
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/10 6 2 9 0/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

N o mikos,  Mich ail, Kashir, Junaid  a n d  Lai, F r a ncis  Antony 2 0 1 7.  The  role  a n d

m e c h a nis m  of a c tion  of s p e r m  PLC-ze t a  in m a m m alian  fe r tilis a tion.  Bioch e mic al

Jour n al 4 7 4  (21) , p p .  3 6 5 9-3 6 7 3.  1 0 .10 4 2/BCJ2016 0 5 2 1  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.10 4 2/BCJ2016 0 5 2 1  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



The role and mechanism of action of sperm PLC-zeta in mammalian 

fertilisation 

 

Michail NOMIKOS*
1
, Junaid KASHIR†‡#

, F. Anthony LAI†^
 
 

 

*College of Medicine, Qatar University, PO BOX 2713, Doha, Qatar 

†College of Biomedical and Life Sciences, School of Biosciences, Cardiff University, 

Cardiff, UK 

‡Alfaisal University, College of Medicine, Riyadh, Saudi Arabia 

#
King Faisal Specialist Hospital & Research Center, Department of Comparative Medicine, 

Riyadh, Saudi Arabia 

 

1
 To whom correspondence should be addressed: Email: mixosn@yahoo.com (MN) 

 

 

^Author for editorial correspondence prior to publication: lait@cf.ac.uk (FAL) 

 

 

 

Short title: Structure and function of sperm-specific PLC  
 

 

Abbreviations: phospholipase C-zeta, PLCζ; calcium, Ca
2+

; phosphatidylinositol 4,5-

bisphosphate, PIP2; inositol 1,4,5-trisphosphate, InsP3; pleckstrin homology domain, PH 

domain; phosphatidylinositol 3-phosphate, PI(3)P; phosphatidylinositol 5-phosphate, PI(5P); 

intracytoplasmic sperm injection, ICSI; assisted reproductive technology, ART 

 

 

Key words: Phospholipase C zeta (PLC), Fertilisation, Sperm, calcium oscillations, Male 

infertility 

 

 

mailto:lait@cf.ac.uk.com
mailto:lait@cf.ac.uk.com


ABSTRACT 

At mammalian fertilisation, the fundamental stimulus that triggers oocyte (egg) activation 

and initiation of early embryonic development is an acute rise of the intracellular free calcium 

(Ca
2+

) concentration inside the egg cytoplasm. This essential Ca
2+

 increase comprises a 

characteristic series of repetitive Ca
2+

 oscillations, starting soon after sperm-egg fusion. Over 

the last fifteen years, accumulating scientific and clinical evidence supports the notion that 

the physiological stimulus that precedes the cytosolic Ca
2+

 oscillations is a novel, testis-

specific phospholipase C (PLC) isoform, known as PLC-zeta (PLC). Sperm PLC catalyses 

the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) triggering cytosolic Ca
2+

 

oscillations through the inositol 1,4,5-trisphosphate (InsP3) signaling pathway. PLC is the 

smallest known mammalian PLC isoform with the most elementary domain organisation. 

However, relative to somatic PLCs, the PLC isoform possesses a unique potency in 

stimulating Ca
2+

 oscillations in eggs that is attributed to its novel biochemical characteristics. 

In this review, we discuss the latest developments that have begun to unravel the vital role of 

PLC at mammalian fertilisation and decipher its unique mechanism of action within the 

fertilising egg. We also postulate the significant potential diagnostic and therapeutic capacity 

of PLC in alleviating certain types of male infertility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

 Oocyte (egg) activation is the first and most critical step that initiates embryo 

development after fertilisation. The term ‘egg activation’ describes a series of biochemical 

and morphological events that mammalian eggs go through to prepare the egg for early 

embryo development after sperm-egg fusion [1]. In all species examined up-to-date, the 

earliest signaling event in the activation of an egg by a sperm is a large transient increase in 

the level of intracellular free calcium (Ca
2+

) concentration [1-3]. In many non-mammalian 

species (such as frogs and sea urchins), the Ca
2+

 increase entails a single rise (one spike). 

Contrastingly, in mammals and ascidians the Ca
2+

 signal is delivered as a prolonged sequence 

of repetitive Ca
2+

 transients, known as Ca
2+

 oscillations, that start soon after gamete fusion, 

persisting for several hours and beyond the completion of meiosis [1, 2, 4-6]. The frequency 

and duration of Ca
2+

 oscillations appears to be relatively species-specific, ranging from every 

two minutes, to every hour [1, 7, 8]. This striking phenomenon consequently orchestrates a 

series of further events of egg activation, such as cortical granule exocytosis (CGE), which 

blocks polyspermy, meiotic resumption, and pronuclear development [1, 9, 10]. Mammalian 

eggs are very sensitive to the precise pattern of Ca
2+

 oscillations [11, 12]. The frequency and 

amplitude of Ca
2+

 oscillations are directly responsible for cell cycle progression, with varying 

Ca
2+

 transients resulting in different rates of cell cycle progression [13, 14]. Considering that 

the rate of cell cycle progression of human oocytes following fertilization has been postulated 

as an indicator of  normal embryogenesis [15], the profile of Ca
2+

 oscillations during 

mammalian fertilisation may not only be necessary and sufficient for egg activation to occur 

but also equally important for subsequent embryogenic events [16].  

 Several lines of evidence suggest that the generation of Ca
2+

 oscillations in 

mammalian eggs is a direct consequence of inositol 1,4,5-trisphosphate (InsP3)-mediated 

Ca
2+

 release [1, 4, 17]. The involvement of the universal Ca
2+

-mobilizing messenger, InsP3; 

and its InsP3 receptor (InsP3R) was demonstrated by experiments in mouse and hamster eggs, 

where blocking or down-regulating the expression of InsP3Rs led to the inhibition of Ca
2+

 

oscillations and egg activation [18-20]. Furthermore, microinjection of InsP3 or adenophostin 

A, an InsP3 analogue, lead to Ca
2+

 oscillations in all mammalian eggs examined, 

demonstrating the necessity of this signaling pathway in progression of the Ca
2+

 release and 

egg activation process at mammalian fertilisation [1, 21, 22].  

 

 



2. Sperm factor hypothesis and a novel PLC as the trigger of Ca
2+

 oscillations at 

fertilisation 

 The vigorously-contested scientific debate over the precise mechanism of how a 

single sperm elicits the generation of Ca
2+

 oscillations in the unfertilized egg dates over 

several decades. Many theories had been proposed to explain the genesis of the Ca
2+

 

transients that successfully trigger egg activation during mammalian fertilisation (for review 

see [1]). Over the years, the weight of evidence has steadily shifted significantly in support of 

the ‘sperm factor’ hypothesis as the most appropriate model for egg activation in mammalian, 

and a number of marine invertebrate, species. This theory proposed that the sperm contains a 

soluble factor that, upon sperm-egg fusion, readily diffuses into the egg, and is functionally 

capable of triggering Ca
2+

 release from intracellular stores [5]. Experimental support for this 

hypothesis came from studies demonstrating that injection of sperm cytosolic extracts into 

mammalian eggs triggered a prolonged series of Ca
2+

 oscillations, indistinguishable to those 

seen at fertilisation, and this physiological stimulus initated all the necessary events for 

successful egg activation [5, 23]. Moreover, the development of the clinical, in vitro 

fertilisation (IVF) technique, intracytoplasmic sperm injection (ICSI), a procedure that injects 

intact sperm directly into the egg cytoplasm, provided further support for the sperm factor 

hypothesis [24]. ICSI-injection of whole sperm in mammalian eggs results in egg activation 

and embryo development to term [25, 26].  

 Over the years, many candidates have been proposed as potential sperm factors. 

Initially, small molecules such as InsP3 [27], nitric oxide (NO) [28] or nicotinic acid adenine 

dinucleotide phosphate (NAADP) [29] were considered as sperm factors but, although these 

molecules can induce some form of Ca
2+

 release from intracellular stores in some non-

mammalian eggs, none of these substances could fully mimic the characteristic series of Ca
2+

 

oscillations observed during IVF of mammalian eggs [1, 30]. In vitro PLC activity assays on 

mammalian cytosolic sperm extracts revealed that these extracts possess many fold higher 

PLC enzymatic activity compared with other somatic tissues that express several PLC 

isoforms [31]. More interestingly, although PLCs are enzymes that are generally 

characterized for their low Ca
2+

 sensitivity, the sperm extracts showed remarkable PLC 

activity even at 0.1M Ca
2+

 concentration, the basal cytoplasmic Ca
2+

 levels found in the egg 

at the time of fertilisation [31]. Chromatographic fractionation studies suggested that the 

sperm factor should be a protein of 30-100 kDa in size [1, 31, 32]. Microinjection of 

recombinant proteins corresponding to all the known and most characterized PLC isoforms at 



the time, failed to trigger the pattern of Ca
2+

 oscillations observed during fertilisation [32, 

33]. All these observations were consistent with the hypothetical existence of a novel, 

unidentified PLC isoform as the soluble sperm factor that triggers Ca
2+

 oscillations and 

activation of mammalian eggs, particularly since during this period the sequence of the 

human genome had not yet been reported. 

 

3. PLC; the only native substance that can induce Ca
2+

 release and activation of 

mammalian eggs 

 In 2002, our laboratory in the then University of Wales College of Medicine (now 

Cardiff University School of Medicine) identified a novel testis-specific PLC isoform, which 

was termed PLC [34]. Microinjection of in vitro-transcribed cRNA encoding PLC into 

mouse eggs resulted in the observation of fertilisation-like Ca
2+

 release events, and 

subsequent early embryonic development up to the multicellular blastocyst stage [34]. 

Interestingly, the estimated expression levels of PLC required for the initiation of Ca
2+

 

oscillations was very closely comparable to the estimated amount of this enzyme contained in 

a single mouse sperm [34]. Moreover, the Ca
2+

 oscillation-inducing activity of sperm extracts 

was completely abolished following PLC immunodepletion from these extracts by specific 

anti-PLC antibodies [34]. Microinjection of recombinant mouse PLC protein into mouse 

eggs also triggered Ca
2+

 oscillations similar to those observed after sperm extract injection 

[35]. Furthermore, RNA interference (RNAi) experiments producing severe disruption of 

PLC expression in transgenic mice testes yielded sperm with otherwise normal proeprties 

that most notably induced prematurely terminating Ca
2+

 oscillations with a significantly 

reduced litter size [36]. Subsequent studies have also identified further mammalian 

orthologues of PLC in human, hamster, monkey and horse sperm [4, 37-40], while non-

mammalian testis-specific PLC homologues have been identified in the chicken [41] and 

fish [42, 43]. Additional support for the fundamental role of PLC at mammalian fertilisation 

came from a number of genetic and clinical reports that directly linked certain types of 

human male infertility with PLC deficiencies (abnormally low expression levels or mutated 

forms of PLC) in the sperm of IVF patient couples presenting with oocyte activation 

deficiencies (OAD) and thus total fertilisation failure i.e. infertility [44-49].  

 It is now well characterised and widely believed that upon sperm-egg membrane 

fusion, PLC is delivered from the sperm head into the egg cytoplasm and this then catalyses 

the hydrolysis of its membrane-bound substrate, phosphatidylinositol 4,5-bisphosphate (PIP2) 



which is located on the membrane of an intracellular vesicle compartment [1, 34, 50]. The 

resulting liberation of InsP3 stimulates opening of the InsP3R, a Ca
2+ 

release channel in the 

endoplasmic reticulum resulting in Ca
2+ 

oscillations, causing egg activation and subsequent 

early embryonic development [1, 34, 50]; (Figure 1). 

 It is worth noting that over the previous 2 decades other proteins have been proposed 

as potential sperm factor candidates, including a 33 kDa protein (prematurely/imprudently 

termed ‘oscillin’) [51], a truncated form of the c-kit receptor (tr-kit) [52] and more recently, 

the postacrosomal sheath WW domain-binding protein (PAWP) [53, 54]. However, as 

various studies have demonstrated, none of these molecules induce the Ca
2+ 

oscillations 

observed at fertilisation and nor fulfil all the physiological criteria for the sperm factor [1, 55-

60]. Thus, all the mounting experimental and clinical evidence emanating from a number of 

different laboratories in the world indicate that the only identified molecule up to date, which 

is capable of initiating Ca
2+ 

oscillations during mammalian fertilisation, is the testis-specific 

PLC [50, 61]. 

 

4. PLC structure and domain organization   

 Mammalian phosphoinositide-specific phospholipase C (PI-PLC) comprises a family 

of ubiquitous intracellular enzymes that play an essential role in activating intracellular signal 

transduction pathways to regulate various cellular functions [4, 62]. PI-PLCs directly 

participate in the phosphoinositide signalling pathway, catalysing the hydrolysis of PIP2 and 

giving rise to two important second messenger molecules; InsP3 and diacylglycerol (DAG). 

Fourteen distinct mammalian PLC isoforms have thus far been identified and are grouped 

into six distinct classes [ (1-4),  (1,2),  (1-4), , , and  (1,2)], based on domain 

organisation and mode of activation. PLC isoforms also differ in tissue distribution, 

expression levels, Ca
2+ 

sensitivity, catalytic regulation, and cellular localisation [4, 62, 63]. 

 Despite its superior Ca
2+ 

oscillation-inducing activity in eggs relative to somatic 

PLCs, sperm PLC is the smallest PLC isoform with the most basic domain organization. 

PLC enzymes in all the species characterized up to date, share a similar size of 70-75 kDa 

[4, 50, 64]. PLC demonstrates a typical PLC domain structure consisting of four EF hand 

motifs, followed by the characteristic X&Y catalytic domains and a single C2 domain at its 

C-terminus. These domains are common to all PLC isoforms (, , , ,  and ) [50]. The 

catalytic X&Y domains form the active site in all PLCs and their sequence is the most highly 

conserved domain between the different PLC isoforms relative to the other regulatory 



domains. The sequence similarity among all PLC isoforms is 60%, but much higher among 

the isoforms of the same class. The catalytic X&Y domains of PLC shares a 64% sequence 

similarity with that of PLC1 and by structural homology, is predicted to be organised in 

eight repetitive beta sheet/alpha helix sequences, forming a distorted barrel [4, 50]. 

Mutagenesis of conserved active site residues within the XY catalytic domain of PLC 

resulted in loss of enzymatic activity, and thus its inability to induce Ca
2+

 release in 

mammalian eggs [1, 50]. In all PLC isoforms, a discrete region separates the X and Y 

catalytic domains, known as the XY-linker. In PLC, this is an unstructured linker region 

with a distinctive cluster of basic amino acid residues not found in the XY-linker regions of 

the other PLC isoforms, and playing an important regulatory role in PLC function [1, 34, 

50].  

 A notable structural difference of sperm PLC to somatic PLC isoforms is it’s lack of 

a pleckstrin homology (PH) domain [34]. PH domains are well defined structural modules of 

~120 amino acid residues long, which have been identified in more than 100 different 

proteins [1, 4]. All PLC isoforms except PLC and PLC possess a PH domain. It is believed 

that the PH domain facilitates the binding of PLCs to biological membranes [62, 65]. The PH 

domain of PLC1 mediates the binding of this enzyme to the cell plasma membrane by its 

high-affinity and -specificity binding to its membrane-bound substrate, PIP2 [66]. With the 

significant absence of a PH domain, PLC is most closely related in domain structure to 

PLC1 enzyme exhibiting a 33% identity and 47% similarity [34]. Due to the lack of a PH 

domain, PLC appears to employ a unique mechanism to target it’s biological membrane 

substrate, involving synergy of the positively-charged N-terminal lobe EF-hand domain with 

the basic amino acids at the C-terminal end of its XY-linker region, that coalesce through 

electrostatic interactions with its negatively-charged substrate, PIP2 [67-69].  

 

5. Essential role of the EF hand domains in the Ca
2+ 

sensitivity and membrane 

targeting of PLC 

Arguably the most critical physiological feature of PLC allowing it to be enzymatically 

very active in mammalian eggs relative to other somatic PLCs, is its uniquely high Ca
2+

 

sensitivity [35, 70]. PLC is 100-fold more Ca
2+

 sensitive compared with its PLC1 

counterpart, displaying an EC50 of 80nM [70], well within the range of reported resting Ca
2+

 

concentrations in mammalian eggs, ~120nM, explaining why PLC's biochemical activity is 

observed very soon after its release from the sperm into the egg cytoplasm [70].  



 We have previously shown that deletion of the EF-hand domains dramatically 

increases the EC50 of PLC from 80nM to 30M [70], while replacement of PLC EF-

hand domains with that from PLC1 results in a 10-fold decrease in the Ca
2+

 sensitivity of 

PLC, without significantly affecting its enzymatic activity [71]. In addition, in parallel with 

our empirical data, mathematical modelling approaches have strongly suggested that the EF-

hand motifs are the major determinants of the high Ca
2+

 sensitivity of PLC, which in turn 

leads to its unsurpassed effectiveness in triggering high frequency Ca
2+

 oscillations in 

mammalian eggs [71]. 

Recently, we investigated whether replacement of the EF-hand domains of rat PLC1 with 

mouse PLC, in a PLC1 construct lacking the PH domain can confer to this chimeric 

enzyme the high Ca
2+

 sensitivity of PLC. We generated the PH/PLC1/EF construct, as 

shown in Figure 2A comprising the N-terminal 150 aa of PLC (containing its EF-hand 

domains) fused to a PLC1 deletion construct lacking the first 284 aa (comprising both its PH 

& EF-hand domain regions). This PH/PLC1/EF construct encodes a 624 aa chimaeric 

protein that was expressed using the pETMM60 vector and isolated by affinity 

chromatography as previously described [69, 71-73] enabling characterization of the purified 

~129kDa NusA-tagged PLC chimaera (Fig. 2B). The PIP2 hydrolytic enzyme activity of 

PLC, PLC1 and PH/PLC1/EF was determined (Fig. 3A & Table 1) and indicates that 

chimaeric protein displayed a 31% reduced enzymatic activity (201551 nmol/min/mg) 

compared to PLC1. To investigate the effect of replacing EF-hand domains of PLC1 with 

that of PLC on the Ca
2+

 sensitivity of PLC1 (lacking the PH domain), we assessed the 

[
3
H]PIP2 hydrolysis at different Ca

2+
 concentrations ranging from 0.1nM to 0.1mM [69, 71-

73]; (Figure 3B, Table 1). The resulting EC50 values for PLC (73 nM) and PLC1 (5.96 M) 

were in good agreement with those obtained at previous studies [70, 72, 73], while the EC50 

for PH/PLC1/EF (4.71 M) was slightly lower compared to PLC1, but 64-fold higher 

compared to the EC50 of PLC. Our experiments suggest that the EF-domains of PLC on 

their own are not sufficient to confer the high Ca
2+

 sensitivity of PLC to a PLC1-like 

protein lacking the PH domain, indicating that the EF-domains play a vital role in conferring 

the high Ca
2+

 sensitivity of PLC but the overall PLC protein tertiary structure is an 

additional essential requirement.   

 Interestingly, the N-terminal lobe of the EF-hand domains of PLC contains a cluster 

of basic amino acid residues. We recently demonstrated that sequential neutralisation of these 



basic residues within the first EF-hand domain of PLC significantly diminishes the PIP2-

binding properties of PLC [69]. We surmised that PIP2 might be attracted to the negatively-

charged PIP2-containing component of the intracellular vesicular membrane through 

electrostatic interactions and thus, both the EF-hand and the XY-linker regions which are rich 

in basic residues, are essential for this interaction. This molecular interaction provides a 

tether that facilitates proper PIP2 substrate access to and binding with the PLC active site 

[69]. 

 

6. The regulatory role of the non-conserved XY-linker region 

 The XY-linker region of PLC is extended in length and contains more positively-

charged amino acid residues relative to its PLC1 counterpart [34, 50]. Notably, the XY-

linker is the most non-conserved region of the PLC domain sequences determined from 

different species, but in all cases this linker region contains a number of positively-charged 

residues in close proximity to the Y catalytic domain [4, 50]. The specific physiological 

rationale for this XY-linker diversity is still unclear. Perhaps the diversity in this sequence 

may explain the species-specific differences in specific patterns of Ca
2+

 oscillations observed 

for various mammalian PLC enzymes, as well as the divergent relative potencies of these 

enzymes in triggering cytosolic Ca
2+

 oscillations when expressed in mouse eggs [4, 6]. 

Notably, we have demonstrated that the XY-linker plays a key role in the functional 

regulation of PLC enzyme activity and also in its important ability to contribute to the 

interaction with its membrane-resident lipid substrate, PIP2 [67, 68, 74], Finally, the XY-

linker region contains a predicted nuclear localization signal (NLS) sequence that may play a 

role in the regulation of at least mouse PLC [75]. 

 

7. The vital role of PLC C2 domain is highlighted by male infertility-linked point 

mutation 

 All PLC isoforms possess a C2 domain, following the XY catalytic domain. These 

domains comprise 120 amino acid residues and play an important role in the Ca
2+

-

dependent subcellular membrane targeting of several lipid-metabolizing enzymes, such as 

PLC1 and cPLCA2 [76]. In PLC1, the structurally closest protein to PLC, the C2 domain 

interacts with the membrane phospholipid, phosphatidylserine (PS) to form a C2-Ca
2+

-

phosphatidylserine quaternary complex, which enhances its enzymatic activity [77].  



 The exact physiological role of PLC C2 domain is still unresolved. There is 

experimental evidence for low-affinity binding of this domain to membrane phospholipids; 

phosphatidylinositol 3-phosphate [PI(3)P] and phosphatidylinositol 5-phosphate [PI(5P)] [68, 

78]. We have previously demonstrated that deletion or replacement of the C2 domain of 

PLC with the corresponding domain of PLC1 abolishes the Ca
2+

 oscillation-inducing 

activity in intact eggs, without affecting the in vitro PIP2 hydrolytic properties of this enzyme 

[70, 71]. These observations suggest a disparate, vital (but apparently non-hydrolytic) role of 

the C2 domain in PLC function. Further support for this suggestion came from the 

identification of a male infertility-linked point mutation located in the C2 domain of PLC 

[49]. This is the first PLC infertility-linked mutation to be reported in a domain other than 

the XY catalytic domain. In this mutant, an isoleucine (I) residue is substituted with a 

phenylalanine (F) residue in 489 position (I489F) of human PLC sequence [49]. Analysis of 

this mutation revealed that at physiological concentrations this PLC mutant is unable to 

trigger Ca
2+

 release in mouse eggs [79]. However, microinjection of non-physiological levels 

could rescue the infertile phenotype, leading to Ca
2+

 oscillations and egg activation. Further 

biochemical characterization suggested that the I489F had no effect on the enzymatic 

properties of PLC, but dramatically reduced its in vitro binding to PI(3)P- and PI(5)P-

containing liposomes [79]. These findings highlight the critical role of this domain in PLC 

function due to its novel membrane binding/localisatio characteristics (Figure 4). Further 

investigation is required to delineate the physiological significance of PLC-PI(3)P and -

PI(5)P interactions and to identify other potential egg-derived binding partners of this domain 

that might regulate PLC function within the egg. 

 

8. Localisation of PLC in the sperm 

 PLC has been identified in sperm of numerous species and generally appears 

localised at distinct subcellular regions of the sperm head, with potentially differential 

functional roles for each specific population [64]. PLC has been identified in acrosomal and 

post-acrosomal regions of mouse and porcine sperm, with a tail population also identified in 

porcine sperm [80-82]. In equine sperm, PLC was reported in the acrosome, equatorial 

segment, head mid-peace, as well as the principal piece of the flagellum [40]. In humans, 

three distinct populations of PLC have been identified in the acrosomal, equatorial and post-

acrosomal regions of the sperm head, with a potentially additional tail localisation [44, 47, 

83-86]. However, it remains unclear whether such populations are physiologically valid. 



Specific PLC localisation remains a concern, with numerous studies identifying variable 

patterns within the same mammalian species, often using the same antibody probe.  

 A previous study suggested that PLC was localised within the acrosome of mouse 

and human sperm, with further PLC populations present on the sperm surface [87]. 

However, using the same antibodies, multiple studies indicated PLC localisation to the post-

acrosomal region of the mouse sperm [80, 88], as well as to the acrosomal, equatorial, and 

post-acrosomal regions of human sperm [44, 84-86, 89]. Indeed, there only seems to be 

consensus regarding PLC localisation in mouse sperm. This variance in PLC localisation is 

not only limited to observations between different species, with a study reporting significant 

variance in localisation patterns observed in sperm between human subjects [86]. 

 Perhaps such variance is attributable to differences in immunolocalisation protocols 

used by different studies, or due to limited specificity of the polyclonal antibodies that have 

been used in all such studies to date, particularly in relation to human sperm. Recently 

developed epitope-specific PLC polyclonal antibodies to human, mouse and porcine PLC, 

have exhibited reliable consistency in results throughout multiple studies for both 

recombinant and native PLC [90-92]. Further to such progress, it has recently been 

demonstrated that specific antigen unmasking/retrieval protocols are required to enhance the 

visualisation efficacy of PLC in mammalian sperm, perhaps due to strong intra- or inter-

molecular conformation(s)/interaction(s) between discrete domains of monomeric and/or 

oligomeric PLC [92]. Following the application of these specific antibodies and enhanced 

protocols, PLC has been identified in the acrosomal and post-acrosomal, acrosomal and 

equatorial, as well as, post-acrosomal and equatorial compartments of mouse, human and 

porcine sperm, respectively. Furthermore, use of these antibodies has consistently observed 

potential tail localisation in all species [92]. These recent observations from application of 

new PLC-specific probes and protocols suggest that previously published results regarding 

PLC subcellular localisation in sperm of mammalian species may require further detailed 

evaluation. For example, Grasa et al., [89] and Young et al., [88] demonstrated in human and 

mouse sperm, respectively, that prior to capacitation acrosomal populations of PLC were 

prominent, shifting to a predominantly post-acrosomal localisation following capacitation. 

While such results remain supportive of PLC’s proposed identity as the mammalian sperm 

factor, it is important that further high-resolution localisation analysis enables a concensus 

view to emerge. 

 



9. Localisation of PLC in the egg and the search for a putative ‘egg factor’ 

 Another unique biochemical feature of sperm PLC is its localisation in mammalian 

eggs. Somatic PLC isoforms are known to localise to the plasma membrane where they 

hydrolyse their membrane-bound substrate PIP2 [50]. However, there is no detectable 

PLC localisation in the plasma membrane of eggs [93]. Moreover, the depletion of plasma 

membrane PIP2 using a targeted inositol lipid phosphatase has no effect upon PLC- or 

sperm-induced Ca
2+

 oscillations, even though such a PIP2-depletion strategy effectively 

abolishes PLC1-induced Ca
2+

 oscillations [93]. Further, immunocytochemical approaches 

suggest that the introduced sperm PLC becomes localised to small vesicles throughout the 

egg cytoplasm [93]. Interestingly, PIP2 is also detected in such cytoplasmic vesicles. This 

putative intracellular PIP2 source is very significant because the expression of an inositol lipid 

phosphatase fused with catalytically-inactive PLC in mouse eggs (to specifically target and 

deplete this vesicular PIP2), potently inhibited both sperm- and PLC-induced 

Ca
2+

 oscillations [93]. This indicates that the egg cytosolic Ca
2+

 oscillations induced by 

PLC or sperm rely upon hydrolysis of PIP2 from intracellular vesicles primarily, and not the 

plasma membrane, which in itself represents an entirely new aspect of PI-mediated Ca
2+

  

signalling.  

Immediately after PLC is injected into eggs it is capable of triggering Ca
2+

 oscillations, 

hence PLC appears to be autonomously active. However, relative to the egg, PLC is 

present at >1000 times higher concentration in sperm where it appears to be either 

enzymatically inactive or compartmentalised. Transfection studies have shown that PLC can 

be stably expressed in CHO cells at concentrations 100-1000 times that found in an egg 

during fertilization, and yet this does not cause any change in Ca
2+

 homeostasis [91]. 

However, when these PLC-expressing CHO cells, or extracts from these cells, are injected 

into mouse eggs, Ca
2+

 oscillations are induced [91]. These data suggest that PLC may only 

be active in eggs, and this further implies that eggs possess an essential factor(s) that is 

specifically required for PLC to hydrolyse PIP2. The target molecule or ‘receptor’ for 

PLC is likely to be on the egg vesicles that contain PIP2 and if this target interacts very 

specifically with PLC then this hypothesis may also explain why other mammalian PLC 

isoforms e.g. PLC1, are orders of magnitude less effective in triggering Ca
2+

oscillations 

when injected into mouse eggs. The identification of an egg receptor for PLC will have 



major implications for understanding wider cases of infertility and for animal reproductive 

technologies. 

 

10. PLC, ICSI failure and male infertility  

ICSI, a powerful IVF technique whereby a single sperm is injected into oocytes, is an 

effective method of assisted reproductive technology (ART) for men presenting with 

suboptimal parameters, such as abnormal sperm concentration, motility, or morphology. Such 

methodology is generally applied in cases when couples experience low fertilisation success 

or complete fertilisation failure following conventional IVF. However, despite relatively high 

rates of ICSI success, total fertilisation failure occurs in ~1–5% of ICSI cycles, usually 

recurring in subsequent ART cycles [94, 95]. Potential causative factors include failed sperm 

head decondensation, premature sperm chromatin condensation, oocyte spindle defects and 

sperm aster defects [46], while issues such as incorrect sperm injection/expulsion, or low 

gamete quality [96, 97] may also contribute. However, a failure of the oocyte activation 

mechanism is frequently considered to be the main contributory factor [46, 95, 98-101]. 

Importantly, morphologically normal sperm from several human patients have been 

found to fail to activate mouse eggs [45, 101], with sperm either unable to elicit Ca
2+

 release 

following injection into mouse eggs, or else producing significantly diminished and abnormal 

Ca
2+

 oscillation profiles, being severely reduced in frequency and amplitude [44, 45]. 

Furthermore, immunofluorescence and immunoblot analysis of such sperm exhibited reduced 

or absent levels of PLC within the sperm head, while the Ca
2+

 oscillation-inducing activity 

of such sperm was ‘rescued’ in mouse oocytes by the co-injection of PLC cRNA [44, 45]. 

Subsequent to these studies, numerous investigations performing PLC assessment in human 

sperm undergoing fertility treatment indicate that sperm with defective oocyte activation 

capacity are associated with reduced/absent levels of PLC [44-46, 86, 102, 103], while 

PLC deficiencies are also associated with sperm conditions, such as globozoospermia [45, 

46, 102, 104, 105] and recurrent partial hydatidiform moles (abnormal pregnancies) [106]. 

Importantly, abrogation of PLC gene function in patients diagnosed with oocyte 

activation deficiency has also now been reported. Two PLC mutations were identified from 

an infertile man, whose sperm lacked the capacity to elicit Ca
2+

 oscillations that led to 

disrupted PLC activity and an infertility phenotype [45, 47]. Biochemical characterisation 

indicated that the mutations, both occurring in the active site domains of PLC, led to 

disruption of local protein folding, while injection of correspondingly mutated cRNA and 



recombinant protein into mouse eggs resulted in highly abnormal Ca
2+

 transients that were 

unable to initiate oocyte activation [48, 90, 107]. Both mutations were reported to be 

heterozygous, with one inherited from the patient’s father, with the other inherited from the 

patient’s mother, indicating for the first time that such maternally-inherited loss-of-activity 

mutations contribute towards male infertility [47, 107]. 

Subsequently, a homozygous mutation was identified by Escoffier et al., (2016) from 

a similarly infertile patient, occurring within the C2 domain of PLC [49]. As discussed 

above, this PLC C2 domain mutant displays similar enzymatic activity compared to wild-

type PLC, however exhibiting dramatically reduced binding to PI(3)P and PI(5)P-containing 

liposomes [79]. Single nucleotide polymorphisms (SNPs) have also been reported either 

within the coding sequence of PLC or its associated bi-directional promoter in human 

patients [44, 108]. Further polymorphisms have also been identified in the PLC gene of 

bulls and stallions, at promoter regions and exonic loci, which were shown to positively 

correlate to semen parameters and the fertility status of such sperm [109, 110]. However, as 

these polymorphisms were not physiologically or biochemically characterised, any potential 

contributory effects exerted by SNPs upon sperm PLC function are currently unclear. 

Recent data suggest a significant level of variance in terms of total PLC levels and 

localisation patterns in human sperm from normal, fertile men [44, 45, 84, 85]. Such variance 

in sperm PLC presents an interesting problem, particularly when considering that 

absent/reduced levels of PLC have previously been implicated in cases of infertility, and 

that levels of PLC directly impact upon the frequency and amplitude of the resulting 

Ca
2+

 oscillations. Injection of increasing PLC cRNA levels in human oocytes results in 

increasing frequencies and amplitudes of Ca
2+

 oscillations [111], which may also exert 

effects upon gene expression profiles in a Ca
2+

-dependent manner during early 

embryogenesis [13, 14]. Indeed, preimplantation development of oocytes activated by 

differential levels of human PLC suggests that too little, or too much, PLC leads to poor 

development to the blastocyst stage despite apparently normal oocyte activation. Thus, 

abnormalities in sperm PLC levels may underlie not only infertility through fertilisation 

failure, but also cases of male sub-fertility, whereby adequate PLC may be delivered to 

oocytes to cause activation only, but which may be insufficient for embryonic competence.  

 

11. Clinical applications of PLC  



The success of ART is reflected by estimates that such methods now account for ~7% 

of total birth rates in some developing countries [46]. However, several conditions such as 

severe male infertility (19-57% of infertility cases) remain untreatable, even after ICSI 

treatment [112]. It seems clear that sperm from males that fail to activate human eggs 

following ICSI exhibit abrogated, reduced, or aberrant forms of PLC. Thus, alongside a 

potential diagnostic parameter, PLC may represent an endogenous method to clinically treat 

cases of egg activation failure. 

Currently, oocyte activation failure is clinically treated by assisted oocyte activation 

(AOA) methods, predominantly application of Ca
2+ 

ionophores, resulting in improved rates of 

fertilization and successful pregnancy. However, concerns currently exist that such synthetic 

non-native chemicals may be potentially detrimental to embryo viability [113], considering 

that such methods elicit a single large Ca
2+

 increase unlike the repetitive pattern of Ca
2+

 

oscillations observed at fertilisation. Indeed, computational modelling and experimental 

studies suggest that the temporal pattern of Ca
2+

 changes may exert specific effects upon rates 

of cell cycle progression, and thus, subsequent embryogenesis [114]. Thus, it is important 

that an endogenous, potentially safer method of assisted egg activation is established, for 

which PLC is an extremely attractive candidate. Rogers et al. [115] obtained 

parthenogenetically-generated human blastocysts by injection of PLC cRNA into eggs, 

while Yoon et al. [44] demonstrated that abnormalities in sperm PLC could be counteracted 

by co-injection with mouse PLC cRNA. Moreover, a very recent study reported the 

determination of the optimal concentration of human PLC cRNA to activate human oocytes 

[111]. 

However, while representing a significant research tool, clinical use of cRNA 

injections may prove problematic due to uncontrolled expression and potential reverse 

transcription activity inherent to mammalian oocytes [46]. Thus, the production of purified, 

enzymatically-active, recombinant human PLC protein has been a goal for many 

laboratories around the world, to enable dose-controlled delivery of functionally-viable PLC 

protein. To this degree, recent efforts have been able to produce such versions of human 

PLC, which is able to effectively rescue activation in mouse and human oocytes, 

representing a significant milestone in potential clinical applicability to reproductive 

medicine [90].  However, while this recombinant protein may be significantly advantageous 

to patients suffering from recurrent ICSI failure, it remains unclear whether a PLC 

‘therapeutic’ may be able to aid further types of patients where normal activation at 



fertilisation occurs, but subsequent initiation of early embryogenesis is poor, a causative 

factor for recurrent implantation failure. 

 

12. Concluding remarks 

 The 2002 discovery of PLC, the putative physiological ‘sperm factor’ that plays a 

vital role at mammalian fertilisation represented a major breakthrough in the field of 

reproductive biology. It is now widely accepted that PLC is the sole physiological stimulus 

that is delivered from the fertilising sperm into the egg cytoplasm, soon after sperm-egg 

membrane fusion, triggering the Ca
2+

 oscillations required for successful egg activation and 

early embryogenesis. Despite all the recent advances that have improved our knowledge 

about the unique biochemical properties of this gamete-specific enzyme, the precise 

biological mechanism of PLC action and regulation within the fertilising sperm and egg has 

not yet been fully characterised. All the recent genetic and clinical reports that have directly 

linked male infertility cases with reduced expression levels and mutated forms of this sperm-

specific protein necessitate elucidation of the molecular mechanism that PLC employs to 

‘kick start’ a new life. For example, the participation of PLC in a standard biochemical 

pathway [PI signalling pathway] that is known to be present in all types of cells in the body, 

but uniquely, PLC appears to only be fully active within eggs.  It is still currently unclear 

the mechanism by which PLC is kept inactive within the sperm head but soon after its 

release within the egg cytosol, it is immediately able to hydrolyse its membrane-bound 

substrate PIP2, inducing Ca
2+

 release and subsequent egg activation. Moreover, while the 

biochemical properties of PLC domains have been characterised, a full understanding of 

how all these distinct domains work together in synchrony within the egg remains 

incomplete. The recent genetic report that identified the infertility-linked point mutation in 

the C2 domain of PLC, clearly suggests that this domain plays a fundamental role in 

PLC function, although it is not directly involved in the hydrolysis of PIP2. This necessitates 

further investigation of the exact role of this domain in PLC function. There is a possibility 

that PLC interacts through this domain with an unidentified egg protein or receptor that 

mediates PLC action in the egg. Unravelling and understanding the full mechanism of PLC 

action and mode of regulation, can provide the basis for creating new advances not only in 

clinical medicine but also in animal breeding technologies. 
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TABLE LEGENDS 

Table 1 

 In vitro enzymatic properties of NusA-tagged PH/PLC/EF chimaera. Summary of 

specific enzyme activity and EC50 values of Ca
2+

-dependence for PIP2 hydrolysis, determined 

by non-linear regression analysis (GraphPad Prism 5), (see Fig. 3) for PLC, PLC1 and 

PH/PLC1/EF fusion proteins. 

 

FIGURE LEGENDS 

Figure 1 

Schematic representation of egg activation triggered by sperm-specific PLC. Following 

sperm-egg membrane fusion, PLC is released from the sperm into the egg cytosol and 

targets a distinct intracellular vesicular membrane containing its membrane-bound substrate, 

phosphoinositide 4,5-bisphosphate (PIP2). PLC-mediated PIP2 hydrolysis produces two 

second messengers, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 

subsequently binds to the InsP3 receptor (InsP3) on the endoplasmic reticulum, an interaction 

that triggers Ca
2+

 release from intracellular stores, which subsequently produces the 

characteristic pattern of Ca
2+

 oscillations that initiate egg activation (Figure modified from [1, 

59]).  

 

Figure 2  

Expression of recombinant NusA-tagged PH/PLC1/EF chimaeric protein. (A) 

Schematic representation of the domain structure of PLC (brown), PLC1 (purple) and their 

corresponding PH/PLC1/EF chimaera. The various amino acid lengths and respective 

coordinates are indicated for each construct. (B) Expression of recombinant NusA-tagged 

PH/PLC1/EF chimaeric protein. 1 µg of recombinant NusA-tagged PH/PLC1/EF 

protein analysed by 7% SDS-PAGE and Coomassie Briliant Blue staining (left panel) and 

immunoblot analysis using the anti-NusA antibody (1:25,000 dilution; right panel). 

 

Figure 3 

In vitro enzyme specific activity and Ca
2+

 sensitivity of PH/PLC1/EF chimaera. (A) 

PIP2 hydrolysis enzyme activity of PLC, PLC1 and PH/PLC1/EF proteins obtained 

with the standard [
3
H]PIP2 hydrolysis assay [70-74]. Values are means ± S.E.M. (n=4), using 



two different preparations of recombinant protein and each experiment was performed in 

duplicate. (B) Effect of various [Ca
2+

] on the normalized activity of PLC, PLC1 and 

PH/PLC1/EF recombinant proteins. For these assays, values are ± S.E.M. (n=4), using 

two different batches of recombinant proteins and with each experiment performed in 

duplicate (see Table 1). 

 

Figure 4 

Schematic illustration of the proposed intracellular mechanism of action of PLC in 

mammalian eggs. After its delivery from the fertilising sperm, PLC associates with a 

specific vesicular membrane by a potential interaction of the C2 domain with PI(3)P, PI(5)P 

or an as yet unidentified (membrane or cytosolic) egg protein. Then, PLC associates with its 

negatively-charged substrate PIP2 via electrostatic interactions with the positively-charged 1
st
 

EF-hand domain and the C-terminal part of the XY-linker region. The catalytic XY domain 

subsequently proceeds with the enzymatic cleavage of PIP2. The high Ca
2+ 

sensitivity of 

PLC, which enables it to be active at resting nanomolar Ca
2+ 

levels, is conferred by its EF 

hand domains. It has been reported that the XY-linker of mouse PLC contains a nuclear 

localisation signal (NLS), which targets the enzyme to pronuclei in a cell-cycle dependent 

manner (Figure modified from [1, 69, 79]. 

 



TABLES 

Table 1 

 

Recombinant PLC protein 

PIP2 hydrolysis enzyme 

activity 

(nmol/min/mg) 

Ca
2+ 

dependence 

EC50 (nM) 

 

PLC 532±24 73 

PLC1
 2934±36 5960 

PH/PLC1/EF 2015±51 4710 
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