
Carnegie Mellon University
Research Showcase @ CMU

Computer Science Department School of Computer Science

1986

Minkowski's convex body theorem and integer
programming
Ravindran Kannan
Carnegie Mellon University

Follow this and additional works at: http://repository.cmu.edu/compsci

This Technical Report is brought to you for free and open access by the School of Computer Science at Research Showcase @ CMU. It has been
accepted for inclusion in Computer Science Department by an authorized administrator of Research Showcase @ CMU. For more information, please
contact research-showcase@andrew.cmu.edu.

http://repository.cmu.edu?utm_source=repository.cmu.edu%2Fcompsci%2F1569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/scs?utm_source=repository.cmu.edu%2Fcompsci%2F1569&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.cmu.edu/compsci?utm_source=repository.cmu.edu%2Fcompsci%2F1569&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:research-showcase@andrew.cmu.edu

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

C M U - C S - 9 6 - 1 0 5

Minkowski's Convex Body Theorem and
Integer Programming

R a v i K a n n a n

A b s t r a c t The paper presents an algorithm for solving Integer Program
ming problems whose running t ime depends on the number n of variables
in the problem as n°^n\ This is done by reducing an n variable problem
to na* problems in n — i variables for some i greater than 1. The factor
of n 5 / 2 "per variable" improves on the best previously known factor which
is exponential in n. Minkowski's Convex Body theorem and other results
from Geometry of Numbers play a crucial role in the algorithm; they are
explained from first principles.

Supported by NSF grant ECS-8418392

I n t r o d u c t i o n

The Integer Programming (feasibility) Problem is the problem of determining whether
there is a vector of integers satisfying a given system of linear inequalities. In settling an
important open problem, H.W.Lenstra (1981,1983) showed in an elegant way that when n
the number of variables is fixed, there is a polynomial t ime algorithm to solve this problem.
He accomplishes this by giving a polynomial t ime algorithm that for any polytope P in Zn

either finds an integer point (point with all integer coordinates) in P or finds an integer
vector v so that the maximum value of (v ,x) and the minimum value of (v,x) over the
polytope P differ by less than cn where c is a constant independent of n. Every integer
point must lie on a hyperplane of the form (v ,x) = z for some integer 2, and there are at
most cn* such hyperplanes intersecting P. It obviously suffices to determine for each such
hyperplane JB", whether H n P contains an integer point. Lenstra uses this to show that
an n variable problem can be reduced to cn problems each in n — 1 variables. This raises
two questions : Can we effectively reduce an n variable problem to polynomially many
n — 1 variable problems ? Can the reduction be done efficiently so as to achieve a better
complexity for Integer Programming ? Both these questions are answered affirmatively in
this paper.

If an n variable problem is reduced to polynomially many n — 1 variable problems, the
best complexity we can achieve is nen for some constant c, so we are at liberty to take
this amount of t ime for the reduction to one less variable. Furthermore, the same result
is obviously achieved if we reduce an n variable problem to problems in n — i variables
for some i between 1 and n. Indeed, the greater the t the better since then we reduce the
number of variables by a larger amount. This paper presents an algorithm which either
finds an integer point in the given polytope P in Zn or finds for some i, 1 < i < n, an
n — i dimensional subspace V with the following property : the number of translates of
V containing integer points that intersect P is at most n * \ Each such translate leads to
a n — i dimensional problem. So, it can be shown that there is a factor of 0 (n 5 / 2) per
variable in the running time. In this sense, it reduces an n variable problem effectively to
0 (n 5 / 2) problems in n — 1 variables. The algorithm for finding the subspace V uses at most
0(nns) arithmetic operations where s is the length of description of the polytope. The
dependence on n of the complete integer programming algorithm is shown to be O(non).

This paper is the final journal version of the preliminary paper Kannan (1983). Since
the appearance of the preliminary version, Hastad (1985) has observed using results of
Lenstra and Schnorr (1984) that for any polytope P of positive volume in £ n , if P does
not contain an integer point, then, there exists an integer vector v such that the maximum
and minimum of (v, x) over P differ by at most 0 (n 5 / 2) . This is an interesting existence
result. But , there is no finite algorithm known that with P as input either gives us an
integer point in P or the vector v. If we relax the 0 (n 5 ^ 2) to 0 (n 3) , then we can get such an
algorithm using the techniques of this paper ; it uses 0(nns) arithmetic operations. This
gives a way of reducing an n variable Integer Program to 0(nz) problems in n — 1 variables.

However, the resulting algorithm for Integer Programming has, obviously, asymptotically
worse complexity, so it is not presented here.

This paper uses several concepts and results from Geometry of Numbers, the most
crucial of them being Minkowski's convex body theorem. This elegant classical theorem
turns out to be crucial in effectively reducing an n variable problem to polynomially many
n — 1 variable problems rather than an exponential number of them. Section 1 contains a
brief introduction to Geometry of Numbers to make the paper self-contained for Operations
Researchers and Computer Scientists.

The integer programming algorithm will be presented after two other algorithms : one
for finding the shortest (in Euclidean length) non-zero integer linear combination of a
given set of vectors and the other for finding the integer linear combination of a set of
vectors that is closest (in Euclidean distance) to another given vector. These are called
the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP) respectively.
The algorithms for both problems take 0(nns) arithmetic operations on n dimensional
problems where s is the length of the input. The algorithm for the SVP is needed as a
subroutine in the integer programming algorithm whereas the algorithm for the CVP is
not directly needed, but has ideas that will be useful in integer programming.

It is well-known that Integer Programming is NP-hard. It has been shown recently
that C V P is NP-hard. At present, it is not known whether SVP is NP-hard or admits a
polynomial t ime algorithm (or both !). The last section of the paper provides another,
more natural proof that C V P is NP-hard. Further, it relates the complexity of the SVP to
an approximate version of the CVP. It is hoped that this is a beginning towards proving
the NP-hardness of the S V P which remains an important open problem.

S u m m a r y o f t h e p a p e r

Operations Researchers are usually interested in solving the Integer Programming Op-
timality problem - i.e., the problem of maximizing a linear function over the set of integer
solutions (solutions wi th all integer coordinates) to a system of linear inequalities. This
question can be reduced by elementary means to the Integer Programming feasibility ques
tion which is the problem of determining whether there is an integer point inside a given
polyhedron. This paper deals only wi th the feasibility question and this will be called t h e
I n t e g e r P r o g r a m m i n g P r o b l e m . Computationally it can be stated as : Given m x n
and m x 1 matrices A and b respectively of integers, find whether there exists an n x 1
vector x of integers satisfying the m inequalities Ax < b. The case of n = 1 can be trivially
solved in polynomial t ime. For the case of n = 2, Hirschberg and Wong (1976), Kannan
(1980) and Scarf (1981) gave polynomial t ime algorithms.

Central to H. W.Lenstra's algorithm for general n is an algorithm for finding a "reduced
basis " of a "lattice"(both terms to be explained later). Lenstra's (1981) original basis
reduction algorithm takes polynomial-time only when the number of dimensions is fixed.
After his result, Lovasz devised a basis reduction algorithm which runs in polynomial time
even when n the number of dimensions varies . This algorithm combined with an earlier
result of A.K.Lenstra's (1981) that reduced factoring a polynomial to finding a short vector

2

in a lattice yields a polynomial t ime algorithm for factoring polynomials over the rationals.
All these ideas were first published in an important paper of Lenstra, Lenstra and Lovasz
(1983). This paper is referred to henceforth as the LLL paper. Here, the following result
from the LLL paper is used : Given a set of vectors 61,62? • • • &n> we can find in polynomial
t ime a nonzero integer linear combination of them whose length is at most 2 n / 2 t imes
the length of any (other) nonzero integer linear combination. In addition, we will need a
technical result from H.W.Lenstra's paper which is due to Lovasz. This result is stated in
the section on integer programming.

Section 1 introduces lattices and proves Minkowski's theorem. Section 2 presents an
algorithm for finding a "more reduced basis" 1 of a lattice than the LLL algorithm. While
the end product of this algorithm is better because it is "more reduced", it also takes
more t ime (0(nns) arithmetic operations) than the LLL algorithm. The first vector of the
"more reduced basis" will be a shortest nonzero vector in the lattice. This solves the SVP
mentioned in the abstract. Section 2 closes with a proof of correctness and a bound on
the number of arithmetic operations. Section 3, the most technical section of the paper,
proves bounds on the size of numbers produced by the algorithm in section 2.

The second major algorithm in the paper is for solving the CVP and is given in section
4. It uses as a subroutine the algorithm for finding the "more reduced basis". After
these, the algorithm for Integer Programming is given. It performs 0(n2ns) arithmetic
operations for an n variable problem and produces numbers with 0 (n 2 n s) bits where s is
the length of the input. This is section 5. In a recent paper, Frank and Tardos (1985) show
that all the numbers can be kept polynomially bounded in their number of bits. Their
improvement also brings down the number of arithmetic operations of the algorithm to
0{nlns).

Here is a brief overview of the algorithms : The algorithm for the SVP first solves it
approximately, then enumerates a bounded number of candidates for the shortest nonzero
vector and chooses the best. Minkowski's theorem implies that this set of candidates
suffices. In the algorithm for the CVP and integer programming, the original problem is
transformed so that by appealing to the Minkowski's theorem, the transformed problem
can be reduced to a bounded number of lower dimensional problems.

The last section of the paper contains some results on complexity. The Closest Vector
Problem is shown to be NP-hard by reducing 3-dimensional matching to it. Then the
Y e s / N o question that corresponds to the Shortest Vector Problem in a natural way is
defined - it is namely the question of whether there is a nonzero integer linear combination
of a set of given vectors of length less than or equal to a given number. The SVP is
shown to be polynomial-time reducible to the Y e s / N o question. Then using a technique
called "homogenization" from polyhedral theory, it is shown that the problem of solving
the C V P to within a factor of y/n/2 is polynomial-time reducible to the Y e s / N o question.
I conjecture that this approximate version of the C V P is NP-hard. If the conjecture is
proved , it would be the case that the Y e s / N o question is NP-complete in the sense of Cook
(1971) and the reduction essentially is a Cook (Turing) reduction rather than a many-one

1(2.6) gives a definition of the "more reduced basis". It is a very natural concept.

3

reduction. At present, every language that is known to be NP-complete in the sense of
Cook, is also NP-complete in the sense of Karp (1972), i.e., in all the known cases the
reductions are many-one. Thus , the proof of NP-hardness of the approximate version of
the C V P is an interesting open problem.

After the preliminary version of this paper appeared, Helfrich (1985) has made some
improvements in the running t ime of some of the algorithms. I refer the reader to her paper
for the improvements. Schnorr (1984) uses the algorithm presented here for solving the
SVP to obtain polynomial time algorithms for finding better approximations to the shortest
vector than the LLL paper. Lenstra and Schnorr (1984) prove very nice properties of the
successive minima of lattices from the concept of "more reduced basis" used in this paper.
They have traced this concept back to Korkhine and Zolotoreff (1873). Babai (1985) is
an interesting related development to some of the algorithmic questions discussed in this
paper.

N o t a t i o n
Zn- Euclidean n—space
Z n - the set of ra—vectors with integer components
(a, 6) is the dot product of the two vectors a, b
|a| = | a | 2 = the Euclidean length of the vector a
£ (6 1 , 6 2 , . . . 6 n) = the lattice generated by the vectors 6 i , 6 2 , . . . 6 n the set of all

integer linear combinations of these vectors).
For amy set of vectors 6 i , 6 2 , . . . 6 n , we reserve the notation 6 f (j) for the real numbers

defined in (1.7) and 6(t, j) for the vectors defined in (1.7)'.
For any lattice L, (see definition in the next section) Ai(L) will denote the length of a

shortest nonzero vector in the lattice.
Suppose L (6 i , 6 2 , . . . 6 n) is a lattice. Then for j = 1 , 2 , . . . n , Lj(bu 6 2 , . . . bn) will denote

the projection of L(6i , 6 2 , . . . bn) orthogonal to the vector space spanned by 6i, 6 2 , . . . 6y_i.
By convention we take the space spanned by the empty set to be the singleton { 0 } and
hence the orthogonal complement of it is the whole space. Thus , I , 1 (6 1 , 6 2 , . . . 6 n) =
£ (61 ,62 , . • - 6 n) . Clearly Ly (6 1 , 6 2 , . . . 6 n) depends on the basis 6 i , 6 2 , . . . 6 n of the lattice
we choose.

The programs in this paper will be written in "pidgin" ALGOL. The language is close
enough to English that the reader should have no problem with it. I adopt the convention
that the statement "Return x" means Stop execution and output x.

4

1 B a s i c d e f i n i t i o n s a n d f a c t s a b o u t l a t t i c e s

A lattice L in Rn is the set of all integer linear combinations of a set of linearly independent
vectors in Zn. The independent vectors are called a basis of the lattice.

If 6 i , 6 2 , . . . , 6 n are independent vectors in £ m , m > n, the basis matrix of the lattice
I,(6i, 6 2 , . . . , 6 n) is the nxm matrix B with 6 1 , 6 2 , . . . , 6 n as its n rows. Now suppose U is
any nxn unimodular matrix (integer matrix with determinant ± 1) . Clearly, the inverse of
U exists and has integer entries. Then for any y in £ m , y is in L[bu 6 2 , . . . , 6 n) iff 3x 6 Zn:
y = xB <==$> 3x' G Zn: xf(UB) = y (because U^U'1 have integer entries y G the
lattice generated by the rows of UB.

Thus making a unimodular transformation of the basis leaves the lattice unchanged.
Indeed the converse is also true.

L e m m a (1*1)
Suppose B and B1 are n X m and k x m matrices each with independent rows and

suppose the rows of B and B9 generate the same lattice. Then k equals n and there is a
unimodular matrix U such that UB = B1.

P r o o f : Since the lattices generated by the rows of B and B1 axe the same, so axe the
subspaces. Hence k = n = the dimension of the subspace. The rows of B' are integer
combinations of the rows B and vice versa. Thus there are nxn matrices of integers U
and U9 such that UB = B1 and U'B' = B. So, UU'B' = since B' has independent
rows UU1 = J. U and U9 have integer determinants and axe inverses of each other, so they
must both have determinant ± 1 .

The dimension of a lattice is the number of basis vectors that generate it. If a lattice
is full dimensional, i.e., it is a lattice in Zn of dimension n and is generated by the
rows of an n x n matrix 2?, the determinant of the lattice is defined to be the absolute
value of the determinant of B (by the lemma above it is an invariant of the lattice)
Geometrically, it is the volume of the parallelpiped spanned by 61 ,62 ,63 , . . . , 6 n . We also
have to deal with lattices which are not full dimensional. Thus suppose 6 1 , 6 2 , . . . , 6 n are
independent vectors in Zm, m > n Then the determinant of L (6 l 5 6 2 , . . . , 6 n) is defined to
be the n volume of the n-dimensional parallelpiped spanned by 6 X , 6 2 , . . . , 6 n . To make this
definition computationally more explicit as well for other purposes, we define unit vectors
Ui, U 2 , . . . , u n which are mutually orthogonal as follows:

•

b{ = b1;u1 = bl/\b{\ (1.2)

= 6 t+ i - uj)uJ for t = 1 , 2 , . . . , n - 1 (1.3a)

(1.36)

5

Thus 6 t* + 1 is the projection of 6 t +i perpendicular to the space spanned 6 l 5 62> • • • > fy. The
procedure of finding the 6t* is the familiar Gram-Schmidt orthogonalization process (for
example see Strang(l980)) . Rewriting (1.2) and (1.3) as

65 = *i (1.4)

and

t

= k + i -]C for t = 2 , . . . n - 1 (1.5)

where

M« = (6*, *?)/(*?, 6?) for 1 < / < k < n (1.6)

we see that if 6 i , . . . , bn have rational coordinates, so do the 6t* and they can be computed
in polynomial t ime from 6 i , & 2 , . . . , 6 n . This is not obvious from (1.2) and (1.3) since |6y|
may be irrational. The Gram-Schmidt procedure described by (1.4) and (1.5) is used
repeatedly in this paper.

Clearly, there exist real numbers &,•(/) such that

* = (!-7)

In fact, from (1.5) , we see that 6,-(j) = Hij\b*j\ for 1 < j < i < n and that 6 t (t) = |6t*|
for all t. So with rational inputs, bi(j)2 is always rational (even though 6,-(j) may not be) .
This observation will be useful because I will have occasion to compare |6 , (i) | with other
real numbers. The definition of bi(j) in (1.7) will be used repeatedly and so it is part of
the notation. I will also use occasionally the vectors b(i,j) defined by (1.7)' below :

HhJ) = E M * K for 1 < i < » < n (1.7)'

*=;
In many parts of the paper, it will be extremely useful to think of &i, 6 2 , . . . , bn as being

represented in a coordinate system with U i , U 2 , . . . , u n given by (1.2) and (1.3) as the axes
vectors. In this coordinate system, the matrix with the basis vectors as its rows is lower
triangular and has the 6 f-(j) of (1.6) as its entries. The reader is reminded that &,•(/) is the
length of the projection of 6t- onto the orthogonal complement of the space spanned by the
vectors &i, b 2 , . . . , f o r 1 < j < i < n. Thus for example 6 t (i) is the length of 6t*.

6

0 o . • • • 0 \
M i) 62(2) 0 . 0

. M O 0
• * i+i (0 bi+1(i+l)

0
0

• • • 0

. M i) M 2) . . • bn{n)J

T h e l o w e r t r i a n g u l a r r e p r e s e n t a t i o n o f t h e b a s i s m a t r i x

I caution that these entries may be irrational and cannot be exactly computed in
general. So, in the algorithms I do not change the coordinate system, but conceptually it
is easier to think of the basis matrix being written in this form.

The determinant of £ (& i , 6 2 , . . . , 6 n) denoted d(L(&i,6 2 , 4 n)) is defined to be the
absolute value of the determinant of the lower triangular nxn matrix whose entries are
bi(j). Clearly, this equals the product of the lengths of the 6t*, t = 1 , 2 , . . . , n . Thus while
the determinant may not be rational even if the coordinates of 61 ,6 2 , • • • ? bn are, the square
of the determinant is and it can be computed in polynomial-time.

We are often interested in "projecting" and "lifting" vectors. Projecting a vector b onto
the hyperplane through the origin with v as the normal yields the vector 6— ((6, v) / (v , v)) v.
The projection of 6 in the direction of v is the vector ((6, v))v. To project perpendic
ular to a subspace we find an orthogonal basis of the subspace and project perpendicular
to each basis vector successively - this is the Gram-Schmidt procedure described in (1.2)
and (1.3). To project onto a subspace, means to project perpendicular to its orthogonal
complement. The projection of a set is the set of projections of its elements. Suppose v is
a nonzero element of a lattice L and L is the projection of L perpendicular to v. If w is any
vector in the L, we may "lift" it to a vector in L as follows : it is easy to see that there is a
unique vector w in L such that w projects onto w and (iu, v) £ (—(v, v)/2, (v, v)/2]. To see
this note that we may take any vector u which projects onto w and add a suitable integer
multiple of v into u to get a u1 whose projection in the direction of v is at most \v\/2 which
is exactly what the dot product condition above stipulates. Indeed, let r = [(u , v) / (v , v)}
where [x] stands for the integer nearest to the real number x. Let v! = u — rv. Then
|(tt' ,v)| < (1 /2) (v,v). The process described here will be called lifting w to w.

A set S in Rn is said to be discrete if there is a positive real number 6 so that \v — u| >
5Vu,v G 5 , « ^ v . S ' i s a Z-module if it forms a group under vector addition.

P r o p o s i t i o n 1.8 : A set S in Zn is a lattice if and only if it is a discrete Z-module .
Proof : Suppose S is a lattice with basis & i , 6 2 , . . . 6 m - Then clearly it is a Z-module.

If it is not a discrete set , then it contains points arbitrarily close to and not equal to
the origin (since it is a Z-module) . This is impossible since the lattice does not have

7

any points inside the parallelpiped {x : x = £JLi Ay6y; |Ay| < | } other than the origin
because 6 1 , 6 2 , . . . 6 m are independent. The converse will be proved by induction on the
dimension of the vector space span of the set S. If this dimension is 1, 5 must be the
set of integer multiples of a single vector. Suppose 5 is a discrete Z-module of dimension
m greater than 1. Suppose 6 > 0 is the greatest lower bound on |u — v| for u ,v G S.
There must be a t; G S such that |v| = 6. (Otherwise, there is an infinite sequence of
distinct elements u i , U 2 , . . . in S so that | u t | converges from above to 5, there is then a
convergent subsequence of it. The distance between elements of the subsequence goes to
zero, violating the fact that 6 is positive.) I will construct a basis of S with v as the first
basis vector. Towards this end, define 5 as the projection of S perpendicular to v. It is
obvious that 5 is a Z-module . I claim that it is a discrete s e t : If not , there is a sequence of
elements u i , U 2 , . . . in S such that they converge to the origin. By the paragraph preceding
the proposition, they can be lifted to v i , t / 2 , . . . 1X1 & s o that projections of the vt- in
the direction of v is at most \v\/2. Hence, the vt- form a bounded sequence and so, there
is a subsequence of the t;,- that converges. This violates the discreteness of 5 . So, S is a

A A A A

discrete set and by induction on the dimension, S is a lattice. Suppose 62 ,63 . . . 6 m is a
A A A A

basis of S. Let 6 2 , 6 3 , . . . bm be vectors in S whose projections are 6 2 , 6 3 , . . . bm respectively.
Then I claim that 5 = Zr(t;, 62,63, • • - 6 m) . Clearly, S D £ (^ ,62 ,63 , . 6 m) . Suppose w is
in S and w = w — ((u ; , v) / (v , v)) v . w is in S and hence equals £ £ 2 ^ * 5 £ Let
w1 = w — YXLzZibi. Then w1 = At; for some A G k. Since Xv and [(A)Jv are both in S
their difference is and if A is not an integer, this would yield a shorter nonzero vector than
v contradicting its definition. So A must be an integer and by the definition of w1 , we see
that w G L(v, 625^35 • • 'bm). This completes the proof of the proposition.

0
P r o p o s i t i o n 1 .9 : Suppose t; is a nonzero element of the lattice L, such that Av does

not belong to the lattice for any A in (0 ,1) . Then there is a basis of the lattice containing
v. (Such a vector v is called primitive).

Proof Let L be the projection of L perpendicular to v. Then L is a lattice (from
— — — A A A

the proof of the last proposition) and has a basis 6 2 , 6 3 , . . . 6 m . If we lift these vectors to
6 2 , 6 3 , . . . 6 m they together with v form a basis of the lattice L - the proof is identical to
the last part of the proof of the last proposition.

D
P r o p o s i t i o n 1 .10 : The following "algorithm" yields a basis 61 ,62 , . . . 6 n of the lattice

L.
P r o c e d u r e Input lattice L of dimension n.
6 0 = 0
do for 1 = 1 to n by 1 :

Pick any nonzero v such that (v, 6y) = 0 for j = 0 , 1 , . . . , i ~ 1
Find the smallest positive real A such that At; is in the lattice L obtained by
projecting L onto the orthogonal complement of the span of { 6 1 , . . . , b^i}
Find w in L such that w projects onto At; in L.
bi = w

end

8

return (6 1 ? . . . 6 n)
P r o o f : The proof of the last proposition actually proves this stronger result.

D
Of course the method presented here is not quite an algorithm - we do not know how

the input is specified etc. I will later describe a more rigorous version of this algorithm
called SELECT - BASIS in section 2.

T h e o r e m (1 - 1 1) (M i n k o w s k i)
If S is any convex set in Zn which is symmetric about the origin (i 6 5 - x E S)

and has volume greater than 2n, then S contains a nonzero point of Zn.

Proof : Define S/2 = {x : x G Zn,2x G S}. Clearly, S/2 has volume greater than
1. Consider the convex bodies v + S/2 = {x : x G £ n , x = v + s for some s G S/2} as v
ranges over Zn. There is one such body for each point of Zn and their volumes are strictly
greater than 1. Therefore, two of them must intersect. (I leave it to the reader to make
this intuitive argument into a rigorous one.) Suppose v + S/2 and u + S/2 intersect, then
so do S/2 and (u — v) + 5 / 2 . Let y be in their intersection. Then, y and y — u + v both
belong to S/2. So, 2 y , 2 (y — u + v) both belong to S. The symmetry of S implies that — 2y
belongs to it, the convexity then implies that the average of — 2y and 2(y — u + v) which
is v — u belongs to S. Of course, v — u is in Zn proving the theorem.

•

I will generally only use the following direct consequence of Minkowski's theorem.

T h e o r e m (1 . 1 2)
If L is an n-dimensional lattice with determinant d(L) , there is a nonzero element v

of L with \v\ < \y/n{d{L)Yln

Proof Let L = ZnB = {x : x = yB for some y G Z n } , B an n x n matrix with
a basis of L as its rows. Consider the sphere T with the origin as center and radius
\y/n{d{L))lln. T has volume ?r n / 2 / r (n /2 + \)Rn where R is its radius. So the volume
of T is greater than 2nd(L). T is convex and symmetric about the origin. Hence so is
TB"1 = {x:3yeT s.t. x = yB'1}. TB'1 has volume greater than 2nd(L)-det(B-1) = 2 n .
Thus there is a y in Zn — { 0 } fl TB"1. v = yB is then a nonzero element of T n L. Clearly
v is short enough to prove the theorem.

D
R e m a r k (1*13) The factor y/n/2 in the theorem can be improved by reckoning the

volume of the n— sphere more accurately. T n fact, more sophisticated upper bounds on
A i (L) / (d (Z ,)) 1 / n are known. This is of course the ratio theorem (1.12) is bounding from
above. The supremum value of the square of this ratio over all n— dimensional lattices is
called Hermite's constant and the best upper bound on it is ~ (1 + o (l)) due to Blichfeldt
(1929). See also Lekkerkerker (1969) - section 38.

The general references on the subject of Geometry of Numbers are Cassels (1959) and
Lekkerkerker (1969). An expository survey of lattice basis reduction algorithms can be
found in Kannan (1984).

9

2 T h e a l g o r i t h m f o r finding t h e s h o r t e s t v e c t o r

In this section , I describe an algorithm to find a shortest nonzero 3 vector in a lattice
given by a basis 6 l 5 b2j... 6 n . This algorithm actually finds a "reduced basis"of the lattice
of which the first vector will be the shortest vector in the lattice (the definition of a reduced
basis used in this paper is found in (2.6)) . The algorithm of this section will be used in the
Integer Programming algorithm in two ways - it is needed as a subroutine there , perhaps
more importantly, this section will develop a technique that is used both in the integer
programming algorithm as well as the algorithm for the closest vector problem. I will
describe an overview of this technique in the next paragraph.

The algorithm is a recursive procedure - it works by calling subroutines for lattices of
dimension n — 1 or less when n is the dimension of the given lattice. It will be shown
that an "approximately'' reduced basis can be found by these recursive calls. Then the
shortest vector is found by enumerating all of a finite set of candidates. That this finite
set is not too large will follow from Minkowski's theorem on convex bodies. The paper of
Helfrich(1985) referred to earlier, improves the bound on the size of the finite set.

Here is how the algorithm works : Suppose we are given a basis 6 i , 6 2 , . . . 6 n of a
lattice L = 1 ,(61,62,...6 n). Using polynomially (in n alone) calls to lower dimensional
subroutines, the algorithm finds a basis a i , a 2 , . . . a n for the lattice L which satisfies the
following properties :

(2.1) F o r j = 2 , 3 . . . n, a y (j) = A 1 (L i (a 1 , a 2 , . . . a n)) 4

(2.2) | a i | < ^ | a 2 |

(2.3) < | ^ i | / 2

This is the "approximately reduced " basis. Intuitively, these conditions can be under
s tood by appealing to the representation of the basis a x , a 2 , . . . a n , as a lower triangular
matrix. In such a representation, condition (2.1) says that for j = 2 , 3 , . . . n , the j th
diagonal entry is the length of the shortest vector in the lattice generated by the rows of
the (n - j + 1) x (n — j + 1) matrix consisting of the last n - j + 1 rows and columns of
the basis matrix.

Whereas in the reduced basis of LLL (1982), the length of the first vector is guaranteed
to be at most 2 n / 2 d (L) 1 / n , for the basis here , one can prove (2.4) below using Minkowski's
theorem, conditions (2.1), (2.2) and (2.3) and the fact that d(L) = \a1\d(L2{alja2,.. . a n)) .

\ai\ < d{LY'n (2.4)

In other words, our ax is much a shorter vector than theirs - but of course we will spend

more t ime finding it.

3Henceforth, I will use the phrase "shortest vector" for "shortest nonzero vector* when the meaning is
clear.

4See notation in section 1 for the definition of Lj[a\% 02,... a n) and Ai(a lattice)

10

Having obtained such a basis a i , a 2 , . . . a n , I show that the shortest vector in the lattice
must be of the form

y = E?=i otiOi where (au a 2 , . . . an) e T
where T is a subset of Z n . I show that it is enough to consider a set T of cardinality

at most

d(L) (2 ' 5)

(2.4) is used to bound the expression (2.5) in terms of n alone. We enumerate all
elements of T, find the corresponding y and take the shortest of these which must then be
the shortest vector in the lattice. Intuitively, here is how (2.5) is derived. Let A be the
basis matrix with rows a i , a 2 , . . . , an and A = (Ai, A 2 , . . . , A n) be a row vector of integers so
that XA is a shortest nonzero vector of the lattice. Since ai is obviously a nonzero vector
in the lattice, the shortest vector must have length at most |ai | , thus A A must belong to
a cube of side 2 |a i | with the origin as center and edges parallel to the axes. This cube has
volume 2 n | a i | n . Applying the linear transformation A""1 to the cube we get a parallelpiped
P of volume 2 n | a 1 | n r f e t (A " 1) which equals the expression (2.5) and the integer vector A
must belong to P for XA to belong to the cube. So, we can enumerate all the integer
vectors in P and find the one that leads to the shortest nonzero vector of the lattice. We
would expect the number of integer vectors in P to be equal to the volume of P. This
describes the idea behind (2.5), I caution that a proper argument involves several delicate
points which will be dealt with later.

We find an entire reduced basis instead of just the shortest vector to facilitate the
recursion. First, here is the definition of r e d u c e d b a s i s with which we will work.

D e f i n i t i o n 2 . 6 : A basis t/i, v 2 , . . .vn of the lattice £(t>i, v 2 , . . . v n) l s called a reduced
basis if (2.7) and (2.8) below are satisfied.

For j = 1 , 2 , . . . n, Vj{j) = A1{Lj(vuv2,.. .vn)) 5 (2.7)

\vi{j)\ < Vj{j)/2 for t > j + l > 2 (2.8)

Note the difference between (2.1) and (2.7) is that (2.7) includes j = 1 also whereas
(2.1) does not. Thus in the lower triangular representation, every diagonal entry is the
length of the shortest vector in the lattice generated by the rows of the square submatrix of
which it is the top left entry . The essential feature of the LLL reduced basis is that in the
lower triangular representation, the j th diagonal entry is the length of the shortest vector
in the 2-dimensional lattice generated by the rows of the submatrix containing the rows
j9j + 1 and columns j\j + 1 of the basis matrix. Here instead the submatrix is not 2 x 2 ,
but (n — j + 1) x (n — j + 1). Schnorr (1984) generalizes the LLL reduced basis to allow
k x k submatrices for any fixed k. Schnorr's algorithm uses the algorithm SHORTEST of

5 Thus vi is a shortest vector in the whole lattice

11

this section as a subroutine to make the k x k matrices reduced in the sense defined here.
He arranges the reduction of the various k x k matrices so as to make only polynomially
many calls on the subroutine.

A detailed description of the algorithm SHORTEST is given below followed by a proof
of correctness and bounds on the running time.

P r o c e d u r e s H O R T E S T { n \ bu 6 2 , . . . 6 n)

C o m m e n t The preceding paragraphs explain what the algorithm accomplishes. L =
£ (6 1 , 6 2 , . . . 6 n)

1. If n = 1 then return {61}

2. Use the basis reduction algorithm from Lenstra, Lenstra and Lovasz to make the
basis reduced in their sense.
3 . b{ «— projection of 6t- perpendicular to 61 for t = 2 , 3 , . . . n
4. SJ, . . . £ 4 - SHORTEST(n - 1; C)
5. For t = 2 to n do :

6. Lift bi to bi in L. (cf: Paragraph preceding proposition 1.8. The proof of
theorem 3.8 contains the mundane details of how the lifting is done.)

7. end
Comment We now have a basis of L satisfying conditions (2.1) and (2.3)

g.If |6 2 | < ^l&i) then do :
Swap 61 and 62

GOto 3
9.end

Comment We now satisfy condition (2.2) also. Caution : |6i|, [621 may be irrational,
but their squares are not. So we use them instead.

10. If \bj(j)\ > \bi\ for some j then jo <— minimum such / , else j 0 «— n + 1.
11. BASIS <- {fix, 6 2 , • • • &J0-1}

Comment I show later that some nonzero shortest vector of L is in L(BASIS)
12. Call ENUMERATE(BASIS) to obtain a shortest vector in L{BASIS). Call this

vector v\.
Comment This procedure is explained later.

1 3 . { 6 l 5 62 • • • bn} <- SELECT - BASIS(n; v u bu b2... bn)
Comment Procedure explained later. It returns a basis of L containing vi as the
first vector - cf proposition 1.9.

14.Execute steps 3,4 ,5,6 and 7.
15. Return { 6 1 , 6 2 , . . . 6 n }

end SHORTEST

12

P r o c e d u r e s E L E C T - B A S I S (n ; 6 l 5 6 2 , . . . 6 n + i)
C o m m e n t 6 1 , 6 2 , • • • &n+i ar® vectors in Qk for some k > n and span an n—dimensional
subspace of JZk. The procedure returns a basis a i , a 2 , . . . an of L = £(&i, 6 2 , . . . 6 n +i) .
It first finds a shortest lattice vector in the direction of 61 - call this a\. Then it
projects L orthogonal to a\ to get a lattice L. It works by recursively finding a
basis of L. (cf. proposition 1.10) - See proposition 2.9 for more documentation on
the procedure.

1. If n = 0 then return the empty set.
2. If bi = 0 then return { 6 2 , & s , . . . 6 n + i } .
3. If 61 is linearly independent of 6 2 , . . . 6 n + 1

then a\ «— 61

else do:
4. Find a 2 , . . . a n + i (rationals - these are unique) such that £ y l 2 ctjbj = &i
5. M «— least common multiples of denominators of a 2 , . . . an+i
6. 7 <- GCD(Ma2, M a 3 , . . . A f a n + i)
7. If A f / 7 is an integer then a x <— 61

else do
8. find p,q G Z relatively prime so that p/q = (M / 7)
9. ai (l / g) 6 i

end
end

10. <— projection of 6,- perpendicular to ai for i = 2 , 3 , . . . n + 1
11. { c 2 , c 3 , . . . c n } « - SELECT - BASIS(n- 1; 6 2 , . . . 6 n + i)
12. Lift C{ to a,- in L for i = 2 , 3 , . . . n
13. R e t u r n {au a 2 , . . . a n }
end SELECT - B A S I S

P r o p o s i t i o n 2.9: The basis aua2,.. . a n returned by the above procedure is a basis of
L = 6 2 , . . . 6 n + 1) assxmiing that 6 X , 6 2 , . . . 6 n + 1 span an n—dimensional subspace.

P r o o f By proposition (1.10), it suffices to show that a x is a shortest vector of L in the
direction of 61 provided 61 is not equal to zero. We have

Mh = 7 (^ b 2 + M p 6 3 + . . . ^ ± i i n + l)

and ^ p - , ^ p , . . . M a

y

n f l are relatively prime integers. Any other vector in Z , (6 2 , 63 , . . . &n+i)
in the direction of &x must thus be an integer multiple of (M/^)bi = {p/q)bi. Thus any
vector of L (6 X , & 2 , . . . & n , 6 n + x) in the direction of &x is an integer multiple of (l / g) 6 x . Con
versely, {p/q)bi and (q/q)bi belong to L and p,q are relatively prime implies that (l/g)&i
does too .

•
P r o p o s i t i o n 2.10 : The vectors returned by the procedure SHORTEST(n; bx, b2,... bn)

form a basis of £(& x , 6 2 , . . . 6 n) .
Proof : For n = 1, the proof is clear. I proceed by induction on n. At the end

of step 4 of the procedure, b2j...bn form a basis of the lattice £ 2 (& i , & 2 , . . . 6 n) a *id thus
by proposition 1.10, & i , 6 2 , . . . 6 n form a basis of L{b\,b2,.. . &n) at the end of step 7. By

13

repeating the argument, they form a basis of L at the end of step 9. B y proposition 2.9,
procedure SELECT — BASIS works correctly to produce a basis of the lattice. Hence,
the current proposition is proved.

D

P r o p o s i t i o n 2.11: Let j 0 be as defined in step 10 of SHORTEST. Then a shortest
vector of L(bu 6 2 , • • • * j 0 - i) a ^ s o a shortest vector of L(bu 6 2 , . . . bn).

Proof : Suppose v = &ibi is a shortest nonzero vector of L (6 i , 6 2 , . . . 6 n) and one
of a j 0 , a y 0 + i , . . . an is nonzero. Then the projection v1 of t; onto the vector space V = t h e
orthogonal complement of Span (6 X , 6 2 , . . . 6 J O - i) is nonzero. Therefore we must have

|t;'| > A 1 (i y o (6 1 , 6 2 , . . . 6 w)) .
Then clearly, |v| > > 6j0(,7o) > |&i|. Thus bi is a shortest vector of L.

0

P r o p o s i t i o n 2.12 : The procedure SHORTEST executes recursive call of step 4 at
most (5 / 2) n t imes when started on an n—dimensional lattice.

Proof : By Lenstra, Lenstra and Lovasz, the execution of their basis reduction algo
rithm in step 2 of procedure SHORTEST yields a basis of L with |frx| < 2 n / 2 A ! (L) . Each
execution but the first of the loop steps 3-9 of SHORTEST cuts down by a factor of
at least y/Z/2. Thus each 5 iterations of the loop cuts it down by a factor of 2. We cannot
reduce |&i| further once it reaches Ai(£f). Thus at most 5 n / 2 executions of the loop suffice.

D

D e s c r i p t i o n o f p r o c e d u r e ENUMERATE
The crucial reason that we can complete the recursion is that we can enumerate rel

atively few candidates to determine the shortest vector. This fact is proved now. Sup
pose j 0 — 1 = m in step 10 of procedure SHORTEST and suppose a shortest vector of

6 2 , . . . , 6 m) is y = £ £ i Oik. Then since y must be of length at most |6i| , the projec
tion of y onto V m , the orthogonal complement in R n of the span of {6 i , 6 2 , . . . , 6 m _ i } must
be of length at most |&i|. This projection has length | a m 6 m (m) | , so we must have

| a m | < | 6 i | / | 6 m (m) |

More generally, we have the following proposition. The reader might want to use the
lower triangular representation of the basis matrix to understand the proposition.

P r o p o s i t i o n 2.13 With the above notation, suppose / ? t + ! , / ? t + 2 , . . . , / ? m are fixed inte
gers. Then there is an easily computed integer /?? such that for all integers a x , a 2 . . . , a t-_i
and

i = l j=i+l

Proof : For any vector v, I denote by t>, the projection of v along the direction of &,*
in this proof. Let u = E£=i+i / ? A and u; = oijbj + + u. Clearly, w = ftft,* + u

14

= fab] + tbi(say) where t is some fixed real number (since /? t- + 1,/? t-+ 2, • • • 5/?m and hence u
are fixed.)

So we have,

M < N H < N 10* + 01 < W / f t ! =>• -* - M ^ A < - * + f t -
So the proposition follows with

•
N o t e : I needed |6i| > 6t-(») to state the proposition as it is. If |&i| < &i(0* w e n e e d t o

try at most 2 values of a,- n o t 2 (| 6 i | / 6 t (i)) .
The proposition bounds the number of candidates for /?,• and leads directly to the

following procedure ENUMERATE.
?TOced\iTeENUMERATE{bu 6 2 , . . . , 6 m)

C o m m e n t & i , 6 2 , . . . , 6 m are vectors satisfying (2.1) ,(2.2) and (2.3). The procedure
finds the shortest vector of L(6i , 6 2 . . . , bm).
if m = 1 then return 6 X .
for each integer a m in the range [— j f ^ j + b^(L)\ ^° :

call LIST{m - 1)
end
Comment LIST(m — 1) returns T - a list of candidates { « ! , a 2 . . . , a m } as per
proposition 2.13.

Return the shortest nonzero vector in the set {EyLx otjbj : (c*i, a 2 . . . , a m) G T }
end ENUMERATE.
ProcedureLIST (Jfe)

C o m m e n t : When this procedure is called, a*+i, a * + 2 , . . . , am are already known inte
gers .
if k = 0 then dp:

r ^ r u { (c * i , a 2 . . . , a m) }

Return
end

Compute /?£ based on proposition 2.13.
for each integer a* in the range [/?£ /?2 + 2 jj^y] do:

Call LIST{k-l).
end

end LIST

L e m m a (2 . 1 4)

At the end of procedure ENUMERATE, \T\ is at most 2 m I I £ 2 (| & i | / M 0) w h i c h i s

at most (2 n) n / 2

15

Proof : The first part follows from the last proposition. The denominator U^L2 MO l s

of course the determinant of the lattice L2{bub2,..., bm)- call it L2 for short in the rest of
the proof.

Since 62(2) = A ! (L 2) ,

kffiT 1 < (v ^ T) w l - 1 / 2 m " 1 < n ^ 1) / 2 / 2 m - 1

(by Minkowski's theorem (1.11)) .

Further, \bx\ < fyb2\ and |6 2 (1) | < ^ imply that y/2b2{2) > |&i|. Thus we need to
enumerate at most

2 m (v / 2) m ~ 1 n (n ~ 1) / 2 / 2 m ~ 1 < (2 n) n / 2

possibilities.
•

P r o p o s i t i o n 2.15 : Procedure Enumerate correctly finds the shortest nonzero vector
of L(bub2,...bm).

Proof : Obvious
P r o p o s i t i o n 2.16 The basis bub2,...bn returned by SHORTEST satisfies the con

ditions (2.7) and (2.8).
Proof : Induction on n. n = 1 is obvious. By proposition 2.11, the shortest vector

of L(BASIS) in step 11 is also the shortest vector of the whole n— dimensional lattice.
By proposition 2.15, the vector vi at the end of step 12 is indeed a shortest vector of the
lattice. Using proposition 2.9 and the inductive assumption on step 14, the current lemma
follows.

0
This completes the proof of correctness. As for the t ime bound, I will split it into

two parts : a bound on the number of arithmetic operations - additions, subtractions,
multiplications, divisions and comparisons with operands that are rational numbers, and
a bound on the operand sizes. The number of axithmetic operations will depend on the
dimension n of the problem as well as the length s of the input. However, going through
the procedure SHORTEST step by step, we see that the total number of arithmetic op
erations performed while the procedure is not inside a call to LLL basis reduction algorithm
is bounded by a function of n alone - it does not depend on s. This is seen by an inductive
proof using proposition 2.12. Unfortunately, the same does not hold for LLL. In the next
section (proposition 3.8) , I show that the total number of arithmetic operations performed
by SHORTEST in all the c J l s t o LLL is nns. For now, I will assume this proposition.

T h e o r e m (2 . 1 7)
SHORTEST{n\...) finds a reduced basis satisfying (2.7) and (2.8) in 0(nns) arith

metic operations where s is the length of the input.

N o t e : In common usage, we might call this a 0(nns) - algorithm. This , however,
counts only the number of arithmetic operations, and ignores the size of the operands. In

16

an algorithm such as this one which manipulates numbers and keeps them all precisely, it
is important to prove bounds on the size of the numbers. I do so in the next section.

Proof : Let T(n) be the maximum number of arithmetic operations performed by
SHORTEST(n;...) while not inside a call to LLL. It is easily seen that all steps of the
algorithm except recursive calls to shortest, the enumeration and calls to LLL call for a
number of arithmetic operations bounded by a polynomial in n alone. Thus we have (by
proposition 2.12 and lemma 2.14),

r (n) < Y T (n - l) + (2n)n'2.q(n)

(q -a polynomial) . I will derive the bound T(n) 6 0(nn). Limn-+oo (l ~ ^) n ~ 1 = 1 / e a n d
£ is less than .93, so there exists an Ni such that for all n > Ni, we have | (1 — ^) n _ 1 < .95.
Further, let N2 be a natural number so that Vn > JV2, {2n)nl2q{n) < . 0 5 n n . Let N
be the m a x i m u m of Ni, N2. Choose a constant c > 1 such that T(n) < cnnVra < N.
Now, I argue by induction on n that T(n) < cnn for all n. For n < iV, this is true
by definition. So, assume n > N and suppose it is true for n — 1. Then T(n)/(cnn) <
| (1 - i) ' 1 " 1 + {2n)n/2q(n)/(cnn) < .95 + .05 = 1. This completes the inductive proof. The
total number of arithmetic operations performed by the algorithm is T(n)+ the number of
operations performed while executing calls to LLL. From proposition 3.8, then the current
theorem follows.

D

R e m a r k (2 . 1 8) : Here, I considered the shortest vector in the Euclidean (L2) norm.
We can also define the shortest vector according to other norms in the obvious fashion. To
find the L\ shortest vector in a lattice, we proceed as follows : We apply SHORTEST to
the basis. Then, analogous to proposition 2 .11 ,1 claim now that if we choose j 0 = Min{j :
bj{j) > y/nbi(l)}, then a L\ shortest vector of L (6 i , 6 2 , . . .6y 0 - i) is also an L\ shortest
vector of the whole lattice. This is because any vector in £(&i, 6 2 , . . . bn) \ £(&i, 6 2 , . . . 6y 0 -i)
must have L2 norm at least y/nbi(l) and therefore L\ norm at least y/nbi(l) which is
clearly at least the L\ norm of b\. Let m = j 0 — 1. In any candidate, £ y L i Ay&y for the
Li shortest vector, we must have A m 6 m (m) < |6x|i ^ V ^ ^ i (l) - Thus there are at most
2y/nbi(l)/bm(m^ candidates for A m . Arguing in this vein, the total number of candidates
is at most 2 m n a n I lyLi which is at most nn by Minkowski's theorem. This will give
an algorithm for finding the L\ shortest vector in 0(nns) arithmetic operations. Similar
ideas work for the or for any other L p norms. van Emde Boas (1981) has shown that
the shortest vector problem for the L\ and norms is NP-complete.

3 S i z e o f t h e n u m b e r s i n v o l v e d i n t h e a l g o r i t h m

We assume that the original input consists of integers. It is easy to see then that all
the numbers produced by the algorithm are rational numbers. In what follows, I will
derive bounds on the size of the numerators and denominators of all these numbers. The
numerator of a rational is of course bounded in absolute value by its magnitude, so really
the bounds will be on the magnitude and the denominator of each rational .

17

First,we will observe that even though the algorithm works on various projected lattices,
there is always an implicit "current basis" of the original input n—dimensional lattice. This
is true of step 2 (of SHORTEST) from the Lenstra, Lenstra and Lovasz algorithm. In
step 4, we work on the projected lattice £2(61,62? • • • 6 „) , but since there is a natural way
to "lift" any element of £2(61,62, • • -&n) to £ (6 1 , 6 2 , . • -6») (in section 1) , we can assume
that implicitly we have a basis of the whole lattice L(bu 6 2 , . . . 6 n) provided we can assume
that during step 4, while the algorithm is working on Z f 2 (6 i , 6 2 , . . . 6 n) , has a basis of
£2(61,62, • • - 6 n) . B y induction, we may indeed assume this and thus there is always an
implicit basis of the whole lattice during step 4. Step 5 explicitly computes this implicit
basis. By the definition of lifting, note that the basis constructed in step 5,6,7 satisfies
(2.8) - we will refer to any such basis as "proper". The LLL algorithm always explicitly
maintains a basis of the input lattice. Unfortunately, however this basis is not proper at
all t imes. However, when the LLL algorithm terminates, the basis will be proper.

Running through the algorithm SHORTEST, we see that at the end of step 9, there
is a "current basis"of the whole lattice which is not disturbed until SELECT — BASIS is
executed in step 13. At the end of step 13, we have a different current basis , but it is easy
to see by induction and the definition of "lifting" applied to step 12 of SELECT—BASIS,
that the basis at the end of step 13 of SHORTEST is proper. The argument for step 14
(of SHORTEST) is similar to steps 3,4 and 5. In summary, I have argued the following :

P r o p o s i t i o n 3.1 : There is an (implicit) "current basis" of the whole lattice at all
t imes during the execution of the algorithm SHORTEST. This basis is proper (satisfies
(2.8)) except possibly in the middle of the execution of the LLL algorithm.

D

In what follows I talk about certain properties of the "current basis" which I will refer
to as 61,621 • • • 6 n . With this we can associate the quantities 6,(7) as defined in (1.7).

P r o p o s i t i o n 3.2: M a x f = 1 6 t (t) never increases during the execution of SHORTEST.
Proof : We consider the algorithm step by step. The proof is by induction on n. For

n = 1, the proof is trivial. So assume n > 2. For step 2, the LLL algorithm never increases
the quantity as seen from their proof of their proposition (1.26). For step 4, the inductive
hypothesis suffices. In step 8, 6 i (l) strictly decreases, the new 6 2 (2) is at most the old |6i|

and 6 3 (3) , . . . , 6 n (n) remain the same. For steps 11 through 13, the enumeration and basis
selection processes, the proof is a little harder and is dealt with in proposition 3.3. For step
14 again, we invoke the inductive hypothesis, completing the proof of this proposition.

•
P r o p o s i t i o n 3.3: Steps 11 through 13 of the algorithm SHORTEST(n; b u . . . , 6 n) do

not increase max , -6 t (t) .
Proof : Suppose 6 1 , 6 2 , . . . , 6 n is the basis of the lattice at the beginning of step 11. Let

6 t (i) , l < j < i < n be defined as in (1.7). Suppose v x is found to be shortest nonzero
vector of L(bl9 6 2 , . . . , 6 n) by enumeration. Define U i = V i , u2 = 6 1 , u 3 = 6 2 , . . . , u n + i = 6 n .

Let u«-(j),l < j < i < n + 1 be defined again as in (1.7), i.e., by performing Grahm-
Schmidt on u i , u 2 , . . . u n + i . Clearly, precisely one of the u,-(t)'s is zero. Let this be Uj(j).

18

Let v u t / 2 , . . . , vn be the basis returned by SELECT-BASIS in step 13. Again define v f-(j)
by (1.7). Then for / = 2 , 3 , . . . , j - 1, vt's projection onto the orthogonal complement of
span of {v i , v 2 , . . . , vj_i} must be a scalar multiple of u j ' s projection onto the same space.
Thus by induction on Z, span {v i , v 2 , . . . , v i_ i} equals span {uu u 2 , . . . , uj_ i} and hence we
must have

vi{l) < t t | (/) f o r / = 2 , 3 , . . . , j - 1 .

uj (Z) is the length of the projection of 6j_i orthogonal to the span of {v i , 6 l 9 6 2 , . . . 6 j - 2 } -

6j_i(Z — 1) is the length of the projection of 6/_i orthogonal to the span of {61,625 • • -6 j_ 2 } .

So, we must have uj(Z) < 6j_i(Z — 1). So,

vi{l) < 6,_i(Z - 1) for / = 2 , 3 . . . J - 1

Further, since uj(Z) ^ 0 for Z = j + 1 , j + 2 , . . . , n + 1 , u(Z, Z) (see (1.7)') is independent
of u(Z + 1, /) , u(l + 2 , Z) , . . . u (n + 1,/) and so SELECT - BASIS (in its step 3) will make
rj(Z) = uj+i(Z + 1) for / = j\j + 1 , . . . , n. So we have

= u i + 1 (/ + l) < 6 | (/) f o p Z = y , j + l , . . . , n

The two inequalities together establish the proposition.

D
We now define, for any basis 6 1 , . . . , 6 n of the n-dimensional lattice

di = d(L(b1,b2,...,bi))\

It is not difficult to see that di is the determinant of the i x i matrix with entries (6y, 6/)

for 1 < j,Z < i. Since our original basis vectors had integer coordinates, this is also true
of any other basis. Thus the dt- are all integers. Clearly,

* = n i w) r (3-4)
i=i

The following proposition resembles a similar one in the LLL paper.

P r o p o s i t i o n 3.5 All numbers produced by the algorithm are rationals of the form
P/QI p,q in Z where q is one of the eZ,'s corresponding to the current basis .

Proof : Let 6 (j , t) be the projection of 6y orthogonal to 6 1 , . . . , 6 t_i(for j > i > 2) .
(See (1.7)') Then b(j\i) = 6y — £ J L \ ̂ 6 * where Sjk are some real numbers. Taking a dot
product wi th 6/(1 < Z < i — 1) and noting that (6/,6(y , i)) = 0, we have

«-i
(*i> M = £ M * * > *i) for Z = 1 , 2 , . . . , 1 - 1.

k=l

These are (i — 1) independent equations in the (t — 1) variables Sj^ with a coefficient
matrix whose determinant is rft-i- Thus di-i^y* are all integers. Hence d t _i6(y, *) is an

19

integral vector. Now, the algorithm SHORTEST keeps these vectors b(j\i) for some t
as it works on projected lattices. In addition, it has to keep some auxiliary quantities at
various t imes - the /xty's during LLL, certain other quantities during the execution of the
enumeration and select-basis steps. The proof of the proposition for other quantities is
similar and I omit it.

D

L e m m a (3 . 6)

Except while executing the Lenstra, Lenstra and Lovasz algorithm , the current basis
contains vectors of length at most [nB)ll2 if the original input & i , . . . , bn consisted of integral
vectors each of length at most y/B.

Proof : By proposition 3.1, the current basis is always proper in these situations which
implies of course that if we did Grahm-Schmidt on the current basis, the /x« of (1.6)
are all at most 1 /2 in magnitude. Further, the initial 6 f(t) is at most y/B by hypothesis
and so by proposition 3.2, they are all always bounded by this quantity. Thus using
(1.7), and properness, we observe that the length of 6, in the current basis is at most
(|6 ; | 2 + (1 /4) E ^ l | & ; | 2) 1 / 2 which is at most [nB)1'2 .

0

L e m m a (3 . 7)

In SHORTEST(n;bi,...jbn) during every execution of LLL algorithm all numbers
produced are bounded in magnitude by (y/nB)6"2 for some fixed constant c.

Proof: Whenever the LLL algorithm is called, all the input vectors to it -say - a l 5 a 2 , . . . , a t

have rational components with common denominator d where by Proposition 3.5, d is one
of the di and hence by (3.4) and by proposition (3.2), is bounded by J9\ Also, by the previ
ous lemma, the lengths of the vectors are all bounded by (y/nB). Further, it is easily seen
that the LLL algorithm behaves identically on input (d a l 5 da2..., da{) as it does on input
a i , a 2 , . . . , a i except that in the second case all vectors are divided by d. (dau...,rfat)
are integral vectors and thus the bounds proved in the LLL paper apply to them. For
these input, we have (from their Proposition (1.26)) that all numbers produced by their
algorithm are bounded in magnitude by

(m a x l ^ l) ^) ™ which is at most {Bn-l\f^B)en < (\ / ^ J 5) c n 2

D
P r o p o s i t i o n 3.8 : The total number of arithmetic operations performed by SHORTEST

while executing calls to the LLL algorithm is 0(nn log B).
Proof First, let us bound the total number of t imes LLL is called. By proposition 2.12,

this is at most (|) n n ! . Using the argument in lemma 3.7, each call to LLL performs at
most as many arithmetic operations as a call to LLL with integer input vectors each of
length at most Bn~ly/nB which is at most y/nBn. Using their proposition 1.26 then, we
have that each call to LLL performs at most 0(n4 log(y/nB n)) = 0 (n 5 log B + n 4 l o g n)
arithmetic operations. So the total number of operations performed by all calls to LLL is

20

(|) n n ! (n 5 log B+n4 log n). Using Stirling's approximation and the fact that | is strictly less
than e, the base of the natural logarithm, we see that this is asymptotically 0 (n n log B).

D

T h e o r e m (3 . 9)
On input 6 1 , . . . , b n which arc independent vectors with integer components each of

length at most VB, all numbers produced by the algorithm SHORTEST(n; 6 1 , . . . , 6 n) can
be represented in 0 (n 2 (l o g n + log B)) bits.

Proof : The proof will be based on lemma 3.6. It is not by induction on n - I will
actually consider the execution of the recursive calls in detail. Let us consider any call
to the procedure SHORTEST(i;ui,u2,.. . u t) (where i is less than n) occurring inside
the main call to SHORTEST{n\....). For each such call, I will consider the execution of
steps 1 through 3 and steps 5 through 13 . (In other words, I do not consider the steps
invoking the recursive calls since I have in the first place picked any arbitrary call to the
procedure inside of the main program.) Step 1 is trivial, step 2 is covered by lemma
3.7. In step three we have to project vectors - 1 * 3 , 1 * 3 , . . . « t perpendicular to a vector u x

where of course, these Uj form the basis of some projected lattice. Arguing as in lemma
3.6, we see that the Uj are all bounded in length by y/nB. By (3.5), their denominators
are bounded by Bn~l. Since projecting perpendicular to a vector involves taking certain
dot products and simple arithmetic operations, it is easy to see that step 3 never involves
more than 0 (n (l o g n + l o g £)) bit integers. Step 6 is a little harder to analyze partly
because I have not specified exactly how the lifting is done. I will do so presently. Suppose
t i i , U 2 , . . . U j is the basis of the lattice in step 3 and suppose U y , j = 2 , 3 , . . . i are the
projections perpendicular to U i i n step 3, let C7* be a matrix with these i — 1 vectors as
its t — 1 rows. Further, let u 2 , tT 3 , . . .Hi is the basis returned in step 4 after the call to
SHORTEST(i — 1;....) and let U be the matrix with these i — 1 vectors as its i — 1 rows. .
To lift these vectors, we do the following : We solve a linear system of equations in (i — l) 2

variables to find a (i — 1) x (i — 1) matrix T so that

U = TUt

Clearly, T so found will have integer entries and the determinant of it will be 1 in
absolute value. Now let V equal TV where U is the matrix with u 2 , t * 3 , . . . ut- as its i — 1
rows. Then the rows of V are nearly what we want. We need to ensure that for each
row of V , the projection of the row onto U i is at most (1 / 2) | u i | in length. This is done
without much difficulty. The solution of the simultaneous equations with a coefficient
matrix wi th entries of 0 (n (l o g n + log J5)) bits does not produce any numbers larger than
0 (n 2 (l o g n + logJ3)) bits. (Edmonds 1967)

All other steps are easily handled. In fact the only other step in which the size of
numbers exceeds 0 (n (l o g n + l o g S)) bits is in the SELECT — BASIS step when we have
to solve equations with the coefficient matrix entries with O (n l o g S) bits - in this case the
number of bits still remains 0(n2 log B).

•

21

4 Finding the closest vector
In this section, I consider the following closest vector problem :

(4-1) Given 6 l 5 6 2 , . . . bn independent vectors in Qn and b0 in £ n , find 6 in L{bu b2,... 6 n)
such that |6 0 — 6| is as small as possible.

This is called the inhomogeneous problem (corresponding to the homogeneous problem
called the Shortest Vector Problem earlier). The reason for this terminology is that in the
SVP we had to find the closest lattice point to 0, excluding itself whereas here we have to
find the closest lattice point to an arbitrary &o. Note however that here if 6o itself belongs
to the lattice, then the answer to be returned is 6o - in other words, here we do not exclude
b0 as an answer. We can test in polynomial t ime whether b0 in fact belongs to the lattice
by using the algorithm of von zur Gathen and Sieveking (1976) or Kannan and Bachem
(1979) to solve simultaneous diophantine equations , so I assume this is done at the outset
and in what follows 6o does not belong to the lattice.

Whereas as I remarked in the introduction, the complexity of the SVP is unknown at
present, the C V P (closest vector problem) is easily shown to be NP-hard. I will argue this
in section 6. So it is the case that the C V P is at least as hard as the SVP (since the latter
obviously is in N P when properly coded as a language as was done in the introduction).
I give an algorithm here to solve the CVP. This serves two purposes - it of course gives a
solution to the problem on hand and secondly, it introduces an idea that will be useful in
the integer programming algorithm.

The C V P algorithm functions as follows : It first uses the procedure SHORTEST to
make the basis bub2,.. .& n reduced - i.e., the basis then satisfies (2.7) and (2.8). Next , we
use an upper bound

ifcUMi))2)172
 = M (s a y)

on the distance between any 6 0 and its closest lattice point. (This bound will be proved
in proposition (4.2).) Because of this I can argue that there are not too many values of
(<*i, a 2 , . . . an) integers such that | £ y = 1 a ; 6y - bo\ is within the upper bound. Arguing as
in the case of shortest vector problem, (lemma (2.14)) , this gives us a bound of Mn/d(L)
on the number of possible n—tuples (a x , a 2 , . . . an) to enumerate. Unfortunately, this will
not in general be bounded by a function of n alone. So we have to use another idea :
If bi(%) is the largest among all the bj(j), then I will show that not too many values of
(o ^ O t + i , . . . a n) are candidates to be tried. The bound on the number of candidates will
be n,(n~i+l\ For each such candidate, we project to a (t — 1) dimensional problem and solve
these recursively. The details are explained after the algorithm.

P r o c e d u r e C L P (n ; bo, 6i, 6 2 , . . . 6 n)
C o m m e n t : This procedure returns the vector in L(bi, b2,... bn) that is closest in
Euclidean norm to 6 0- We assume that bub2,.. ,bn are independent vectors with
integer coordinates.
{bu &2, •. • bn} < - SHORTEST(n; bub2,... bn)

22

Return CLP9(n; 6 0 , • • • *n)
end CLP

P r o c e d u r e C I f P ' (n ; 6 0 , 61, 6 2 , . . . 6 n)

C o m m e n t : Does the same as CLP, but assumes that the input basis is reduced
in the sense of (2.7) and (2.8).

If n = 1 then return the easily computed closest lattice point.
Find i such that 6 t (i) = m a x y = 1 6 y (j)
CANDIDTES 0
For each "possible" A,-, A , - + i , . . . A n integers do :

C o m m e n t : This is the enumeration step. I will later explain what the word
"possible" here means.
If i = 1 then CANDIDATES <- CANDIDATES U { £ y = i Ay6y}

else do
V E?=, Ay&y
v9 <- CLP9{% - 1; 6 0 - 6i , . . . 6,-x)
CANDIDATES <- CANDIDATES\J{v + v1}

end
end

Return the element of CANDIDATES that is closest to bo.
end CLP9

The following proposition is used to show that the number of "possible" A,-, A t + 1 , . . . A n

is small.

P r o p o s i t i o n 4 .2 : Suppose L = L (6i , 6 2 , . . . bn) is a lattice in JZk, k>n wi th 6 i , 6 2 , . . . 6 n

independent and suppose 6 0 is any point in £ * . Let 6 0 he the projection of 6 0 onto the
span of { 6 i , 6 2 , . . . bn}. Then there exists a point 6 in L such that

i6 -5o i< l (E7=i (6 i (y)) 2) '
Further if % is such that 6,(t) = max 6 y (j) , then clearly, |60 - 6| < ^ 6 t (i) .
Proof : It is not difficult to see that we can successively choose integers a n , a n - i , . . . a x

(in that order) such that

((E r = y ^ - 5 o) , K j , i)) | < ^ (y) / 2
:ot all j . This is so because the choice of ay does not affect the inequalities that were

earlier ensured. Since 6(1, l) , 6 (2 , 2) , . . . 6 (n ,n) form an orthogonal basis for the vector
space they span, and bo by definition lies in that space, the proposition follows.

•
P r o p o s i t i o n 4.3 : With the notation set up in the last propositicn, there exists an

easily determined set T C Zn~i+1 with \T\ < n^i+1^ such that if £ y = i Ay6y is the (a)
closest point to 6o in the lattice then, (A,-, A t + i , . . . A n) belongs to T.

Proof : Suppose Z)y=i Ay6y = v is a closest point in L to 6 0 . Then clearly, v must be

the closest point in L to 6o. By the last proposition we must have \v — 6 0 | < ^ 6 t (i) . But ,

| v - 6 o | > | ((v - 6 o) , 6 (n , n)) | / 6 n (n) = |A n 6 n (n) - ((6 0 , 6 (n , n)) / 6 n (n)) | = | A n - t | 6 n (n)

23

for some fixed real number t. Thus there are at most ^bi(i)/bn(n) candidates for
A n . Now, one can show a similar bound for A,-, A , - + i , . . . A n using an argument similar to
proposition 2.13. So suppose A J + i , . . . A n are fixed integers, for some j > i + 1. Then
arguing as in that proposition there are at most

m a x (2 , 2&bi(i)/bj(j)) = V ^ M / W)
possible values of Ay such that the length of v — 60 in the direction of bj(j) remains

bounded by ^Aj(t)- Note that I have used the fact that 6t-(t) > Thus we have to
consider a set T of candidates At-, A t + i . . . A n where

m < n v ^ M o / M ;) (4.4)
/=«

Since the basis was reduced in the sense of (2.7) and (2.8), 6,-(t) is the length of the
shortest vector in the lattice Lt(&i,&2> ••-&n)- Further, the denominator of the expression
in (4.4) is obviously the determinant of the lattice Lt(61,62j---6n)- Thus by Minkowski's
theorem,

|r| < (v^ n" t + 1(n - i + l) * (- ' + l > = n<»-* + 1>.
•

T h e o r e m (4.5)

The algorithm CLP(n;...) solves the closest vector problem in 0(nns) arithmetic op
erations where s is the length of the input. Further all numbers produced by the algorithm
are rationals with numerator and denominator expressible in 0(n2(s + logn)) bits each.

Proof : Let T(n) be the number of arithmetic operations performed by CLP'{n\...).
Then,

T{n) < n< n- f' + 1>T(t - 1) + q{n)
where q(n) is a polynomial (Note that this does not depend upon s). Using the fact that

the max imum of (!^ i)^"" 1^ for 1 < i < n is attained at t = n and that the limit of (2 ^ i) ^ n ~ 1 ^
is c, we can establish by induction on n that T(n) is 0(nn). The proof is similar to that of
theorem (2.17) and I omit the details. So, the number of arithmetic operations performed
by CLP(n;...) is 0 (n n) plus the number performed by SHORTEST. Applying theorem
2.17, we get the current theorem. The bound on the number of bits of all numbers is
similar to the proof in section 3.

•
One can also find the Li closest and the closest vectors. See remark (2.18). The

number of candidates wiU have to be suitably adjusted.

5 I n t e g e r P r o g r a m m i n g
Integer programming again is the following problem:

(5.1) Given m x n and m x 1 matrices A and b of integers, determine whether there is a
x in Z n such that Ax < b.

24

We will do some "preprocessing" on the problem. First, we will modify the problem
so that the set {x : Ax < 6} is bounded, i.e., is a polytope. Second, we ensure that
the polytope has positive volume by projecting down to some lower dimensional set if
necessary. Then, we will apply an invertible linear transformation to both the polytope
and the lattice simultaneously so that the polytope becomes "well-rounded". I will define
"well-rounded" more rigorously in (5.2) below. Intuitively, it means that there are two
concentric spheres with the smaller one contained in the polytope and the larger one
containing the polytope so that the ratio of their radii is bounded above by a function
of the dimension alone. Lovasz has devised an ingenious polynomial t ime algorithm to
make the polytope "well-rounded". This and the rest of the preprocessing are also part
of Lenstra's algorithm. He gives a complete description of this in his paper, so I will say
nothing more here except to state precisely the problem at the end of the preprocessing :

(5.2) Given independent vectors 6 x , 6 2 , . . . , 6 n in Z n , an m x n integer matrix A and an
m x l integer matrix 6, determine whether there is an x in £ (6 1 , 6 2 , . . . , 6*) such
that Ax < 6, where the following additional conditions are satisfied by the input:
3 p G £ n , r and R reals such that
R/r < 2 n 3 / 2 (5.2a)
B{p,r) C{xe Zn,Ax < 6} C B{p,R) (5.2b)
where (B(q, s) is the ball of radius s with q as center).

We proceed as follows: We apply SHORTEST to 6 x , . . . , 6 n . Let now |6 t(t')| =
maxy |6 ; (j) | . Then there is clearly a point 6 of L (6 l 5 . . . , 6 n) (by proposition 4.2) such
that |6 — p\ < ^ | 6 j (t) | . We consider two cases: (as in Lenstra)

Case 1; r > ^ | 6 t - (t) | . Then the answer to question (5.2) is Yes since the inner sphere
itself contains a lattice point. So we can return Yes and stop the algorithm. It is easy to
see that in this case, we can in fact find the lattice point.

Case 2: r < ^ | 6 , (t) | whence R < n J | 6 , (t) | . In this case, we argue as in the last section
that there are not too many integer values of A,-, A t + 1 , . . . , A n for which there exist integers
Ai, A 2 , . . . A t_i so that 2y = iAy6y belongs to S (p , R). We then enumerate all these values
of A t , . . . , A n and for each, solve a (i — 1) dimensional problem. So the algorithm is going
to be a recursive procedure.

25

procedure. ILP(n;A,b).
Comment. See description of problem (5.1) above. A is an m x n matrix of integers

and b an m x 1 matrix of integers. The procedure returns Yes or No to the question (5.1)
l .Ensure boundedness of the feasible set in Zn. Then ensure positive volume. Use
Lov&sz's algorithm which applies a suitable linear transformation on the space and
ensures conditions (5.2a) and (5.2b). Apply the same linear transformation to the
lattice. So now we have independent vectors &i, 6 2 , • • • bn, an m x n matrix A and an
m x 1 matrix 6 satisfying the conditions of problem (5.2) and we must solve this problem.
(Of course, n, m may not be the same as in the original input.)
2. { & i , 6 2 , - . . A } « - SHORTEST {bub2,...,bn}
3. Let bi(i) = m a x ? ^ bj{j).

4. if r > ^ | f c (t) | then return Yes
Comment. We may now assume that r < f |6j(t)| and R < n 5 / 2 | 6 t (t) | .

5. if i = 1 then do.
6.for each candidate Ai, A 2 , . . . , A n integers do.

Comment. Enumeration is explained later.
7 .if] C * = 1 Xjbj = x satisfies Ax < b then return Yes.
end

8.Return No
end
9.for each candidate {A,-, A 1 + i , . . . , A n } G Z n ~ , + 1 do:
Comment. We explain later what the candidates are.

10. b 0 ^ E U X i b i
Now, a candidate {A,-, A t + i , . . . , A n } G Zn~%+X i s fixed. We want to determine
whether there is a point z in L(bi, 6 2 j • • • fti-i) such that z+b0 satisfies Ax < 6,
equivalently z satisfies Az < b — Abo. Letting z = otjbj, and B to be the
n x (t — 1) matrix with 6 X , 6 2 , . . . 6 t _i as its columns, we want ABa < (6—Ab 0)
where a is required to be a * — 1 vector of integers.

11. if ILP(i — 1; AByb — Abo) returns yes then return yes.
end
Return N o
end I LP
As usual, we first explain the enumeration process. At the beginning of Step 5, we may

assume that R is less than 6 t (t) n 2 . Thus any vector a, in L(bu... , 6 n) which could belong
to the polytope {x : Ax < b} must have the property that |a — p| < 6 t-(i)ra2. Hence the
projection of a — p in the direction of 6 (n ,n) must be less than n 2 6t(t) . Thus, we need to
try at most

2 t t 2 ,M* ' l values of A n

M n)
Arguing in a similar vein to Proposition 2.13 and Proposition 4.3, the number of

candidates for A,-, A f -+ i , . . . , A n is at most

26

2 n - , + l n 2 (n - , + l) n | 6 i (.) | / | 6 . (y) | (5 3)

bi(i) equals Ai(Z,t-(6i,&2>•••&,*) s i n c e w e applied SHORTEST. The denominator of
(5.3) is, of course, <£(£i(&i,&2> • • - & n)) « Thus using Minkowski's theorem, the whole expres
sion is bounded by n 5 (n ~ t + 1) .

The lengthy comments already argue the correctness of the algorithm. In what follows
, I prove bounds on the number of arithmetic operations and the bits needed to repre
sent intermediate numbers. The latter bound is not a polynomial, which is undesirable.
Recently, Frank and Tardos (1985) have used an ingenious method of approximating lin
ear equations to make the number of bits in this algorithm polynomially bounded. The
interested reader is referred to their paper.

T h e o r e m (5 . 4)

The algorithm ILP(n;...) on an input of length s, correctly solves the n-variable inte
ger programming problem in 0(n*ns) arithmetic operations. Each integer produced by the
algorithm is 0 (n 2 n s) bits in size.

Proof The second part is proved first. There are two steps that dominate the production
of large numbers - the "rounding out" step (step 1) and the execution of SHORTEST.
In what follows, I will restrict attention to these steps, leaving it to the reader to check
the other ones. The ILP algorithm takes various sections of the polytope and works on
each of these sections. Since "taking a section" reduces the dimension by 1, there can be
at most n nestings of the "rounding out" and SHORTEST steps. I will argue that one
pair of executions of these two steps does not increase the size of numbers by more than
a factor of 0 (n 2) , thus yielding an overall factor of at most 0(n2n).

By going through the construction to "round out" a polytope due to Lovasz , one finds
that this increases the number of bits by at most a factor of n2. This is because the algo
rithm obtains the affine transformation that rounds out the polytope {x : Ax < 6} by map
ping (ra+1) of its vertices (in n dimensions) to (0 , 0 , 0 , . . . , 0) , (1 , 0 , . . . 0) , (0 , 1 , . . . ,0) . . .
Let S be the n x n matrix whose i th row equals the i+1 st of these n +1 vertices minus the
first. Then the lineax transformation corresponding to the affine transformation has as its
matrix 5 " 1 . The number of bits of S"1 is at most 0(n2) t imes the number of bits needed
to define the polytope; we loose at most a factor of O(n) to get S - see for example Gacs
and Lovasz (1979) and a factor of 0(n) for the inverse . Thus the transformation does not
increase the number of bits by more than a factor of 0 (n 2) . The algorithm SHORTEST
then increases the sizes by at most a factor of 0 (n 2) by theorem 3.9. (There is an additive
ra2logn term in the theorem, but this is subsumed by the other terms.) But when the
algorithm SHORTEST is finished, the sizes are much smaller by propositions 3.1 and 3.2,
in fact, they are at most O (l o g n) plus what it used to be at the start of SHORTEST.
Thus I have proved what I promised at the end of the last paragraph.

For the number of arithmetic operations, we use the recursion
T{n,s) < nf<n-f'+1>r(t - l , n 2 s) + cnns

27

By induction, we can now show that T (n , s) is 0 (n f n s) .
D

If we use the algorithm of Frank and Tardos (1985) and keep numbers polynomially
bounded in size, the number of arithmetic operations will be reduced to 0(n*ns).

I will now briefly discuss the structural result underlying the algorithm. Consider
the subspace V spanned by the vectors 61 ,62?. . .61-1 where i is defined in step 3 of the
procedure I LP. Every lattice point of L (6 1 , 6 2 , . . . 6 n) belongs to a translate of V of the
form V+z where z is in I,(6 t-, 6 1 + 1 , . . . 6 n) . What I have shown is that at most nt (n ~" t + 1) such
translates interest the polytope if the polytope contains no lattice points. The proof applies
to only "well-rounded " polytopes. But , it can be easily extended to all polytopes with
positive volume : Suppose P is any polytope with positive volume (i.e., is full-dimensional).
Then Lovasz's algorithm finds a linear transformation r so that rP is well-rounded. Then
clearly, the number of translates of V intersecting rP equals the number of translates of
[T~1)V intersecting P.

If we only want an existential result and are not interested in finding the subspace V ,
we can do better than f in the exponent. The argument is as follows : A result of John
(1948) says that for any convex body K in Zn (the word "body" is used to denote a set
of positive volume) there axe two similar ellipsoids Ei, E2 such that Ei C K C E2 and E2

is obtained by dilating E\ about its center by a factor of n. Suppose r is the invertible
linear transformation that sends E\ into a sphere of radius 1 (and hence E2 into a sphere
of radius n). Suppose also that K(lZn is empty. Let 6 1 , 6 2 , . . . 6 n be a reduced basis of the
lattice L = rZn (in the sense of (2.6)) . Let 6t(t) be the maximum of the 6y(j) 's and let V
be the space spanned by 6 1 , 6 2 , . . . 6 t _i . Since Ei fl Zn is empty, we must have that TEX n L
is empty and hence ^ftj(t) > 1 by proposition 4.2. This and the fact that rE2 has radius n
can be used to show that the number of A», A t + 1 . . . A n for which there exists Ai, A 2 , . . . A,_i
(all integers) so that]Cy = 1 Ay6y belongs to TE2 is at most n f (n ~ f ' + 1) [JyL,- y*[^ and by using
Minkowski's theorem (1.12) we get that this quantity is at most n 2 (n ~ 1 + 1) . This bounds the
number of translates of V intersecting the TK and hence the number of translates of T~1V
intersecting K. The case when i was equal to 1 was the "best" case for the algorithm,
because, then the problem is solved by simple enumeration, no recursive calls were needed
in this case. However, for the existential result, it is not interesting because then V = { 0 }
and the relevant translates of V are just the singleton sets consisting of lattice points.
Since Kn Zn = 0, we already know that none of these translates intersects K. But , going
back to the enumeration argument, since 6<(t)/6l(t) = 1, we could argue exactly the same
bound on the number of candidates of A t + 1 , A t + 2 • • • Xn. This ensures that the subspace V
is always of dimension at least 1. I have proved (albeit sketchily) the following theorem.

T h e o r e m (5*5)
Suppose K is any bounded convex body in Zn with K fl Zn = 0. Then there is a

i , 1 < % < n and an i dimensional space V which has a basis of integer vectors such that
the number of translates ofV containing lattice points that intersect K is at most n2(n~%+1\

The result of H.W.Lenstra's mentioned in the abstract can be restated as : If K
is any bounded convex body in Zn with K fl Zn = 0, then there is a n - 1 dimensional

28

subspace V , spanned by integer vectors such that the number of translates of V containing
integer points that intersect K is at most cn*. The bound was improved to c n by Babai
(1985). Based on the results of Lenstra and Schnorr (1984), Hastad (1985) improved it
to a polynomial - C (n 5 / 2) . Grotschel, Lovasz and Schrijver (1982) have extended this to
unbounded convex bodies. Cook, Collurd and Turan (1985) use this to derive bounds on
the number of cutting planes needed to prove the infeasibility of integer programs. By
not restricting only to n — 1 dimensional subsapces, theorem (5.5) is able to get a 2 in the
exponent. It is likely that both Has tad's result and theorem (5.5) can be improved giving
us further improvement in the running t ime of the integer programming algorithm.

6 C o m p l e x i t y I s s u e s .

It was conjectured in Lenstra (1981) that the problem of finding a shortest vector in a
lattice L = 1 , (6 ! , . . . , 6 n) given 6 i , . . . , 6 n is NP-hard.

The conjecture is still open. Van Emde Boas has proved the language L 2 — CLOSEST
defined below (which is the natural language corresponding to the Closest Vector Problem)
to be NP-complete . Van Emde Boas's proof is complicated and technical. It is also not
published. So I will give here a more natural NP-completeness proof of this language. The
reduction will be from 3-dimensional matching (3DM) described below which is known to
be NP-complete . (Karp 1972)

(6.1) Given a set T C { 1 , 2 , . . . n } 3 , determine whether there is a subset M of T such
that for each i € { 1 , 2 , . . . n } , M has precisely one 3-tuple containing i in the first
coordinate, precisely one 3-tuple containing i in the second coordinate and precisely
one 3-tuple containing it in the third coordinate. (These 3-tuples do not have to be
distinct.)

T h e o r e m (6 . 2)
The language L2- CLOSEST = { (6 0 , & i , . . . , 6 n ; K)\3b e L{bu... , 6 n) such that | 6 -

601 < K} is NP~complete.

Proof We can easily reduce the 3DM problem to an integer program as follows : We
set up one variable xt for each 3-tuple t in T. This variable will be forced to take on only
the values 0 or 1. The interpretation is that x% = 1 iff t is included in M . Then the 3DM
problem is equivalent to the following problem. I leave the proof of this to the reader.

(6.S) Does there exist a feasible solution to the following integer program :

Yl x(iJ,k) = 1 for t = 1 , 2 , . . . n
iU>k):(iJ,k)eT}

(6.3a)

]C = 1 for x = 1 , 2 , . . . n
{U,k):U,i,k)€T}

(6.36)

29

X) x(i.*,0 = 1 for » = 1 , 2 , . . . n (6.3c)
{(i,*):(i,*,0€T}

xt e { 0 , 1 } for all t e T (6.3d)

P r o p o s i t i o n (6.4) : In the above integer program, (6.3d) can be replaced by the
following conditions :

£ * ? < n ; (6.5a)
ter

xt e ZVteT (6.56)

Proof : Suppose x (considered as a vector with \T\ components) is a solution to
(6.3a),(6.3b),(6.3c) and (6.3d). If x has less than n nonzero components (which are each of
course one) , then one of the equations (6.3a) will be violated because (6.3a) comprises of n
different equations in disjoint sets of variables; also if x has more than n components with
value 1, one of the left hand sides in (6.3a) will be at least 2. Thus x must have precisely
n l ' s and so it satisfies (6.5) . Conversely, suppose x satisfies (6.3a),(6.3b),(6.3c) and (6.5).
To satisfy (6.3a) for example, x must have at least n nonzero components . Each of the
nonzero components is of course an integer, so to satisfy the inequality in (6.5), there must
be precisely n nonzero components in x and each of these must be ± 1 . But if even one
of them is - 1 , there is no way to satisfy (6.3a) say. So they must all be + 1 and we have
proved the proposition.

With the proposition, I have shown the following problem to be NP-complete : (by
reducing 3 D M t o it)

(6.6) Given m x n and m x 1 matrices of integers A and 6 respectively and an integer i f ,
determine whether there is a n— vector x satisfying :

A x = 6 xeZn \z\<VK (6.7)

where |x | is the Euclidean length. I will now show that this problem is polynomial t ime
many-one reducible to the Closest Vector Problem (CVP) . By using the Hermite Normal
form algorithm of Kannan and Bachem (1979), one can find the general integer solution
of a system of linear equations in polynomial t ime. We use this to obtain 6 0 , 6 l 5 . . . 6 r

belonging to Zn so that Ab0 = 6 and Z , (6 i , 6 2 , . . . 6 r) = {x : x e Zn]Ax = 0 } whence we
have {x : x € Zn,Ax = 6} = 6 0 + L(bub2j.. . 6 n) . Thus to solve the problem (6.7),, it
suffices to find whether there is an element of L (6 i , 6 2 , . . . 6 r) within distance y/K of —6 0 .
This then completes the proof of theorem (6.2)

D

The inequality (6.5a) may be replaced by £ \xt\ < n. This proves that the correspond
ing language for the Lx norm is also NP-complete. A similar proof works for the norm
too.

30

Now, let us turn our attention to the Shortest Vector Problem (SVP) . First, it is conve
nient to define a language corresponding to the SVP. I will call this language L2SHORTEST

L2-SHORTEST = {{bu...,bnj;K)\3beL{bu...,bn) b ^ 0 such that |6| < K}

T h e o r e m (6 . 8)
Given bo,bi,. ..,bn in Zn, n > 2 with polynomially many calls to a subroutine for

deciding membership in L2 — SHORTEST and polynomial additional time we can find a
vector y in £ (& i , . . . , 6 n) such that for all y1 in L (6 i , . . . , 6 n) ,

| y - * o | < y/n/2.\y'- b0\

Remark. The theorem asserts that the problem of finding an approximate closest
vector to within a factor of yJn/2 is polynomial-time Turing(Cook) reducible to L2 —
SHORTEST. The reduction given is essentially a Cook reduction - it invokes more than
one call to the subroutine.

We show first that given a subroutine that accepts L 2 -shortest , we can actually find
a shortest vector in a lattice. Suppose L = L (6 i , . . . , 6 n) , 6t- £ Zn independent is the
lattice in which we want to find a shortest nonzero vector. Define

I = (VZ(d(L))±y (6.9)

Let r be the linear transformation given by the nxn diagonal matrix containing entries
tzn + £n+i - t i n t h e ^ ^ t h p O S i t i o n for i = 1 , 2 , . . . n (6.10)

(r multiplies the i th coordinate by (£ n + 1 - * + lZn).

L e m m a (6 . 1 1)
Suppose L = L (6 i , . . . , 6 n) where 6f- G Zn and are independent and define I and r as

in (6.9) and (6.10). Then for L * = TL, any shortest nonzero vector of L * must be of the
form

Y = ((l3» + ln)yu + £ (" - 1)) y 2 , . . . , (£ 3 n + l)yn) (6.12)
where (t/i, y2,..., yn) is a shortest vector L and for any other shortest vector (j/'x, y'2y..., y'n)

of L , we have

Ittol < Hoi f o r *'o = mk?=i {« : *\ ± (6-13)

(In other words (| t / i | , . . . , | y n |) is the lexicographically least among the shortest vectors of
L).

Proof : Clearly, A^L*) < (£ 3 n + £") A X (L) (6.14)
Suppose now Y is a shortest vector in L* and the corresponding (y 1 } y 2 , . . . ,y„) (ac

cording to (6.12)) is not a shortest vector of L. Then noting that the y,- are all integers,

31

I*T > H\(yuV2^..,yn)|2) > t?n{A>i(L)2 + 1)

= t?nh\(L) + e n > (lZn + r) 2 A i (L) 2

(from (6.9) and Minkowski (1.12))
This contradicts (6.14) and hence y = (yi, j/2,..., yn) must be a shortest nonzero vector

of L. Further, \Y\2 = (lZn + £ ») 2 y 2 + . . . + (£ 3 n + £) 2 y 2 . Suppose y' = (y i , . . . , y ' n) is another
shortest vector of L and (6.13) is violated. Then | y t 0 | > |yt'J + 1. It can be seen easily
that this together with the fact that |yj | < I for all j (by the definition of I in (6.9)
and Minkowski) implies that Y9 = ry' is shorter than Y in L* — a contradiction. Thus
(|j/i|) • • • > \Vn\) must be lexicographically least among all the shortest vectors of L.

•
From (6.12) and the fact that a shortest nonzero vector y = (y i , . . . , y n) of L must

satisfy |yy| < £*/ 4 for all j , we see easily that if \Y\2 is given, then (|yi | , | y 2 | , . . . , | y n |) can
be determined: Expand the integer \Y\2 to the base I to write

6n

then y\ = a 2 n , y | = oc2(n-i)? • • • > !/n = a2- Now further, given a subroutine for L2SHORTEST,
we can find \Y\2 using binary search in polynomial t ime. Thus we can find (|yi | , | y 2 | , . . . , | y n |)
using the subroutine and polynomial additional t ime . Using this, of course, we could also

find | y i | , . . . | y n | .
We still need the signs of the components of y. Towards this end, first note that L*

has the property that if Y is a shortest vector of L*, then for any other shortest vector Y'
of L*, = |17| (by (6.13)) . Let (|Yi|, | y 2 | , . . . , \ Y n \) be the magnitudes of the coordinates
of a shortest vector Y of L* already found as described above. Consider the (n — 1)
dimensional lattice:

L9 = L* n {x : xx\Y2\ - x 2 | Y i | = 0 }

Clearly, Ai(Z/) = Ai(Xr*) iff there is a shortest vector of L* with the first two coordinates
positive. Let L" = L* fl {x : xx\Y2\ + x2\Yx\ = 0 } . Then Ai(£") = A X(L*) iff there
is a shortest vector of L* with the first two coordinates of opposite signs. So, we do the
following: using our subroutine for L 2 -Shortest , we check if Ai(L') = Ai(L*). If so we
find (recursively) a shortest vector in L9 and hence figure out a shortest vector of £* , then
of L. If not , we find (recursively) a shortest vector of L" and do like-wise. Note that to
solve the problem of Lading a shortest vector in n-dimensions, we solve one instance of the

ssponding (n — 1) dimensional problem plus polynomially many calls to Z^-shortest. corres

L e m m a (6 . 1 5) With polynomially many calls to a subroutine accepting the language
L2 - SHORTEST and polynomial additional time, we can find a shortest nonzero vector
in a lattice.

32

R e m a r k : A lemma similar to the one above holds for most known NP-complete lan
guages and several other ones-like linear programming. For example, it is easy to see by
using self-reducibility that given an algorithm to test whether a given Boolean formula is
satisfiable, we may use it to find a satisfying assignment. This speaks for the versatility
of the language SAT. (the set of satisfiable Boolean formulas). It is interesting that the
language L2 — SHORTEST not yet known to be NP-complete has this versatility.

We now study the relationship between the problem of finding a closest vector of a
lattice in £ n , to a given point in Zn (called the "inhomogeneous problem") to that of
finding a shortest nonzero vector of a lattice (called the "homogeneous problem"). The
device we use to relate these two may be called the process of "homogenization". The
technique is used in polyhedral theory. The idea is to relate the inhomogeneous problem
for a lattice L in n dimensions t o a homogeneous problem for a lattice V constructed from
L in (n + 1) dimensions.

Suppose we are given 61,62?••• 5 6 n , 6 o in Zn and are asked to find a point 6 of L =
L (6 i , . . . , 6 n) which is approximately (to be defined later) closest (in Euclidean distance)
point of L to 6 0 . We first check whether 6 0 is in L by using a polynomial-time algorithm
to solve linear diophantine equations. If so, we may stop. Otherwise we find (using the
subroutines for the homogeneous problem) A i (j L) (the length of a shortest nonzero vector of
L: Caution: this may be irrational, so we will only find an approximation to it in the actual
algorithm, but to simplify the current discussion, assume we know Ai(L) exactly) . We then
consider the lattice V in £ n + 1 generated by b\ = (6 t-,0) for i = 1 , 2 , . . . , n and 6 ' n + 1 =

(60, (.51)|Ai(Z/)|). We find a shortest nonzero vector v = (v i , . r . , v n + i) of V (Lemma 6.15).
This gives us information about the vector closest to 60 in L as summarized by the following
lemma:

L e m m a (6 . 1 6)
Suppose L = I , (6 i , . . . , 6 n) is a lattice in Zn and 6 0 in Z n is not in L. Let V be as

defined in the last paragraph and let v = (v i , . . . , v n + i) be a shortest nonzero vector of V
with v n + i < 0. / / v n + i = 0, then, |60 - 6| > .8 |Ai(L) | for all b in L. If v n + 1 ^ 0 then
Vn+i = —(-51)|Ai(Zf)I and (t>i,V2>-« . , v n) + 60 is the closest vector in L to 6 0 .

Proof The shortest vector v = (v i , V 2 , . . . , v n + i) of V must clearly satisfy |t>n+i| ^
|Ai(Z,)| because there is a vector of length |Ai(L) | in L and hence in V\ Thus v n + 1 =
0 o r ± .51 |Ai(L) | . Without loss of generality, we assumed v n + i < 0 and hence is 0 or
- (. 5 1) |Ai(L) | . Let 6 be a closest point of L to 6 0 and 6 = £ ? = ! a y 6y. If | 6 - 6 0 | < .8 |Ai(L) | ,
then

" Cil < |Ai(L)l' ((-8) 2 + (-51) 2)* < |Ai(L) |

and hence the shortest vector v of V must have v n + 1 = — (.51)Ai(L) . This proves the
first statement.

To prove the second statement, assume that v n + i = —,51|Ai(L)|. Then v equals
(—b'n+1 +]£7=i Pity) f ° r some integers and since the last component of v is fixed at

33

absolute value .51 (|A i (£) | , v will be shortest when £ 1 fybj is closest to 6 0- This proves
the lemma.

D

The lemma leads to the following recursive algorithm for approximating the closest
vector. The recursion will be on the dimension of the lattice. The factor of approximation
will be yJn/2 as asserted in theorem 6.8. For n = 2, the algorithm is obvious. So assume
we are given a lattice L of dimension n > 2 and a point &o- First, we find the shortest
vector v in the lattice V used in the lemma. If v n + i ^ 0, then we have already found
the closest vector and we may stop. In the other case, the distance of 6 0 to L (henceforth
denoted rf(6o, L)) is at least .8Ai(L). We obtain a basis 6 l 5 6 2 . . . bn of L wi th &i as a shortest
vector using the subroutine for L2 — SHORTEST (cf. Lemma 6.15 and the procedure
SELECT — BASIS of section 2) . In the rest of this proof, we let the superscript *
denote the projection perpendicular to b\. Recursively we find an element b G L so that
|S — &o| < ^ / ^ ^ (S o ? L). Now, find 6 in L so that 6 projects to 6 and 6 — 6 0 has a projection
along the direction of 6X of length at most |&i|/2. Then,

We know that | 6 x | 2 / 4 < (4 x AiyHfaL)* < \(d{b0,L))2. Further, we must of
course have d(b0,L) < d(bo,L). Using these two inequalities in (6.17), we get |6 — 6 0 | 2 <
^(d(bo,L))2 proving theorem (6.8) .

7 R e m a r k s

The most important open problem in the area is of course the complexity of the shortest
vector problem which has been discussed in the body of the paper. It is conjectured
that this problem is NP-hard at least under Cook (Turing) reductions. One approach to
proving this is to prove that the approximate version of the Closest vector problem is N P -
hard. Approximate versions of Integer Programming, Traveling Salesman problem etc. are
known to be NP-hard. The difficulty wi th the C V P is that it is asking for an integer point
within a sphere - a very special object. This also raises another interesting question - in
proving NP-completeness of the C V P in section 4, I reduced the 3-dimensional matching
problem to it. Suppose now, we wish to reduce Integer Programming to the CVP. If the
IP has n variables and has a total description of length s (the number of bits) , then the
reduction to the 3 D M in general will lead to a problem where the number of variables
will depend on n as well as s polynomially. The question is : Can we reduce integer
programming in polynomial t ime to C V P so that the number of dimensions of the CVP is
a small function of n, the number of variables of the IP ? Geometrically, can the question of
whether a polytope in Zn has an integer point be reduced in polynomial t ime to questions
of whether certain spheres in Zm have integer points for some m close to n. It seems
possible that we can achieve a polynomial bound on m in terms of n alone. For the
reasons stated earlier in the paragraph, the answer to this question should shed some light

34

V

on the NP-hardness of the SVP.
Another interesting open problem is to devise polynomial time algorithms that come

within a subexponential factor of the shortest vector. In this connection, it is also interest
ing to consider lattices over other rings than the integers. Lattices over GF(2) which are
of course just vector spaces are of particular interest in coding theory and cryptography,
so, I state the "Shortest Vector Problem " for such lattices below : The length of a vector
with 0,1 components is defined to be the number of l ' s in it for this discussion. This is
also called the "Hamming length". The question is : Given n 0,1 vectors 61,625 • • • 5 6 n find
the (Hamming) shortest nonzero linear combination of them where all operations are done
modulo 2. We can also define an analogous "closest vector problem" for these . The CVP
is easily shown to be NP-hard (Berlekamp, McElicee and van Tilborg (1978)) , however
the complexity of the S V P is still open. The C V P is equivalent to the question of finding
the shortest circuit containing a particular edge in a binary matroid (Tutte (1959)). In
very special cases when the binary matroid is graphic, the problem is the shortest path
problem for graphs, which is , of course, polynomial time solvable. A complicated and
clever argument of Seymour's (1980) gives a polynomial t ime algorithm for a broader class
of binary matroids. The SVP is equivalent to the problem of finding the shortest circuit in
a binary matroid. It is trivial t o solve the SVP in 2 n steps where n is the dimension of the
lattice. A slightly better algorithm is possible when we wish to determine whether there is
a nonzero vector in the lattice of (Hamming) length at most k where k is small compared
to n. In this case, we can do with (fy steps as follows : we do Gaussian elimination on
the basis vectors (since we are in a field) to ensure that there are n distinct components
*i, * * 2 , . i n such that the j th basis vector in the new basis is 1 in the ij th position and
zero in the other n — 1 positions of the set { i j , t 2 , . . . i „ } . Then it is clear that any vector
in the lattice of length at most k must be the mod 2 sum of at most k of the new basis
vectors. Obviously, this does better than the naive algorithm when k < n/2. This case is
of interest in certain situations in cryptography. However, to my knowledge, no subexpo
nential algorithm is known for the problem in general. It is not clear prima facie that any
of the techniques for integer lattices will carry over to these lattices.

One of the essential ideas for all the three algorithms in this paper is the argument
bounding the number of candidates for the enumeration. It seems possible that this
argument will be of more general use. There is a context other than those in this paper
where it has been shown to be useful. (Furst and Kannan 1985). I mention this briefly :
Suppose we are given a basis 6 i , 6 2 , . . . 6 n of a lattice with MinJ l

= 1 6 f (i) = t. Then for any
vector v, we can determine in polynomial t ime whether there is a point u in the lattice
^uch that |u —v| < t/2. To see this, let u = £ At6t- satisfy |u —v| < t/2. It is not difficult to
see that there is at most one candidate for A„, since 6 n (n) > t. Similarly, if A n . A n _ i , . . . A t+i
are fixed, there is at most one candidate for A,. This helps us determine quickly whether
or not there is such a u. This is one of the ideas used by Furst and me to develop a proof
system that yields polynomial length proofs of the infeasibility of subset sum problems in
almost all instances.

Acknowledgment: I wish to thank Alan Frieze, Merrick Furst, Bett ina Helfrich, Gary
Miller, and Claus Schnorr for helpful discussions and pointing out errors in earlier drafts.

35

8 References
L.Babai, On Lovsaz's lattice reduction and the nearest lattice point problem , to appear in
Combinatorica (1985)

E.R.Berlekamp, R.J.McElicee and H.C.van Tilborg, On the inherent intractability of
certain coding problems IEEE Transactions on Information Theory Vol. 24 , May (1978)
pp 384-386

H.F.Blichfeldt, The minimum value of quadratic forms and the closest packing of
spheres Math. Annalen 101 pp 605-608 (1929)

J.W.S.Cassels, An introduction to the geometry of numbers Springer Verlag (1971)
S.A.Cook, The complexity of theorem proving procedures Proc. 3rd Ann. ACM Sym

posium on Theory of Computing, Assoc. Comput. Mach., New York (1971) pp 151-158
W.Cook, C.Cuilard and Gy.Turan, Complexity of cutting planes , Technical report ,

Institut fur Operations Research , University of Bonn (1985).
J .Edmonds, Systems of distinct representatives and Linear Algebra, J. Res. Nat. Bur.

Standards, Sect. B 71B (1967) pp 241-245
A.Frank and E.Tardos, An application of simultaneous approximation in combinatorial

optimization , Report Institut fur Okonometrie und Operations Research , Uni. Bonn,
W.Germany (1985) to appear in Combinatorica.

M.L.Furst and R.Kannan, Proofs of infeasibility for almost all subset sum problems ,
In preparation (1985)

P.Gacs and L.Lovasz, Khachian's algorithm for linear programming, Mathematical Pro
gramming Studies (1979).

M.Grotschel, L.Lovasz and A.Schrijver, Geometric methods in combinatorial optimiza
tion , in : Progress in Combinatorial Optimization (W.R.Pulleyblank, ed.) , Proc. Silver
Jubilee Conference on Comb. Opt. , Univ. of Waterloo, Vol. 1, (1982), Academic Press ,
N.Y. (1984)

J.Hasted Private Communication (1985)
B.Helfrich, Algorithms to construct Minkowski reduced Hermite reduced lattice bases,

Uni. Frankfurt Technical report, to appear in Theoretical Computer Science. (1985)
D.Hirschberg and C.K.Wong, A polynomial-time algorithm for the knapsack problem

with two variables, J. Assoc. Comput. Mach. 23, (1976) pp 147-154
F.John, Extremum problems with inequalities as subsidiary conditions, Studies and

Essays presented to R.Courant (1948)
R.Kannan, A polynomial algorithm for the two variable integer programming problem ,

J. Assoc. Comput. Mach. 27, (1980) pp 118-122
R.Kannan, Lattices, basis reduction and the shortest vector problem, Coll. Math. Soc.

J.Bolyai , 44, Theory of Algorithms , Pecs (Hungary) (1984)
R.Kannan, Improved algorithms for integer programming and related lattice problems

15 th Annual A C M symposium on theory of computing (1983) ppl93-206
R.Kannan and A.Bachem, Polynomial time algorithms for computing the Smith and

Hermite normal forms of an integer matrix, SIAM Journal on Computing, 8 (1979) pp
499-507

36

R.M.Karp, Rtducibility among combinatorial problems in R.E.Miller and J.W.Thatcher
(eds.) Complexity of Computer Computations , Plenum Press, New York pp 85-103 (1972)

A.Korkine and G.Zolotareff, Sur les formes quadratiques, Math. Annalen 6, (1873) pp
366-389

C.G.Lekkerkerker, Geometry of Numbers North Holland , Amsterdam, (1969)
A.K.Lenstra, Lattices and factorization of polynomials , Report IW 190 /81 , Mathema-

tisch Centrum, Amsterdam (1981)
A.K.Lenstra, H.W.Lenstra and L. Lovasz, Factoring polynomials with rational coeffi

cients Mathematische Annalen 261 (1982), pp513-534
H.W.Lenstra, Integer programming with a fixed number of variables First announcement

(1979) Mathematics of Operations research, Volume 8, Number 4 Nov (1983) pp 538-548
H.W.Lenstra and C.P.Schnorr, On the successive minima of a pair of polar lattices

Technical report, Uni. Frankfurt, Oct (1984)
H.Minkowski, Geometric der Zahlen Leipzig, Tuebner (1910)
H.E.Scarf, Production sets with indivisibilities Part I : Generalities, Econometrica 49

pp l -32 , Part n :The case of two activities , ibid, pp 395-423 (1981)
C.P.Schnorr, A hierarchy of polynomial time basis reduction algorithms in : Coll.

Math. Soc. Janos Bolyai, 44 , Theory of Algorithms Pecs (hungary) (1984)
P.D.Seymour, Decomposition of regular matroids Journal of Combinatorial Theory (B)

28 (1980) pp 305-359
G.Strang Linear algebra and its applications Academic press (1980)
W.T.Tutte , Matroids and graphs Trans. Amer. Math. S o c , 90 (1959) pp 527-552
P.van Emde Boas , Another NP-complete problem and the complexity of computing short

vectors in a lattice Report 81-04, Mathematische Instituut, Uni. Amsterdam (1981)
J. vonzur Gathen and M.Sieveking, Weitere zum Erfullungsprobleme polynomial equivalents

kombinatorische Aufgaben in : Lecture Notes in Computer Science 43 (Springer , Berlin
1976)

37

	Carnegie Mellon University
	Research Showcase @ CMU
	1986

	Minkowski's convex body theorem and integer programming
	Ravindran Kannan

	tmp.1332444119.pdf.IYQoy

