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POLYNOMIALS RELATED TO HARMONIC

NUMBERS AND EVALUATION OF HARMONIC

NUMBER SERIES II

Ayhan Dil, Veli Kurt

In this paper we focus on r-geometric polynomials, r-exponential polynomi-

als and their harmonic versions. We show that harmonic versions of these

polynomials and their generalizations are useful for obtaining closed forms of

some series related to harmonic numbers.

1. INTRODUCTION

In [15] the concept of harmonic-geometric polynomials and harmonic-expo-
nential polynomials are introduced and hyperharmonic generalizations of these
polynomials and numbers are obtained. Furthermore, it was shown that these
polynomials are quite useful for obtaining closed forms of some series related to
harmonic numbers. In this paper, we extend this analysis to r-versions of these
polynomials and numbers.

Boyadzhiev [6] has presented and discussed the following transformation
formula:

(1)

∞
∑

n=0

g(n)(0)

n!
f(n)xn =

∞
∑

n=0

f (n)(0)

n!

n
∑

k=0

{

n

k

}

xkg(k)(x)

where f , g are appropriate functions and
{

n

k

}

are Stirling numbers of the second

kind.
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One of the principal objectives of the present paper is to give closed forms
of some series related to harmonic numbers as well. To this end, we give a useful
generalization of (1) which contains r-Stirling numbers of the second kind:

(2)

∞
∑

n=r

g(n)(0)

n!

(

n

r

)

r!

nr
fr(n)x

n =

∞
∑

n=r

f (n)(0)

n!

n
∑

k=0

{

n

k

}

r

xkg(k)(x),

where fr(x) denotes the Maclaurin series of f(x) without the first r terms.

Based on formula (2) we introduce the concept of r-geometric and r-expo-
nential polynomials and numbers. We obtain explicit relations between the r-
versions and the classical versions of these polynomials and numbers. Besides, we
present harmonic (and hyperharmonic) versions of r-geometric and r-exponential
polynomials and numbers as well.

On the other hand, formula (2) and harmonic r-geometric polynomials enable
us to obtain closed forms of the following series

∞
∑

n=r

(

n

r

)

r!nm−rHnx
n,

where m and r are integers such that m ≥ r and Hn is the n-th partial sum of the
harmonic series.

In the rest of this section we discuss some important notions.

Stirling numbers of the first and second kind

Stirling numbers of the first kind
[

n

k

]

and Stirling numbers of the second kind

{

n

k

}

are quite important in combinatorics [4, 5, 11, 21]. For integers n ≥ k ≥ 0;

[

n

k

]

represents the number of permutations of n elements with exactly k cycles

and
{

n

k

}

represents the number of ways to partition a set with n elements into k

disjoint, nonempty subsets [11].

We note that for n ≥ k ≥ 1, the following identity holds for Stirling numbers
of the second kind.

(3)

{

n

k

}

=

{

n− 1

k − 1

}

+ k

{

n− 1

k

}

.

There is a certain generalization of these numbers, namely r-Stirling numbers
[8], which are similar to the weighted Stirling numbers [9, 10]. Representations
and combinatorial meanings of these numbers are as follows [8]:

r-Stirling numbers of the first kind;
[

n

k

]

r

= The number of permutations of the set {1, 2, . . . , n} with

k cycles, such that the numbers 1, 2, . . . , r are in separate cycles,
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r-Stirling numbers of the second kind;

{

n

k

}

r

= The number of partitions of the set {1, 2, . . . , n} into

k non-empty disjoint subsets, such that the numbers

1, 2, . . . , r are in separate subsets.

In particular, r = 0 gives the classical Stirling numbers.

The r-Stirling numbers of the second kind satisfy the same recurrence relation
as (3), except for the initial conditions, i.e. [8].

(4)

{

n

k

}

r

= 0, n < r,

{

n

k

}

r

= δk,r, n = r,

{

n

k

}

r

=

{

n− 1

k − 1

}

r

+ k

{

n− 1

k

}

r

, n > r.

Exponential polynomials and numbers

Exponential polynomials (or single variable Bell polynomials) φn(x) are used
in [2, 7, 16, 21] as follows:

φn(x) :=
n
∑

k=0

{

n

k

}

xk.

The well known exponential numbers (or Bell numbers) are obtained by set-
ting x = 1 in φn (x) i.e., [3, 11, 12].

φn := φn (1) =

n
∑

k=0

{

n

k

}

.

In [14] the authors obtained new proofs of some fundamental properties of
the exponential polynomials and numbers using Euler-Seidel method as:

(5) φn+1 (x) = x

n
∑

k=0

(

n

k

)

φk (x) and φn+1 =

n
∑

k=0

(

n

k

)

φk.

Recently, Mező [18] has defined the r-Bell polynomials and numbers as:

Bn,r (x) =

n
∑

k=0

{

n+ r

k + r

}

r

xk and Bn,r =

n
∑

k=0

{

n+ r

k + r

}

r

,

respectively. The r-exponential polynomials and numbers which we discuss in the
present paper are slightly different than the r-Bell polynomials and numbers in
[18].
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Geometric polynomials and numbers

Geometric polynomials are used in [6, 22, 23] as follows:

(6) Fn (x) :=
n
∑

k=0

{

n

k

}

k!xk.

In particular, x = 1 in (6) we get geometric numbers (or ordered Bell num-
bers) Fn [6, 23, 24] as:

Fn := Fn (1) =

n
∑

k=0

{

n

k

}

k!.

Moreover, these numbers are called Fubini numbers (this explains ”F”) and pre-
ferential arrangements as well.

Boyadzhiev [6] introduced the general geometric polynomials as

(7) Fn,r(x) =
1

Γ(r)

n
∑

k=0

{

n

k

}

Γ(k + r)xk,

where Re(r) > 0. In section 5 we deal with the general geometric polynomials.

Exponential and geometric polynomials are connected by the following inte-
gral relation [6]

(8) Fn(x) =

∫ ∞

0

φn(xλ)e
−λdλ.

In [14], the authors also obtained some fundamental properties of the geo-
metric polynomials and numbers using Euler-Seidel method as:

Fn+1(x) = x
d

dx

[

Fn(x) + xFn(x)
]

and Fn =

n−1
∑

k=0

(

n

k

)

Fk.

By means of r-Stirling numbers,Mező andNyul [20] introduced r-geometric

polynomials and numbers (or r-Fubini or ordered r-Bell polynomials and numbers)
are as follows:

Fn,r (x) =

n
∑

k=0

(k + r)!

{

n+ r

k + r

}

r

xk and Fn,r =

n
∑

k=0

(k + r)!

{

n+ r

k + r

}

r

,

respectively.

In this paper, the r-geometric polynomials come up naturally in an applica-
tion of the generalized transformation formula as well.

Note that our definition of r-geometric polynomials (23) slightly differs from
that of Mező and Nyul [20].
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Harmonic and Hyperharmonic numbers

The n-th harmonic number is the n-th partial sum of the harmonic series:

Hn :=

n
∑

k=1

1

k
,

where H0 = 0.

For an integer α > 1, let

H(α)
n :=

n
∑

k=1

H
(α−1)
k ,

with H
(1)
n := Hn being the n-th hyperharmonic number of order α [4, 12].

These numbers can be expressed in terms of binomial coefficients and ordinary
harmonic numbers as: [4, 12, 19]:

H(α)
n =

(

n+ α− 1

α− 1

)

(Hn+α−1 −Hα−1).

The well-known generating functions of the harmonic and hyperharmonic
numbers are given by

∞
∑

n=1

Hnx
n = −

ln(1− x)

1− x
and

∞
∑

n=1

H(α)
n xn = −

ln(1− x)

(1− x)α
,

respectively [13].

The following relations connect harmonic and hyperharmonic numbers with
the Stirling and r-Stirling numbers of the first kind [4]:

(9)

[

k + 1

2

]

= k!Hk,

and

(10) k!H
(r)
k =

[

n+ r

r + 1

]

r

.

2. GENERALIZATION OF THE TRANSFORMATION FORMULA

In this section we first mention Boyadzhiev’s Theorem 4.1 in [6] and give
a useful generalization of it. As a result of this generalization we introduce r-
geometric polynomials and numbers.

Suppose we are given an entire function f and a function g, analytic in a
region containing the annulus K = {x ∈ C : r < |x| < R}, where 0 < r < R. Hence
these functions have the following series expansions:

f(x) =
∞
∑

n=0

pnx
n and g(x) =

∞
∑

n=−∞

qnx
n.
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Now we are ready to state Boyadzhiev’s theorem.

Theorem 1. [6] Let the functions f and g be described as above. If the series

∞
∑

n=−∞

qnf(n)x
n

converges absolutely on K, then

(11)

∞
∑

n=−∞

qnf(n)x
n =

∞
∑

m=0

pm

m
∑

k=0

{

m

k

}

xkg(k)(x)

holds for all x ∈ K.

2.1. Generalization of the operator (xD)

The operator (xD) is defined as:

(xD)f(x) := xf ′(x),

where f ′ is the first derivative of the function f.

Stirling numbers of the second kind appear in the formula (11) due to the
operator (xD). Our aim is to obtain a more general formula than (11) which
contains r-Stirling numbers of the second kind instead of Stirling numbers of the
second kind. Accordingly, first we generalize the operator (xD).

For any m-times differentiable function f we have [6],

(12) (xD)
m
f (x) =

m
∑

k=0

{

m

k

}

xkf (k) (x) .

This fact can be easily proven with induction on m by the help of (3).

Our first aim is to generalize the operator (xD). Later we use this generali-
zation to obtain r-geometric and r-exponential polynomials and numbers.

Definition 2. Let f be a function which is at least m-times differentiable and r be

a nonnegative integer. We define (xDr) as

(xDr)
mf(x) :=

{

0, m < r

(xD)m−rxrf (r)(x), m ≥ r.

From Definition 2 and the recurrence relation (4), using induction on m, we
can prove that

(13) (xDr)
mf(x) =

m
∑

k=0

{

m

k

}

r

xkf (k)(x),

where m ≥ r.
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Equation (13) is a generalization of equation (12) since setting r = 0 in (13)
gives equation (12).

If n is an integer and m ≥ r, then it follows from (13)

(14) (xDr)
m
xn = nm−r

(

n

r

)

r!xn.

2.2. Generalization of the transformation formula

We now give our main theorem that is a generalization of Theorem 1.

Theorem 3. Let f(x) be an entire function and g(x) be an analytic function on

the annulus K = {x ∈ C, s < |x| < S}, where 0 ≤ s < S. Suppose that their power

series given as

f(x) =
∞
∑

m=0

pmxm and g(x) =
∞
∑

n=−∞

qnx
n,

and fr(x) denotes the power series
∞
∑

m=r

pmxm. If the series

(15)
∞
∑

n=−∞

qn

(

n

r

)

r!

nr
fr (n)x

n

converges absolutely on K where r is a nonnegative integer, then

∞
∑

n=−∞

qn

(

n

r

)

r!

nr
fr(n)x

n =

∞
∑

m=r

pm

m
∑

k=0

{

m

k

}

r

xkg(k)(x)

holds for all x ∈ K.

Proof. By considering the power series expansion of g(x) with (13) and (14) , we
have

(16)

∞
∑

n=−∞

qn

(

n

r

)

nm−rr!xn =

m
∑

k=0

{

m

k

}

r

xkg(k)(x)

where m and r are integer such that m ≥ r ≥ 0. If we multiply both sides of
equation (16) by pm and sum on m from r to infinity we get

∞
∑

n=−∞

qn

(

n

r

)

r!

nr

∞
∑

m=r

pmnmxn =
∞
∑

m=r

pm

m
∑

k=0

{

m

k

}

r

xkg(k)(x),

since (15) is converges absolutely on K. This completes the proof.
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Corollary 4. Let g be an analytic function on the disk D = {x ∈ C, 0 ≤ |x| < S}
then

(17)
∞
∑

n=r

g(n)(0)

n!

(

n

r

)

r!

nr
fr (n)x

n =
∞
∑

n=r

f (n)(0)

n!

n
∑

k=0

{

n

k

}

r

xkg(k)(x).

Most of the results in the subsequent sections depend on Corollary 4.

Remark 5. The particular case r = 0 in the Theorem 3 refers to the Theorem 4.1 of
Boyadzhiev [6]. Therefore from now on we consider the case r ≥ 1.

3. r-EXPONENTIAL POLYNOMIALS AND NUMBERS,
r-GEOMETRIC POLYNOMIALS AND NUMBERS

Stirling numbers of the first and second kind are notable in many branches
of mathematics, especially in combinatorics, computational mathematics and com-
puter science [1, 5, 11, 12, 17]. The importance of the exponential polynomi-
als and numbers are substantial because of their direct connection with Stirling
numbers. r-Stirling numbers [8] are one of the reputable generalizations of Stirling
numbers. Therefore, it is meaningful to introduce the concepts of the r-exponential
and r-geometric polynomials and numbers as follows.

3.1. r-exponential polynomials and numbers

First, we consider g(x) = ex in equation (17). Hence we get

(18)

∞
∑

n=r

(

n

r

)

r!

nr
fr(n)

xn

n!
= ex

∞
∑

n=r

f (n)(0)

n!

n
∑

k=0

{

n

k

}

r

xk.

The finite sum on the RHS is a generalization of exponential polynomials. We call
these polynomials the r-exponential polynomials in notation rφn(x):

(19) rφn (x) :=

n
∑

k=0

{

n

k

}

r

xk.

As in the classical case, r-exponential numbers can be defined by setting x = 1
in (19), i.e.,

rφn :=

n
∑

k=0

{

n

k

}

r

.

Now we give an explicit formula which connects r-exponential polynomials
with the classical exponential polynomials. This formula also allows us to calculate

rφn (x) easily.

Proposition 6. We have

(20) rφn+r(x) = xr

n
∑

k=0

(

n

k

)

rn−kφk(x),

where n and r are nonnegative integers.
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Proof. Let m be an integer such that m ≥ r ≥ 0 and we put f(x) = xm in (18).
Then we get the following equality:

(21) rφm(x)ex =

∞
∑

n=r

(

n

r

)

r!

n!
nm−rxn.

The right hand side of (21) can be written as

xr

∞
∑

n=0

(n+ r)m−r x
n

n!
= xr

m−r
∑

k=0

(

m− r

k

)

rm−r−k

∞
∑

n=0

nk x
n

n!
.

Using the definition of the operator (xD) we obtain

xr

m−r
∑

k=0

(

m− r

k

)

rm−r−k(xD)kex.

From (12) , we have

xrex
m−r
∑

k=0

(

m− r

k

)

rm−r−kφk(x).

Comparision of the LHS and the RHS completes the proof. �

It is easy to see that equation (20) is a generalization of equation (5). As
analogue of (20) appears in the paper of Mező [18].

Remark 7. As a corollary of Proposition 6, a similar relation can be given between clas-
sical exponential numbers and r-exponential numbers as:

rφn+r =
n
∑

k=0

(

n

k

)

rn−kφk.

3.2. r-geometric polynomials and numbers

By considering g(x) =
1

1− x
in equation (17) we get

(22)

∞
∑

n=r

(

n

r

)

r!

nr
fr(n)x

n =
1

1− x

∞
∑

n=r

f (n)(0)

n!

n
∑

k=0

{

n

k

}

r

k!

(

x

1− x

)k

.

We call the finite sum of the RHS as r-geometric polynomials and indicate them
with rFn (x). Hence

(23) rFn(x) :=

n
∑

k=0

{

n

k

}

r

k!xk.

We define r-geometric numbers by specializing x = 1 in (23) as

rFn :=

n
∑

k=0

{

n

k

}

r

k!.
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The following proposition gives an explicit relation between r-geometric poly-
nomials and generalized geometric polynomials which were given by equation (7).

Proposition 8. For any nonnegative integers n and r we have

(24) rFn+r(x) = xrr!

n
∑

k=0

(

n

k

)

rn−kFk,r+1(x)

Proof. Let m be a nonnegative integer such that m ≥ r. By setting f (x) = xm

in (22) we get the following curious formula:

(25)
1

1− x
rFm

(

x

1− x

)

=

∞
∑

n=r

(

n

r

)

r!nm−rxn.

Rearranging RHS of (25) gives

xrr!
m−r
∑

k=0

(

m− r

k

)

rm−r−k

∞
∑

n=0

(

n+ r

r

)

nkxn.

We can write this by means of (xD) operator as

xrr!
m−r
∑

k=0

(

m− r

k

)

rm−r−k(xD)k
1

(1− x)
r+1 .

Considering the fact that (equation (3.26) in [6])

(xD)k
1

(1− x)
r+1 =

1

(1− x)
r+1Fk,r+1

(

x

1− x

)

completes the proof.

Remark 9. Letting x = 1/2 in (25) , we obtain another expression for rFn:

(26) rFm = r!

∞
∑

n=r

(

n

r

)

nm−r

2n−1

Remark 10. A similar result between numbers is as follows.

(27) rFn+r = r!
n
∑

k=0

(

n

k

)

rn−k
Fk,r+1

From (24) and (27), we have the following relations for classical geometric polynomials
and numbers as a corollary:

Fn+1(x) = x
n
∑

k=0

(

n

k

)

Fk,2(x) and Fn+1 =
n
∑

k=0

(

n

k

)

Fk,2.
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4. HARMONIC r-GEOMETRIC POLYNOMIALS AND NUMBERS,
HARMONIC r-EXPONENTIAL POLYNOMIALS AND NUMBERS

We introduced concepts of harmonic-geometric and harmonic-exponential
polynomials and numbers in [15]. In this section we follow similar approach as
in [15] to investigate harmonic r-geometric and harmonic r-exponential polynomi-
als and numbers.

4.1. Harmonic r-geometric polynomials and numbers

We consider the generating function of harmonic numbers as the function g

in the transformation formula (17) . From [15] we have

(28) g(k)(x) =
k!
(

Hk − ln(1− x)
)

(1− x)
k+1

and g(k)(0) = k!Hk.

Using Theorem 3 we state the following transformation formula for harmonic
numbers.

Proposition 11. Let r be a nonnegative integer and let f be an entire function.

Then we have

∞
∑

n=r

(

n

r

)

Hn

r!

nr
fr(n)x

n =
1

1− x

∞
∑

n=r

f (n)(0)

n!

n
∑

k=0

{

n

k

}

r

k!Hk

(

x

1− x

)k

(29)

−
ln(1− x)

1− x

∞
∑

n=r

f (n)(0)

n!

n
∑

k=0

{

n

k

}

r

k!

(

x

1− x

)k

.

Proof. Employing (28) in (17) gives the statement. �

Second part of the RHS of equation (29) contains r-geometric polynomials
which are familiar to us from the previous section. But the first part contains a new
family of polynomials which is a generalization of harmonic-geometric polynomials
[15]. We call them the harmonic r-geometric polynomials and denote them as

rF
h
n(x). Thus

(30) rF
h
n (x) :=

n
∑

k=0

{

n

k

}

r

k!Hkx
k.

Harmonic r-geometric numbers can be defined by setting x = 1 in (30), i.e.,

rF
h
n :=

n
∑

k=0

{

n

k

}

r

k!Hk.
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Hence with this notation we state the formula (29) simply as

∞
∑

n=r

(

n

r

)

Hn

r!

nr
fr (n)x

n(31)

=
1

1− x

∞
∑

n=r

f (n)(0)

n!

{

rF
h
n

(

x

1− x

)

−r Fn

(

x

1− x

)

ln(1 − x)

}

.

In the following corollary we obtain closed forms of some series related to
harmonic numbers and binomial coefficients.

Corollary 12.

(32)
∞
∑

n=r

(

n

r

)

r!nm−rHnx
n =

1

1− x

{

rF
h
m

(

x

1− x

)

−r Fm

(

x

1− x

)

ln(1− x)

}

,

where m and r are integers such that m ≥ r ≥ 0.

Proof. It follows by setting f (x) = xm in equation (31).

Remark 13. Formula (32) allows us to calculate closed forms of several harmonic number
series. The cases r = 0 and r = 1 in (32) has been analyzed in [15] already.

The case r = 2 gives

∞
∑

n=2

nm−1(n− 1)Hnx
n(33)

=
1

1− x

{

2F
h
m

(

x

1− x

)

−2 Fm

(

x

1− x

)

ln(1 − x)

}

.

Hence some series and their closed forms that we get from (33) are as follows.

For m = 2 we have
∞
∑

n=2

n(n− 1)Hnx
n =

x2
{

3− 2 ln(1− x)
}

(1− x)
3 .

For m = 3 we have
∞
∑

n=2

n2(n− 1)Hnx
n =

x2
{

6 + 5x− (4 + 2x) ln(1 − x)
}

(1− x)4
,

and so on.

The case r = 3 gives

∞
∑

n=3

nm−2(n− 1)(n− 2)Hnx
n(34)

=
1

1− x

{

3F
h
m

(

x

1− x

)

−3 Fm

(

x

1− x

)

ln(1 − x)

}

.
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Hence some series and their closed forms that we get from (34) are as follows:

For m = 3 we have

∞
∑

n=3

n(n− 1)(n− 2)Hnx
n =

x3
{

11− 6 ln(1− x)
}

(1− x)
4 .

For m = 4 we have

∞
∑

n=3

n2(n− 1)(n− 2)Hnx
n =

x3
{

33 + 17x− (18 + 6x) ln(1 − x)
}

(1− x)
5 ,

and so on.

Remark 14. In the following proposition and from now on we use the notation

∑

0≤k1≤k2≤···≤k
s+1≤n

to indicate the following multiple type sums:

n
∑

k
s+1=0

k
s+1
∑

ks=0

· · ·

k2
∑

k1=0

.

Now we give a summation formula for the multiple series.

Proposition 15.

∞
∑

n=r

(

n−r
∑

k=0

(

k

r

)(

n+ s− k

s

)

r!km−rHk

)

xn

=

∞
∑

n=r





∑

0≤k1≤k2≤···≤ks+1≤n

(

k1

r

)

r!km−r
1 Hk1



 xn(35)

=
1

(1− x)
s+2

{

rF
h
m

(

x

1− x

)

−r Fm

(

x

1− x

)

ln(1 − x)

}

where m, r and s are nonnegative integers such that m ≥ r.

Proof. Multiplying both sides of equation (32) with the Newton binomial series
and considering that

n−r
∑

k=0

(

k

r

)(

n+ s− k

s

)

r!km−rHk =
∑

0≤k1≤k2≤···≤ks+1≤n

(

k1

r

)

r!km−r
1 Hk1

we get the statement. �
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By setting r = 2 and s = 0 in formula (35) we can give the following appli-
cations:

For m = 2 we have

∞
∑

n=2

(

n
∑

k=2

k(k − 1)Hk

)

xn =
x2
{

3− 2 ln(1− x)
}

(1− x)
4 .

For m = 3 we have

∞
∑

n=2

(

n
∑

k=2

k2(k − 1)Hk

)

xn =
x2
{

6 + 5x− (4 + 2x) ln(1− x)
}

(1− x)
5 ,

and so on.

Remark 16. Using (9) we can state rF
h
n (x) and rF

h
n in terms of r−Stirling numbers of

the second kind and Stirling numbers of the first kind as

rF
h
n (x) =

n
∑

k=0

{

n

k

}

r

[

k + 1

2

]

xk and rF
h
n =

n
∑

k=0

{

n

k

}

r

[

k + 1

2

]

.

4.2. Harmonic r-exponential polynomials and numbers

Bearing in mind the similarity of exponential and geometric polynomials and
using the definition of harmonic exponential polynomials and numbers, we give the
following definition.

Definition 17. For nonnegative integers n and r, harmonic r-exponential polyno-

mials and harmonic r-exponential numbers are defined respectively as

rφ
h
n (x) :=

n
∑

k=0

{

n

k

}

r

Hkx
k and rφ

h
n :=

n
∑

k=0

{

n

k

}

r

Hk.

Remark 18. Definition 17 enables us to extend the relation (8) as

(36) rF
h
n (x) =

∫ ∞

0
rφ

h
n (xλ) e−λdλ.

5. HYPERHARMONIC r-GEOMETRIC POLYNOMIALS AND
NUMBERS, HYPERHARMONIC r-EXPONENTIAL

POLYNOMIALS AND NUMBERS

We now consider hyperharmonic numbers and their transformations. In this
way we can generalize almost all results of [15] and in the previous sections of the
present paper.
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5.1. Hyperharmonic r-geometric polynomials and numbers

Similar to the previous section, let us consider the function g in the trans-
formation formula (17) as the generating function of the hyperharmonic numbers.
From [15] we have

(37) g(k)(x) =
Γ(k + α)

Γ(α)
·

1

(1− x)
α+k

(

Hk+α−1 −Hα−1 − ln(1 − x)
)

and

(38) g(k)(0) = k!H
(α)
k .

Now we give a transformation formula for hyperharmonic numbers.

Proposition 19. For integers r ≥ 0 and α ≥ 1 we have

∞
∑

n=r

(

n

r

)

H(α)
n

r!

nr
fr(n)x

n(39)

=
1

(1− x)
α

∞
∑

n=r

f (n)(0)

n!

n
∑

k=0

{

n

k

}

r

k!H
(α)
k

(

x

1− x

)k

−
ln(1− x)

(1− x)
α

∞
∑

n=r

f (n)(0)

n!

1

Γ (α)

n
∑

k=0

{

n

k

}

r

Γ (k + α)

(

x

1− x

)k

.

Proof. Consideration (37) and (38) in (17) give the statement. �

The first part of the RHS is a generalization of harmonic r-geometric poly-
nomials which contains hyperharmonic numbers instead of harmonic numbers. We
call these polynomials the hyperharmonic r-geometric polynomials and denote them
as rF

h
n,α(x). Thus

(40) rF
h
n,α(x) =

n
∑

k=0

{

n

k

}

r

k!H
(α)
k xk.

The second part of the RHS of (39) contains a generalization of the, general
geometric polynomials. We call these polynomials the general r-geometric polyno-

mials and denote them as rFn,α (x). Hence

(41) rFn,α(x) =
1

Γ(α)

n
∑

k=0

{

n

k

}

r

Γ(k + α)xk.



Polynomials related to harmonic numbers and evaluation. . . 227

Using these notations we can state (39) simply as

∞
∑

n=r

(

n

r

)

H(α)
n

r!

nr
f(n)xn(42)

=
1

(1− x)
α

∞
∑

n=r

f (n)(0)

n!

[

rF
h
n,α

(

x

1− x

)

−r Fn,α

(

x

1− x

)

ln(1− x)

]

.

Remark 20. Putting x = 1 in (40) we get hyperharmonic r-geometric numbers as

rF
h
n,α =

n
∑

k=0

{

n

k

}

r

k!H
(α)
k ,

and putting x = 1 in (41) gives general r-geometric numbers as

rFn,α =
1

Γ (α)

n
∑

k=0

{

n

k

}

r

Γ (k + α) .

Using the following corollary of Proposition 19 we obtain closed forms of some
series related to hyperharmonic numbers and binomial coefficients.

Corollary 21.

∞
∑

n=r

(

n

r

)

r!nm−rH(α)
n xn

=
1

(1− x)
α

[

rF
h
m,α

(

x

1− x

)

−r Fm,α

(

x

1− x

)

ln(1− x)

]

.(43)

Proof. For a positive integers m ≥ r, setting f (x) = xm in (42) gives (43).

Remark 22. Putting the values of r, m and α in (43) , one can get closed forms of several
hyperharmonic numbers series.

Now we extend the formula (35) to hyperharmonic number series.

Proposition 23. Let m, r, s and α be nonnegative integers such that and m ≥ r.

Then we have

∞
∑

n=r

(

n−r
∑

k=0

(

k

r

)(

n+ s− k

s

)

r!km−rH
(α)
k

)

xn(44)

=
∞
∑

n=r





∑

0≤k1≤k2≤···≤ks+1≤n

(

k1

r

)

r!km−r
1 H

(α)
k1



 xn

=
1

(1− x)
α+s+1

{

rF
h
m

(

x

1− x

)

−r Fm

(

x

1− x

)

ln(1− x)

}

.
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Proof. Multiplying both sides of equation (43) with the Newton binomial series
gives the statement.

Remark 24. Particular values of r, m, s and α in (44) gives closed forms of several
mutiplicative hyperharmonic numbers series.

Remark 25. Using (10) we get an alternative expression of hyperharmonic r-geometric
polynomials and numbers as

rF
h
n,α (x) =

n
∑

k=0

{

n

k

}

r

[

k + α

α+ 1

]

α

xk, rF
h
n,α =

n
∑

k=0

{

n

k

}

r

[

k + α

α+ 1

]

α

.

5.2. Hyperharmonic r-exponential polynomials and numbers

Definition 26. For positive integers α and r, hyperharmonic r-exponential poly-

nomials are defined as

rφ
h
n,α (x) =

n
∑

k=0

{

n

k

}

r

H
(α)
k xk.

Hence hyperharmonic r-exponential numbers are defined as

rφ
h
n,α =

n
∑

k=0

{

n

k

}

r

H
(α)
k .

Remark 27. We extend the relation (36) as

rF
h
n,α (x) =

∫ ∞

0
rφ

h
n,α (xλ) e−λdλ.
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16. J. A. Grunert: Über die Summierung der Reihen. . . J. Reine Angew. Math., 25
(1843), 240–279.

17. R. L. Graham, D. E. Knuth, O. Patashnik: Concrete Mathematics. Addison
Wesley, 1993.
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