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The ability to calculate precise likelihood ratios is fundamental to many STEM areas, such as
decision-making theory, biomedical science, and engineering. However, there is no assumption-free
statistical methodology to achieve this. For instance, in the absence of data relating to covari-
ate overlap, the widely used Bayes’ theorem either defaults to the marginal probability driven
“naive Bayes’ classifier”, or requires the use of compensatory expectation-maximization techniques.
Equally, the use of alternative statistical approaches, such as multivariate logistic regression, may
be confounded by other axiomatic conditions, e.g., low levels of co-linearity. This article takes an
information-theoretic approach in developing a new statistical formula for the calculation of likeli-
hood ratios based on the principles of quantum entanglement. In doing so, it is argued that this
quantum approach demonstrates: that the likelihood ratio is a real quality of statistical systems;
that the naive Bayes’ classifier is a special case of a more general quantum mechanical expression;
and that only a quantum mechanical approach can overcome the axiomatic limitations of classical
statistics.

In recent years, Bayesian statistical research has often
been epistemologically driven, guided by de Finetti’s
famous quote that “probability does not exist”[1]. For
example, the “quantum Bayesian” methodology of Caves,
Fuchs, & Schack[2] has applied de Finetti’s ideas to
Bayes’ theorem for use in quantum mechanics. In doing
so, Caves et al. have argued that statistical systems
are best interpreted by methods in which the Bayesian
likelihood ratio is seen to be both external to the system
and subjectively imposed on it by the observer[3].

From a decision-making perspective the Caves et
al. approach is problematic. Bayes’ theorem and,
in particular, the “naive Bayes’ classifier” have been
used extensively to interpret information systems and
develop normative decision-making models[4]. While
subjectivity may play a role in a descriptive model of
human decision-making, its use in normative analysis
could suggest the presence of a cognitive “homonculus”
with the power to influence decision outcomes. Yet
at a human scale, for instance, an observer’s belief as
to the chances of a fair coin landing either “heads” or
“tails” has no known effect. Rather, within normative
decision-making theory, the “heads:tails” likelihood
ratio of 0.5:0.5 is only meaningful when considered as
a property of the coin’s own internal statistical system
rather than as some ephemeral and arbitrary qualia.
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However, there are axiomatic difficulties associated
with Bayes’ theorem, notably its reliance upon the use
of marginal probabilities in the absence of structural sta-
tistical information, such as estimates of covariate over-
lap. This has led some researchers to attempt to recon-
ceptualise psychology and decision-making theory using
quantum mechanics[5, 6] - an approach with intuitive
merit given that both disciplines apply statistical axioms
to analyse and interpret probabilistic systems. Yet, de-
spite progress made in this area, the lack of an orthodox
Copenhagen-based theoretical counterpoint to Caves et
al. has impeded the development of new normative mod-
els. It is this knowledge gap which this article aims to
fill.

I. THE LIMITS OF BAYES’ THEOREM

Bayes’ theorem is used to calculate the conditional
probability of a statement, or hypothesis, being true
given that other information is also true. It is usually
written as

P (Hi|D) =
P (Hi)P (D|Hi)
∑

j

P (Hj)P (D|Hj)
. (1)

Here, P (Hi|D) is the conditional probability of hypoth-
esis Hi being true given that the information D is true;
P (D|Hi) is the conditional probability of D being true if
Hi is true; and

∑

j

P (Hj)P (D|Hj) is the sum of the prob-

abilities of all hypotheses multiplied by the conditional
probability of D being true for each hypothesis[4].

http://arxiv.org/abs/1508.00936v1
mailto:rachael.be@rachael.be
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Street A (H1) Street B (H2)

Number of houses (n) 10 10

% blue front door (D) 0.8 0.7

% not blue front door (D̄) 0.2 0.3

(2)

To exemplify using the contingency information in (2),
if one wishes to calculate which of two streets is most
likely to have a house with a blue front door, then using
Bayes’ theorem it is trivial to calculate that Street A
is most likely with a likelihood ratio of approximately
0.53:0.47,

P (H1|D) =
0.5× 0.8

(0.5× 0.8) + (0.5× 0.7)
=

8

15
≈ 0.533 ,

P (H2|D) = 1− P (H1|D) =
7

15
≈ 0.467 ,

(3)

where P (Hi) = 10/(10 + 10) = 0.5 for both i = 1, 2.

However, difficulties arise in the use of Bayes’ theorem
for the calculation of likelihood ratios where there are
multiple non-exclusive data sets. For instance, if the in-
formation in (2) is expanded to include data about the
number of houses with a garage (4) then the precise co-
variate overlap (i.e., D1 ∩D2) for each street becomes an
unknown.

Street A (H1) Street B (H2)

Number of houses (n) 10 10

% blue front door (D1) 0.8 0.7

% with garage (D2) 0.6 0.5

(4)

All that may be shown is that, for each street, the num-
ber of houses with both features forms a range described
by (5), where n(Hi) is the total number of houses in street
i, n(D1|Hi) is the total number of houses in street i with
a blue front door, and n(D2|Hi) is the total number of
houses in street i with a garage,

n(D1 ∩D2|Hi) ∈


















[

n(D1|Hi) + n(D2|Hi)− n(Hi) , . . . ,min(n(D1|Hi), n(D2|Hi))
]

if n(D1|Hi) + n(D2|Hi) > n(Hi) , or
[

0 , . . . ,min(n(D1|Hi), n(D2|Hi))
]

if n(D1|Hi) + n(D2|Hi) ≤ n(Hi) .

(5)

Specifically for (4) these ranges equate to

n(D1 ∩D2|H1) ∈ {4, 5, 6} ,

n(D1 ∩D2|H2) ∈ {2, 3, 4, 5} . (6)

The simplest approach to resolving this problem is
to naively ignore any intersection, or co-dependence,
of the data and to directly multiply the marginal
probabilities[7–9, for example]. Hence, given (4), the like-
lihood of Street A having the greatest number of houses
with both a blue front door and a garage would be cal-
culated as

P (H1|D1 ∩D2) =
0.5× 0.8× 0.6

(0.5× 0.8× 0.6) + (0.5× 0.7× 0.5)

≈ 0.578 . (7)

Yet, because the data intersect, this probability value is
only one of a number which may be reasonably calcu-
lated. Alternatives include calculating a likelihood ratio
using the mean value µ of the frequency ranges for each
hypothesis

P (µ[n(D1 ∩D2|H1)]) =
1

10
× 1

3
(4 + 5 + 6) = 0.5 ,

P (µ[n(D1 ∩D2|H2)]) =
1

10
× 1

4
(2 + 3 + 4 + 5) = 0.35

⇒ P (H1|µD1 ∩D2) ≈ 0.588 ;
(8)

and taking the mean value of the probability range de-
rived from the frequency range

minP (H1|D1 ∩D2) =
4

4 + 5
,

maxP (H1|D1 ∩D2) =
6

6 + 2

⇒ µ[P (H1|D1 ∩D2)] ≈ 0.597 . (9)

Given this multiplicity of probability values, it would
seem that none of these methods may lay claim to norma-
tivity. This problem of covariate overlap has, of course,
been previously addressed within statistical literature.
For instance, the “maximum likelihood” approach, of
Dempster, Laird, & Rubin[10], has demonstrated how
an “expectation-maximization” algorithm may be used
to derive appropriate covariate overlap measures. Indeed,
the mathematical efficacy of this technique has been con-
firmed by Wu[11]. However, from a psychological stand-
point, it is difficult to see how such an iterative methodol-
ogy could be employed in human decision-making, given
mankind’s reliance on heuristics rather than cognitively
expensive exactitudes[12]. Since there is also little evi-
dence that the naive Bayes’ classifier forms any part of
the human decision-making process[7], the theoretical ad-
vancement of the psychology of decision-making demands
a mathematical approach in which covariate overlaps can
be automatically, and directly, calculated from contin-
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gency data.

II. A QUANTUM MECHANICAL PROOF OF

BAYES’ THEOREM FOR INDEPENDENT DATA

Previously unconsidered, the quantum mechanical von
Neumann axioms would seem to offer the most promise
in this regard, since the re-conceptualization of covariate
data as a quantum entangled system allows for statisti-
cal analysis with few, non-arbitrary assumptions. Unfor-
tunately there are many conceptual difficulties that can
arise here. For instance, a Dirac notation representation
of (4) as a standard quantum superposition is

|Ψ〉 = 1√
N

[

α

(

√

1

3
|4〉

H1
+

√

1

3
|5〉

H1
+

√

1

3
|6〉

H1

)

+ β

(

√

1

4
|2〉

H2
+

√

1

4
|3〉

H2
+

√

1

4
|4〉

H2
+

√

1

4
|5〉

H2

)]

.

(10)

In this example, (10) cannot be solved since the possible
values of D1 ∩ D2 for each hypothesis (6) have been
described as equal chance outcomes within a general su-
perposition of H1 and H2, with the unknown coefficients
α and β assuming the role of the classical Bayesian
likelihood ratio.

The development of an alternative quantum mechani-
cal description necessitates a return to the simplest form
of Bayes’ theorem using the case of exclusive populations
Hi and data sets D, D̄, such as given in (2). Here, the
overall probability of H1 may be simply calculated as

P (H1) =
n(H1)

n(H1) + n(H2)
. (11)

The a priori uncertainty in (2) may be expressed by con-
structing a wave function in which the four data points
are encoded as a linear superposition

|Ψ〉 =α1,1 |H1 ⊗D〉+ α1,2

∣

∣H1 ⊗ D̄
〉

+ α2,1 |H2 ⊗D〉+ α2,2

∣

∣H2 ⊗ D̄
〉

. (12)

Since there is no overlap between either D and D̄ or the
populations H1 and H2, each datum automatically forms
an eigenstate basis with the orthonormal conditions

〈H1 ⊗D|H1 ⊗D〉 =
〈

H1 ⊗ D̄|H1 ⊗ D̄
〉

= 1

〈H2 ⊗D|H2 ⊗D〉 =
〈

H2 ⊗ D̄|H2 ⊗ D̄
〉

= 1

all other bra-kets = 0 , (13)

where the normalization of the wave function demands
that

〈Ψ|Ψ〉 = 1 , (14)

so that the sum of the modulus squares of the coefficients

αi,j gives a total probability of 1

|α1,1|2 + |α1,2|2 + |α2,1|2 + |α2,2|2 = 1 . (15)

For simplicity let

x1 = P (D|H1), y1 = P (D̄|H1) ,

x2 = P (D|H2), y2 = P (D̄|H2) ,

X1 = P (H1), X2 = P (H2) . (16)

If the coefficients αi,j from (12) are set as required by
(2), it follows that

|α1,1|2 = x1, |α1,2|2 = y1, |α2,1|2 = x2, |α2,2|2 = y2 ,
(17)

so that the normalised wave function |Ψ〉 is described by

|Ψ〉 = 1√
N

(
√
x1 |H1 ⊗D〉+√

y1
∣

∣H1 ⊗ D̄
〉

+
√
x2 |H2 ⊗D〉+√

y2
∣

∣H2 ⊗ D̄
〉

) (18)

for some normalization constant N .

The orthonormality condition (14) implies that

N = x1 + y1 + x2 + y2 = X1 +X2 , (19)

thereby giving the full wave function description

|Ψ〉 =
√
x1 |H1 ⊗D〉+√

y1
∣

∣H1 ⊗ D̄
〉

+
√
x2 |H2 ⊗D〉+√

y2
∣

∣H2 ⊗ D̄
〉

√
X1 +X2

.

(20)

If the value of P (H1|D) is to be calculated, i.e., the prop-
erty D is observed, then the normalized wave function
(12) necessarily collapses to

|Ψ′〉 = α1 |H1 ⊗D1〉+ α2 |H2 ⊗D1〉 , (21)

where the coefficients α1,2 may be determined by pro-
jecting |Ψ〉 on to the two terms in |Ψ′〉 using (13), giving

α1 = 〈Ψ′|H1 ⊗D〉 =
√

x1

X1 +X2

,

α2 = 〈Ψ′|H2 ⊗D〉 =
√

x2

X1 +X2

. (22)

Normalizing (21) with the coefficient N ′

∣

∣Ψ
′
〉

=
1√
N ′

(

√

x1

X1 +X2

|H1 ⊗D〉 +
√

x2

X1 +X2

|H2 ⊗D〉
)

,

(23)
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and using the normalization condition (14), implies that

1 = 〈Ψ′|Ψ′〉 = 1

N ′

( x1

X1 +X2

+
x2

X1 +X2

)

→ N ′ =
x1 + x2

X1 +X2

. (24)

Thus, after collapse, the properly normalized wave func-
tion (23) becomes

|Ψ′〉 =
√

x1

x1 + x2

|H1 ⊗D〉+
√

x2

x1 + x2

|H2 ⊗D〉 ,

(25)
which means that the probability of observing |H1 ⊗D〉
is

P (|H1 ⊗D〉) =
(

√

x1

x1 + x2

)2

=
α2

1

α2

1
+ α2

2

=
x1

x1 + x2

.

(26)

This is entirely consistent with Bayes’ theorem and
demonstrates its derivation using quantum mechanical
axioms.

III. A QUANTUM MECHANICAL

EXPRESSION TO CALCULATE LIKELIHOOD

RATIOS, WITH CO-DEPENDENT DATA

Having established the principle of using a quantum
mechanical approach for the calculation of simple likeli-
hood ratios with mutually exclusive data (2), it is now
possible to consider the general case of n hypotheses and
m data (27), where the data are co-dependent, or inter-
sect.

H1 H2 · · · Hn

D1 x1,1 x1,2 · · · x1,n

D2 x2,1 x2,2 · · · x2,n

...
...

...

Dm xm,1 xm,2 · · · xm,n

(27)

Here the contingency table in (27) has been indexed
using

xi,α , α = 1, 2, . . . , n; i = 1, 2, . . . ,m . (28)

While the general wave function remains the same as be-
fore, the overlapping data create non-orthonormal inner

products which can be naturally defined as

〈Hα ⊗Di|Hβ ⊗Dj〉 = cαijδαβ , cαij = cαji ∈ R , cαii = 1 ,
(29)

Assuming, for simplicity, that the overlaps cαij are real,
then there is a symmetry in that cαij = cαji for each α.
Further, for each α and i, the state is normalized, i.e.,
cαii = 1. The given independence of the hypotheses Hα

also enforces the Kroenecker delta function, δαβ .

The Hilbert space V spanned by the kets |Hα ⊗Di〉
is mn-dimensional and, because of the independence of
Hα, naturally decomposes into the direct sum (30) with
respect to the inner product, thereby demonstrating that
the non-orthonormal conditions are the direct sum of m
vector spaces V α:

V = Span({|Hα ⊗Di〉}) =
n
⊕

α=1

V α , dimV α = m .

(30)
Since the inner products are non-orthonormal, each
V α must be individually orthonormalised. Given that
V splits into a direct sum, this may be achieved
for each subspace V α by applying the Gram-Schmidt
algorithm[13] to {|Hα ⊗Di〉} of V . Consequently, the
orthonormal basis may be defined as

|Kα
i 〉 =

n
∑

k=1

Aα
i,k |Hα ⊗Dk〉 ,

〈

Kα
i |Kα

j

〉

= δij ,

(31)
for each α = 1, 2, . . . , n with m × m matrices Aα

i,k, for
each α.
Substituting the inner products (29) gives

m
∑

k,k′=1

Aα
ikA

α
jk′cαkk′ = δij ∀α = 1, 2, . . . , n . (32)

The wave-function may now be written as a linear com-
bination of the orthonormalised kets |Kα

i 〉 with the co-
efficients bαi , and may be expanded into the |Hα ⊗Di〉
basis using (31), i.e.,

|Ψ〉 =
∑

α,i

bαi |Kα
i 〉 =

∑

α,i,k

bαi A
α
ik |Hα ⊗Dk〉 . (33)

As with (17) from earlier, the coefficients in (33) should
be set as required by the contingency table

∑

i

bαi A
α
i,k =

√
xkα , (34)

where, to solve for the b-coefficients, (32) may be used to
invert

∑

k,k′

∑

i

bαi A
α
ikAjk′cαkk′ =

∑

k,k′

√
xkαA

α
jk′cαk′k , (35)
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giving

bαj =
∑

k,k′

√
xkαA

α
jk′cαkk′ . (36)

Having relabelled the indices as necessary, a back-
substitution of (34) into the expansion (33) gives

|Ψ〉 =
∑

α,i,k

bαi A
α
i,k |Hα ⊗Dk〉 =

∑

α,k

√
xkα |Hα ⊗Dk〉 ,

(37)
which is the same as having simply assigned each ket’s
coefficient to the square root of its associated entry in
the contingency table.

The normalization factor for |Ψ〉 is simply 1/
√
N ,

where N is the sum of the squares of the coefficients b of
the orthonormalised bases |Kα

i 〉,

N =
∑

i,α

(bαi )
2 =

∑

i,α

bαi





∑

k,k′

√
xkαA

α
k′,ic

α
kk′





=
∑

k,k′,α

√
xkαxk′αc

α
kk′ . (38)

Thus, the final normalized wave function is

|Ψ〉 =

∑

α,k

√
xkα |Hα ⊗Dk〉

√

∑

i,j,α

√
xiαxjαcαij

, (39)

where α is summed from 1 to n, and i, j are summed
from 1 to m. Note that, in the denominator, the
diagonal term

√
xiαxjαc

α
ij , which occurs whenever i = j,

simplifies to xiα since cαii = 1 for all α.

From (39) it follows that, exactly in parallel to the
non-intersecting case, if all properties Di are observed
simultaneously, the probability of any hypothesis Hα, for
a fixed α, is

P (Hα|D1 ∩D2 . . . ∩Dm) =

∑

i

(bαi )
2

∑

i,α

(bαi )
2
=

∑

i,j

√
xiαxjαc

α
ij

∑

i,j,α

√
xiαxjαcαij

,

(40)

In the case of non-even populations for each hypothesis
(i.e., non-even priors), each element within (40) should
be appropriately weighted.

IV. EXAMPLE SOLUTION

Returning to the problem presented in the contingency
table (4), it is now possible to calculate the precise prob-
ability for a randomly selected house with the properties
of “blue front door” and “garage” belonging to Street A
(H1). For this 2 × 2 matrix, recalling from (29) that

cαii = 1 and cαij = cαji, the general expression (40) may be
written as

P (H1|D1 ∩D2) =

2
∑

i,j=1

√
xi,1xj,1c

1

ij

2
∑

i,j=1

2
∑

α=1

√
xiαxjαc

α
ij

=

√

x2

1,1c
1

1,1 +
√

x2

2,1c
1

2,2 +
√
x1,1x2,1c

1

1,2 +
√
x2,1x1,1c

1

2,1

2
∑

α=1

√

x2

1,αc
1

1,1 +
√

x2

2,αc
1

2,2 +
√
x1,αx2,αc

1

1,2 +
√
x2,αx1,αc

1

2,1

=
x1 + y1 + 2c1

√
x1y1

x1 + x2 + y1 + y2 + 2c1
√
x1y1 + 2c2

√
x2y2

, (41)

where, adhering to the earlier notation (16),

x1 = x1,1 = P (D1|H1), y1 = x2,1 = P (D2|H1) ,

x2 = x1,2 = P (D1|H2), y2 = x2,2 = P (D2|H2) ,

X1 = P (H1), X2 = P (H2) , (42)

and, for brevity, c1 := c1
1,2 , c2 := c2

1,2 . For simplicity,
P (Hi|D1 ∩D2) will henceforth be denoted as Pi. Imple-
menting (41) is dependent upon deriving solutions for the
yet unknown expressions ci, i = 1, 2 which govern the ex-
tent of the intersection in (29). This can only be achieved
by imposing reasonable constraints upon ci which have
been inferred from expected behaviour and known out-
comes, i.e., through the use of boundary values and sym-
metries. Specifically, these constraints are:

Data dependence.: The expressions ci must, in some
way, be dependent upon the data given in the con-
tingency table, i.e.,

c1 = c1(x1, y1, x2, y2;X1, X2) ,

c2 = c2(x1, y1, x2, y2;X1, X2) . (43)

Probability.: The calculated values for Pi must fall be-
tween 0 and 1. Since xi and yi are positive, it
suffices to take

− 1 < ci(x1, y1, x2, y2) < 1 . (44)

Complementarity.: The law of total probability dic-
tates that

P1 + P2 = 1 , (45)

which can easily be seen to hold.

Symmetry.: The exchanging of rows within the contin-
gency tables should not affect the calculation of Pi.
In other words, for each i = 1, 2, Pi is invariant
under xi ↔ yi. This constraint implies that

ci(x1, y1, x2, y2) = ci(y1, x1, y2, x2) . (46)

Equally, if the columns are exchanged then Pi must
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map to each other, i.e., for each i = 1, 2 then P1 ↔
P2 under x1 ↔ x2, y1 ↔ y2 which gives the further
constraint that

c1(x1, y1, x2, y2) = c2(x2, y2, x1, y1) . (47)

Known values.: There are a number of contingency ta-
ble structures which give rise to a known probabil-
ity, i.e.,

H1 H2

D1 1 1

D2 m n

→ P1 =
m

m+ n

H1 H2

D1 m n

D2 1 1

→ P1 =
m

m+ n

H1 H2

D1 n m

D2 m n

→ P1 =
1

2

H1 H2

D1 n n

D2 m m

→ P1 =
1

2

H1 H2

D1 m m

D2 m m

→ P1 =
1

2
, (48)

where m,n are positively valued probabilities. For
such contingency tables the correct probabilities
should always be returned by ci. Applying this
principle to (41) gives the constraints

m

m+ n
=

2c1(m, 1, n, 1)
√
m+m+ 1

2c1(m, 1, n, 1)
√
m+ 2c2(m, 1, n, 1)

√
n+m+ n+ 2

,

(49)

1

2
=

2c1(n,m,m,n)
√
m
√
n+m+ n

2c1(n,m,m, n)
√
m
√
n+ 2c2(n,m,m, n)

√
m
√
n+ 2m+ 2n

,

(50)

1

2
=

2c1(n,m, n,m)
√
m
√
n+m+ n

2c1(n,m, n,m)
√
m
√
n+ 2c2(n,m, n,m)

√
m
√
n+ 2m+ 2n

.

(51)

Non-homogeneity.: Bayes’ theorem returns the same
probability for any linearly scaled contingency ta-

bles, e.g.,

x1 → 1.0, y1 → 1.0, x2 → 1.0, y2 → 0.50 ⇒ P1 ≈ 0.667 , (52)

x1 → 0.5, y1 → 0.5, x2 → 0.5, y2 → 0.25 ⇒ P1 ≈ 0.667 . (53)

While homogeneity may be justified for condition-
ally independent data, this is not the case for inter-
secting, co-dependent data since the act of scaling
changes the nature of the intersections and the rela-
tionship between them. This may be easily demon-
strated by taking the possible value ranges for (52)
and (53), calculated using (5), which are

Eq. (52) ⇒(D1 ∩D2)|H1 = {1} ,

(D1 ∩D2)|H2 = {0.5} ,

Eq. (53) ⇒(D1 ∩D2)|H1 = {0.0 . . .0.5} ,

(D1 ∩D2)|H2 = {0.0 . . .0.25} . (54)

The effect of scaling has not only introduced uncer-
tainty where previously there had been none, but
has also introduced the possibility of 0 as a valid an-
swer for both hypotheses. Further, the spatial dis-
tance between the hypotheses has also decreased.
For these reasons it would seem unreasonable to
assert that (52) and (53) share the same likelihood
ratio.

Using these principles and constraints it becomes possible
to solve ci. From the principle of symmetry it follows that

c1(n,m,m, n) = c2(m,n, n,m) = c2(n,m,m, n) ,

c1(n,m, n,m) = c2(n,m, n,m) = c2(n,m, n,m) , (55)

and that the equalities (50), (51) for Pi = 0.5 automati-
cally hold. Further, (49) solves to give

c2(m, 1, n, 1) =
2
√
mnc1(m, 1, n, 1)−m+ n

2m
√
n

, (56)

which, because c1(n, 1,m, 1) = c2(m, 1, n, 1), finally gives

c1(n, 1,m, 1) =
2
√
mnc1(m, 1, n, 1)−m+ n

2m
√
n

. (57)

Substituting g(m,n) :=
√
nc1(m, 1, n, 1) transforms (57)

into an anti-symmetric bivariate functional equation in
m,n,

g(m,n)− g(n,m) =
m

2
√
mn

− n

2
√
mn

, (58)

whose solution is g(m,n) = m
2
√
mn

.
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This gives a final solution for the coefficients c1,2 of

c1(x1, y1, x2, y2) =

√
x1y1

2x2y2
,

c2(x1, y1, x2, y2) =

√
x2y2

2x1y1
. (59)

Thus, substituting (59) into (41) gives the likelihood ratio
expression of,

P (H1|D1 ∩D2) =

x1y1

x2y2

+ x1 + y1
x1y1

x2y2

+ x1 + y1 +
x2y2

x1y1

+ x2 + y2
.

(60)
Given that the population sizes of H1 and H2 are the
same, no weighting of the elements needs to take place.
Hence, the value of P (H1|D1 ∩ D2) for (4) may now be
calculated to be

P (H1|D1 ∩D2) ≈ 0.5896 . (61)

V. DISCUSSION

One of the greatest obstacles in developing any
statistical approach is demonstrating correctness. This
formula is no different in that respect. If correctness
could be demonstrated then, a priori, there would be
an appropriate existing method which would negate
the need for a new one. All that may be hoped for in
any approach is that it generates appropriate answers
when they are known, reasonable answers for all other
cases, and that these answers follow logically from the
underlying mathematics.

However, what is clear is that the limitations of the
naive Bayes’ classifier render any calculations derived
from it open to an unknown margin of error. Given the
importance of accurately deriving likelihood ratios this is
troubling. This is especially true when these calculations
are used to describe normative psychological theories
[7] from which inferences are drawn as to the failure of
human logic.

As a quantum mechanical methodology this result
is able to calculate accurate, iteration free, likelihood
ratios which fall beyond the scope of existing statistical
techniques, and offers a new theoretical approach within
cognitive psychology. Further, through the addition of a
Hamiltonian operator to introduce time-evolution, it can
offer likelihood ratios for future system states with ap-
propriate updating of the contingency table. In contrast,
Bayes’ theorem is unable to distinguish directly between
time-dependent and time-independent systems. This

may lead to situations where the process of contingency
table updating results in the same decisions being made
repeatedly with the appearance of an ever increasing
degree of certainty. Indeed, from (26), it would seem
that the naive Bayes’ classifier is only a special case of a
more complex quantum mechanical framework, and may
only be used where the exclusivity of data is guaranteed.

The introduction of a Hamiltonian operator, and a full
quantum dynamical formalism, is in progress, and should
have profound implications for cognitive psychology. In-
evitably, such a formalism will require a sensible contin-
uous classical limit. In other words, the final expressions
for the likelihood ratios should contain a parameter, in
some form of ~, which, when going to 0, reproduces a
classically known result. For example, the solutions to
(59) could be moderated as

c1(x1, y1, x2, y2) =

√
x1y1

2x2y2
(1− exp(−~)) ,

c2(x1, y1, x2, y2) =

√
x2y2

2x1y1
(1− exp(−~)) , (62)

so that in the limit of ~ → 0, the intersection parameters,
c1 and c2, vanish to return the formalism to the classical
situation of independent data.

VI. CONCLUSION

This article has demonstrated both theoretically, and
practically, that a quantum mechanical methodology
can overcome the axiomatic limitations of classical
statistics in respect to their application within cognitive
psychology. In doing so, it challenges the orthodoxy
of de Finetti’s epistemological approach to statistics
by demonstrating that it is possible to derive “real”
likelihood ratios from information systems without
recourse to arbitrary and subjective evaluations.

While further theoretical development work needs to
be undertaken, particularly with regards to the applica-
tion of these mathematics in other domains, it is hoped
that this article will help advance the debate over the na-
ture and meaning of statistics, particularly with respect
to cognitive psychology and decision-making theory.
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