden neuron number was found as 40 with Levenberg–Marquardt back-
propagation algorithm. In this conditions, the percentages of training, validation
and testing were 75, 20 and 5, respectively. After creating neural network sepa-
rated input data set was applied and then experimental and ANN predicted data
were compared. In conclusion, ANN can be an alternative modelling and robust
approach that could help researchers in this field to estimate production of silver
nanoparticles.
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1. Introduction

Nanotechnology is a scientific field of characterization, production and application
of nanoscale particles sized 1–100 nm [1,2]. Because of their large surface area and
small sizes, nanoparticles have different properties such as mechanical, electrical,
magnetic, and chemical properties compared to bulk materials [3,4]. Nanoparticles
are utilized in areas like electronic, energy, medicine, textile, environmental reme-
diation, space, etc. Metal nanoparticles have a lot of unique properties because of
their high chemical activity, high surface area and magnetism. Silver nanoparticles
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draw attention due to their physicochemical properties. There are many applica-
tion areas of silver nanoparticles such as mechanics, optics, sensors, drug delivery,
DNA sequencing, cosmetic, water treatment and biomedical applications [4,5]. Sil-
ver nanoparticles are synthesized by physical and chemical methods like chemical
reduction, electrochemical methods, sonodecomposition and microwave, laser abla-
tion, lithography [6]. Nonetheless, there are problems with chemical and physical
methods like toxicity, time-consuming, high cost and these methods may need a
considerable pressure, temperature, energy [7]. The methods of green synthesis
use plants, fungi, microorganisms, sugars, vitamins for production of nanoparti-
cle [8]. Green methods have advantages over traditional methods such as simplic-
ity, cost-effective, eco-friendly [8]. Overall, these materials which used in green
methods decrease the needs to harmful and toxic chemicals. Green synthesis of sil-
ver nanoparticles using honey have been reported in the scientific literature [9–11].
Honey is a natural food which contains water, sugars, proteins, organic acids, vita-
mins, minerals, phenolic compounds and its characteristics can vary according to
the origin [10, 12]. The sugars present in honey are about 75% monosaccharides
(fructose and glucose), besides about 10–15% disaccharides and other sugars [4].
Honey has important bioactivities such as antimicrobial, anti-inflammatory, anal-
gesic and antioxidant properties beside nourishment [10,11]. In addition to before
mentioned reducing agents that used in the green synthesis, honey can be used.
It is reported that honey acted as a stabilizing agent besides reducing agent [9].
Even if the content which responsible for the reduction of silver cation in honey is
unknown it is thought that glucose and proteins, and other natural reducing agents
could be responsible for this [10,11].

Artificial intelligence (AI) has been developed since decades and it has been an
important part of our daily life nowadays. AI applications are commonly used in
information technologies including mobile phones and also their apps. One of the
AI applications is artificial neural network (ANN). ANN has many superiorities
on the traditional modelling methods. On the other hand, ANN provides impor-
tant contribution to the understanding of complex situation including non-linear
systems. ANN has so far been used in estimation of retention time in HPLC [13],
development and validation of anti-cancer drugs [14], drug discovery [15], diagnosis
tool for tuberculosis [16], diagnosis of osteoporosis [17]. ANN has been attracted
by a wide of scientists from different fields. ANN can solve the problems based on
unknown relationships among the data. Based on training, validation and testing
steps, ANN develops a learning process and then it generalizes the knowledge for
prediction of the response [14].

The aim of this work is to synthesize silver nanoparticles by using honey and
to model raw experimental data by ANN.

2. Experimental

Honey was purchased from a local bazaar (blossom honey) in İzmir, Turkey. AgNO3

was purchased from Macron Fine Chemicals. The honey solution was prepared by
dissolving 5 g of honey in 20ml deionized water and 15ml of stock honey solu-
tion added to 20ml aqueous solution of AgNO3 (10−3 M). For optimization of
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silver nanoparticle synthesis, the experiments were performed at different temper-
atures (25–85 °C), pH values (3–9), agitation times (0–360min), agitation rates
(0–400 rpm), honey concentrations (0.1–0.75 g/ml) and different AgNO3 concen-
trations (0.001–0.1M). The data statistics was given in Tab. I.

Parameters Data Statistics Range Mean ± S.D.

Agitation Time (min) 0–360 213 ± 70
Agitation Rate (rpm) 0–400 240 ± 94
Temperature (oC) 25–85 38 ± 15
pH 3–9 6.4 ± 1.0
AgNO3 Concentration (M) 0.001–0.1 0.007 ± 0.02
Honey Concentration (g.mL−1) 0.1–0.75 0.29 ± 0.11

Tab. I The data statistics of model variables.

The solution colour changed from open yellow to intense brown colour depen-
dent on AgNO3 concentration. The synthesized silver nanoparticles were separated
by centrifugation at 12,000 rpm for 1 hour and the precipitate was dried.

3. Artificial neural networks study

Usually ANN techniques describes human brain functioning. In order to solve
non-linear and complex problems that require high computational cost ANN sup-
ply correct results [18, 19]. Error toleration, intrinsic contextual data processing,
fast computation capacity, learning and generalization ability of info can count as
principal advantages of ANN [20]. There are neurons (hidden units) in ANN archi-
tecture like synapse of biological counterparts. Activation functions that control
the propagation of neuron signal to next layer, form hidden unity. The hidden unit
is constituted by regression equation that processes the input data into nonlinear
output data. Nonlinear correlations can be treated hence more than one neuron
is required for constitute an ANN. Threshold function, sigmoid (e.g. hyperbolic
tangent), radial basis function (e.g. gaussian) and linear function can be counted
as a typical activation functions to form an ANN. ANN techniques can categorize
to architecture and neuron connection pattern so these are feedforward networks
and feedback networks [20].

In this study, ANN structure includes three-layer feed-forward networks with
sigmoid and linear functions (Fig. 1).

The data related to the synthesis of silver nanoparticles was modelled by using
neural networks toolbox of MATLAB (R2016b). The input parameters in this net-
works were agitation time, agitation rate, temperature, pH, AgNO3 concentration
and honey concentration. The output data was absorbance value. Before creating
network hidden neuron number was optimized under default settings of MATLAB.
The MSE and R2 values in the ANN calculated by following equations;

MSE =
1

n
∑n

i=1(ai − bi)2
, (1)
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Figure 1. Architecture of ANN created in the study.  
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R2 = 1−
∑n

i=1(ai − bi)
2∑n

i=1(ai − bm)2
, (2)

where ai is the target value, bi is the output value, bm is the average of the target
values and n is the total number of training patterns. Backpropagation algorithms
used in this study was given in Tab. II.

Backpropagation Algorithms Function

BFGS quasi-Newton backpropagation trainbfg
Powell–Beale conjugate gradient backpropagation traincgb
Fletcher–Reeves conjugate gradient backpropagation traincgf
Polak–Ribiére conjugate gradient backpropagation traincgp
Batch gradient descent traingd
Batch gradient descent with momentum traingdm
Variable learning rate backpropagation traingdx
Levenberg–Marquardt backpropagation trainlm
One step secant backpropagation trainoss
Resilient backpropagation (Rprop) trainrp
Scaled conjugate gradient backpropagation Trainscg

Tab. II The backpropagation algorithms used in the study.

In our network creation training, validation and testing data were selected ran-
domly by MATLAB. The total numbers of data were 129. 114 of the data were
used for training, testing and validation in ANN modelling. Furthermore, train-
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ing, validation and test percentages were studied and the percentage which had
the highest R2 and the lowest MSE values were selected for ANN design. The
75%, 20% and 5% of datasets were used for training, validation and testing. 15 of
the total data were randomly chosen to compare the experimental and predicted
values for testing the efficiency of the developed ANN model. In order to find
best performance parameters, 11 different backpropagation algorithms were tested
(Tab. II).

4. Results and discussion

4.1 Artificial neural network

Green synthesis of silver nanoparticle was carried by using honey solution. During
the optimization process, the experimental data related to agitation time, agitation
rate, temperature, pH, honey and AgNO3 concentration were collected. This data
was used to create an artificial neural network by MATLAB. According to the
results, the optimum hidden neuron number was found as 40 when default settings
(the percentages of training, validation and testing are 70, 15 and 15%, respectively,
Levenberg–Marquardt backpropagation algorithm) were applied. The R2 values of
training, validation and testing are 0.9967, 0.9887 and 0.9792, respectively, when
hidden neuron number was 40 (Tab. III). In the present study, the effects of data
percentages were also studied. The highest R2 values were found for 75, 20 and
5% for training, validation and testing, respectively (Tab. IV). After creating the
network, we also studied the performances of the 11 different backpropagation
algorithms. Levenberg–Marquardt backpropagation algorithm gave best results
(Tab. V and VI).

R2 MSE

Hidden
neuron Training Validation Testing All Training Validation Testing Iteration
number number

1 0.7001 0.9572 0.6382 0.6863 0.0628 0.0107 0.1403 10
2 0.5142 0.2584 0.4152 0.4644 0.0886 0.0392 0.1668 8
3 0.9906 0.9950 0.9845 0.9103 0.0020 0.0019 0.0018 79
4 0.9954 0.9949 0.9982 0.9948 0.0008 0.0046 0.0016 196
5 0.9746 0.9948 0.9843 0.9980 0.0054 0.0031 0.0019 23
6 0.9943 0.9853 0.9897 0.9927 0.0016 0.0028 0.0010 53
7 0.9950 0.9927 0.9971 0.9953 0.0012 0.0006 0.0011 61
8 0.9351 0.9372 0.9680 0.9431 0.0142 0.0042 0.0184 15
9 0.9905 0.9986 0.9755 0.9914 0.0022 0.0006 0.0025 33
10 0.9947 0.9792 0.9788 0.9894 0.0014 0.0083 0.0018 42
11 0.9968 0.9965 0.7557 0.8567 0.0007 0.0017 0.3432 160
12 0.9202 0.7487 0.3525 0.7756 0.0149 0.1731 0.1835 9
13 0.9946 0.9950 0.4180 0.7227 0.0010 0.0042 0.7191 42
14 0.9873 0.9813 0.9885 0.9859 0.0020 0.0082 0.0045 21
15 0.9678 0.9837 0.9694 0.9681 0.0071 0.0022 0.0133 17
16 0.9937 0.9851 0.9953 0.9931 0.0013 0.0019 0.0038 31
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17 0.9125 0.9646 0.9232 0.9279 0.0153 0.0012 0.0305 11
18 0.9810 0.9763 0.9690 0.9795 0.0057 0.0021 0.0035 14
19 0.8109 0.02491 0.4159 0.6260 0.0680 0.4164 0.0479 8
20 0.9978 0.9896 0.9142 0.9748 0.0005 0.0047 0.0325 52
21 0.9917 0.9916 0.9979 0.9931 0.0013 0.0007 0.0059 37
22 0.9070 0.2592 0.8016 0.7839 0.0272 0.2396 0.0143 8
23 0.9962 0.9972 0.9934 0.9953 0.0006 0.0053 0.0009 70
24 0.9964 0.9971 0.8188 0.9080 0.0008 0.0029 0.1659 95
25 0.7828 0.8169 0.7679 0.7432 0.0349 0.0230 0.1998 8
26 0.9622 0.9956 0.9553 0.9747 0.0060 0.0028 0.0078 13
27 0.9695 0.8872 0.9862 0.9649 0.0087 0.0109 0.0018 11
28 0.9977 0.9872 0.9958 0.9956 0.0004 0.0025 0.0028 78
29 0.9492 0.9713 0.9893 0.9596 0.0115 0.0033 0.0040 9
30 0.9910 0.7925 0.8275 0.9632 0.0026 0.0211 0.0262 16
31 0.9795 0.9796 0.9901 0.9810 0.0050 0.0026 0.0035 11
32 0.9687 0.9894 0.9810 0.9724 0.0072 0.0055 0.0033 10
33 0.9534 0.9732 0.9651 0.9537 0.0114 0.0137 0.0060 10
34 0.9941 0.9936 0.2965 0.9477 0.0009 0.0024 0.0751 41
35 0.9930 0.9758 0.8909 0.9835 0.0016 0.0090 0.0092 36
36 0.9966 0.9811 0.9816 0.9944 0.0009 0.0006 0.0037 84
37 0.9952 0.9980 0.9951 0.9947 0.0008 0.0015 0.0043 34
38 0.9914 0.9033 0.7595 0.9731 0.0024 0.0152 0.0154 14
39 0.9514 0.9341 0.3596 0.6179 0.0120 0.0016 1.0186 9
40 0.9967 0.9887 0.9792 0.9945 0.0009 0.0007 0.0037 41

Tab. III Effects of hidden neuron number on the ANN performance.

R2 MSE

Training,
validation
and testing

# percentages Training Validation Testing All Training Validation Testing Epoch #

1 90-5-5 0.9929 0.9799 0.9237 0.9928 0.0018 0.0004 0.0009 34
2 85-5-10 0.9886 0.9991 0.9968 0.9907 0.0022 0.0054 0.0003 21
3 80-5-15 0.9865 0.9806 0.9859 0.9862 0.0027 0.0002 0.0076 13
4 75-5-20 0.9332 0.9973 0.9862 0.9566 0.0126 0.0026 0.0040 9
5 70-5-25 0.9914 0.9796 0.9825 0.9875 0.0018 0.0021 0.0063 15
6 65-5-30 0.4885 0.6464 0.5712 0.5256 0.3768 0.4053 0.1419 8
7 60-5-35 0.9897 0.9982 0.4769 0.8220 0.0025 0.0014 0.1449 19
8 85-10-5 0.9710 0.9812 0.9130 0.9697 0.0073 0.0012 0.0116 14
9 80-10-10 0.9927 0.9963 0.9525 0.9923 0.0020 0.0005 0.0019 45
10 75-10-15 0.9964 0.9881 0.9991 0.9949 0.0005 0.0064 0.0107 57
11 70-10-20 0.5703 0.4884 0.4819 0.5281 0.1312 0.4300 0.2730 7
12 65-10-25 0.9737 0.9858 0.9879 0.9808 0.0043 0.0101 0.0034 15
13 60-10-30 0.9913 0.9925 0.9949 0.9932 0.0015 0.0006 0.0020 29
14 55-10-35 0.9818 0.9997 0.4230 0.6662 0.0035 0.0027 0.3594 15
15 80-15-5 0.9808 0.8709 0.9327 0.9611 0.0048 0.0314 0.0155 10
16 75-15-10 0.9881 0.9662 0.9918 0.9854 0.0023 0.0067 0.0064 19
17 70-15-15 0.9911 0.9374 0.9686 0.9876 0.0025 0.0032 0.0042 18
18 65-15-20 0.9812 0.9959 0.7678 0.9131 0.0045 0.0042 0.0909 15
19 60-15-25 0.9930 0.8301 0.7088 0.9034 0.0016 0.0717 0.0458 13
20 55-15-30 0.7167 0.3326 0.5943 0.6129 0.1195 0.1641 0.1589 7
21 50-15-35 0.9757 0.7711 0.8000 0.9203 0.0084 0.0380 0.0240 10
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22 75-20-5 0.9960 0.9955 0.9118 0.9957 0.0011 0.0007 0.0009 85
23 70-20-10 0.9857 0.9967 0.7974 0.9883 0.0034 0.0009 0.0010 21
24 65-20-15 0.9977 0.9880 0.9848 0.9956 0.0007 0.0020 0.0012 68
25 60-20-20 0.9568 0.6350 0.2588 0.5979 0.0014 0.1077 0.8010 8
26 55-20-25 0.9973 0.9979 0.4563 0.7454 0.0004 0.0047 0.3313 32
27 50-20-30 0.9631 0.7595 0.9248 0.9390 0.0162 0.0230 0.0087 10
28 45-20-35 0.9962 0.9906 0.9764 0.9909 0.0011 0.0033 0.0029 7
29 70-25-5 0.7357 0.5595 0.8783 0.6597 0.0500 0.1979 0.0344 7
30 65-25-10 0.9880 0.9434 0.9136 0.9786 0.0036 0.0060 0.0109 18
31 60-25-15 0.9973 0.9822 0.9960 0.9928 0.0003 0.0036 0.0072 78
32 55-25-20 0.9662 0.3428 0.3066 0.6242 0.0111 0.2891 0.3534 8
33 50-25-25 0.9895 0.9918 0.9872 0.9887 0.0020 0.0036 0.0037 27
34 45-25-30 0.9685 0.9008 0.3190 0.4897 0.0036 0.0279 0.5218 20
35 40-25-35 0.9955 0.7600 0.6169 0.8325 0.0014 0.0749 0.0749 11
36 65-30-5 0.8346 0.2532 0.9506 0.6266 0.1055 0.5586 0.1048 7
37 60-30-10 0.9662 0.7982 0.9830 0.9562 0.0069 0.0142 0.0160 10
38 55-30-15 0.9804 0.2578 0.2350 0.4995 0.0067 0.4798 0.9202 9
39 50-30-20 0.8891 0.6451 0.7520 0.7402 0.0020 0.2131 0.6681 7
40 45-30-25 0.9833 0.9910 0.9587 0.9814 0.0041 0.0054 0.0042 11
41 40-30-30 0.9504 0.8585 0.3213 0.6506 0.0229 0.0339 0.2501 8
42 35-30-35 0.9799 0.2391 0.1247 0.2576 0.0022 0.3115 0.4572 19
43 60-35-5 0.9158 0.6529 0.4388 0.7563 0.0043 0.1807 0.5919 8
44 55-35-10 0.9921 0.7094 0.9324 0.8122 0.0014 0.1371 0.0440 23
45 50-35-15 0.9845 0.5447 0.6716 0.6879 0.0016 0.1254 0.1201 12
46 45-35-20 0.9414 0.4985 0.5728 0.6213 0.0132 0.1450 0.2221 8
47 40-35-25 0.9858 0.3318 0.5545 0.6680 0.0076 0.1451 0.1795 10
48 35-35-30 0.9346 0.7885 0.8220 0.8349 0.0216 0.0600 0.0617 8
49 30-35-35 0.9984 0.2397 0.4753 0.4189 0.0001 0.2600 0.1506 24

Tab. IV Effects of data percentage on the performance of ANN modelling.

ANN Algorithms
# Experimental Trainbfg Trainbr Traincgb Traincgf Traincgp Traingd Traingdm

1 0.273 0.195 0.3533 0.4451 0.4725 0.2268 0.3089 0.2089
2 0.395 0.195 0.3808 0.3460 0.4612 0.2201 0.3578 0.2076
3 0.400 0.195 0.5658 0.2103 0.4696 0.2315 0.5435 0.3123
4 0.321 0.195 0.5325 0.2502 0.4215 0.2156 0.3501 0.2759
5 0.385 0.195 0.4176 0.2084 0.5664 0.2120 0.4080 0.2125
6 0.238 0.195 0.3351 0.1957 0.3616 0.2100 0.2898 0.2200
7 0.262 0.195 0.4052 0.2023 0.3345 0.2175 0.3004 0.2107
8 0.255 0.195 0.4272 0.2071 0.3271 0.2242 0.3141 0.2092
9 1.171 0.195 0.4117 0.2002 0.4248 0.2007 0.6497 0.3722
10 0.859 0.195 0.6019 0.1951 0.2879 0.2187 0.4753 1.2689
11 0.744 0.195 0.9565 0.1950 0.2408 0.5499 0.7138 1.9070
12 0.278 0.195 0.3909 0.2045 0.4423 0.2007 0.6376 0.3294
13 0.432 0.195 0.6219 0.7090 0.3752 0.3269 0.5134 1.4435
14 0.356 0.195 0.7322 0.9139 0.3947 0.2077 0.7425 0.2674
15 0.402 0.195 1.0063 1.8914 0.3177 0.5944 0.5984 0.2116

Tab. V Performances of different backpropagation algorithms on the prediction of
experimental values.

In order to compare the experimental and ANN predicted values, Fig. 2 was
drawn. This figure showed that the created ANN model can estimate the experi-
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ANN Algorithms
# Experimental Traingda Traingdx Trainlm Trainoss Trainr Trainrp Trainscg

1 0.273 0.6553 0.6568 0.3077 0.195 0.3561 0.2200 0.3128
2 0.395 0.4593 0.6192 0.3340 0.195 0.3971 0.2328 0.3194
3 0.400 0.4507 0.6990 0.3643 0.195 0.4192 0.4876 0.5095
4 0.321 0.5238 0.7751 0.3650 0.195 0.4642 0.3424 0.3925
5 0.385 0.4268 0.4227 0.3825 0.195 0.4278 0.2981 0.3836
6 0.238 0.2942 0.2536 0.2507 0.195 0.2876 0.2864 0.3386
7 0.262 0.2471 0.2473 0.2395 0.195 0.2197 0.2363 0.3396
8 0.255 0.2460 0.2434 0.2531 0.195 0.2143 0.2426 0.3517
9 1.171 0.4101 0.4047 1.0570 0.195 0.7840 0.6360 0.7179
10 0.859 0.6938 0.6064 0.9065 0.195 0.9979 0.8997 0.9158
11 0.744 1.0076 0.9875 0.7212 0.195 0.7489 1.2140 1.0530
12 0.278 0.3847 0.3889 0.2821 0.195 0.7145 0.5119 0.6736
13 0.432 0.8647 0.7203 0.4365 0.195 0.4350 0.4443 0.4345
14 0.356 0.5188 0.5126 0.3637 0.195 0.7524 0.5309 0.6317
15 0.402 0.7718 1.5783 0.3988 2.145 1.9402 0.6834 2.1131

Tab. VI Performances of different backpropagation algorithms on the prediction
of experimental values.

mental values precisely. On the other hand, other backpropagation algorithms did
not give promising results.

Shabanzadeh et al (2013) studied neural network modelling for the prediction
of the size of silver nanoparticle prepared by the green method. They synthesized
silver nanoparticles using soluble starch. Their input parameters were volume of
NaOH, temperature, starch and AgNO3 concentration and output parameter was
size of nanoparticles. For training, validation and testing steps they used 20, 5, 5
sample respectively. They found number of a hidden neuron as 10. R2 values of
their best predictive model for training, validation and testing were 0.9839, 0.9778
and 0.9787, respectively [21].

Shabanzadeh et al. (2014) also worked neural network modelling for in their
paper named Neural Network Modelling for silver nanoparticles in montmoril-
lonite/starch synthesis by chemical reduction method. Their input parameters
were AgNO3 and NaBH4 concentration, temperature, weight percentage of starch
and output parameter was the size of silver nanoparticle in their ANN model. Their
percentage of datasets for training, validation and testing were 70%, 15% and 15%,
respectively. They found number of a hidden neuron as 10. R2 values that their
found for training, validation and testing were 0.9979, 0.9952 and 0.9984 [22].

4.2 pH

The effects of pH were carried out in the range of 3–9. Fig. 3a reveals that ab-
sorbance value at pH 3 was found as 0.302 and then a decline was observed. After
that pH values showed fluctuations and the absorbance value at pH 9 was found as
0.249. However, when temperature and agitation time changed, a different profile
was obtain as it is shown in Fig. 3b.

Haiza et al. (2013) carried out their experiment in the pH range 7–8.5. They
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11  0.744  1.0076  0.9875  0.7212  0.195  0.7489  1.2140  1.0530  
12  0.278  0.3847  0.3889  0.2821  0.195  0.7145  0.5119  0.6736  
13  0.432  0.8647  0.7203  0.4365  0.195  0.4350  0.4443  0.4345  
14  0.356  0.5188  0.5126  0.3637  0.195  0.7524  0.5309  0.6317  
15  0.402  0.7718  1.5783  0.3988  2.145  1.9402  0.6834  2.1131  

 

 In order to compare the experimental and ANN predicted values, Figure 2 was drawn. This 
figure showed that the created ANN model can estimate the experimental values precisely. On 
the other hand, other backpropagation algorithms did not give promising results.  
 

  

Figure 2. Comparison of experimental values with ANN predicted values (Trainlm: 
Levenberg–Marquardt backpropagation)  

  

Fig. 2 Comparison of experimental values with ANN predicted values (Trainlm:
Levenberg–Marquardt backpropagation).
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Fig. 3 Effect of pH on the AgNPs synthesis. The conditions for (a) temperature
= 25 oC, honey concentration = 0.25 g/mL, AgNO3 concentration= 0.001M, ag-
itation rate = 400 rpm, agitation time = 240min and, (b) temperature = 50 oC,
honey concentration = 0.25 g/mL, AgNO3 concentration= 0.001M, agitation rate
= 0 rpm and agitation time = 240min.
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found that decreased absorbance with increased pH values in their study. This
decline was associated with increased size of silver nanoparticles [10].

Philip (2010) found that as the pH increased absorbance value increased and
at pH 8.5 absorbance value was highest. Owing to lack of adequate gluconic acid
molecules at lower pH values growth is preferred. As pH is increased, more gluconic
acid is generated from glucose and reduction of Ag ions is accelerate [11].

González Fá et al. (2016) found that absorbance value of pH 10 at 411 nm was
higher than pH 5 [9].

4.3 Temperature

We performed our experiments in the temperature range 25–85 oC. Absorbance
value at 25 oC was found as 0.332 after that was observed increment at 65 oC as
0.562 and then absorbance value was decreased to 0.4 at 85 oC (Fig. 4).

 

Fig. 4 Effect of temperature on the AgNPs synthesis (pH = 6.0, honey concentration = 0.5 g/ml, AgNO3 
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Fig. 4 Effect of temperature on the AgNPs synthesis (pH = 6.0, honey concen-
tration = 0.5 g/ml, AgNO3 concentration = 0.001M, agitation time = 240 min,
agitation rate = 200 rpm).

Philip (2010), Haiza et al. (2013) and González Fá et al. (2016) did not mention
about the temperature values in their papers [9–11].

4.4 Agitation rate

Agitation rate was studied in the range of 0–400 rpm. This experiment was carried
out at different temperatures 25 oC and we observed that there was a linear increase
and absorbance value at 400 rpm was found as 0.437 at 25 oC (Fig. 5).

4.5 Agitation time

The experiment was carried out during 390 minute and absorbance values were
recorded. There were fluctuations in the diagram but absorbance value of silver
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Fig. 5 Effect of agitation rate on the AgNPs synthesis (pH = 6.0, temperature =
25 oC, honey concentration = 0.25 g/ml, AgNO3 concentration = 0.001M).

nanoparticles in different minutes was not divergent. The optimum agitation time
was determined as 240min. In addition, this experiment was studied in different
wavelengths (405 nm, 450 nm, 490 nm, 590 nm, 630 nm) with BioTekTM ELx800TM

Absorbance Microplate Reader and highest absorbance values were obtained at
405 nm wavelength (Fig. 6).
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Fig. 6 Effect of agitation time on the AgNPs synthesis (pH = 6.0, temperature =
50 oC, honey concentration = 0.25 g/ml, AgNO3 concentration = 0.001M, agitation
rate = 200 rpm).
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In other scientific publications cited in this paper related to the green synthe-
sis of silver nanoparticle, the effects of agitation rate and time were not clearly
mentioned. However, it was generally selected as 1 minute [9–11].

4.6 Honey concentration

Honey concentration was worked at a range of 0.1–0.75 g/ml. According to Fig. 7,
there was linear increase and absorbance value was 0.435 at 0.75 g/ml honey con-
centration.

Haiza et al. (2013) reported that honey concentrations had an impact on the
particle size of silver nanoparticles produced and Ag ions size were shrink due to
an increase in honey concentration. Furthermore, honey ingredients might have
played roles of reducing and capping agents [10].
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Fig. 7 Effect of honey concentration on the AgNPs synthesis (pH = 6.0, tempera-
ture = 25 oC, AgNO3 concentration = 0.001M, agitation rate = 200 rpm).

According to Philip (2010), probable reducing agent was glucose and capping
agents which were responsible for stabilization could be proteins in honey [11].

4.7 AgNO3 concentration

The effects of AgNO3 concentration were studied in this work. According to Fig. 8,
there was a sharp increase from the concentration of 0.001M to 0.0075M. After
this point, there was a smooth decline and then showed fluctuations. The decrease
in the synthesized silver nanoparticle concentration can be explained with decrease
of reducing agent concentration in honey.

5. Conclusion

Number of nano-products in our daily is in increasing trends. The research and de-
velopment studies on nanotechnologies will provide many different nano-functional
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Fig. 8  Effect of AgNO3 concentration on  the AgNPs synthesis  (pH = 6.0, Temperature=25  ˚C, honey 

concentration=0.25 g/mL, agitation rate=200 rpm). 
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Fig. 8 Effect of AgNO3 concentration on the AgNPs synthesis (pH = 6.0, temper-
ature = 25 oC, honey concentration = 0.25 g/ml, agitation rate = 200 rpm).

agents in near future. On the other hand, chemical synthesis methods for nano-
materials have some disadvantages due to their dangerous intermediates. Green
synthesis methods by using natural biomasses as we mentioned in this paper reveal
many advantages compared to traditional methods. In this paper, green synthe-
sis of AgNPs was carried out by a natural product, honey. The data related to
optimisation stage of green synthesis of AgNPs was modelled by using a robust
and non-linear method, ANN. The results showed that the ANN model created in
the present study can efficiently estimate the experimental values. However, ANN
modelling parameters should be studied carefully otherwise the model may cause
bias. In conclusion, ANN modelling might open a new gate to research and devel-
opment studies on the green synthesis to estimate the experimental conditions.
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