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Abstract 

This paper presents the evaluation of the level of usability of an intelligent monitoring and control 

interface for energy efficient management of public buildings, called BuildVis, which forms part of a 

Building Energy Management System (BEMS.) The BEMS ‘intelligence’ is derived from an 

intelligent algorithm component which brings together ANN-GA rule generation, a fuzzy rule 

selection engine, and a semantic knowledge base. The knowledge base makes use of linked data and 

an integrated ontology to uplift heterogeneous data sources relevant to building energy consumption. 

The developed ontology is based upon the Industry Foundation Classes (IFC), which is a Building 

Informaiton Modelling (BIM) standard and consists of two different types of rule model to control 

and manage the buildings adaptively. The populated rules are a mix of an intelligent rule generation 

approach using Artificial Neural Network (ANN) and Genetic Algorithms (GA), and also data mining 

rules using Decision Tree techniques on historical data. The resulting rules are triggered by the 

intelligent controller, which processes available sensor measurements in the building. This generates 

‘suggestions’ which are presented to the Facility Manager (FM) on the BuildVis web-based interface. 

BuildVis uses HTML5 innovations to visualise a 3D interactive model of the building that is 

accessible over a wide range of desktop and mobile platforms. The suggestions are presented on a 

zone by zone basis, alerting them to potential energy saving actions. As the usability of the system is 

seen as a key determinate to success, the paper evaluates the level of usability for both a set of 
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technical users and also the FMs for five European buildings, providing analysis and lessons learned 

from the approach taken. 

Keywords: Ontology; BEMS; Genetic Algorithm; Artificial Neural Network; Fuzzy Logic; Information 

Visualisation; IFC. 

1. Introduction 

Taking into account the whole Building Lifecycle (BLC), which includes the life stages of a 

building from design, through construction, operation, and on to eventual demolition/recycling [1][2], 

buildings are responsible for about 50% of total energy consumption in the EU [3]. The EU has 

established the Energy Performance of Buildings Directive (EPBD) [4], which by 2019 requires 

public buildings to consume zero energy. New strategies to reduce energy consumption during the 

operational phase of the BLC are a necessary step to achieving this goal. Energy use during operation 

is strongly influenced by the operation and utilisation of the different spaces [5] and the behaviours of 

occupants [6]. A large number of variables introduced through these interactions makes the task of 

reducing energy consumption challenging. Tools which monitor and analyse the different factors that 

contribute towards building energy consumption, so that actions may be taken (or enable to be taken) 

to improve energy efficiency, while also maintaining or improving user comfort, are required. 

Within the commercial domain, tools already exist which provide methods for analysing energy 

consumption of devices and areas in a building [7] – [9]. These tools provide various platforms to 

visualise actuators status, historical data and device health status based on different time stamps and 

ranges. However, there are limitations to these traditional building energy management systems 

(BEMS). Firstly, there is a lack of flexible and user-friendly interfaces which provide integrated 

knowledge about the entire built environment in a manner which is accessible to the user, e.g. Facility 

Managers (FM). There is also a lack of intelligent control systems which go beyond the traditional 

approach of relying on the user’s expert knowledge of the building, to enact energy saving changes to 

building configuration. To overcome the above weaknesses, a holistic and intelligent solution for FMs 

is required. This should be capable of running autonomously and provide knowledge about the entire 

built environment in near real time for enhanced decision support.  

Within the research community, various systems and methodologies have been suggested to 

provide this kind of intelligent control to support energy management [10]. These systems bring 

together buildings sensory and actuation infrastructure, to measure and enact change in the 

environment, and the building control and automation systems [11]. For automated intelligent control, 

the sensitive nature of user comfort remains. This means, it is not always possible to adapt heating, 

cooling, and ventilation without consent from the responsible party (e.g. the FM), as the consequences 

of changing set points could be contrary to their responsibilities of providing adequate user comfort. 

The holistic knowledge-based intelligent system must, therefore, work with the FM, informing them 



about energy saving strategies, but also leaving them with final control over implementation of new 

configurations.   

This paper presents a holistic, flexible knowledge-based intelligent system, the evaluation of its 

level of usability and lessons learned from applying the approach taken. The proposed solution 

consists of a user-friendly web-interface (BuildVis) which interacts with the holistic intelligent 

decision support system, and enabling the FM to configure building environment optimisation.  As it 

is the FM who must use the proposed solution (framework), the level of usability of the interface is a 

key indicator of success. The proposed framework presents suggestions, through the interface, which 

are designed to be simple to understand and execute. The suggestions are generated through analysis 

of building data using data mining techniques and theoretical rule generation based upon energy 

simulations. This hybrid approach of real and simulated rule generation is required due to the varying 

number of sensors available and the need to keep costs down by not introducing extra sensor 

installations into the building.  

From this analysis, a rule base is developed which is triggered according to the changing values of 

the available building sensors and set points in near-real time. These are presented to the FM, who 

may then enact the changes. To support the integration of multiple data sources and improve 

interoperability, the solution makes use of building information modelling (BIM) principles and 

semantic web technologies in the form of a holistic knowledge base, into which the rules are 

integrated. The paper is structured as follows: the following section discusses relevant existing work. 

Next, the requirements and implementation of the tool are presented. Finally, the BEMS GUI 

interface is discussed before its evaluation and a discussion of the results are given. 

2. Background 

This section presents the background and related studies for the existing building energy 

management systems (BEMS) and their subsystems. It is divided into six parts; an overview for the 

BEMs, sensing and activation infrastructure in the built environment, simulation to supplement sensor 

data, data modelling and data management, data monitoring and control and finally social and 

behavioural considerations in energy efficient buildings. 

2.1. Building energy managements systems 

Building Energy Management System’ (BEMS) is a term used to encapsulate a number of 

systems developed to improve the energy efficiency of operational buildings. BEMS collect data 

about the current state of the building, analyses this data and then, either a/ provides analysis and 

feedback to an appropriate stakeholder, who must enact some change or reconfiguration of the 

building’s systems, or b/ an automated control system acts upon the available data to reconfigure the 

building automatically. Conceptually, a BEMS architecture can be categorised into different layers, 



for example; the sensor layer, computational layer, and application layer. Collectively, these monitor 

environment states, perform statistical and algorithmic analysis, and provide feedback and control 

mechanism to users [12].  

As an alternative architecture in the smart home domain, BEMS can be divided into four components; 

the sensor and actuation infrastructure, middleware, processing engine, and user interaction interface 

[10]. In this architecture, the sensor and actuation infrastructure handles all interaction between the 

digital infrastructure and the physical environment. The middleware integrates the infrastructure 

through a common interface. The processing engine conducts some ‘processing’ on the collected data 

to learn about the environment and building user activities so as to improve the buildings energy 

consumption. Data on the environment includes measurements relating to temperature, CO2, humidity 

etc. (see section 2.2). User activities include scheduled activities (office work, meeting, lunch, etc.) 

and interrupt activities (toilet break, drink, exercise) [49]. The user interaction interface then supports 

interaction with end users; sending them notifications to stimulate behaviour, gather feedback and 

commands from them. Other architectural configurations for buildings and smart homes can be found 

in [13], [14] which define the similarities and differences in the sensing, data management and 

reasoning and human interaction layers. These separations of concern form the basis of the framework 

defined in this paper. 

2.2. BEMS sensing and actuation infrastructures 

To monitor the built environment, BEMS require a sensing infrastructure to measure 

phenomena such as temperature, humidity, lux levels, CO2, and occupancy. This is achieved through 

the use of sensing technologies like PIR (passive infrared), thermostats, CO2, ultrasound, cameras, 

and/or tag based system, like RFID, Bluetooth and Ultra-Wide Band [15], [16]. Based on these 

measured data, BEMS can adapt device behaviour to reduce energy consumption whilst also 

maintaining comfort levels, for example, by adjusting HVAC to a desired temperature. A common 

issue for commercial BEMS is the limitation of the sensing infrastructure. For example, occupancy 

detection is central to many BEMS systems [6], [15], [17], but existing sensor installations like PIR 

can only detect movement, and so, calculating numbers of occupants is difficult [6]. Reasoning and 

sensor fusion can be used to make inferences about more complex behaviours, but, these systems are 

not commercially available yet [16].  

2.3. Energy simulation and surrogate models 

There is a general lack of sensing infrastructure in existing buildings. Further, the investment 

cost of a comprehensive sensing network is often prohibitive due to a long return on investment 

period. This leads to the role of simulation being pivotal in predicting building behaviour [18-19] for 

retrofit BEMS installations. Physical building simulation tools such as EnergyPlus [20] are able to 

supplement the directly sensed observations with comprehensive predicted knowledge about the 



building’s response to potential control scenarios. In order to mitigate the time per simulation, for use 

in optimization algorithms, surrogate models can be used [21]. This use of simulated data to train 

machine learning software, which can then approximate the simulation outcome within a narrower 

decision space, in far less time. However, integrating data within a BEMS from such software, 

simulation tools, physical sensors, and occupants, requires a comprehensive and robust approach to 

interoperability across these heterogeneous resources.   

2.4. Data management in BEMS and linked data 

BEMS data integration requires consideration of the underlying data models and their 

representation. Building Information Modelling (BIM) describes an integrated approach to structuring 

all information relevant to the BLC. Within the Architecture, Engineering and Construction (AEC) 

community the leading standard developed around the concept of BIM is Industry Foundation Classes 

(IFC). IFC is an open, freely available, non-proprietary data model which can be used to exchange 

and share BIM data for describing buildings regarding the semantics of constituent building elements. 

Modelling all this data remains a challenge, particularly for older buildings where the issue of 

fragmented and hard to access building data increases [22]. Linked Data (LD) refers to the 

recommended best practices for exposing, sharing, and connecting data on the Web [23]. LD builds, 

in particular, on the Resource Description Framework (RDF) as a data model for representing 

structured content. RDF is based essentially on triples of the form (subject, predicate, object), 

constituting a structured graph that can be queried over HTTP via the SPARQL query language. By 

integrating BIM into the wider web of data, building information can be queried alongside all other 

Linked Open Data (LOD) sources, e.g. data on materials and building systems, profiles of occupants, 

and information about weather patterns, etc. Together this information can make for more meaningful 

analysis of energy consumption and its relation to the localised costs of materials, systems, and 

personnel in existing and future buildings. 

2.5. Data monitoring and control tools  

The upmost layer of a BEMS system is the application layer which offers both presentations 

of data to the relevant stakeholders and building control capabilities. Several commercial energy 

monitoring tools exist for public and commercial buildings, which provide functionality to monitor 

the energy consumption of a building, for example, PlugWise [7] and MonaVisa [8]. They collect 

data, e.g. temperature, energy consumption, occupancy through sensors, calculate energy-related Key 

Performance Indicators (KPIs), and present the calculation results in different graphics, for instances, 

coloured charts, 2D floor image, etc. The drawback of these tools is that the FM has to be active in 

finding problems. The tools do not set out to help identify unwanted behaviour, like energy wastage, 

beyond simple thresholds that a variable should fall within. Methods which actively suggest 



configuration settings to improve energy efficiency can potentially support FMs in the difficult tasks 

of monitoring and managing the energy consumption of the building. 

2.6. Social and behavioural considerations in energy efficiency 

Approaches to the factors influencing user behaviour and consumer choice, especially in relation 

to the energy efficiency, savings, and comfort, can be categorized into four groups: a) Social factors 

that largely relate to the family ties, social status, and reference groups; b) Cultural factors that are 

influenced by subcultures, social class, socio-cultural environment, and contemporary trends; c) 

Personal factors that refer to the users’ gender, age, lifestyle, and purchasing power; and d) 

Psychological factors which can be related to the users’ perception with reference to selective 

attention, distortion and retention, levels of motivation and learning, as well as attitudes and beliefs. 

Based on these influencing factors, two functional links in behavioural theories and models can be 

identified [24]. First, the heuristic functions to elucidate behavioural factors and the interrelations 

between these factors. Second, the empirical functions to interpret relationships between these factors 

and the relevant interventions in order to help envisage the behaviour patterns.  

The contribution of ICT-based solutions to the energy efficiency, savings and behavioural change 

can, therefore, be looked at from the perspectives of ‘individual’, social or ‘interpersonal’, and 

‘community’ or network levels. Relational choice theory offers an economic logic based on costs and 

benefits of an individual action in relation to the available choices to maximise personal welfare and 

comfort. Power (2008) highlighted the correlation between the economic logic and CO2 emission 

which is stated in Stern Review that increased global awareness for reducing CO2 emissions [25]. 

Theory of Planned Behaviour in this respect emphasizes the perceived individual benefits, constraints 

and social pressures in relation to behavioural choices, with intention as a proximal predictor of 

behavioural change and attitude [26]. Social or interpersonal level gives considerations to social 

relations, environment, support, cultural constraints and the role of social mentoring [27]. The 

diffusion of innovations theory explains the manner of how new ideas, products or social practices 

spread among the members of society or from one society to another. Social innovation refers to the 

interconnected individual, social and community-based actions that emerge as a result of social needs 

of people, promote social relations among individuals and groups of peoples, and empower them [28]. 

Social acceptance approach in this respect provides tools for socio-political, community and 

market acceptance through social and behavioural interventions [29]. These may include a mix of 

measures to influence consumer behaviour in favour of sustainable energy consumption, using social 

networks, community leadership, encouraging positive emotional responses and regulations restricting 

consumer choice to the sustainable alternatives [30].  Longer term change occurs when a new 

behaviour is easy to perform, people have the right skills and resources, and that social circle is part of 

the drive [31].  This can come through the antecedent measures (information and advice on energy 



saving), consequence measures (feedbacks, rewards and incentives), and social influence techniques 

(eco-volunteering and goal setting) [32], such as rewards, incentives and social marketing efforts by 

the energy value-chain including producers, distributors, suppliers and the government by means of 

quantified indicators and targets [33]. 

3.   Requirements, Design, and Implementation  

The proposed BEMS solution is built upon requirements resulting from state of the art presented 

in the background section and analysis conducted over five pilot public buildings in Europe 

(Netherlands and Spain). The five buildings are: a home for the elderly called the Forum in Eersel, a 

technical institution for students called the Haagse Hogeschool in Hague (HHS), an office block 

called the Media-TIC in Barcelona and, the BlueNET and PICA buildings, both in Seville. These 

buildings have a range of different users, architectural layouts, seasonal energy demands, and building 

control/building automation systems (BCS/BAS). Site visits were conducted which included 

interviews with each building’s FM. This revealed information regarding how involved with energy 

management the FMs were. All FMs had a policy of checking and analysing meter readings on either 

a monthly, or bi-monthly basis. The Forum building FM had a much larger range of responsibility, 

having to monitor and manage energy consumption in 15 buildings, with the other FMs only 

monitoring one building. From a usability perspective, the time that these different types of users 

could be expected to invest in analysing a building, places different requirements on the developed 

solution.  

The range of tools currently available to the FMs also varied for control and monitoring. Priva 

[34] was popular in the Netherlands (2 buildings used it) and EUGENE [9] in Spain (2 Spanish 

buildings). Other tools being used were the Regin Climate control [35], Colt Caloris [36], PlugWise 

[7] and Monovisa [8]. Each of these tools had differing capabilities and user interfaces. The proposed 

solution should, therefore, support similar capabilities without drastically changing the types of 

interactions the FMs are skilled in. When developing new energy efficient strategies, all of these tools 

required the FM to analyse the available data presented by the tool. They did not provide any 

intelligent analysis to identify energy waste. This resulted in the FMs relying mostly on using 

schedules to control building set points, based on best practices. Another issue uncovered was the 

level of sensing infrastructure across the buildings. In the pilot buildings, several sensors have been 

installed, for example, CO2 sensors (e.g. in the HHS building) alerted the HVAC units that a room is 

occupied using a threshold for CO2 levels, but could not provide any accurate indication of numbers 

of persons in an area/zone. The available motion detectors for turning on and off lighting (HHS, 

Media-TIC and Forum buildings) also provide little information on actual occupancy. Other sensor 

installations included temperature, humidity, and energy metering, but in some cases these only 

covered small areas of the building, for example, the PlugWise [7] installation in the Forum only 



covered a couple of rooms. BlueNet, on the other hand, only measured energy consumption for each 

entire floor. The types of the sensed data, therefore, put limits on what can be achieved through data 

mining alone. To minimise the required investment in additional sensing infrastructure, a combination 

of data mining and theoretical rule generation based on the use of energy simulation was therefore 

explored. Bringing these different elements together requires integration of multiple heterogeneous 

data sources. 

From this analysis, the following high-level requirements for the BEMS solution and interface 

were identified. These were to ensure that it be: 

 R1: Usable by FMs to achieve energy savings in their building. 

 R2: Built upon an integrated knowledge-base, so that the data can be accessed, reasoned over 

and presented to the FM to support energy management.  

 R3: Scalable, so that it can be quickly deployed in new buildings with minimum costs 

associated (e.g. no new sensor installations).  

 R4: Flexible and extensible, so as to support the types of functions of existing energy 

monitoring tools, but also support additional novel functionality.  

Figure 1 gives on overview of the conceptual architecture of the BEMS solution. In the following 

sub-sections, each component is described briefly with reference to the numbers in the figure, before 

the user interface is discussed in detail. 

3.1. Knowledge base and service integration 

The knowledge base is the central integration component of the BEMS, integrating the 

heterogeneous data sources required and also providing the intelligence capabilities through reasoning 

over the rules and structures contained in the knowledge base. The Web Ontology Language (OWL) 

is used to represent the Semantic Model of the knowledge base to achieve a high degree of 

expressiveness. The ontology contains classes, relations among them, and definition of their 

properties, and is aligned to IFC to ensure interoperability beyond the solution. The alignment is done 

by defining explicit IFC-OWL mappings stored in the class annotations [37]. 

To apply the knowledge base to a specific building, the ontology is populated with instances 

corresponding to the objects in the building. It is considered essential for the energy management 

activities. Most current building layouts are drawn as two-dimensional sketches using CAD 

applications, such as AutoCAD, containing only geometrical primitives, such as lines, curves, points, 

etc. [38]. OntoCAD is an open source tool that extracts the semantic information of the sketch, 

populates an ontology with that information, and allows the user to validate the population [39]. The 

OWL model is then uploaded to a Fuseki RDF server [40]. Each building has its own instance of 

Fuseki. This data then becomes accessible to the other components using SPARQL queries. This 



interaction is numbered 1 in Figure 1, which indicates that BuildVis can both query and update the 

knowledge base, either as a result of some action by a user, e.g. to query for a new suggestion, or 

periodically (at a minimum 5-minutes interval to reflect the data collection capabilities of the 

intelligent controller), to ensure that the interface reflects the changing state of the knowledge base. 

The sensor and set points data are collected at a set time interval (minimum 5 minutes) to 

enable ‘near-real-time’ reasoning by the Intelligent Controller. The data is not stored in the Fuseki 

server, as RDF triples introduce performance overheads for large amounts of data. Instead, in the 

proposed implementation, it is stored in an SQL-database (interaction 8 in Figure 1), and referenced 

through the ID of the sensor which is found in the Semantic Model. Each sensor communicates with 

the Data Store via SQL updates. An application (e.g. the BuildVis interface) can then query the 

knowledge base to determine the ID of a sensor and other properties like its location. An application 

may then query the data store for the appropriate sensor values to enable monitoring (interaction 2 in 

Figure 1) or data mining (4 in Figure 1). In our implementation, this is done using SQL queries. SQL 

also provides some additional capabilities to run functions over data, such as returning the mean value 

over a set of data values for a particular time period. This supports BuildVis to display average 

measurements for a sensor in a particular zone, for a certain time period, configurable through the 

interface. The knowledge base also encompasses SWRL rules, generated automatically using data 

mining over the historical sensor data and simulated data. Each rule is equipped with a weight value 

in the range of 0 and 1 indicating the confidence of the rule. The Intelligent Controller may also 

reconfigure the sensors, BMS and actuators by adjusting setting in the data store, and through the use 

of listeners, which query the data store for these changes. This supports fileting of sensor data, 

adjusting the interval of sensor measurements, or adjusting set points.  

 



Figure 1. BEMS architecture highlighting the interactions between the different modules (numbers are 

references in text). 

These rules are uploaded to the knowledge-base (via SPARQL updates) (Figure 1, interaction 

5 and 6). The rules are then queried by the fuzzy reasoner together with the currently monitored state 

of the building to generate suggestions for the FM (interaction 3 and 4). The rules are activated 

depending on a request of the FM through BuildVis, e.g. provide me with suggestions for a particular 

zone based on a set of criteria, such as type of saving (energy, comfort improvement) and percentage 

of saving (10, 15, etc.). This is sent to the fuzzy reasoner, which selects the most appropriate and 

highest weighted rule (interaction 9). The weighting algorithm is necessary to filter a large number of 

rules generated by the data mining and theoretical rule generation engines. The selected rules are then 

visualised as a suggestion in BuildVis for the FM (interaction 9). Finally, the FM can then configure 

the buildings devices and systems based on the suggestion (interaction 10). 

3.2. Data mining to generate rules from historical sensor data to support 

intelligent control   

The rule generation process is highly complex and relies on either expert knowledge or using 

automated approaches to extract knowledge from datasets. Recent developments in the area of data 

mining provided promising opportunities to generate rules from datasets [41], [42]. Hence, in this 

study, data mining techniques have been used to extract rules from available historical data for the 

sensor based devices to determine correlations among them. The rules are then transformed into 

SWRL to integrate with the populated building specific ontology which in turn are then presented to 

the FM in an appealing manner. The extracted rules and equations set out to enable the following 

features to support energy management: (i) to predict the energy consumption of certain user 

activities, building zones (areas of the building defined in OntoCAD of particular relevance to energy 

efficiency), and appliances; (ii) to detect the energy consumption anomalies of user activities, zones, 

appliances, etc.; (iii) to detect user activities in building or zones based on gathered sensor data; (iv) to 

detect whether appliances still work properly by considering their energy consumption; (v) to identify 

building element states or configurations that meet certain comfort levels. 

The necessary dataset to achieve the objectives is selected and stored in the data store. The 

dataset is an aggregation of sensor metering data, for instance, power consumption of building zones, 

inside and outside temperatures, light intensity, humidity, occupancy, and occupants’ activities data. 

Those data were collected in five-minutes time interval for one year including all four seasons. Next, 

pre-processing steps are performed, such as cleaning, transformation, and discretisation. Only energy 

consumption data is discretised, in order to support classification and a rule generation which puts the 

energy consumption as the class attribute. Two data mining algorithms are implemented. The first 

generates linear functions for the energy consumption prediction using linear regression. These linear 

functions are then used to detect the energy consumption anomalies by considering the values from 



sensor measurements. The algorithm only takes into account the numerical sensor values measured in 

a certain zone, i.e. temperature (x1), humidity (x2), and light intensity (x3) as independent variables, 

and power consumption (y) as dependent variable, as shown in equation 1.  𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽2𝑥2 + 𝜀        (1) 

   The second algorithm generates rules to predict energy consumption of appliances, zones, 

or buildings using a decision tree based classification algorithm by considering both numeric and 

nominal values, e.g. behaviour. The algorithm is based on M5 model tree developed by Quinland 

[43]. Equation 2 presents an example set of rules generated by the M5 model tree algorithm to predict 

the power consumption y, by splitting the tree node behaviour b. 

𝑦 = {𝛽1𝑥1 + 𝛽2𝑥2 + 𝜀1  𝑖𝑓 𝑏 =′ 𝑜𝑓𝑓𝑖𝑐𝑒 𝑤𝑜𝑟𝑘′𝛽1𝑥1 + 𝛽3𝑥3 + 𝜀2 𝑖𝑓 𝑏 = ′𝑚𝑒𝑒𝑡𝑖𝑛𝑔′𝛽3𝑥3 + 𝛽3𝑥3 + 𝜀3 𝑖𝑓 𝑏 = ′𝑙𝑢𝑛𝑐ℎ′       (2) 

  In addition to the rules generated by this process, a second rule generation approach is also 

employed to generate simulation based rules which will be presented in the following section. 

3.3. Simulation-Based Theoretical Rule Generation   

The simulation based rule generation is used primarily to supplement the data mining rules, 

due to the likely occurrence of poor historical data availability in existing buildings. The proposed 

approach uses pre-processing to produce usable simulation data and to identify sensitive variables, 

which are followed by generating the optimized theoretical rules from an Artificial Neural Network 

(ANN) - Genetic Algorithm (GA) based solution. The proposed process is illustrated in Figure 2. The 

pre-processing module shown has three sub-stages of holistic scenario definition, thermal simulation 

model development, and sensitivity analysis stages. The scenario defines the objectives of the 

optimisation and the available control variables, their ranges, actors, and sensors. Sensitivity analysis 

and variable mapping determines the most sensitive variables, and maps them with the building’s 

artefacts, as expressed in the semantic model. Next, ANN based learning is employed to generate the 

link between inputs (actuators, sensors and actors’ info) and outputs (objectives defined in scenario 

definitions) which mimics the human brain’s learning process regarding highly nonlinear systems, [3, 

44]. After ensuring the correct ANN topology, this well-trained ANN is utilised as a cost function in 

the GA-based optimisation process to generate the optimised theoretical rules. GA is one of the most 

popular stochastic optimisation algorithms to find a near global optimum solution for the complex 

nonlinear problem [3], [45], [46]. The proposed approach uses set points defined in the scenario 

definition stage and utilises the genetic operators; mutation and crossover, to determine the optimised 

objectives as a single objective problem. The fitness evaluation is based on the minimum distance 

between the initial objective value and the desired optimum value which has been set to 0.001 for 



each objective. If this condition is not satisfied in the fixed set number of iteration (1000000 

iterations), then the rule will not be generated for the selected particular conditions.   

Once a rule is generated, the distance information will be utilised as a consistency 

value/weight value by normalising them in the range of 0 and 1. The primary stopping condition of 

the optimisation is the target improvement decided by the FM based on the desired reduction levels 

(negotiated reduction level). The generated rules are presented to the FM through the Actuation 

Interface of BuildVis and negotiate an acceptable set of actuations. Then, by observing the actuations 

required, FM can either accept these (and enact the changes) or adjust the target, shown in Figure 1; 

numbered as 9th operation. The final stage of the theoretical rule generation process is the rule 

evaluation stage, which evaluates the rule consistency and similarity among the generated rules with a 

certain level (10, 20 or 3 percent). The idea is to eliminate the overlapped and duplicated rules for 

similar conditions. If more than one rule exists for similar conditions, then the highest weighted rule 

will be kept, the others will be eliminated. 

 

Figure 2. The proposed theoretical rule generation module. 

3.4. Fuzzy Reasoner 

The fuzzy reasoner module is one of the key modules in the architecture and it is the main 

interaction component between the knowledge base and the BuildVis interface. It selects the desired 

rules which are then displayed to the FM based on their configuration choices. Fuzzy logic is one of 

the most popular intelligent system techniques for dealing with the complex and uncertain problems 

using fuzzy sets theory, which mimics the reasoning process in the human brain [47], [48] and can 

work with incomplete data to find an appropriate solution in the proposed solution space.  The fuzzy 

reasoner proposed consists of the following sub-modules: fuzzification module, rule engine, 

defuzzification module and rule selection module. The built environment consists of several uncertain 

variables which are mostly represented with the linguistic variables such as good thermal comfort 



levels (in the range of -1 and 1), the temperature set point and humidity values (as low, normal or 

high). Further, there is no a straightforward way to demonstrate the relationship between the energy 

reduction level and the required set of rules at the BMS level due to the uncertain and complex 

relationship among the energy usage and the control variables.  Further, usage of the linguistic 

variables between input and output variables provides a better understanding in the domain and 

generate a better reasoning among the variables. In the proposed fuzzy reasoning process, the 

optimised solution consists of thousands of rules for each energy reduction levels. It is not a straight 

forward process to choose rules for a certain level. A certain reduction level can be defined by the FM 

or the BuildVis user, however, the selection of an appropriate rule is an uncertain problem. Therefore, 

a fuzzy rule reasoning process is proposed to select the most convenient rule based on its weight. The 

weight isdefined during the rule generation process as the accuracy of the optimisation process for the 

associated reduction level. Once a rule is selected by the fuzzy reasoner, it sends this selected rule as a 

recommendation to FM via BuildVis interface. The fuzzy reasoner is activated by the FM’s request 

through BuildVis. When the FM’s request is received, the fuzzy reasoner reads the last reading of 

sensors from the database. This input is then evaluated by fuzzification sub-module using the 

membership functions for each input to convert to fuzzy values. Each sensor input has three triangle 

membership functions to generate these fuzzy inputs according to the conversion given in equation 3, 

where   𝜇𝑉𝑘 is the membership value of the output variable and   is the membership value of the m.th 

input for the j.th membership function.      𝜇𝑉𝑘 = min(max (𝜇𝐴11 … 𝜇𝐴𝑚1) , … , max (𝜇𝐴12 … 𝜇𝐴𝑚2))                         (3) 

The next step is to use the fuzzy rule base to determine the rules to fire for the selected 

condition. These are selected according to the membership value for the fuzzified sensory information 

among the rules generated from ANN-GA based rule generation process, which is about 3000 rules. 

This rule-base consists of SWRL rules from the knowledge base; the antecedent part of these rules is 

the sensory information and the consequent part is the actuator set points. The last part of the fuzzy 

inference engine is the defuzzification process to determine the fittest control variable for the fired 

rules based on the weight of selected rules and equation 4. 

𝑉𝑐𝑟𝑖𝑠𝑝 =  ∑ 𝑤𝑖𝜇𝑉(𝑌)𝑌∑ 𝑤𝑖𝜇𝑉(𝑌)                                                                                                          (4) 

In equation 2, wi is the weight of i.th fired rule, 𝑤𝑖𝜇𝑉(𝑌) the membership value of the output 

Y. 



3.5. BuildVis intelligent monitoring and control interface 

BuildVis connects the ICT layers and FM interaction and therefore the interface must be user-

friendly. Features that were identified early on during the development cycle of the tool were that it 

should provide: 

a. Visually and cognitively a means to identify and select different zones in the building, 

b. Energy usage feedback of zones, 

c. Suggestions to the FM on how to improve the efficiency of energy use of the zone. 

For identifying and selecting zones, the visualisation of the building geometry is required. Due to 

the availability of only 2D models for the majority of the five buildings, the solution would need to 

work within this constraint. The OntoCAD tool is then used to model zones by their perimeters, a 

unique ID and also a name (e.g. a room name, to support identification by the FM). To support 

monitoring of data, each sensor is described. The sensor description includes details about the position 

of the sensor, what zone it is in and a unique ID. All generated sensor data includes a property for 

identifying the sensor it originates from. Combined with the date and time it is generated, sensor 

measurements can be accessed for a given sensor in a given zone. It should be noted that a number of 

discoveries during the formative and summative evaluations of another related tool [49] were 

incorporated into the BuildVis design. For example, many details stored in the ontology are hidden 

from the user to reduce the cognitive load and allow them to focus on their specific task at hand, e.g. 

monitoring and reducing energy consumption in the building.  

So, in the case of a zone only its symbolic name (i.e. the room number) is provided in the 

interface and details like its geometric properties and other relations are hidden. Sensors are also 

displayed by type rather than ID, so that where a zone contains many of the same types of sensor, this 

data is hidden and only information related to the entire zone is displayed. This was as a result of the 

decision to divide the building into zones which may contain many similar types of sensors. So, a 

zone which contains many energy metering devices will still only give information about the entire 

zone’s energy consumption and not provide data on each sensor so as to reduce the amount of 

information being displayed. The suggestions that are generated are also given a property which 

relates it to a particular zone. 

Given this information, it is possible to query a suggestion by selecting a zone through the 

appropriate relation. The suggestions interface was kept simple in terms of the amount of 

configuration the FM is required to conduct, using slide bars for selecting percentages of energy 

savings, a calendar entry system for selecting dates for historical monitoring and also a large chart 

area to display historical metered data. A traffic light system was also integrated to provide quick 

feedback about the current energy consumption of the zone against the mean energy consumption. 

Finally, the WebGL building visualisation was given large control buttons to navigate the 3D 



representation of the building, features also designed to make the interface accessible to mobile 

applications with touch screens. In the next section, it will be described in more detail the 

implementation of the BuildVis Interface.   

4. BEMS BuildVis GUI Implementation  

This section describes the implementation and main features of the front end graphical interface, 

shown in Fig 3. The BEMS BuildVis interface is implemented using a combination of HTML5, CSS, 

JavaScript and JQuery. The page layout is controlled by an open source front-end framework called 

Bootstrap [50]. The interface contains three main windows which can be displayed as required using 

the bootstrap ‘accordion’ feature. Figure 3, shows the the WebGL Building Visualisation Interface, 

and Figure 4 and 5 visualise the sensor monitoring and actuation suggestions interfaces, respectively.  

 

Figure 3. Overview of BEMS BuildVis interface. 



 

Figure 4.  Sensor monitoring interface. 

 

Figure 5. Actuation suggestions interface. 

This feature allows the FM to open and close relevant panels, reducing clutter on the screen 

and allowing the FM to focus on the particular task in hand. For example, navigating the building 

floor plan or monitoring the energy consumption of a zone. This approach also has the advantage of 



being suitable for mobile applications where the screen space is at a premium.  The interface also has 

a menu ‘Choose Building’, so that the FM can select different buildings, if they are responsible for 

more than one.   

4.1. Communication between BuildVis and knowledge base 

 

The knowledge base stores all the data about the building and its systems relevant to the 

BEMS. To enable visualisation of the building floor plan, an existing 2D DWG file is parsed and 

converted directly into RDF and stored on the Fuseki server [51]. The OntoCAD tool is used to 

identify zones in the building and add additional data regarding, for example, sensors. The BuildVis 

interface queries the ontology using a combination of AJAX (Asynchronous JavaScript + XML) and 

SPARQL (Protocol and RDF Query Language) [52]. 

On opening BuildVis in a browser, several SPARQL queries are made to the Fuseki server, 

one of which returns JSON objects which are then used to store a 2D array of JavaScript zone objects, 

which describe each zone in the building. The simplified query in Figure 4 is enough to display the 

zones graphically. The “hasPerimeter” property defines the position of each corner of a zone. In this 

case, four corners. As this is a string, it must be parsed client-side to extract points. These are used to 

display the zone graphically and also for point and click selection. The property “hasName” is used to 

tag the zone with a name the FM will recognize, to easily find it in the WebGL view. The zone also 

has other properties, such as “hasSensors”, which is required by the Monitoring Interface, described 

next. 

4.2. Monitoring interface   

In Figure 6, the Sensor Monitoring Interface is illustrated. It has the following features: On 

opening BuildVis in the browser, the ‘Available Sensors’ window displays all the available types of 

sensor in the building giving an overview of the different types available. No other information is 

displayed until a zone is selected, at which point only the sensor devices in that zone are displayed. 

On the top left of Figure 6, ‘Zone Info’ is displayed, and on the right, the sensor types related to this 

zone, i.e. ‘Energy’, ‘CO2’, ‘Luminance’ and ‘Temperature’, are displayed. The FM has the capability 

of selecting one or more of these by ticking the box to view its historical readings. These are 

displayed in the Chart at the bottom, and the time period is selected by the ‘Time and Date Select’ box 

on the bottom right to enable filtering. Here the energy data for the selected zone is presented. 

Likewise, Temperature and CO2 can be viewed either independently, or together if the FM wishes to 

compare the relationship between their values. The historical sensor data stored in the SQL database 

is queried using a combination of AJAX and PHP server-side scripting language. The PHP handles 

the query to the SQL database.  



 

Figure 6. An example of a SPARQL query. 

The ID of the JavaScript sensor object corresponds to a column heading in the SQL database 

for that sensor, along with other properties like date and time to enable queries. SQL was chosen for 

managing sensor data due to the speed at which it can handle queries for large amounts of historical 

data and as triples requires more storage capacity. It should be noted that where more than one sensor 

of a particular type exists for a zone, some post-processing is currently done and the arithmetic mean 

value is given for all the sensors of the same type (e.g. only an average temperature of a zone). This is 

to reduce the complexity of what is presented to the FM. On the top left under ‘Zone Info’ the current 

energy consumption of the zone is displayed. Together with the historical energy consumption of the 

zone, the traffic light on the left centre gives an indication if its energy consumption as higher, lower 

or the same as its mean energy consumption, highlighting, in a simple way, potential unwanted energy 

consumption. In Figure 4, the current energy consumption of 0.0029kWh is lower than the average of 

0.0749kWh, and so, the traffic light displays red. SQL also supports the selection of all values greater 

than zero, and also returns the arithmetic mean value. This query is used to compare then with the 

current energy consumption to derive this comparison. 

4.3. Action suggestion interface    

The actuation suggestion interface brings together all the elements of the BEMS solution 

described in the previous sections to provide periodic suggestions regarding how the energy efficiency 

of the building may be improved. The suggestions are derived from the data mining and simulation 

rule generation. The generated suggestions can be filtered dependent on certain criteria. The FM 

configures these criteria using drop down menus and slider bars (Figure 5), generated by jQuery 

selectors. Once they have selected a zone, chosen the rule type (e.g. reduce electricity consumption) 

and moved the slider to the required energy saving (e.g. 20%), they press the ‘Query Suggestions’ 

button. This returns a suggestion which recommends a number of actuations, for example, adjusting 

the blinds, turning lights on and off, etc. This is achieved using AJAX and SPARQL queries to the 

knowledge-base. The suggestions can then be acted upon by the FM, or ignored. If the FM chooses to 

make the changes recommended, he/she must also log those changes through a simple logging 

interface. The FM simply types the suggestion ID into the ‘Log Data Entry Window’ and/or 

additional notes inclusion. This data can then be used to analyse the consequences of the actions 

taken. In the next section, the evaluation of the level of usability of the BuildVis solution is presented. 



5. Evaluation of the Level of Usability of BEMS BuildVis   

This section presents the usability evaluation of the BuildVis Interface of the BEMS solution. The 

methodology for the evaluation is based on the state of the art methods for assessing usability and has 

been applied in two previous usability assessments [49], [53]. This consists of both formative and 

summative evaluations. Formative evaluations are conducted during the development of a product; 

they are done to mould or improve the product. Outputs of formative evaluations may include 

participant comments (attitude’s, sources of confusion, and reasons for actions) and other usability 

problems and suggested fixes determined through observation. In contrast, summative evaluations are 

carried out at the end of the development stage. 

They set out to measure or validate the usability of the product. They look at comparing 

usable metrics and generating data to support claims about usability. Outputs of summative 

evaluations may include statistical measures of usability, for example success rate, the average time to 

complete tasks, the number of errors and/or number assists. The evaluations are structured upon 

Common Industry Format (CIF). A CIF usability report must include; a description of the 

product/model, the goals of the test, the test participants, their background and the tasks they are to 

perform, the method by which the test was conducted, the experimental design of the test, the 

usability measures and the numeric results and analysis [54].  

The metrics of the evaluation are taken from Sauro and Kindlund [55], who have created a 

quantitative model of usability based on the ISO 9241 standard, resulting in four metrics [55]. These 

are time to complete tasks, a number of errors, whether a task is completed and the average 

satisfaction of users. User satisfaction is measured by using the System Usability Scale (SUS). SUS is 

a simple ten-item scale giving a global view of subjective assessment of usability. The statements in 

SUS are chosen to identify extreme expressions or attitudes. SUS also provides a point structure to 

assign to the answers of a particular test which rates overall satisfaction between 0 and 100. Bangor et 

al. [56] suggest that a score in the seventies should be deemed acceptable, and those below still have 

usability issues of concern. With respect to the number of participants required to find all potential 

problems, this may vary according to the users, the tasks, and the system under test. At least a range 

between five and fifteen is required to evaluate sensitive parameters as depicted in [57], [58]. 

The summative evaluation of the BuildVis tool is divided into two parts. The first part 

evaluated users with backgrounds in computer science, engineering, and related fields. This was 

purely to assess the usability of the tool for technically proficient users and to identify errors to 

determine if it was ready for use by the FMs. The second part looked at each of the FMs for the five 

buildings to assess usability for the targeted users of the tool. 



5.1. BuildVis evaluation based on the background knowledge 

5.1.1.  Goal, participants, and backgrounds 

The goal of this experiment is to assess the level of usability of the BuildVis tool for users 

with technical backgrounds when conducting typical tasks related to the BEMS. Nine participants 

took part in this experiment, all members of the Knowledge and Data Engineering group in Trinity 

College Dublin. The pre-questionnaire asked them to name their role within the group. This broke 

down as follows: six computer scientists (three of which also classed themselves as researchers, and 

one of those three also as an engineer), one educational technologist and two researchers (specific 

field not specified). The interface had already undergone iterative testing in previous experiments 

related to a specific feature of the tool (the activity modeller [49]) in which 45 participants took part 

over three evaluations (two formative and one summative). Therefore, the number was considered a 

sufficient number for initial testing of usability of the tools features, which were already considered 

robust at this stage. None of them had used any energy management software in the past. They were 

also asked about how comfortable they felt using their web browser with two agreeing and seven 

strongly agreeing. 8 of the participants used chrome with the remaining one using Firefox. They all 

used windows, with three using Windows 7, five using 8 and one not specifying the version. 

5.1.2. Experimental description, tasks description, and technologies 

The experiment set out to determine the level of usability of the BuildVis tool when used by 

technical users in order to identify usability issues related to the interface design. The evaluation was 

achieved by presenting the participants with four tasks (below) which relate to typical uses of the 

BuildVis interface:  

1. Navigating the 3D building floor plan.  

2. Selecting a zone in the building and monitoring sensors related to energy consumption 

metering.  

3. Enacting suggestions from the real-time controller. 

4. Logging information regarding changes made to the building configuration related to 

those suggestions. 

The technologies employed are presented in the previous implementation section. 

5.1.3. Findings 

The average time to complete the tasks was 20.6 minutes with a standard deviation of 7.8 

minutes (Figure 7). The SUS scored 73.9. Figure 8 gives a breakdown of the SUS questionnaire. The 

participants were also asked ‘Would you like to see additional features (give the features)?’ and to 

provide any ‘Further comments’. The following three suggestions for additional features were given: 

‘Moving the 3D map back to the original position in one click.’, ‘3D Map views easy to navigate but I 



would have preferred having both the map and the energy monitoring information in view at the same 

time (e.g. side by side).’, ‘In the 3D map, all zones were coloured in green (dark green for all and light 

green for the selected one). My interpretation of the green colour would be that all zones were ok and 

below average in energy consumption. It would be good to show ones that were above average in 

yellow/orange/red colour on the 3D map’. There were no significant errors during the course of the 

evaluation. 

 

Figure 7. Time to complete tasks with error bars, average response to SUS questions. 

5.1.4. Interpretation of Findings 

The target participants were all in fields related to IT and so the majority felt confident using 

their web browser. None of the participants had experience with building or building energy 

management software. Therefore, their ability to judge the usefulness of the tool with respect to 

energy management was assessed based on the participant task completion time. According to the 

observation, all the participants completed the tasks in times ranging from 10 to 31 minutes, with the 

average time of 20.6 minutes and a standard deviation of 7.8 minutes. This time also included the 

answering of the post questionnaires, which we roughly estimate would take between 3 and 8 minutes. 

Nonetheless, it places the average time below twenty-five minutes. It was anticipated that this was an 

acceptable amount of time to expect an FM to use a BEMS tool for the first time, when examining 

energy consumption for a zone, and assuming that with time, their proficiency would improve, and 

they would require less time to complete these types of tasks.  

The SUS score of 73.9 is positive for a first evaluation; giving it a ‘C’ grade. This may reflect 

the nature of the participants, who due to their backgrounds would be familiar with these types of 

interfaces. The majority of the SUS responses were indicative of positive experiences (with respect to 

the usability), with many being on the far ranges of responses e.g. four strongly agreed that they ‘felt 

very confident using the system’ and another two strongly agreed they ‘thought the system was easy 

to use’ (Figure 8). In the latter case, it should be noted that even though all responses were positive, 

the difference between even the positive responses (5 agreeing and two strongly agreeing) suggest a 

noteworthy difference in opinion and as such improvements can be made. Due to the complexity of 

the problem, though, it may always be the case that there will be some tasks which are less than easy. 



This fact, perhaps, is reflected in the one disagreement and one neutral with that statement. The same 

distribution of responses can also be found in the statement ‘I would like to use this system 

frequently’ which is a key requirement of the energy management software, and so again, 

improvements are required. It should also be noted, though, that the neutral and disagreement with the 

statement ‘I thought the system was easy to use’ both spent only 10 minutes completing the tasks and 

post questionnaire, and so, we believe this may have influenced their perception of its ease of use. 

The application specific questions revealed that while the navigation of the map was not 

challenging (3 strongly agreed and five agreed), the number of neutral responses which found that 

‘selecting a zone was easy to do’ (6) is of concern and future implementation need to improve this 

score. The participants felt strongly that the use of the historical data for energy management was a 

useful feature (5 agreeing, three strongly) but due to their backgrounds, they may not be truly able to 

assess this functionality. 3 of the participants were neutral with the statement ‘The suggestion to 

improve the energy consumption of the zone was easy to understand’ and six agreed. 2 participants 

disagreed (1 neutral) that they would use the suggestion interface frequently. These findings are also 

of concern considering the importance of this feature. Specific feedback was also very helpful. The 

comment regarding the colouring of zones on the map is something to consider definitely for future 

implementations, as the green colour of the zone may give the false impression that the zone is 

functioning correctly. Also, the addition of more visualisations may aid analysis, and this is something 

we are already considering. A reset button for the 3D map is also a useful feature and will be added in 

future implementations. The usability of the BuildVis FM interface was considered a success. There 

were no serious issues which caused significant errors. The time to complete the tasks and the SUS 

score of ‘C’ grade is acceptable for the tools first evaluation. It was therefore decided that the tool 

could be deployed to the Facility Managers for each of the five buildings.   

 

Figure8. Evaluation 1 SUS and specific tool responses as percentages. 



5.2. BuildVis evaluation based on the target user    

5.2.1. Goal, Participants, and Backgrounds 

The goal of this experiment was the same as previous; the difference being that the 

participants were the five FMs for each respective building. It was essential to use only these five, as 

they each required knowledge about the building floor plans, the different areas, devices and their 

behaviours etc.  

5.2.2. Findings 

The average time to complete the task was 13 minutes with a standard deviation of 4.24 

minutes. There was one significant error for participant 144 who had difficulty accessing the URL for 

the BuildVis tool which was made available after the completion of the pre-questionnaire. This also 

meant that we could not get an accurate time for completion of the tasks. The SUS score was 59.5. 

Figure 9 gives an overview of the responses. The participants were also asked the same follow-up 

question as the previous evaluation. The only following suggestion for additional features was given: 

‘As an additional feature, it is useful to display system information (data) continuously in the time in 

order to see the evolvement of the taken decisions during the time (or by indicating a starting point). 

Another useful feature is to show system alerts when an inefficient strategy (or anomaly) is appearing 

in a certain zone. 

 

 

Figure9. Evaluation 2 SUS and specific tool responses as percentages. 

5.2.3. Interpretation of Findings 

The tasks themselves were completed by all FM’s and no significant errors were reported in 

using the BuildVis Tool. The tasks were completed (taking into account the post questionnaire) in an 

average of 13 minutes, with a standard deviation of 4.24 minutes. This time is well within twenty-

minutes time taken in the previous example, and this is a promising result, taking into consideration 

the constraints on time the FM’s have to devote to energy management. The SUS score of 59.5 is 



below an acceptable range, according to the scale by Bangor et al. [56]. This means that the tool still 

requires development to be considered usable for FMs. This being said, for a first live evaluation, 

there are many positives to be taken from the responses given to the SUS and specific tool features 

questionnaires. For example, the majority of answers to the question ‘I imagine that most people 

would learn to use this system very quickly’ (3 agree, 1 strongly agree) indicates that the FMs felt the 

tool was something over time they would be able to use. The majority also felt that the functions were 

well integrated (3 agreeing) and disagreed with the statement ‘I thought there was too much 

inconsistency in this system’ (4 disagreeing). 

The majority also disagreed on whether one would ‘need the support of a technical person (2 

disagree, 1 strongly disagreed). On other important questions though, for example ‘I thought the 

system was easy to use’ had too many in the neutral (3 neutral, 2 agreed). Also, with the statement ‘I 

needed to learn a lot of things before get going with this system’ (2 agree, 2 disagree, 1 neutral) and ‘I 

felt confident using this system’ (3 neutral, 1 disagree, 1 strongly agree) shows that the FMs may still 

feel that there are aspects of the system that they still do not fully understand.  

6. Discussion and Conclusion 

This paper presented a Building Energy Management Solution (BEMS) for addressing the issue 

of providing intelligent control suggestions to facility managers who must enact energy saving 

strategies in buildings whilst keeping the cost of installation of new equipment (e.g. sensors) down. 

The solution makes use of Building Information Modelling and Semantic Web technologies to 

integrate buildings, sensors and actuation infrastructure, and intelligent software components. These 

components encompass Artificial Neural Network (ANN) and Genetic Algorithms (GA) combined 

with simulation models, rules generated using Decision Tree techniques over historical data and an 

intelligent controller. The intelligent controller generates ‘suggestions’, based on the sensor 

measurements in the building. The suggestions are presented to the facility managers through a 3D 

interactive web interface called ‘BuildVis’. The BEMS solution does not require any additional 

installation of sensor deployments in a building and the use of a hybrid approach to rule generation 

eases its integration into a wide set of potential buildings. The data mining algorithms do require that 

access is made to the different sensor data and set points in the building. Overall, the solution is 

referred to as ‘intelligent’ as a reference to its artificial intelligence characteristics, wherein the 

software components demonstrate a human-like agency, within the bounded BEMS problem space, 

which are the ANN-GA rule generation, the fuzzy rule engine, and the semantic knowledge base, 

which each mimic aspects of human cognition, and the GUI then leverages towards business value. 

Here, the most crucial issues are related to the different protocols for building control systems.  

The use of Semantic Web technology and machine learning technique allows a simple replication 

of this work in any projects utilising BEMS to help facility managers or building owners to monitor 



and control the energy consumption in their buildings. The knowledge base contains a level 

abstraction model describing the BEMS that is independent of technologies or application model 

developed by the BEMS vendors. Therefore, it is not necessary to change the model to apply this 

work to other buildings that have different BEMS technologies. The machine learning algorithms 

generate suggestions based on the building condition learned from the historical data. Therefore, if 

this work is implemented on another building, the generated suggestions will always correspond to the 

context of the building. However, some efforts are still required to uplift data into the knowledge 

base, for example, to use OntoCAD and to input the user activities. 

Ongoing research is, therefore, now required towards the iterative improvement of the system. As 

Web of data and Internet of Things technologies are making the integration of wider sets of data with 

the intelligent solutions a reality, new opportunities arise to generate new insights into energy efficient 

building behaviour. With these new open technologies, come new challenges, related to related to; 

standardisation, data interdependency, data access and security [1]. These issues must be explored 

over a range of building types. 

Finally, the evaluation has demonstrated that while technical users had no difficulty using the 

tool, there are still issues related to the usability of the tool for its target users, FMs. Although the 

number of FM participants for the final evaluation was small (5), their background means that their 

results are of particular relevance to the system and are indicative of the types of challenges facing 

developers of BEMS. The SUS score of 59.5 demonstrates that BuildVis requires improvement. The 

main issues are related to the difficulty for FMs interacting with the tool.  

A number of good suggestions have been made on how to improve this interaction, and these will 

be implemented and tested in future versions. For example, colouring zones according to their energy 

consumption levels in relation to their mean values to quickly alert them when energy wastage is 

occurring across the building. Also, the use of pop-up alerts to notify the FM when a new energy 

saving suggestion is made. This type of feature could also be integrated into a mobile application, 

such as a tablet or smartphone so that they can be alerted in the field. The user may then use this 

mobile app to analyse the suggestion and make adjustments and re-configuration as needed. Other 

features which are of interest for exploration are the use of a wizard or a walkthrough video to help 

and inform the FM with tasks. Also of importance is to begin the localisation effort, so that multiple 

languages are supported by the tool. 

In conclusion, the lack of significant errors when interacting with BuildVis, shows that the 

developed BEMS is now robust. This combined with the low average time to complete tasks, can be 

taken as positive results from the usability evaluations and indicative that such a solution has the 

potential to provide FMs with much-needed support for identifying energy wastage scenarios. The 

experiences in developing this solution and evaluating its usability also provide much-needed insights 



into the issues for those wishing to develop similar solutions and the challenge of engaging its target 

users. 
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