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Abstract: The paper deals with the task of modeling discrete questionnaire data
with a reduced dimension of the model. The discrete model dimension is reduced
using the construction of local models based on independent binomial mixtures
estimated with the help of recursive Bayesian algorithms in the combination with
the naive Bayes technique. The main contribution of the paper is a three-phase
algorithm of the discrete model dimension reduction, which allows to model high-
dimensional questionnaire data with high number of explanatory variables and
their possible realizations. The proposed general solution is applied to the traffic
accident questionnaire analysis, where it takes the form of the classification of
the accident circumstances and prediction of the traffic accident severity using the
currently measured discrete data. Results of testing the obtained model on real
data and comparison with theoretical counterparts are demonstrated.
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1. Introduction

Modeling discrete data is an important task in the analysis of questionnaires to
be filled in in case of traffic accidents. The questionnaires of a closed format (e.g.,
multiple choice, rating scale, Likert scale, etc.) produce sets of discrete valued data
to be analyzed. In general, analysis of such data is impacted by the uncertainty
of answers collected without a direct interaction with respondents, limited number
of options to answer, which may not suit everyone [38], measurement errors [10],
missing data [31], non-representative samples [65], imbalanced data [24], etc.

In questionnaires on traffic accidents, the discrete observations that need to
be analyzed are primarily the severity of the accident and the circumstances in
which the accident took place [1, 48, 49, 51, 66]. The circumstances put together a
multivariate discrete explanatory variable, and describing the relationship between
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them and severity of the accident is a key issue of the questionnaire analysis.
In this case, when modeling the severity as the target variable, the uncertainty is
enhanced due to the enormous dimension of the probability function conditioned by
all individual circumstances, each of which has its own number of realizations. This
results in low probabilities of the accident severity levels in the model. This means
that the use of categorical models is not beneficial for this task due to operating
with such dimensions and necessity of keeping the information in unreduced tables.
In addition, the traffic accident questionnaires often contain mainly nominal data,
which complicates the dimension reduction of the discrete model. Therefore, a way
to reduce the dimension of the conditional probability function not leading to the
loss of information from the questionnaires is searched for.

1.1 Literature review

Approaches to discrete questionnaire data analysis found in the literature range
from trivial using a proportion estimation and hypothesis testing to advanced clas-
sification methods upon the specific task to be solved. In the context of model-
ing a binary target variable (e.g., crash or non-crash accident), the fundamental
approaches are generalized linear models (GLM), namely, the logistic, probit as
well as gompit regressions [5, 8, 30, 34, 70] originally directed at the classification
of continuous explanatory variables, but applicable to indicator-based discretized
explanatory data [6]. For a multinomial target variable (e.g., slight, serious or fatal
accident), GLMs are distinguished upon the type of a variable among

(i) the multinomial logit regression, e.g., [5, 70] intended primarily for nominal
target variables, but also utilized for Likert-type scaled or other rate scaled
ordinal data [23],

(ii) the cumulative logit model for ordinal target variables [6, 30] or multinomial
logit regression ignoring the knowledge of ordering the target values [5,23,34]
and

(iii) the Poisson and negative binomial regression models [6,23,30] for count target
variables as well as their zero-inflated versions [47].

For ordinal questionnaire data, the use of linear regression techniques [5] along
with multiple indicators [23,42] as well as analysis of ordinal Likert scale variables
using structural equation modeling [11] can be also met. The item response theory
with the models using a logit link function for ordinal [13,57] and nominal [17,57]
variables along with the Mokken scaling analysis [68] should be also mentioned.

The publications close to the presented paper are devoted to Bayesian categori-
cal analysis, e.g., [5,21,40,52] and a group of clustering and classification methods,
which can be used for discrete data. They include data mining techniques, such
as decision tree [64], Bayesian networks [56], neural networks [4], k-nearest neigh-
bors [22], fuzzy rules [16], naive Bayes classifiers [14, 25], genetic algorithms and
model-based methods. The latter include the use of discrete mixture models such
as latent class and Rasch mixture models [5], Poisson and negative binomial mix-
tures [21], mixtures of Poisson regressions [5, 21], mixtures of logistic regressions
for binary data [21], Poisson-gamma and beta-binomial models [5, 21] as well as
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Dirichlet mixtures [18, 45]. The estimation of the mentioned mixtures is solved
primarily using the iterative expectation-maximization (EM) algorithm [28]. Al-
gorithms of the recursive estimation of categorical mixtures with conjugate prior
Dirichlet distributions, which create the basis for the proposed approach are elab-
orated in [39,40,52].

The model dimension reduction is solved in the literature using various effective
techniques [12]. The approach proposing a way of reducing model dimension rela-
tively close to the presented paper is independent component analysis (ICA) [20],
which extracts independent components from a linear mixture of non-Gaussian
data using maximum likelihood estimation [59]. In this area, a number of efficient
ICA-based algorithms can be found. Fast fixed point ICA algorithm [35] focused on
separating complex values and linearly mixed source data. Its version based on the
Chebyshev-Pade approximation was proposed by [29]. The paper [7] investigated
the ICA algorithm in the combination with principal component analysis and repro-
ducibility stability approach to handle with dimensions of non-Gaussian sources.
The copula based ICA algorithm can be found in [61]. The study [71] considered
the method of ranking and averaging ICA by reproducibility (RAICAR) aimed
at Gaussian and non-Gaussian sources. The work [62] proposed the ICA-based
feature extraction method with the help of machine learning algorithms. Tempo-
ral ICA technique separating global noise and global signals can be found in [27].
Other modifications of ICA include a combination of ICA and kernel methods [36],
a hybrid approach combining ICA and hierarchical clustering [55], probabilistic
ICA [15], faster ICA under orthogonal constraint [2] and sparse Gaussian ICA
method [3].

This paper proposes a systematic approach to modeling discrete questionnaire
data, where the probability function dimension is reduced via:

(i) looking for numerous clusters in the data space of individual explanatory
variables and describing each of them by a mixture of binomial distributions
under condition of the mixtures’ independence,

(ii) constructing the local target variable models on the detected clusters and

(iii) obtaining the classification discrete model of the target variable with the help
of the naive Bayes technique.

For this purpose, the models of the explanatory variables in the form of in-
dependent binomial mixtures are estimated using recursive Bayesian algorithms
based on [40, 41, 58]. Presented for normal models in [58], they were extensively
elaborated for categorical distributions by [40], normal mixtures with the static
pointer [41] and with dynamic pointer in [53]. The publication [52] generalized the
recursive dynamic mixture estimation approach to various types of distributions
with reproducible statistics. Here, this approach is derived for binomial mixtures.
Unlike the well-known expectation-maximization algorithm [28], Variational Bayes
approach [69] and Markov chain Monte Carlo techniques [26], the adopted method-
ology is free of iterative computations and related concerns about the convergence
of algorithms. This allows the algorithms to run online based on the permanently
measured explanatory data entering the classification model, which is constructed
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using the results of the mixture-based analysis of the data combined with the naive
Bayes principle [25].

The proposed approach is applied to the traffic accident questionnaire analysis,
where the solution takes the form of the classification of the accident circumstances
and prediction of the traffic accident severity using the currently measured discrete
data.

The layout of the paper is organized as follows: Section 2 formulates the prob-
lem and gives necessary preliminaries. The general solution in the form of the
three-phase approach of modeling questionnaire data is presented in Section 3. Its
application to the traffic accident severity prediction is demonstrated in Section 4,
which provides the model specification, practical mixture initialization, results and
discussion. Conclusions and open problems can be found in Section 5.

2. Problem formulation and preliminaries

2.1 Problem formulation

Let us observe a multimodal system, which produces realizations of the discrete

target variable yt and discrete explanatory vector [x
(1)
t , x

(2)
t , . . . , x

(n)
t ]′ at discrete

time instants t. The target variable is a scalar yt ∈ {1, 2, . . . , Ny}. The entries

of the explanatory vector are x
(i)
t ∈ {0, 1, 2, . . . , N (i)

x }, where the superscript (i) ∈
{1, . . . , n} relates to the ith individual entry. The target and explanatory variables
can be measured for a period of time up to t = T , while further for t > T , only the

vector [x
(1)
t , . . . , x

(n)
t ]′ is observed and thus yt should be predicted. In this paper,

the analyzed data are defined as the realizations of the target and explanatory
variables.

The aim is to construct and estimate the classification model of the target vari-
able yt for the time t > T using the data available for t ≤ T .

The basis for deriving the model is the use of the joint probability function (pf)

f(yt, x
(1)
t , . . . , x

(n)
t ) covering all relationships between the variables involved. This

joint pf can be factorized according to the chain rule [58] as

f(yt, x
(1)
t , . . . , x

(n)
t ) = f(x

(1)
t , . . . , x

(n)
t )f(yt|x(1)

t , . . . , x
(n)
t ), (1)

where the first marginal pf describes the space of the explanatory variables x
(i)
t

and the second conditional one is the predictive (classification) pf. Here, the pf

f(x
(1)
t , . . . , x

(n)
t ) analyzes the explanatory variables with the goal of extracting the

decisive information carried by them using local models on the explanatory data

space. The classification model f(yt|x(1)
t , . . . , x

(n)
t ) represents the prediction of the

target variable on these local models.
The basic problem in constructing the classification model is its enormous di-

mension, when it is based on the categorical distribution. For instance, a categorical
model describing a target variable yt ∈ {1, 2, 3} depending on a single explanatory
variable xt ∈ {1, 2, 3, 4} has the dimension 4×3 and has 12 parameters. In the case

of two explanatory variables x
(1)
t ∈ {1, 2, 3, 4} and x

(2)
t ∈ {1, 2, 3, 4, 5}, the dimen-

sion of the model becomes 20×3 and has 60 parameters. It is not hard to notice that
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for a three-variate variable containing, e.g., x
(1)
t ∈ {1, 2, 3, 4}, x(2)

t ∈ {1, 2, 3, 4, 5}
and x

(3)
t ∈ {1, 2, 3, 4, 5}, the dimension of the categorical model grows up to 100×3

with 300 parameters. Thus, the categorical model is not only huge, but also over-
parameterized and evidently not suitable for questionnaire data analysis tasks.

The solution proposed in this paper is based on two following features. The first

one is to construct the pf f(x
(1)
t , . . . , x

(n)
t ) in the form of a product of independent

models of individual explanatory variables x
(i)
t ; the second one is to use a non-

categorical distribution to describe components of the explanatory variables – here,
specifically the binomial one.

Independence assumption A severe assumption of the independence of ex-
planatory variables seems to be too strong1. That is why a model in the form of
independent mixtures of individual explanatory variables is introduced. The rea-
son is as follows: Mixture models will be beneficial in creating the local models on
the explanatory data space, and due to this local modeling, the assumption of the
independence necessary for using the naive Bayes principle will be more realistic
from a practical point of view.

Binomial distribution The choice of the binomial distribution for the indepen-

dent mixture components in the model f(x
(1)
t , . . . , x

(n)
t ) has the following reasons:

• It has finite number of realizations (similarly as the categorical distribution,
but unlike the geometric one, Poisson, etc.).

• Its pf is able to cover a broad range of shapes: growing, decreasing or a shape
of a hill with an arbitrary positioned top. Thus, the mixture of binomial
components can be very close to the general categorical distribution.

• With a fixed number of components, the binomial distribution has the only
one parameter – the probability of success. Thus, the probabilities of the
values of this pf are bound together and formed just by one parameter. This
property is similar to continuous distributions.

2.2 Preliminaries

The recursive parameter estimation of single binomial and categorical models will
be used for the derivation of the classification model. That is why their estimation
is briefly given below.

2.2.1 Binomial model

A single binomial model describing the individual explanatory variable x
(i)
t (omit-

ting here the superscript (i) for the simplicity) has the form of the pf

f (xt = k|p) =
(

Nx

xt

)
pxt (1− p)

Nx−xt , (2)

1A possible way to avoid this assumption could be the use orthogonalization in the space of

x
(i)
t , which seems to promising. However, it is not discussed here.
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where k ∈ {0, 1, 2, . . . , Nx} is a value of the variable xt from the set of its possible
realizations with the fixed known number Nx and p is an unknown parameter
expressing the probability of success. The parameter p can be recursively estimated
based on the Bayes rule [44,58,60] as follows:

f (p|x(t)) ∝ f (xt = k|p) f (p|x(t− 1)) , (3)

where the denotation x(t−1) means the collection of all observations of xt up to the
time t−1 including prior knowledge. Using the likelihood function computed on the
available data measured up to the time t − 1, the prior distribution f (p|x(t− 1))
to be substituted into (3) is derived as follows:

f (p|x(t− 1)) ∝ pSt−1 (1− p)
κt−1Nx−St−1 , (4)

where the prior statistics St−1 and κt−1 are straightforward

St−1 =

t−1∑
τ=1

xτ , κt−1 = t− 1. (5)

Similarly to the general approach of the recursive Bayesian estimation of distribu-
tions of the exponential family [40], it can be seen that after the substitution of
the prior distribution f (p|x(t− 1)) with the statistics (5) and model (2) into the
Bayes rule (3), the statistics of the posterior pf are recursively updated as follows:

St = St−1 + xt, κt = κt−1 + 1, (6)

where the statistics S0 and κ0 can also express prior knowledge. The updated
statistics (6) are used for the recursive computation of the point estimate of the
parameter p denoted by p̂t based on measured data up to the time t, i.e.,

p̂t =
St

κtNx
, (7)

which is the result identical to the maximum likelihood estimation of the binomial
distribution obtained via the derivation of the likelihood function, see, e.g., [19].
These straightforward derivations create the basis for the mixture estimation algo-
rithm presented in Section 3.

2.2.2 Categorical model

A categorical model of the discrete random variable ct ∈ {1, 2, . . . , Nc} is the pf
f (ct = j|α) with j ∈ {1, 2, . . . , Nc}, which has the following form

ct 1 2 · · · Nc

f (ct = j|α) α1 α2 . . . αNc

(8)

where αj are the probabilities of the value j of the variable ct and α = {αj}Nc
j=1.

According to [40], the recursive estimation of the parameter α is based on the Bayes
rule and the conjugate prior Dirichlet distribution f (α|x(t− 1)). Its statistics
denoted by νt = {νj;t}Nc

j=1 is updated as follows [40]:

νj;t = νj;t−1 + 1, (9)
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starting from initial statistics chosen randomly. The normalized updated statistics
gives the point estimates of α

α̂j;t =
νj;t∑Nc

l=1 νl;t
. (10)

3. Discrete model with reduced dimension

The solution to the formulated problem is proposed in three subsequent phases:
(i) the explanatory variable analysis, (ii) the local model construction and (iii) the
classification. The phases are subsequently presented below.

3.1 Explanatory variable analysis

In this section, the analysis of n explanatory variables is discussed. Each individual

variable x
(i)
t is modeled by a mixture of N

(i)
c binomial components (2), i.e., it has

its own number of components along with corresponding parameters denoted by
the superscript (i). Due to the assumed independence of individual mixtures, each

i-th explanatory variable x
(i)
t will be modeled separately and the superscript (i)

can be omitted for the sake of simplicity.
The switching of Nc binomial components (2) of each xt is described by the

discrete variable ct ∈ {1, 2, . . . , Nc}, which is called the pointer [41]. Values of
each pointer indicate the active component generating the data of the individual
explanatory variable xt at time t. The pointer has the categorical distribution with
the model (8).

With the used denotations, formally, for j ∈ {1, 2, . . . , Nc}, the j-th binomial
component (2) is conditioned by the pointer as well, i.e., it is

f (xt = k|p, ct = j) (11)

and the parameter p is now the Nc-dimensional vector [p1, p2, . . . , pNc ]
′, where each

pj is the probability of success corresponding to the j-th component of the variable
xt.

3.1.1 Recursive binomial mixture estimation

To describe the explanatory variables xt using the introduced pfs (8) and (11), it is
necessary to estimate the unknown parameters p and α along with the pointer ct.
The binomial mixture estimation algorithm is derived on the basis of the recursive
Bayesian estimation theory for categorical models [40] with the static pointer [41].
To apply the similar recursive approach to the binomial pfs, the following schema
of the mixture estimation is used:

f (p, α, ct = j|x(t)) ∝ f (xt = k, p, α, ct = j|x(t− 1))

= f (xt = k|p, ct = j)︸ ︷︷ ︸
(11)

f (p|x(t− 1))︸ ︷︷ ︸
(4)

f (ct = j|α)︸ ︷︷ ︸
(8)

f (α|x(t− 1))︸ ︷︷ ︸
Dirichlet

. (12)
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Here, the Bayes rule is applied to the joint probability distribution of the unknown
variables p, α and ct, which is decomposed into the product of the models (8) and
(11) along with the corresponding prior distributions [40]. The independence of
the parameters p and α as well as of the pointer ct and p is assumed.

In order to obtain the pointer estimate at time t, the relation (12) should be
subsequently marginalized over all of the unknown parameters. As a result, the
posterior pf of the pointer is got by means of the integrals over the entire definition
spaces p∗ and α∗ of the variables involved [40,41]

f (ct = j|x(t)) =
∫
α∗

∫
p∗

f (xt = k|p, ct = j) f (p|x(t− 1))

f (ct = j|α) f (α|x(t− 1)) dp dα, (13)

where the first integral uses the point estimates of parameters and gives the ap-
proximation called the proximity (see also [37, 52, 54]) of the actual explanatory
data item to each of its components at time t. The second integral provides the
stationary prediction of the pointer [40]. The inside of the integrals represents the
update of the statistics for estimating the relevant parameters. Finally, the result
of the relation (13) is the pointer distribution in the form of the weighting vector
wt = [w1;t, . . . , wNc;t], where each weight wj;t expresses the probability of the ac-
tivity of each j-th component at time t, i.e., of the classification of the current data
into the j-th component. Specifically, the weighting vector wt = [w1;t, . . . , wNc;t]
is obtained with the help of the entry-wise multiplication of the proximities vector
denoted by m and the vector of the last point estimates α̂t−1 [40]

w̃t = m α̂t−1 (14)

and its subsequent normalization as follows:

wj;t =
w̃j;t∑Nc

k=1 w̃k;t

, j = {1, 2, . . . , Nc}, (15)

which forms the final weighting vector wt ∀j = {1, 2, . . . , Nc}. Each of the prox-
imities in the vector m in (14) is the result of substituting the last point estimate
p̂j;t−1, the current data entry xt and the number of trials Nx into the component
(11)

mj = B (xt, Nx, p̂j;t−1) , (16)

which gives the proximity of the data item to the j-th binomial component.
Based on the adopted methodology [40, 41] and similarly to (6), the update of

the statistics of the j-th component is

Sj;t = Sj;t−1 + wj;txt, κj;t = κj;t−1 + wj;t, (17)

starting with the prior statistics of the components (see Section 2.2.1). Based on
measured data up to the time t, the actualized statistics (17) are used for computing
the point estimates of the component parameters via (7).

The parameter α of the pointer model (8) is estimated according to (9) and
(10) using weighted data in the update [40,41]

νj;t = νj;t−1 + wj;t. (18)
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The point estimate of the pointer ct is the index j of the maximum entry wj;t

of the weighting vector wt at time t

ĉt = arg max
j∈{1,...,Nc}

[w1;t, . . . , wNc;t], (19)

which indicates the active j-th component generating the actual data item xt.

The binomial mixture estimation listed in (12)-(19) is applied individually to
all of the n explanatory variables, i.e., it works with scalars only. This phase is
summarized in Algorithm 1.

Algorithm 1

{Initialization (for t = 1)}
for all i ∈ {1, 2, . . . , n} do

Set the number of components N
(i)
c .

for all j ∈
{
1, 2, . . . , N

(i)
c

}
do

Set the initial statistics S
(i)
j;t , κ

(i)
j;t and ν

(i)
j;t .

Use them to compute the point estimates according to (7) and (10).
end for

end for
{Explanatory variable analysis)}
for t = 2, 3, . . . , T do
for all i ∈ {1, 2, . . . , n} do

Load the data item x
(i)
t .

for all j ∈
{
1, 2, . . . , N

(i)
c

}
do

Substitute the last point estimate p̂
(i)
j;t−1, the current entry x

(i)
t and the

number of trials N
(i)
x into the component (11) and compute the proximity

of the data item to the j-th binomial component (16).
end for
Obtain the weighting vector w

(i)
t [40] according to (14) and (15).

for all j ∈
{
1, 2, . . . , N

(i)
c

}
do

Update the statistics according to (17) and (18).
Re-compute the point estimates via (7) and (10).

end for
Obtain the point estimate of c

(i)
t according to (19) and declare the active

component for classifying data.
end for

end for

The result of this phase is the clustered data of each explanatory variable.

3.2 Local model construction

This phase of the approach is the construction of local models on clusters detected
on the explanatory data space.
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First, the marginal pf of the target variable f (yt = q) with q ∈ {1, 2, . . . , Ny}
is constructed with the help of the normalized histogram of the data yt available
for the time t ≤ T . Secondly, the measurements of each explanatory variable
xt within each its component detected in Section 3.1 are collected together with
those values of the target variable yt that were observed simultaneously. The
measurements are gathered in the form of contingence tables, existing for each
component of each explanatory variable. The tables are normalized over columns
in order to obtain the conditional pfs f (xt = k|yt = q, ct = j). In this way, the pfs
are constructed locally only on the data xt and yt corresponding to each other in
the components. The dimensions of these pfs are given only by the number Ny of
possible realizations of the target variable yt due to the collection of the scalars xt.
Algorithm 2 summarizes steps of this phase.

Algorithm 2

{Local model construction}
Normalize the histogram of all the measurements q = {1, 2, . . . , Ny} of yt for the
time t ≤ T to obtain the pf f (yt = q).
for all i ∈ {1, 2, . . . , n} do

for all j ∈
{
1, 2, . . . , N

(i)
c

}
do

Construct the j-th contingence table with all the values of x
(i)
t in rows and

yt in columns up to t = T .

Normalize it over columns to obtain the pf f
(
x
(i)
t = k(i)|yt = q, c

(i)
t = j

)
.

end for
end for

The constructed local models will be used for designing the classification model
using the naive Bayes technique in the next phase.

3.3 Classification

This phase of the solution focuses on determining the value of the target variable yt
at each time instant t > T , where it is not observed and only explanatory variables
are measured. Here, the two previous phases are combined using the actual weights
of the learned components along with the local pfs constructed in Section 3.2.

To this end, the proximities of the current explanatory data to their components
are calculated using the final (i.e., from time t = T ) point estimates p̂j;t according to
(16). They are used to determine the actual weights of the components similarly
to (14) and (15), but again with the final point estimates of the parameter α.
Then, having the actual weights of each component of each explanatory variable,
the weighted average of their local models from Section 3.2 is calculated for each
i-th xt

f
(
x
(i)
t = k(i)|yt = q

)
=

N(i)
c∑

j=1

w
(i)
j;tf

(
x
(i)
t = k(i)|yt = q, c

(i)
t = j

)
. (20)

24
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Finally, the predictive pf of the target variable, which classifies the explanatory
data, is obtained using the results (20) for each i ∈ {1, 2, . . . , n}, marginal pf
f (yt = q) from Section 3.2 and the naive Bayes approach [25] as follows:

f
(
yt = q|x(1)

t , . . . , x
(n)
t

)
= f (yt = q)

n∏
i=1

f
(
x
(i)
t = k(i)|yt = q

)
. (21)

It is conditioned by the whole vector [x
(1)
t , . . . , x

(n)
t ]′ containing all the individual

explanatory variables x
(i)
t . This result is the Ny-dimensional vector of probabilities

of each of the possible realizations of yt based on the explanatory data measured
at time t. Using (21), the point prediction of the target variable is trivial

ŷt = argmax
q

f
(
yt = q|x(1)

t , . . . , x
(n)
t

)
, q ∈ {1, 2, . . . , Ny}. (22)

Algorithm 3 summarizes this phase.

Algorithm 3

{Classification}
for t = T + 1, T + 2, . . . do
for all i ∈ {1, 2, . . . , n} do

Measure the data item x
(i)
t .

for all j ∈
{
1, 2, . . . , N

(i)
c

}
do

Compute the proximity via (16) using p̂
(i)
j;T .

end for
Determine the weighting vector w

(i)
t according to (14) and (15) using α̂

(i)
T .

Compute the weighted average of the components (20).
Compute the predictive pf (21).
Determine the prediction of yt according to (22).

end for
end for

In this way, due to the proposed three-phase approach, the classification is
solved using the local models on the explanatory data space, which are created
by the independent mixtures. This allows to reduce computations during the con-
struction of the classification model up to operating only with scalars instead of
the categorical pf of enormous dimension. This is the main contribution of the
presented paper.

4. Traffic accident severity prediction

This section demonstrates the application of the proposed three-phase approach
to the analysis of traffic accident questionnaires with the aim of modeling and
predicting the accident severity. The implementation was prepared in a free and
open source software Scilab (www.scilab.org) providing a powerful programming
environment for engineering and scientific applications.
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4.1 Data

The data set from questionnaires on reported road accidents in Greater Manch-
ester in North West England publicly available under Open Government Licence
(© Crown copyright and database right 2021) was used for testing the presented
approach. The data set is available at the following link (last accessed 17 August
2021): https://data.gov.uk/dataset/25170a92-0736-4090-baea-bf6add82d118/gm-
road-casualty-accidents-full-stats19-data. The data set provides 40 238 records of
the accident circumstances reported from 2010 to 2019 along with the severity of
the accidents. 19 discrete accident circumstances were used as the explanatory

variables belonging to the vector [x
(1)
t , . . . , x

(19)
t ]′. The sets of their original possi-

ble realizations including nominal values and raw numerical irregular denotations
can be found in Appendix.

The target variable yt was the accident severity with the realizations {“Fatal”
≡ 1, “Serious” ≡ 2, “Slight” ≡ 3}.

To make the data suitable for binomial components, the raw explanatory data
records were recoded so that the set of possible realizations of each explanatory
variable contained a zero value. The final sets of recoded possible realizations of
those variables for which this procedure was necessary are shown in Tab. I. The
rest of them remained raw.

Explanatory Recoded Explanatory Recoded
entry possible entry possible

realizations realizations

x
(1)
t {0, 1, 2, 3, 4} x

(7)
t {0, 1, 2, 5, 6, 8}

x
(2)
t {0, 1, 2, . . . , 12, 18} x

(8)
t {0, 10, 20, 30, 40, 50}

x
(3)
t {0, 1, 2, . . . , 9, 12, 13, 16, 18, 28} x

(14)
t {0, 1, . . . , 6}

x
(4)
t {0, 1, 2, . . . , 6} x

(15)
t {0, 1, . . . , 8}

x
(5)
t {0, 1, 2, . . . , 23} x

(16)
t {0, 1, . . . , 4}

x
(6)
t {0, 1, 2, . . . , 6} x

(19)
t {0, 1}

Tab. I Recoded sets of possible realizations of explanatory variables.

4.2 Accident severity model

Using the binomial mixture given by (8) and (11) along with Algorithm 1, the
individual accident circumstances were distributed among the components of their
mixtures, where each mixture had its own number of components. The scheme of
the application of Algorithm 1 to this part of the task is shown in Fig. 1, where
the resulting mixtures of the circumstances are indicated.

Thereafter according to Algorithm 2, the estimated mixture components of
the circumstances were used to construct the contingence tables expressing their
relationship to the reported severity. Their normalization provided probabilities of
the individual accident circumstances conditioned by the severity of the accidents.

26
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Algorithm 1

Data
Circumstances 

...

Mixture 
Year

Component
…

Component

Mixture
Number of 
Vehicles

Component
…

Component

Mixture
Carriageway 
hazards

Component
…

Component 

Mixture
Police 
officer

Component
…

Component

Fig. 1 The scheme of the accident circumstances analysis.

Similarly, the marginal probabilities of the severity were obtained from the reported
data, see the scheme in Fig. 2.

Algorithm 2

Reported 
severity

Mixtures of 
circumstances

Probabilities of 
reported severity

Probabilities of circumstances 
depending on severity......

Fig. 2 The scheme of the construction of the accident circumstances local models.

Finally, using Algorithm 3, the predictive pf (21) gave the model of the accident
severity, where the severity depends on all the accident circumstances actually
measured in real time. It is

f (severity|all real-time circumstances) = f (reported severity)

×
19∏
i=1

f (individual circumstance|reported severity) , (23)

which involves 19 scalar models simultaneously due to Algorithm 3. The maximal
probability of this pf provides the actual severity value, see the scheme in Fig. 3.
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Algorithm 3

Actual data
Circumstances

Mixtures 
Circumstances

Probabilities
Severity

Prediction 
Actual severity

Fig. 3 The accident severity prediction.

4.3 Mixture initialization

The initialization of the binomial mixture components for starting Algorithm 1
was based on the analysis of histograms of reported accident circumstances. The
histograms of each of the 19 circumstances were analyzed from the multimodality
point of view in order to guess the number of components and their initial location.
For example, Fig. 4 demonstrates the histograms of 18 000 randomized data of
3 selected circumstances taken from the data set for the aim of their mixture
initialization: x

(7)
t – road or carriageway type with two guessed components, x

(9)
t

– junction detail with four components and x
(13)
t – pedestrian crossing physical

facilities with three initialized components. The initial component statistics of all
of the circumstances were expertly set as follows:

S
(1)
t−1 = [0.2 0.8]′, S

(2)
t−1 = [0.1 0.5 0.9]′, S

(3)
t−1 = [0.1 0.5 0.9]′, S

(4)
t−1 = [0.6 0.2 0.8]′,

S
(5)
t−1 = [0.1 0.4 0.6 0.9]′, S

(6)
t−1 = [0.05 0.6]′, S

(7)
t−1=[0.4 0.6]′, S

(8)
t−1=[0.2 0.5 0.99]′,

S
(9)
t−1 = [0.6 0.9 0.45 0.1]′, S

(10)
t−1 = [0.1 0.5 0.99]′, S

(11)
t−1 = [0.05 0.5 0.99]′,

S
(12)
t−1 = 0.8, S

(13)
t−1 = [0.99 0.2 0.01]′, S

(14)
t−1 = [0.01 0.6]′, S

(15)
t−1 = [0.1 0.9]′,

S
(16)
t−1 = [0.01 0.1]′, S

(17)
t−1 = [0.01 0.5]′, S

(18)
t−1 = [0.01 0.5]′, S

(19)
t−1 = [0.2 0.8]′.

(24)

The initial statistics κ
(i)
j;t−1 were set equal to one for all of the components of all

the circumstances. The pointer model statistics ν
(i)
j;t−1 were initialized uniformly.

4.4 Results

For the validation of the proposed three-phase approach (TPA), 20 000 data records
of the accident circumstances and severity were taken randomly from the entire
data set 10 times. 18 000 of them were used each time for the two first phases
of the approach in order to learn the models via Algorithms 1 and 2, while 2 000
measurements remained for testing the prediction using Algorithm 3. With these
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Fig. 4 Histograms of the selected reported circumstances used for the mixture ini-
tialization.

randomized data sets, a series of experiments were performed using fixed initialized
mixtures. Their results were evaluated using the following criteria:

• The successful running of the first phase of TPA using Algorithm 1 is decisive
for the overall validation of the approach. Here, the success strongly depends
on the multimodal nature of the accident circumstances and their relationship
to the reported severity along with the correct initialization. Therefore, the
aim of the experiments was first to determine whether components of the
circumstances that are the basis for predicting the severity of the accident
were detected in the data space.

• Algorithm 2 of TPA is the trivial offline processing of the data to construct
local models of circumstances depending on the accident severity, see Fig. 2.
Hence, the resulting local models should express the multimodal nature of the
circumstances, e.g., by changing the dominating probabilities in components.

• Finally, the prediction accuracy obtained as a result of running Algorithm 3
of TPA should be compared with theoretical counterparts. For this aim,
the well-known reliable algorithms were chosen, implemented in a free and
open-source data analytics, reporting and integration platform KNIME (www.
knime.com), namely, decision tree (DT) [64,67], k-nearest neighbors (k-NN)
[9, 22], fuzzy rules (FR) [16] and naive Bayes (NB) [14]. The quantitative
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evaluation of the prediction results of all the methods is given by means of
the cross-validation with the use of 10 randomized data sets.

4.4.1 Detected components of accident circumstances

Fig. 5 shows the components of selected circumstances that were detected using
Algorithm 1 of TPA in one of the randomized data sets. To save space, the most
important circumstances with a dominant influence on the accident severity were
expertly selected from all the explanatory variables used. In Fig. 5 each of these
circumstances is plotted against the accident severity to show the two-dimensional
components in the data space. For the visibility, the data values are jiggled. It can
be seen that all the circumstances have their number of components. For example,
the day of a week (left top plot), speed limit, junction control and pedestrian
crossing physical facilities (middle plots) have three components. The accident time
(middle top plot) has four components and the rest of the displayed circumstances
have two. Fig. 5 emphasizes the independence of the mixtures of the circumstances
by plotting their components in different colors: they are not related to each other.
Their multimodal relationship with the accident severity, which is common for all
of them, can be seen. TPA Algorithm 1 puts together data values that belong to
the same mode, and the component is then a representative of these data values.

Moreover, the algorithm helps determine the combinations of variables, which
were observed in the connection with different severity values in different com-
ponents, and analyze the circumstances, which led to the maximum number of
accidents and especially fatalities. Speaking about the day of a week (the left top
plot in Fig. 5), according to the number of data in its components detected by
Algorithm 1, the highest number of accidents (2 527) belongs to the combination
of the slight accidents (see the severity value 3 in the y-axis) and Friday (value 5
in the x-axis) in the third component denoted by blue ‘□’. As for the fatal acci-
dents (the severity value 1), the most frequent record was Saturday in the third
component – 43 values. As regards the accident time, the most frequently reported
combination (1 451 data records) was the slight accidents about 16 hours in the
third component denoted by blue ‘·’ in the middle top plot. The same time and
component were obtained for the 20 fatal accidents.

The right top plot of Fig. 5 shows the components of the road or carriageway
type, where most accidents correspond to the second component denoted by red ‘◦’.
Their maximum is 11 265 values, which is the combination of the slight severity and
single carriageway (value 5 in the x-axis). The highest number of fatal accidents
(149) was observed under the same conditions. For the speed limit (left middle
plot of Fig. 5), the maximum number of data (12 438) corresponds to the 30 km/h
speed limit and slight accidents in the first component marked by magenta ‘□’.
The fatal accidents’ maximum was 135 in the same component and speed limit.

In the middle plot of the middle row of Fig. 5, the components of the junction
control are demonstrated. Here, the maximum number of accidents was 8 748 slight
accidents reported under the condition of the give way or uncontrolled junction
(value 4 in the x-axis) in the third component marked by magenta ‘∗’. The highest
number of fatal accidents was 88 under the same conditions. 12 055 slight accidents
and 140 fatalities were obtained, when a physical pedestrian crossing facility was
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Fig. 5 The two-dimensional components of the selected accident circumstances.

not available within 50m. This is shown in the first component (red ‘⋆’) in the
right middle plot.

The results of Algorithm 1 for the light condition (left bottom plot) report that
the maximum number of accidents was 8 915 received for the combination of the
slight severity and the daylight, which corresponds to the first component denoted
by red ‘▷’. The fatal severity maximum was 91 in the same component during
the daylight. For the road surface condition (middle bottom plot), the obtained
results show the maximum of 10 302 slight accidents and 138 fatalities on a dry
surface, which is the first component (blue ‘×’). The right bottom plot provides
the components of the carriageway hazards. Here, the maximum number of data
(15 280) was obtained for the slight severity without reported hazards, see the first
component marked by cyan ‘⋆’. 194 fatal accidents belong to the same component
under the same conditions of the hazards.

To summarize these results, it can be stated that most accidents over all the
circumstances and their components in the data set were of the slight severity. The
greatest influence on their number was obtained in the case of the carriageway haz-
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ards, speed limit, pedestrian crossing physical facilities and road type in descending
order, as it is shown in Fig. 6 (left). As regards the fatalities, their maximum oc-
currence was detected by Algorithm 1 for the case, when the observable hazards
on the road were not reported. Over all the components, it was most affected by
the carriageway hazards, road or carriageway type, pedestrian crossing facilities,
road surface and speed limit, see Fig. 6 (right).

Fig. 6 The maximum numbers of accidents with the corresponding circumstances
in descending order.

4.4.2 Local models of circumstances depending on severity

Here, to save space, the constructed local models of one of the circumstances ob-
tained using the contingence tables according to TPA Algorithm 2 are shown. For
this aim, the carriageway hazards located at the first position influencing the oc-
currence of the accidents in Fig. 6 were chosen. Since the selected circumstance
had two components detected, the available measurements were gathered into two
contingence tables with six values of the hazards in the rows and three values of the
severity in the columns. They were normalized over columns to obtain the prob-
abilities of the hazards depending on the severity. The two resulting local models
can be found in Tab. II, which shows that they are different.

Slight Serious Fatal
severity severity severity

No hazards 1 1 1
Dislodged
vehicle load 5.102e-11 4.272e-12 6.535e-13
Other object 5.102e-11 4.272e-12 6.535e-13
Previous
accident 5.102e-11 4.272e-12 6.535e-13
Pedestrian 5.102e-11 4.272e-12 6.535e-13
Animal 5.102e-11 4.272e-12 6.535e-13

Slight Serious Fatal
severity severity severity

3.333e-09 4.762e-10 7.299e-11

0 0.0952381 0.0729927
0 0.4761905 0.5328467

0 0.0952381 0.0948905
1 0.1428571 0.1824818
0 0.1904762 0.1167883

Tab. II Local models 1 (left) and 2 (right) of the carriageway hazards conditioned
by the accident severity.
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In the left table, the dominating probabilities correspond to the absence of any
hazards in the carriageway and are the same for each value of the accident severity.
The rest of the probabilities rely on the initialization. However, in the right table,
the maximum probability refers to the presence of a pedestrian in the carriageway
conditioned by the slight severity, while the second highest probability is related
to other object in carriageway under the condition of the fatal severity. Since the
models are different, it means that the hazards depending on the severity switch
between two working modes. The local models were obtained for all the circum-
stances and their multimodal behavior depending on the severity was confirmed.

4.4.3 Accident severity prediction accuracy

Tab. III presents the results of the cross-validation of the compared methods on 10
data sets, where the prediction accuracy was computed as a percentage of correctly
predicted severity values. It can be seen that TPA provided the average improve-
ment in accuracy 7.01%, 1.55%, 2.51% and 6.06% compared to DT, k-NN, FR
and NB respectively with the second lowest standard deviation.

TPA, [%] DT, [%] k-NN, [%] FR, [%] NB, [%]

Data set 1 86.85 78.75 85.00 82.87 80.05
Data set 2 85.75 78.55 84.50 82.13 79.55
Data set 3 85.00 78.10 83.10 83.67 80.40
Data set 4 85.25 78.10 83.50 82.52 80.40
Data set 5 84.65 78.55 83.65 83.98 79.60
Data set 6 84.80 77.60 83.20 82.08 77.45
Data set 7 85.45 80.00 84.15 82.41 80.70
Data set 8 86.60 79.50 84.65 83.38 79.10
Data set 9 85.55 77.40 83.75 84.32 78.05
Data set 10 85.00 78.20 83.90 82.42 79.00

Average accuracy 85.49 78.48 83.94 82.978 79.43
Standard deviation 0.736 0.799 0.628 0.805 1.06

Tab. III The percentage of the correct accident severity predictions.

The accident severity predictions of the compared methods were also tested
to see if they originate from the same distribution with the help of the Kruskal-
Wallis test [43] in MATLAB [50]. The obtained p-value 2.3127e-47 was less than
the significance level of 0.05, which indicates that the differences among the tested
predictions are statistically significant. The post-hoc Bonferroni test [32, 33] was
used to test the null hypothesis that there is no statistical difference in each pair of
the compared predictions. It showed that only the k-NN and FR predictions had
no statistically significant difference between them with the p-value higher than
0.05. The rest of the pairs had the p-values lower than the significance level, which
means that their predictions are significantly different. The obtained confidence
intervals of the post-hoc Bonferroni test can be found in Fig. 7, where TPA with
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Fig. 7 The post-hoc Bonferroni test confidence intervals.

its improved accuracy has mean ranks significantly different from the rest of the
methods.

As regards the average computational time necessary for a set of 20 000 data,
TPA needed 100.08 seconds for all the three algorithms including the initialization.
0.01% of the average time was necessary for the initialization, 90.65% for Algo-
rithm 1, 3.99% for Algorithm 2 and 5.35% for the prediction with Algorithm 3,
which was 6 seconds on average. The average computational time of the rest of
the methods was as follows: DT 2 seconds, k-NN 3 seconds, FR 127.2 seconds
and NB 50 seconds. However, it should be emphasized that the proposed method
has a completely different approach to computations including the real time phase
of predicting, which is missing in the other discussed algorithms. Therefore, the
computational time in this case, in contrast to the prediction accuracy, can hardly
be a comparable indicator of the algorithm performance.

4.5 Discussion

The main aim of the experimental part of the paper was to test the presented
general solution of modeling discrete questionnaire data with a reduced model di-
mension on real traffic accident data and predict the traffic accident severity. The
aim has been successfully accomplished. The reduction of the model dimension was
achieved due to (i) the description of the explanatory variables by independent mix-
ture models and (ii) the use of the binomial distribution of mixture components.
Without the proposed reduction, the accident severity model with three severity
levels conditioned by 19 accident circumstances is a categorical distribution ta-
ble with 7.779e16 rows and 3 columns. This enormous dimension is extremely
complicated for the probabilistic approach because of the uncertainty bringing by
the high number of variables with different large numbers of realizations. Due to
TPA combining the recursive mixture estimation and naive Bayes procedure, the
computations are performed on 19 scalar models. This significantly facilitates the
calculation of probabilities of individual severity values for the aim of prediction.
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Three levels of the accident severity were predicted, combining the information
from the estimated binomial components and the actually measured circumstances.
It was shown that the severity values vary among the components of the accident
circumstances. This information covered by learning the models is critical for
recognizing the components during the real time prediction of the severity. The
performed experiments showed improvements in the prediction accuracy in the
comparison with four existing methods. It is worth noting the improved accuracy
compared with the original NB method creating a basis of Algorithm 3, which took
the fourth place in Tab. III in contrast to TPA, which showed the best results.

In addition, TPA was beneficial in an area that was not originally the primary
focus of the application. The identified components contributed to the analysis of
the influence of circumstances on the maximum occurrence of the individual levels
of accident severity. This TPA feature can be useful for determining combinations
of real-time potential accident circumstances that lead to an increased risk of fatal
and serious accidents, as it was discussed in [63]. Moreover, the mixture-based
analysis from Algorithm 1 performed preliminarily on prior data can be applied for
selecting explanatory variables for the predictive model, see, e.g., [46].

However, it should be stated that the reported improvements were obtained
at the expense of extending the average computational time, where TPA took
the fourth place. Nevertheless, the possibility of predicting the accident severity
taking into account circumstances measured on the road in real time is an essential
advantage of TPA, which can make this compromise acceptable.

A practical application of the traffic accident questionnaire analysis is expected
in the area of road safety intelligent systems aimed at monitoring and evaluating
real time risks of accidents. However, the general solution is not limited by the
presented area of application and can be required in social fields, medicine, etc.

The limitation of the approach is the assumption of the multimodal relation-
ship between the target and explanatory variables. The general suitability of the
explanatory data to binomial mixtures is important as well. The minimum require-
ment to them is a higher number of possible realizations.

5. Conclusion

The paper presents a three-phase approach to modeling discrete questionnaire data
with a reduced dimension of the model. The model dimension is reduced in three
phases (i) using the recursive Bayesian estimation of independent mixtures of bi-
nomial distributions describing entries of the explanatory multivariate variable,
(ii) constructing local models of the target variable on detected clusters of the ex-
planatory data and (iii) obtaining the classification model of the target variable
with the help of the naive Bayes technique. The proposed data-based probabilis-
tic approach combines the offline analysis of previously available observations and
online prediction, which enables feeding actually measured data in the algorithm.
The model validation using real data and comparison with well-known algorithms
has shown improvements in classifying discrete traffic accident data and predicting
the accident severity, which confirms the efficiency of the proposed approach and
its perspectives in terms of future research.
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Due to the proposed reduction of dimension, the presented approach allows to
model discrete questionnaire data with many explanatory variables and simulta-
neously a high number of their realizations. This is the main contribution of the
paper. A significant advantage is also the mixture initialization, which is based on
a visual analysis of prior data sets naturally available for Algorithms 1 and 2. It is
fixed for all TPA runs with the same data.

The problems that remain open in the discussed area concern primarily: (i) the
description of explanatory variables by a single mixture model, which can bring the
possibility of combinations of realizations in components; (ii) the choice of other
distributions (optionally mixed) of the mixture components; (iii) the automatiza-
tion of the initialization task and (iv) the investigation of the continuous case of the
presented approach using the multimodal relationship of the target and explanatory
variables.

In general, the proposed approach can be used as a promising tool in the field of
large-scale practical applications dealing with the analysis of data from question-
naires, which allows not to limit the dimension of the discrete model that could
lead to the loss of information to be analyzed.

Appendix

The sets of the original possible realizations of the 19 discrete accident circum-
stances including their nominal values and raw numerical irregular denotations are
as follows:

• x
(1)
t – year ∈ {2010, 2011, . . . , 2019};

• x
(2)
t – number of vehicles ∈ {1, 2, . . . , 13, 16, 19} after removing outliers taking

less than 99th percentile;

• x
(3)
t – number of casualties ∈ {1, 2, . . . , 14, 17, 19, 29} after removing the out-

liers;

• x
(4)
t – day of a week ∈ {1, 2, . . . , 7} from Sunday to Saturday respectively;

• x
(5)
t – output time in the format HH:MM;

• x
(6)
t – 1st road class ∈ {1, 2, . . . , 7};

• x
(7)
t – road or carriageway type ∈ {“Roundabout” ≡ 1, “One way street”

≡ 2, “Dual carriageway” ≡ 3, “Single carriageway” ≡ 6, “Slip road” ≡ 7,
“Unknown” ≡ 9};

• x
(8)
t – speed limit ∈ {20, 30, 40, 50, 60, 70};

• x
(9)
t – junction detail ∈ { “Not at or within 20 meters of junction” ≡ 0,

“Roundabout” ≡ 1, “Mini roundabout” ≡ 2, “T or staggered junction” ≡ 3,
“Slip road” ≡ 5, “Crossroads” ≡ 6, “Junction more than four arms (not
RAB)” ≡ 7, “Using private drive or entrance” ≡ 8, “Other junction” ≡ 9};
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• x
(10)
t – junction control ∈ {“Not at or within 20 meters of junction” ≡

0,“Authorized person” ≡ 1, “Automatic traffic signal” ≡ 2, “Stop sign” ≡ 3,
“Give way or uncontrolled” ≡ 4};

• x
(11)
t – 2nd road class ∈ {0, 1, 2, . . . , 7};

• x
(12)
t – pedestrian crossing human control ∈ {“None within 50 meters” ≡ 0,

“Control by school crossing patrol”≡ 1, “Control by other authorized person”
≡ 2};

• x
(13)
t – pedestrian crossing physical facilities ∈ {“No physical crossing facility

within 50m” ≡ 0, “Zebra crossing” ≡ 1, “Pelican, puffin, toucan or similar
non-junction pedestrian light crossing” ≡ 4, “Pedestrian phase at traffic sig-
nal junction” ≡ 5, “Footbridge or subway” ≡ 7, “Central refuge – no other
controls” ≡ 8};

• x
(14)
t – light condition ∈ {“Daylight” ≡ 1, “Darkness: street lights present

and lit” ≡ 4, “Darkness: street lights present but unlit” ≡ 5, “Darkness: no
street lighting” ≡ 6, “Darkness: street lighting unknown” ≡ 7};

• x
(15)
t – weather condition ∈ {“Fine without high winds” ≡ 1, “Raining with-

out high winds” ≡ 2, “Snowing without high winds” ≡ 3, “Fine with high
winds” ≡ 4, “Raining with high winds” ≡ 5, “Snowing with high winds” ≡ 6,
“Fog or mist – if hazard” ≡ 7, “Other” ≡ 8, “Unknown” ≡ 9};

• x
(16)
t – road surface condition ∈ {“Dry” ≡ 1, “Wet / Damp” ≡ 2, “Snow”

≡ 3, “Frost / Ice” ≡ 4, “Flood (surface water over 3cm deep)” ≡ 5};

• x
(17)
t – special conditions at site ∈ {“None” ≡ 0, “Auto traffic signal out”

≡ 1, “Auto traffic signal partially defective” ≡ 2, “Permanent road signing
or marking defective or obscured” ≡ 3, “Roadworks” ≡ 4, “Road surface
defective” ≡ 5, “Oil or diesel” ≡ 6, “Mud” ≡ 7};

• x
(18)
t – carriageway hazards ∈ {“None” ≡ 0, “Dislodged vehicle load in car-

riageway ” ≡ 1, “Other object in carriageway” ≡ 2, “Involvement with pre-
vious accident” ≡ 3, “Pedestrian in carriageway – not injured” ≡ 6, “Any
animal in carriageway (except ridden horse)” ≡ 7};

• x
(19)
t – did a police officer attend the scene and obtain the details for this

report? ∈ {“Yes” ≡ 1, “No” ≡ 2}.
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[20] COMON P. Independent component analysis, A new concept? Signal Processing, 1994,
36(3), pp. 287–314.

[21] CONGDON P. Bayesian Models for Categorical Data. John Wiley & Sons, 2005.

[22] COVER T.M., HART P.E. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory. 1967, 13 1), pp. 21–27.

[23] FALISSARD B. Analysis of Questionnaire Data with R. Chapman & Hall/CRC, Boca Raton,
2012.
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finite mixtures. International Journal of Adaptive Control and Signal Processing. 2011, 25(9),
pp. 765–787.
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