Evolutionary Prinaples 1n Self—Refercntial Learning
{Diploma Thesis)

Jirgen Schmidhuber

Technische Universitat Miinchen

May 14, 1987

Evolutionary Principles in Self-Referential [earning
(Diploma Thesis)

Jurgen Schmidhuber

Technische Universitit MuUnchen

Abstract

There exists a number of algorithms which ¢ncapsulate parts of the
behaviour we call learning. Programs have been written that do learning by
chunking, generalization, certain kinds of analogrcal matching etc. These algo-
rithms work nicely in certain well—chosen domains but fail in many others.

- a

The fundamental statement of this thesis is that we can not capture the essence
of learning by relying on a small number of algorithms. Racher on the contrary
there is a need for a whole bunch of context-dependent learning strategies to
acquire domain specific information by using information thar |s already avail-
able. Because of the complexity and richness of these strategies and their
triggering conditions the obvious cscape seems to be: Giving a system the abil-
1ty to learn the methods how to lcarn, too. A system with such meta-learning
capabilities should view every problem as consisting out of at least two prob-
lerns: Solving ir, and improving the strategies employed to solve it. Of course
we do not want to stop at the first meta-level !

The only approach to achieve meta-capacity seems to be: 'Closing {feeding
back) some initial strategies onto themselves’ so that more complicated and
betrer suited ones can evolve. This requires an initial representation of the SVS-
tem that allows it to intrespect and manipulate all of its relevant parts. Further-
more some kind of evolutionary pressure is needed (o force the system to organ-
ize itself in a way that makes sense in the environment it is living in. The fun-
damental role of the very general principle called evolution and its deep interre-
lanions 10 the field of learning will be emphasized, Connections 1o
v.Werzsdackers understanding of pragmatic information as well as to Piagets
model of equilibration will be shown.

Two approaches to the goal of learning how to learn will be presented, both of
them being inspired from seemingly rather different corners of artificial inteili-
gence and cognitive science: One source of ideas is to be found in symbol-
manipulative learning programs as EURISKO and CYRANO, the other one in
work done on neuronal nets, associative networks, genetical algorithms and
other ’weak’ methods (an analogy to geometric fractals will be drawn). In this
context 1t is argued that object oriented programming and neuronal nets have
more things in common than is usually assumed.

The second approach which leads to the notion of self-referential associating
learning mechanisms (SALMs, PSALMs) is illustrated by the implementation

e

of a simple scli-referential and self-extending language and a few ermpirical
results obtained by putting pressure on that tanguage to organize itself. How-
ever, these results are not sulted to show concrete cases of self-reference. It
will be made obvious that the available machine capacity is clearly below the
level that would be necessary to make the creation of ’semantic self-reference’
likely (on the basis of the second approach and within a reasonable time). Thus
this paper tends to having inspiring character rather than presenting a practical

guidance to universal learning capabilities.

A table of contents 1s supplied at the end of (his work.

Keywords

self—reference, introspection, learning, mecta, evolution, assaclative nets, neu-
ronal nets, genetical algorithm, bucket brigade, SALM, PSALM, EURISKO,

fractals.

1. Introduction

Within the Al community therc exists the general agreement that the most
unportant part of intelligent behaviour at the same time 15 the one understood
least ar all: the ability to learn. Although systems have been built that are able
to lecarn certain domain concepts or discover certain algorithms, the strong
suspicion remains that the essential ingredients of self-reflexivity and full

introspection still have 1o be discovered.

In some of his famous expeniments Piaget has shown that children below the
age of 5 do not dispose of the concept of generalization, let alone the gualifica-
tion for logical thinking that 1s not distinct before the age of 11. But all the
computer programs we create (including those we write to do learning) are
based on logical thinking (arc they ?). These programs are far away from show-
ing such impressive performance in many domains as a little baby does,
although babies tend to draw conclusions neither from general statements (o
more special ones (as a logician or an automatic theorem prover would do) ner
from special statements to more general ones (as a physician would do), but

from special ones to special ones (as everybody does but no one would admir) !

This special-to~special-thinking described by Piaget is closely related to the
notions involved with the phenomenons often summarized under the diffuse
name analogy. Some definitions of analogy in terms of first order logic can be
found in [ECAI 86]. Necarly as many critical statements about these definitions
can be found, too. The reason 1s that frequently good-looking definitions are
too specific. They make sense in special cases of relations between some
objects, but in many other cases they do not caprure connections we intuitively

would call analogical, too.

Most approaches to make programs learn are based on symbol-manipulative
languages like LISP or PROLOG that do not formally disunguish berween
slgonthmic and data structures. Usually some basic method like filing unknown
or onlv partly known objects in isa—hierarchies (generalization, specialization) is
the decisive factor for the performance of the system [Michalsky 84](Lenat
82al. Sussmans program [Sussman 75] alse learns by refining general pro-
cedural knowledge while "pushing it down the hierarchy”.

Another method considered to be important 1s chunking (building macros): If
scquences of actions often have proven to be successful in a cerrain doemain
they are packed into a new procedure that again may be used as part of a
higher-level-chunk (Newell in [Michalsky 84]).

Some attempts have been made to do learning by analogy [ECAI 86}, often by
trying to find some kind of match between existing structures in predicate cal-
culus. I adopt the widespread view that it is most important to find out how
analogy works, but furthermore I want to argue that formal languages like
predicate calculus are not very well suited to understand analogy. This opinion
is compatible with Minsky’s comment cited in [Wallich ?]: " Formalization [in
Al| has been a disaster.”

The main motivation behind the work presented here is the belief that there 1s
a large number of ways for a learning systemn to make use of the things i

-

already has learned, call it learning by analogy or whatever you hike. It 1s
assumed that this number is indeed sao large and that the set of strategies to
acquire new information in a domain is so diverse and context—dependent that
there is little chance in trying to supply the inital system with a few plausible

algorithms and hoping thar they will cover everything.

The strongest support for this assumption is provided by empincal resulrs
delivered by already existing programs. Especially the probably most outstand-
ing effort to do symbol-manipulative learning, Lenat's discovery program
FURISKO [Lenat 82a] which actually shows some kind of introspective
behaviour by not only learning domain conceprs but also the heurisnes o
acquire domain concepts, illustrates the need for systems that are able to learn

how to learn in two different ways:

On one side EURISKO elicits the advantages of including the domain of creat-
ing heuristics in the set of domains to be explored by improving its perfor-
mance within the other domains. Not just only by redefinition of 1ts search
space(s) depending on newly created concepts but also by change ol the waysl
how ta progress in these spaces EURISKO keeps up to date with uts discoveries.

On the other side EURISKQO’s activities are constrained by the fundamental
process of incorporating concepts {including heuristics) somewhere into the large
generalization hierarchy. Simon, Bledsoe and Lenat interpreted the results and
found something they called the ’shallow trec problem’. This term stands for
the observation that the developing lattice of concepts and heuristics did not
reflect very well the ’real’ connections between them. In fact many of the
heuristics found in higher levels of the lattice were in no way more general
than others found beloew. Simon et al. were able to rearrange the generaliza-
tion tree inte an equivalent, very bushy one which had a small depth. But a
ereat vartety of other relations besides the inclusion held between certain nodes
of the tree, thus 'structuring’ the knowledge. It was concluded that not so much
genl./spec. but analogy is the natural way to organize learned knowledge, and
it was admitred that much more must be knewn about this form of organizaton

| Lenat 82bl.

Analogies in this context could be provided by every kind of hink between con-
cepts that is no isa-link. This of course holds only 1f we want 1o introduce a
strict distinction between genl./spec. and analogies. But perhaps it 1s more
natural to view genl./spec. as nothing else but a special case of analogy. Let

me explain this.

A very broad informal definition would be : Learning by analogy is every kind
of building ’senseful’ ! structures that is supported by already existing relations
between already existing structures. (This view contrasts with more formal bur
also narrower approaches found for instance in [ECAI 86]. The disadvantage,
of course, is that it is less clear how to realize such a view within an implemen-
tation). If you substitute the word ’relation’ by the word ‘isa-links’ then you
will get a nice informal definition of learning by generalization.

1 More about the term ‘senseful’ 1n the chapter on evolution.

In order to avoid naming confustons and conflicts with definitions in the stan-
dard lhiterature I would like to inrroduce the likewise very broad and informal
notion of an ’informed structure’ that comes close to myv comprehension of the
term analogy. A flexible learning system has to build informed structures
(representations, methods modifying and making use of representations etc.)
dependent on the hardware that is at iis disposal and that provides the
unchangeable framework for its development. An informed structure is any
"identifiable part’? of the system that supports the system in having success in
its environment (which includes the construction of informed structures). The
degrec of 'informedness’ a structure can have is given pragmatically by the
contributions it gives to the success of the whole system. This view is strongly
inspired by v.Weizsaeckers saying : 'Information is what generates informa-

tion.” (See the chapter on evolution.)

Meta~capacity is considered to be important in large expert systemns. Ofren
heunstic meta-rules are introduced to select among a great amount of applica-
ble rules proposed by such a system during a specific computation [Davis 80].
Meta—capacity probably 1s also essential for nuly flexible learning systems. The
morc parts of a system are accessible by the syvtem 1self {in a non-destructive
manner), the more senseful self-medification may take place. (EURISKO
shows meta—capacity in a sense that is for instance constrained by irs hierar-

chy.} Of course the self-accessibility should include the meta-rules, too.

A flexible approach to universal learning capabilities might be 10 define a sys-
tem that (syntactically} allows the evolutionary creation of informed strictures
like the algonthmic methods mentioned above as well as the invention of new
learning strategies that do not fall in any of the categories generalization,
macro-building etc.. In the following two approaches to meta-learning will be
specified. Since the history of the basic ideas reflects the reasons for the
proceeding, [will stick to a more or less chronological order. [Knuth 74] advo-
cates not only the presentation of the resulis but also the explanation of the
faults that led to the formulation of the results (standing in a sharp contrast to
the opinions of the giant mathematician C.F. Gauf) In Knuth’s sense this
paper describes the evolution of ideas dealing with evolution. (If you have read
[Hofstadter 85] you might like it.)

The second chapter will present a first approach to meta-learning by making
practical use of evolutionary principles. This approach will be criticized.
Chapter 3 wants to gain a deeper understanding of the gencrality of the princi-
ples that cause evolution. The insights gained {rom these chapters will lead to a
more natural second approach described in the fourth chapter. This second
approach 1s accompanied by several implementations of the principles outlined.
It will be seen, however, that purposive self-referential behaviour on the basis
of these principles can not be expected, unless the machine power available is

increased by some orders of magnitude. Thus the empirical results do not

2 Identification presupposes an observer who is able ta identify. The observer usually is a
learning system, too. More about the problems invelved with the term ‘identifiable’ in the
chapter about evolutian.

6 -

underpin the main thesis of this work, namely, that umiversal self-reference 1s
the foundation of flexibility. Nevertheless the results indicate some interesting

directions for future research.

Although the time sacrificed for the different concrere implementations exceeded
the time needed for designing and writing this paper by an order of magnitude,
the character of this work 1s inspirative rather than instructive. The important
idea you should come to share is: The introduction of potenual self-reference
can be easy, if it 1s consequently supported from the beginning of the design of
a self-developing system.

s B
2. An Algonthm for Meta-Evolution.

2.1. Introduction.

This chapter proposcs an algerithmic methed 1o capture ‘learning how to learn’
based on a meodified symbol-manipulative version of a genetc algorithm. Ta
understand this approach a shont review of the principles of genetic algorithms (
GAs) follows,

2.1.1. Holland ’s GAs.
Holland is considered as the father of GAs. He defined the finding of a solu-

tion for a problem posed in the context of a certain domain as a search. The
scarch space has n dimensions and is put up by 27 possible compaositions of n
relevant features that a solution can have or not [Holland 75].

In the beginning of the learning phase each member of a pool of randomly
gencrated bitsirings of size n representing candidates for solutions is tested by a
critic., The critic applies a domain dependent evaluation funcuon and assigns a

'worthmeasure’ (a real number) to each bitvector.

The next step is to select probabilistically one or rwo candidates from the pool,
where the probability for the selection of a distinct bitvector s equal to s
worth divided by the sum of the worths of all members of the pool.

If only one candidate has been selected, a mutation may occur. This means
that a 1 may be changed to a 0 or vice versa somewhere in the bitstring, thus
affecting the existence of some property of the candidate. Mutations should
happen very rarcly (sec [Grefenstette 85] if you want (o know why). The more
interesting case occurs when t(wo strings have been selected. Then a procedure
called ’crossover’ may take place which generates a new plan by exchanging
parts of the genectic material of the two ancestors. This means that parts of the

bit sequences of one siring override the corresponding parts of the other one.

In any case the newly generated plan is tested by the critic which determines
the new worthmeasure. If the latter is bigger than the worthmeasure of e.g. the
worst candidate in the pool, this one may be replaced by the new onc. (Alter-
native scenarios are thinkable, but common o all of them 1s some element of

competition that in the long run leads to preference of the 'fit’ plans.)

The cycle described in the last three paragraphs is repeated over and over again
until some termination criterium is reached. This could be the appearance of a

very highly rated candidate .

Some interesting properties of GAs have been proven thar often make them the
first choice if 1t has to come to a decision whart kind of search method to apply
to a given problem (see for instance {DeDong 75|, and [Goldberg 85} for prac-
tical appl"ications). In fact GAs have become so popular that the second interna-

tienal conference dealing with them is about to come up soon.

2.1.2. A Symbol-Manipulative GA.

In a practical course at TUM the author experimented with a modified version
of Hollands GAs in order to cxplore ways to apply the principles explained
above to the domain of automatic program synthesis {Dickmanns, Schmidhuber,
Winklhofer 86]. The main difference to conventional GAs resided in represen -

tational issues.

Qur candidates were (potentally) Turing equivalem programs represented as
hists of arbitrary length. These lists contained statements written in a special
language (a funny mixture of prolog and assembler) that allowed a controlled
execution of programs being composed out of domain primitives. Control, of
course, was delegated to a critic who attributed worthmeasures to the plans it

tested, depending on their performance in the environmen; (domain)?,

some words about potential Turing equivalence. There is no criterion to decide
whether a program written in a language that is ‘mighry’ enough will ever stop
<r not. So the only thing the critic can do is to break a program if it did not
terminate within a given number of tume-steps. Of course this is a restriction
to Tunng equivalence, but the degree of restriction can easily be modified {all
therc 15 to do 1s to change a variable). It is no more [undamental restriction
than the onc given by the finiteness of any storage device.

Because plans were not confined to have a fixed length, crossover was not so

straightforward an operation as it is considered 1o be in the literature on the
subject. Moreover the signs solidified that programming is a task that depends
on better informed structures than the ones like crossover or the other genetic
primitives are. Sometimes crossover proved to be useful by sensibly connecting
sequences of actions gathered from two different plans. But often it was annoy-
ing to watch it for instance breaking a loop apart and leaving a plan that obvi-
ously made no sense. {The really annoying thing was 1o know that crossover
never would change its silly behaviour by eveolving to & more informed siructure
that avoids certain pitfalls. Why was that the case? The crossover algorithm was
part of the "hardware’ (the unchangeable parts of a system) and so there was

no possibility for other parts of the system to introspect and change it.)

Some additional primitives specific to our special form of GA were added, each
of them improving the overall performance of the svstem a litde bit. But soon
new primitives reached their limits and led to a situation as unsatisfactory as

the one depicted ahove.

The adhocness of the newly introduced primitives as well as the insight that
really interesting domains like programming are unlikely to be treated success-
fully solely by some simple non-self-evolving methods led to the desire to
enable the system to meta-learn the methods of how 10 learn. The notion of
meta-meta—learning the methods how to meta-learn the methods etc. suggests
itself, and a possible algerithmic framework for such a sysfem with any number

* Something not dissimilar was done by [Cramer B3]. But here the programs were
represented as bitstrings of a fixed small size {the conventional methed) thus leaving no room
for universality. The same is trus for [Kichenhoff 86],

ol mera—levels 15 shown next.

2.2, Mcta—evolution.

Meta—evolution is a non-deterministic algorithmic scheme to develop algo-
rithms making use of a few primitives that can be used to manipulate plans
(pregrams). On the domain level we want to observe the devclopment of plans
that are useful in the domain. They are composed out of domain primitives and
clemnents of the programming language chosen to structure and arrange the
domain primitives in an algorithmic manner. These lowest—level plans can
prove therr adequacy by holding their own in the environment they are tested

within.

On the level above the domain level the construction of plans is a new domain
by itself. This means that operators like crossover (or more informed ones} are
again represented as plans that can be atomized into eclements of the program.
ming language and plan manipulating primitives working on the lower level.

Because plan primitives are able to work on plans, and plan manipulating pro-
grams arc represented as plans, there 1s no formal reason why the next level,

the level of constructing plan manipulating plans, could not be tackled, too.

And so on.

Of course this proceeding requires plan primitives thar are fundamental
cnough, so that compositions out of them can achieve any imaginable effect
(Tunng equivalence}. One might think of simple plan editing primitives that
are able to define some kind of ’current expression’, to detect the 'end-of-line’,
to set markers, to compare elements of plans to be edited, to insert branchings
dependent on such tests, to insert loops and pushs and pops (at least two stacks
arc necessary for well known reasons), to take two plans and insert parts of one

plan into the other one or to delete certain parts. The primitives themselves

W LT [(- PO 0

B Lo ik e i T e e L (T 1] L gy i SO e S S
Saaaniin s Bl }LL.I'\'-.L_'\.\,__]. (P i PuSSlL;}L P N e S uLiuul“E l_;uj.u."_-. Sj.lul,_;llu ML

arbutrartly complex.

To start from scratch it is necessary that the hardware is able to generate syn-
tactically correct plans for the initial phase. To create a first~order-plan by
default means to intermix elements of the language and the set of domain
primiilves at haphazard or by any ather default method but in a way that is
constrained by the syntax of the language. To c¢reate an nth-order-plan where
n > I 1s essentially the same with the exception that the set of plan primitives is
included in that mixing process.

Here is the top level loop of meta—evolution written in a pseudo-algorithmic
language that should be self-explanatory:

To do meta—evoluton :
1. Set a = 1,

2, Forever do :

_ 10 -
2.1. Call S(n) the set of nth-order-plans and set S(n) = {}.

2.2. While | S(n) | <« maxpoolsize(n) do :
2.2.1. Create a new nth-order—plan by defaulr,
give 1t a new name P,
2.2.2. Set $(n) = S(n) U {P}.
2.2.3. Test and critaze P.

2.2. Set n = n+l.

As long as the pool of a certain level is not complete, it is enlarged. If a poal 1s
filled, the pool corresponding to the level above i1s created. Pools of lower levels
are changed by members of higher levels in a way that is hidden in the pro-

cedure test and cnticze to which the main work 1s delegated.

To test and eriticize a plan P out of S(n) :

1. 1f n=1

then

1.1. Transmit P to the domain critic who executes P in

the environment and assigns a worthmeasure to it,

else

1.2 While no termination criterium is reached do :

1.2.1. Sclect probabilistically some plans from S{n-1)
and generate a new candidate P’ by applying P
to the selected plans.

1.2.2. Test_and caibaze P,

treating it like a member out of S{n-1).

1.2.3. update the current worthmeasure of P by using
information about changes of performance gained
by comparing the worthmeasure of P’ and its
ancestors.

2. Decide whether P displaces another member of S(n).

-

Test and criticize gains worthmeasures for the meta-plans 1t considers by
applying itself recursively to the plans of lower levels generated by the merta-
plans.

= s

Termination of the while-loop may be causcd by the cbservation that lower-

level-plans did not improve for a leng tume.

The element of compertition is introduced by the decision in step 2. which
should of course favour highly rated plans. Competition takes place 1n every
level below the highest meta—level, the members of the highest one do not (yet)

have to participate 1n the struggle for live.

One should expect that in the long run more and more informed structures
evolve 1n form of domain- and meta-plans. So default plans like e.g. a simple
random crossover should be replaced by mare methodical ones. One might 1ma-
gine plans that represent information about how 1o build repeat—untils, perhaps
by inserting conditions at ’plausible looking’ places in endless loops of programs
found on the level below. There is no limit to ones imagination if the set of
initial primitives is chosen appropriately.

Probably the most 1nteresting informed structures are those that aid to shorten
the time to find new ones. Suppose the domain is the invention of plans that
move a roboter through a large room. Suppose that the set of domain primitives
includes simple actions like ’stepforth’, ’stepright’ etc. Then a good informed
plan of the second level could be one that frames domain primitives with loops.
This behaviour might often produce awkward results (imagine that the name of
another domain primitive is 'grasp object’ !). But staustics might say that this
principle 1s more promising in the environment than mixing primitives at ran-
dom. This should result in a higher probability for survival for this informed

structure.

Of course a plan from level 3 might profit by changing the level 2 plan men-
tioned above to an even more informed structure. This could be realized by
inserting pieces of code that restrict the number of domain primiuves the lower

plan works upon.

Nobody said that random crossover is no informed structure. Tt is ! Tt somchow
represents the very general heurnistic saying that the world often is continuous
and that 1t makes sense to create new 1nformation by somehow connecting

information gathered from available structures?.

Since the world is not only continuous but also manifold, general heuristics
need refinement. (I will not state that they are to be specialized because spe-
cialization is only one part of the story as the shallow 1rce problem shows}. The
need for a universal refinement scheme represents a good deal of the justifica-
tion of meta—evolution.

Reward is running bottorm up. Effects in the domain may indirectly have an
influence on the ratings of high-order plans, but the critic can not have a look

into the whole system, All 1t can watch and recompense is the domain level.

Becausc of the cascade-recursive behaviour of test and aitidze we can not
expect the rapid creation of very high levels if the domain critic needs a notice-
able time to do its work. Learning is a process that rakes time.

* Crossover looks a little bit like the root of analogy !

s T

Meta-evolution seems to be a way to learn the domain of learning. One can
easily imagine evolved strucrures that practice genl./spec. or others that ecanni-
balize certain plans in order to do learning by building macros. The good news
1s that there is no pledge to use a particular one of these popular methods.
Anything could potentially evolve, depending only on the set of initial prirmni-
ttves. The bad news is that there are still several reasons for not considering

meta—evolution as the best way to achicve our goal |

2.3. Criuque of Meta-evolution.

The criticism presented here is not concerned with the question of the potential
ability to learn. Church's thesis says that Turing equivalence carches everything
that can be catched. It is the question of naturality that remains. (Computabil-
ity versus Feasibiliry.)

How natural is the creation of meta-levels, meta-meta-levels and so on? At
least human beings do not Iearn like this, instead we permanently mix levels,

We do not use a counter that says: Now you are at level seventeen?.

How natural is the general representation of knowledge in the meta-hierarchy ?
Every type of knowledge (static or dynamic) must be represented somewhere in
a plan. Access to knowledge ensues from actions executed by meta-plans.
Often this kind of access might look unnatural, less like a straightforward
mspection of a variable but mare like a strange kind of search for some part of
a program that some meta-plan interpretes as something, This is connected

with the next question :

How natural 15 it to basically employ a genetic algorithm at all levels ? Isn't
this too much bias ? Symbol-manipulative GAs seem to leave more room for
development than c.g. strict genl./spec. frameworks. But should it not be possi-
ble that the GA some day may be abolished and replaced by some other kind of
scheme, a scheme that makes bewer use of the capabilities of the physical

machine 1t 1s running on ?

There are more arguments against the algorithmic scheme meta—evolution,
arguments delivered by the field that provided the inspiration for GAs : The
field of molecular biology. Although we can’t exclude the possibility that some
sort of higher—order evolution took and takes place on the molecular level (in
fact the contrary is rather doubtful), the development of biological organisms
iself indicates that information processing on this level has reached its limits.
The evidence for this claim is given by the fact that biological GAs discovered a
faster way of doing evolution: A possibility to evocuate the main part of infor-
mation processing to the phenotype by providing 1t with some (probably rather
unstructured] hardware (baby's brains) and some (probably sophisticated)
saftware. The clue is that the software is rather a germ suited to acquire more
software than a setof fixed programs®,

* The number 17 is an hommage 10 Prof. Giintzer.

® And it is obvious why this is necessary - The DNA strings are just too short to cacry all
the information necessary for, say, an adult primate to survive. The number of neurons
within a human brains is about 10 [Schulten ?), and what seems to be of even greater im-
portance, the number of connections between them is again larger by a factor of 1000. {To

o T8 w

The reflections in this section will lead to a second more narural approach tc
meta-learning. Evolutionary principles still will play the fundamental role, but
appear in a garment that does not look similar to the principles of GAs any
more. What is the essence of evolution ? The next section Is intended to show
that the notiens behind evolution are much more general than the purely

darwinistic conceptions influenced solely by 1deas from biclogy.

-

speak with Schulten : It is the connections that carr\‘aﬂ the information.} But the maximal
amount of syntactic info a DNA can carry is about 10 bits, and meost of them are used for

things that do not have much to do with the brains. There are 10! {?) other cells in a human
body.

o
3. Evolution and Learning.

3.1. What 1s Evalution ?

"Als Evolution bezeichnet man vorzugsweise die Herausbildung der
Gestaltenfiille des organischen Lebens im Laufe der Erdgeschichte. Die
Heraushildung einer Falle von Gestalten st freilich nicht auf den Gegen-
standsbereich der Biologie beschrinkt. Einerseits gibt es eine reiche spon-
tane Gestaltenbildung im Anorganischen; heute unter den allgemeinen
Kategorien der Synergetik mitumfaft. Andererseits schafft auch die men-
schiiche Kultur immer neue Gestalten. Evolution als Vorgang umiallt also

die ganze Wirklichkeit, die wir kennen. Sie bedarf also auch ciner
umfassenden Erklirung.”

This quotation is an excerpt from [Weizsicker 85].In the following Weizsicker
argues that the growth of entropy is identical to the growth of Gesraltenfille
(the plentyness of forms) if certain premises hold. With a little mathemaucal
experiment he shows that the introduction of simple binding forces into a model
(condensation model) similar to the kinetic gas model promotes the growth of
Gestaltenfiille. (The kinetic gas model led to the formulation of the second law
of thermodynamics), In a world like ours a row of binding forces exists. This
makes it probable that the often cited ’warmth-death’ of the universe does not
result in an uniform distribution of atomar particles, as one might conclude
naively by extrapolating the gas model. On the contrary the final state mighs
rather resemble a "collection of complicated skeletons ” [Weizsiacker 85].

So the phenomenon of evolution does not contradict the growth of enuopy, as it
is assumed. A frequently cited argument says that a decrease of entropy in one
part of the world has to be compensated by an increase somewherc else.
Without denying the existence of processes of this kind v.Weizsicker says that
he developmem of ferms does result in an increase of entropy He arguies ik
the many ungood feelings relating therete have their roots in a verbal or
notional neglicence. He shows that the definition of syntactic infermation
H = -5 p(k) tdp(k) (where k disjoint events E(k) may occur with probabihty
k

n(k})) is in substance the same as the one given for entropy, including the sign:

"Man hat Information mit Wissen , Entropie mit Nichtwissen korreliert
und folglich die Information als Negentropie bezeichnet. Dies 1st aber einc
begriffliche oder verbale Unklarheit. Shannons H ist auch dem Vorzeichen
nach gleich der Entropie. H ist der Erwartungswert des Neuigkeitsgehalts
eines noch nicht geschehenen Ereignisses, also ein MaR dessen was ich
wissen konrite, aber zur Zeit nicht weif. H ist ein Maf potentiellen
Wissens und somit eine definierte Art von Nichtwissen. Genau dies gilt
auch von der thermodynamischen Entropie. Sic ist ein Mafl der Anzahl
der Mikrozustinde im Makrozustand. Sie mifit also, wieviel derjenige, der
den Makrozustand kennt, noch wissen kénnte, wenn er auch den Mikrozu-
stand kennenlernte.”

— I =

In the following v Weizsdcker distinguishes between potential and acrual Infor-
mation. He regards actual information as negative entropy or as the informa-
tion about a micro state rhat one possesses only by knowing the macro state.
Potential information is what could be gained by knowing the micro state.

Entropy 1s potental informatien. Whether entropy 1is a measure of

Gestaltenfille or of disorder is only a differentiation between degrees of

knowledge.

Evolution 1s sometimes viewed as the principle that generates order our of
chaos. But according to v.Weizsicker and to common sense order i1s something
subjective. Consider figure 1 that shows a table of 9x8 pantly colored ficelds.
The colored fields are scattered chactically as long as you do not know that
every pth field is black (counting them by rows) iff p is a prime number.

Abh. 1
Order depends on knowledge.

That is,order depends on knowledge. Following [Weizsiacker 85] we may con-
clude that the statement "disorder gets larger and larger” is a wrong conclusion
out of the 2. theorem of thermodynamics. Entropy grows, but that does not
mean that disorder grows.

In fact the world is becoming more and more ardered in the eyes of a learning
observer, because he by himself provides the subjective scale of order. Simply
because he is acquiring more and more knowledge about the world, the order of

the world 1ncreases.

Weizsicker argues that operational definitions of information and usefulness
can be given, making both essentially identical. He pleads mathematically for
the view to see information as a real function of uscfulness for subjective pro-
babilities. He describes evolution as the growing of potential syntactic informa-
tion and shows that it is the most likely phenomenaon.

. B

3.2. Pragmauc Information.

The cornventional every-day notion of information does not refer ta the syntac-
tically defined form of a message, but o “what 1s understocod” ((Weizsacker85],
Thesis1). [Kuppers 86] explains that 7 the objlecuvation of the semantical
aspect of information is possible only if we include the pragmatic component of
information ”. This leads to the formulation of v.Weizsickers Thesis 2: Infor-
mation is only what generates information. This thesis 1s meant as a tighten-
ing up of the statement that pragmaric informauen is only what works, l.e.

what is effective [Weizsiacker 85]. It is no circular definition.

[Weizsicker E+C 72] introduce twe variables that help to define pragmalic
information 1 Erstmaligkeit (first occurence) and Bestitigung (confirmation).
Useful information is only possible if some things are happening that are fami-
liar to the information processing system (Bestdtigung). But of equal impor-

tance is the appearance of unexpected events { Erstmaligkert).

"Nahe dem Crenzfall hundertprozentiger Bestitigung kann jede Neuigkeit

registriert werden. [..] {die Verfasser} schlagen vor, in diesem Grenzfall
die Frstmaligkeit direkt durch die Information 1m Sinne Shannons zu
messen. [..] Nimmt aber der Bruchteil der Bestitigung ab, so kann nicht
mehr jede Neuigkeit pragmatisch effektiv registnert werden.”

If there is no Bestitigung, there is no useful information either.

"Blofic Bestatigung entspricht der Karikatur des Speziahisten: er wells alles
iber nichts; blofle Erstmaligkeit entspricht der Kankatur des Generalisten:
er welll nichts Uber alles.”

(Quotations {rom [Weizsacker 851).

3.3. A Link to Piaget.

Erstmaligkeit and Bestidugung are connected with two notions introduced by
Piazot: Accomoditan and assimijation, (A good introduction to Piaget 15 given
in [Ginsburg, Opper 75]). A lecarning child performs assimilation by giving
existing schemes the chance to apply themselves to the environment. If the
child already disposes of a structure that represents internally the falling of a
ball on the ground it may apply that structure fo other objects that are no balls,
¢.g. eggs Assimilation describes the tendency of available patterns te apply
themselves to the world (expectation driven programs assimilate, too). Assimila-
tion relates to Bestdtigung. Assimilation is justified because the world is not a

random warld but structured in a way that often allows Bestdtigung.

On the other side the phenomenon of accommodation describes the forced crea-
tion of new structures within a learning system. The child may apply 1ts
scheme for ’'falling objects” to a bird. But this scheme 15 not compatible with
the real-world-event, because the bird is flying away. Now the chuld may
sccommodate structures that give room for objects that do not fall. It may, but
it often won’t. This depends on how important the accommodation of new
structures is for the 'success’ of the child, which again depends on the prag-
matic context. Erstmaligkeir is related to accommodation 1n an obvious way.

o I

We can regard assimilation as an oppression of the world by the brains, and
accommodaton as an oppression of the mind by the world. The alternate play
of assimilation and accommodation is called equilibration [Piaget...]. The prin-
ciples of equilibration can be found not only in the development of children but
everywhere where expectation driven evolution takes place. Before we shall
localize assimilation and accommodation in meta—evolution we want to gain a

little more understanding of the nature of learning systems.

3.4. What is a Learning System?

To clear up this question 1t should be helpful 10 know what the term 'system’
stands for. But the notion of a ’system’ 1s something subjective and vague.
[Weiss 77] tried to give an operational defimition: For all material sub-comlexes
s; (1=1..n) of a complex S consider the cumulative balances v; of fluctuations of
physical and chemical parameters of 5; around some mean value. Let V be the
variance of all identifiable praperties of S. Then S 15 a system if V « > v,.

"Das wesentliche Merkmal eines Systems wird hier durch ein
Stabilitatsknterium beschrieben, das die grundsitzliche Invananz eines
Systermns gegentber den Schwankungen in seinen Subsystemen zum Aus-
druck bringt.” [Kippers 86]

There remains a lot of room for subjective arbitrariness, most strikingly located
in the sign <<’ and the word ’identifiable’. If there are difficulties with the
term 'system’, then how much more are there with the term 'learning system’ ?
[Due to these problems the following discussion will have only informal charac-

1er.

Intuitively we would say that a learning system is a system that (partly) consists
of evolving sub-systems reflecting the outer world in a way that assists the
entire system to survive. Within the system some sort of mini~evolution must
take place 1 order 1o build informed stwuctures thar help the whole 1o hold its
own 1n the world. Of course the identification of sub-systems 1s equally depen-
dent on subjectiveness as the identification of systems in general.

Provisionally let us view a learning system as a secr of informed structures being
separated from the rest of the world 1t 1s existing 1n. The world should be
interesting, which means it should allow ’arbitrarily complex’ structures. The
learning system should be connected to the warld by effectors and receptors,
because a system without connections can neither observe nor be observed.
Effectors are structures belonging to the system that have an influence on
structures belonging to the rest of the world. Receptors are structures belong-
ing to the system that have an influence on other system structures dependent
on structures belonging to the rest of the world. The noton of a ’structure’
indulges in subjectivity - one could say 'sub-system’ Instead of ’structure’.

What does it mean to identify a learning systemn? Someone must be there who
does the act of identification. This one will be called the observer. Difficulties
arise with the fact that at least in our world the observers are evolving learning
systemms, too. Let’s imagine that a learning observer who observes his

o B

environment may {ry to discover other learning systems?.

Because learning seems to enforce the medification of subsystems (informed
structures) the observer will have even greater problems to discover structures
that are permanent and can be regarded as the essence of some learning sys-
tern. This is because only patterns that are familiar to the observer will be
regarded. In other words: The observer who himself is a learning system can
only identify something if the Bestdtigung he gains by observing that sormething
is above zero. Mareover it has to be so clearly above zero that he can do either
assimilation or that he is at least motivated to do accommodation, 1n order (o
learn more about the complex in focus and which may turn out 1 be a learn-
ing system, The subjectiveness of the obscrver is determined by the knowledge

he accommodated during his own development.

Obviously it is not easy for an observer to decide what is a closed learning sys-
tem in our general sense and what is not. If the world 15 too complicated 1t 1s
impossible. The point is that in an interesting world like ours systems making
use of evolutionary principles are products of evolution again, as well as the
observer himself. But the pragmatic contexts relevant te the different systems
are different, in fact they might be too different. An observer watching his own
evolving environment might not discover certain evolving learming systems (1f
the world is complicated enough and the observer is simple enough, which
might be applicable in the case of the universe and human beings as
cbservers). If the observer’s knowledge about the world is limited, the world 135
only partially ordered in his eyes whilst other parts look chaoctical. How can he
recognize informed structures if he does not see any stiuctures at all 7 1f he
does not have any access to the pragmatic context that 1s relevant to these
structures? He often will not be able to identify a set of structures and find the

line that separates it from the rest of the world.

Surprising examples for structures holding their own 1n a certain environment
come from chaos theory (see ¢.g. [Crutchfield, Farmer, Packard, Shaw87j} Lt
took a long time for the learning system mankind to discover many of these
structures. By having discovered them the order of the world increased (the
observers are learning systems, too). But how much more can he found 7 It
seems that our informal definition given above often does not make too much

SCIISC.

The conclusion from this at all is nearly a2 plautude: Learning systems are
lcarning systems only if they are considered as such by other learning systemns.
This requires enough ’pragmatic intersection’ berwecn observer and the system
being observed, otherwise there simply is no other system in the cyes of the
observer. In turn, he by himself probably will not be identified as such a sys-
tem by 'the other side’.

? An example for a learning system in our broader sense (identified by biclogists) is given
by the set of all genatypes of a particular race. Informed structures are for 1nstance the DNA
strings themsetves. The phenotypes are the effectors!

T8 =

Of course we have rather clear notions about what a learning system imple-
mented on a computer should learn, because by defining the world we provide
the pragmatics. The pragmatical aspeet of the world presented to a learning
prograrm should have a big intersection with the pragmatics of our world. Oth-
erwise, if for instance some evaluation function of the critic in meta-evolutdon
i« not chosen appropriately, the system could escape into a direction we can not
follow, and we will say the system failed to learn the task we posed. We will
not consider it as a learning system, although it just followed the rules of evo-

lution. But in fact we failed by not supplying the correct 'pragmatic pressure’.

Note that it is less clear how the system should learn its task, at least if the 1ni-
rial germ is flexible enough to be 'intercsting'. Learning systems are identified
being of such a kind only because they evolve in a way that is familiar to the
observer. 1 consider my brother ta be a learning system. But [am far away

from knowing what is happening inside.

The glance into a learning system might be as meaningless as the observation
of chaos (sce the literature about neuronal nets). This somehow contrasts with
‘he desire to understand cverything that 1s happening within such a system. But
the inability of learning systems 1o understand completely other equally complex
ones might be fundamental.

In the theory of cellular automata (cellular automata can accomplish for
instance certain patfern recogniion tasks) many systems arc known where cer-
tain initial states under certain conditions evolve chaotically. 'Chaotically’ 1n
this sense means that the shortest algorithm to computc the final state takes
about as much expense as the complete <imulation of the automaton, In other
words, the automaton represents the shortest algorithm to computc the subse-

quent slates.

It remains an apen question whether these ncarly unpredictable processes play a
fundamental role in learning. But intuitively it seems to be plausible that
‘interesting’ learning systems some day will escape some initial {well under-
stood) schemes that are provided by other learning systems as for instance

human beings.

AM gives an example for escaping some inital algorithms, namely the name
giving procedures, These were thought to construct new Names for newly com-
posed cancepts out of the names of the elements. Soon these names were get-
ting stranger and stranger [Lenat 82]. This may be a symptom of a more gen-
eral law: Any (interesting) learning system will get in conflict with those initial
algorithms that de not evolve. Of course the name giving must not be changed
by the system, because it represents a part of the semantic interface to the
human observers. On the other hand 1t should be changed because atherwise
the ohservers also loose their ability to observe as they do not understand the
new names any longer. In the case of AM the problem 1s solved by humans
who interprete certaln new COnNCepts as something that is familiar to them (like
primes) and who supply a related name.

But if a learning system gets significamly larger than AM there will be no

chance for humans to find all good’ concepts, simply because there will be too

_ 920 -

many of them. Humans will not have enough time to look at every concept and
decide whether it is related to something they know. Moreover certain concepts
with a strange name may help the system in a way that has not been forescen.
A truly interesting system will find so many unforeseen ways that an obscrver

will not be able to follow,

This has to do with another problem pointed out by Winston: The reasons for
AM considering a concept as being of interest are often strikingly different
from the reasons that cause a human to like the same concept. Why is that?
In fact the concepts arc not the same, but the names are.

3.5. Symbiosis Versus Parasitism.

A parasite usually is viewed as a structure that survives because it makes profit
from the existence of other structures without contributing to their survival (a
soon disappearing parasite would be one that destroys the structurcs 1t depends
onj).

Symbiosis takes place 1f two orc more structures complete each other and gain

mutual advantages,

But the distinction between symbiosis and parasitism is as hard as the discovery
of learning systems, for analogue reasons. Furthermore if something was identi-
fied as a parasitizing structure it may furn out to be part of a symbiosis if it 1s
viewed from a different angle. The TBC germ was a parasitc of the human
race. But didn’t it trigger important medicinal developments that helped mank-
ind more than the TBC bacillus did damage to? From this point of view 1L wWas
part of a symbiotic system, at least as long as it was not extincted by the
development its appearance stimulated. The frontier between symbiosis and

parasitism is an indistinct one and depends on subjective knowledge.

Symbiosis plays an important role in the cvolution of complexitv. Structures
appear that are decomposable into many smaller structures that can not survive
alone. A system that owes its existence (O symbiotic principles 1s the human
body with its masses of specialized cells. A larger one is the human soclety

with its masses of specialized humans.

3.6. Erstmaligkeit,Bestatigung, Symbiosis and Meta—evolution.

To be able to handle Erstmaligkeit a learning system has to dispose ol a princi-
ple to build structures that reflects the possible appearance of unexpected things
in the real world. In GAs this principle is given by the possibilities of mura-

tions, of random changes of already existing structures.

Pragmatic Bestdtigung is introduced by the critic which establishes the connec-
tion to the world. So e.g. meta—evalution is the basis for an expectation driven

system able to do accommodation if necessary.

Information generates information. The abstract quality called information is
carried by something that I called informed structures in the introduction. So
informed structures should generate informed structures. In meta—evolution the
physical realizations of plans on a machine are examples for informed struc-
tures, Their degree of informedness is defined pragmatically by the advantages

_ 91 -

they cause on the lowest level, the physical environment®. In fact the informed-
ness of a plan 1s indicated by its probability to survive. Each plan’s existence is
justified only rto the degree in which it is contributing to the success of the

whole system in the 'real’ world.

Remember that the motivauon for the algorithm called meta—evolutnon came
from biology. Biological evolution i1z a kind of evolution that was successful
enough to become well-established, But it is only one manifestauon of the gen-
eral principle that may be expressed in 1ts simplest form: Everything that sur-
vives, exists (if 1t 1s realized!). This pninciple does not only apply to physical
individuals but also to ways of doing evolutton as well as to other abstract
ideas: The abstractum ’death’, for instance, survived because the way of doing

evolution by letting individuals multiply and die survived.

At the end of the last chapter 1t was mentioned that biological evolution led to
a more 'advanced’® kind of evolution. By providing the phenotypes with a
framework to do some sort of mini-evolution (learning) the genotypes found a
way that put their own role into the background. Although the invention of
sexuality {the first exchange of information located on DNA strings) led to
dramatic evolutionary leaps [Eigen 86] some day this kind of evolution was
relieved. DNA strings came into existence that supported an external informa-
tion processing {(external relative to the DNA) thus allowing morc promising
directions for development. Up to now this culminated in the evolution of
hurnzn societies. The inventions of language, printing of books or computer
nets are symptoms of this ongoing development that unties (in our subjective
eyes) the main part of information processing from molecular structures ({Markl

86] : "Language is the sex of culture”),

Let’s return to our goal to make machines learn. Most computer scientists today
depend on a von Neumann machine as the basis for their learning programs
so do i), Consequenuy the basic software germn wliose task will be to acquire
mare software should be designed to allow structures that make use of what a
von Neumann machine can do well (setting pointers, interprening sequential
programs ...). The development of ’natural’ structures should be supported.
Naturality is prescribed by the kind of data structures and algorithms a v.N.
machine can process efficiently. Due to the reasons mentioned at the end of the
last chapter meta—evolution does not seem to meet these cniteria very well.
Another argument against this algorithm 1s given here: Meta-evolution does not
leave much room for symbiosis. Symbiosis and parasitism surely might be iden-
tifled in ’chains’ of plans from different levels. But an important 1dea behind
the unchangeable algorithmic scheme is the parallel holding of information in a
manner that supports competition but not so much the collaboration of plans.
Although competition plavs a fundamental role in symbiotic systems (in order

to favour certain kinds of symbiosis), a system implemented on a computer

8 Of course it does not matter if the 'world™ again is simulated on some (probabiy the same
) machine. Simulation pragmatically changes into reality if all aspects relevant for the critic
are contained.

9 The ward 'advanced’ means something very subjective.

e Ok

should support the specialization of ’plans’ and not uy o make every plan a
universal genius (as meta—cvolution prefers to do by throwing less rarved plans

away although they mught be very useful in cerrain situations),

In the next section another approach to self-referential learning 1s presented
that seems to be better surted. It i1s based on ideas leaving more room for sym-

biosis!?,

R T
4. Sclf-referential Associating Learning Mechanisms.

4.1. Introduction

In this chapter I want to propose another approach to meta-learning, wherce
more care is given to principles of symbiosis and their realizatuons on
v.Neumann machines. Originally this approach was inspired by another idea
of Holland!!: The bucket brigade (b.b.)[Holland 85]{Holland 86]. B.b.s scem
to be a way to handle a problem mentioned in [Minsky 81}: "The Basic Credit
Assignment Problem for Complex Reinforcement Learning Systems”.

4.1.1. Classifier Systems and the Bucket Brigade.

On a global message list messages in form of bitstrings of size n can be placed
either by the environment or by entities called classifiers. Each classifier con-

sists out of a condition part and an action part defining a message it might
n

send to the message list. Both parts are strings out of {U,l,]r where the '’
) ; 2

serves as a 'don’t care’ if it appears in the condition part and as a 'pass—
through’ if it appears in the action part. A real number 15 associated with every
ctassifier indicating its ’strength’.

During one cycle all the messages on the message list are compared to all clas-
sifiers of the system. Each matching classifier computes a bid by multiplying its
specifity (the number of non-don’t_cares in 1ts condition part) with the product
of its strength and a small factor. The highest bidding classifiers may place
their message on the next list, but they have to pay with their bid which is dis-
tributed among the classificrs active during the last time step which set up the

triggering conditions (this explains the name bucket brigade).

Certain messages result in an action within the environment (like MovINng a
selagter one stend Beeanse some nf these actions may be criticized as 'usetul’ by
an extern critic who can give payoff by increasing the swengths of the currently

active classifiers, learning behaviour may take place.

Classifier svstems seem to be simple, but they are potenually mighty, E.g.
[Forest 85] shows that classifiers are well suited to implement semantic nelwark

structures (although Forest does not refer to the learning of such structuresy,

4.1.2. Symbiocsis and the B.B.

In contrast to GAs the bucket brigades are subgoal-reward schemes [Westerdale
85]: in the long run only those classifiers become stronger that are 'seting the
stage’ for actions that lead to payoff. These classifiers have higher chances to

assert themselves during the bidding phases, and sequences of uscful actions

11 Probably many schemes similar to b.b.s have already been in practical use before Hal-,
lands analysis, but they were not outlined explicitly. During a lecture on connectionist moedels
heid by Scott Fahlman in Munich in summer 86 he reported the advantages of the 'back -
propagation method’ developed by one of his students. I asked Fahlman whether back -
propagation isn’t essentially a b.b. scheme. After some hesitation he agreed.

o B

triggered by messages from the envirenment evoive.

Only the teamwork of many little entities produces structures that survive.
Although the competitive element is not abandoned (it is indispenseable}, struc-
tures with symbiotic character are supported. Usually there are no classifiers

that could survive alone.

4.1.3. Meta—capaaty for the B.B.

After some time It 1s necessary to create new classifiers (1if the environment 15
fastidious and not trivial). It is no wonder that Holland in his capacity as pope
of GAs employs a genetical algorithm to solve this problem. Strong classifiers
are preferably engaged in the process of exchanging 'genetic material’ thus
creating new ones to be tested.

The augmentation of the b.b. by a GA can be viewed as a simple form of
meta-learning. But there is only one additional level above the basic level.
There is no further means to augment the genetical algonthin. The system
described above is not “closed on itself’, at least not expliatly,

Wouldn’t it be more natural to apply the principles of the bucket brigade to the
augmenting of itself? A possibility to do this would be the introduction of
'mental’ primitives (an analogue to plan-primitves in meta—evolution } that can
be used to analyze or to create classifiers. There should be no essential differ-
ence betwcen the triggering of domain pnumitives and the triggering of mental
ones. Both types should be able to appear as part of the evolving sequences of

actions.

In the long run a b.b. scheme that is closed on irself in such a manner should
develop 'good’ heuristics {in form of appropriate classifier sequences) to create
new classifiers. 'Good’, of course, again 1s defined pragmatically by the
environment,

The artificiality of the many levels in meta—cvolution disappears, because all

meta—levels collapse into a single one.!?

Again the main argument for such an approach is the fundamental increase of
flexibility. A system making use of such self-referential principles does not
depend forever on certain initial algorithms. On the contrary, it should adapt
itsell to the increasing demands of an interesting (non-trivial) environment as
well as to the increasing demands of its own internal representations. To avoid
signs of stagnation such a system must be able to refine its methods if 1ts

representations are refined.

Experiences with stagnation have been made with AM, the predecessor of
EURISKO. More than fifty initial heuristics referring to mathemancs (and to
mutations of lisp expressions representing mathematical functons) caused AM
to 'discover’ and to name new concepts from maths. Starung with a few con-
cepts from set theory it created many more related to numbers, multiplication,

primes, and conjectures like the famous one by Goldbach.

12 This is probably closer to the way human beings handie meia ~ knowledge.

_ 95 _

After some time AM’s hit rate sank, i.e. the number of concepts considered as
senseful by human observers decreased (rapidly). One reason for this was local-
ed in the fact that the initial heuristics applied well 1o the iniual concepts
from set theory (and therr representations}, but not to more advanced
mathematical concepts created by AM. Thesc observatons led (o the desire to
caclude the field of heuretics into the learning process, and EURISKO [Lenat

83] was born.

EURISKO and CYRANO (a ’thoughtful reimplementarion of EURISKO' by
Kenneth W.Haase jr. [Haase jr. 86]) arc the only systems 1 know that
somehow are explicitly closed on themselves. EURISKO 15 potentially able to
introspect and modify all of its parts, because it is written in a language that
makes everything explicit [Greiner 80]. Even the lisp interpreter building the

basis for the system is represented explicitly.

But there is a great difference between introspection and potential introspective
abilities [Maes 86].Certain parts of EURISKO are accessible in a natural way,
for instance the concepts that represent the current domain, and the heuristics
that work on domain concepts. But e.g. the fundamental modification of the
organization of heuristics would almost certainly result in a failure of the whole
system. This is because EURISKO's successes are largely dependent on its gen-
cralization hierarchy. If something happened that damages this hierarchy it
would be extremely unlikely that an equally or better suited form of organiza-
vion evolves at the same moment. The deeper reason for thus is that big parts of
FURISKO as for instance the truth maintenance system depend on the hierar-
chy, and that these parts are not very well described in the eyes of the system.
It is not explicit which kind of changes to these parts are harmless or perhaps
catastrophic. The system may want to find it out of its own accord by using its
learning capabilities, but it may be the last thing 1t finds out. Changing fun-
damental parts of its behaviour may be the last self-modificanon the system
executes. An example: lisp programming was included as o domain 1w L
explored by EURISKO. When starting to modify its own lisp code EURISKO

soon ran into bugs [Lenat 82al.

There seems to be no obvious way how EURISKO could reconhigure itself into
a systemn that represents its knowledge in an e.g. more analogical form. But the
shallow tree problem mentioned in the introduction indicates that most relauons
between ohjects do have a more analogue nature, and that the isa-link is only

one of many impertant links.

So called low—level methods as GAs, b.b.s and neuronal nets seem to be berter
suited to make use of the giant field of analogous connections. An initially
simple but potentially mighty system should allow the creation of generalization
trees as well as the development of the many other methods to organize
knowledge. Bucket brigades are powerful enough to let default hierarchies
emerge [Holland 80]. Are they simple enough to allow anything else one might
imagine? And in a 'natural’ way ? If the answers are yes, then closing the b.b.
on itself should be an exciting experiment. But at least on a v.N. machine the
answer seems to be no: the massively parallel matching of messages and

condition parts simply takes oo much ume. (Holland makes use of a special
hardware, [Holland 86]}.

To build a learning germ for a v.N. machine we will follow a different
approach: SALMs.

- D7 —

4.2. SALMs, PSALMs.

The word SALM is an acronym for ’self-referential associating [earning
mechanism’. This term stands for a domain independent mechanism that pro-
vides a simple but broad framework for the further development of a software

germ defining the initial state of a learning system.

Why associating? Because the basic action of conventional associalion s setting
or following a pointer, which is easy for v.IN. machines. {This 1s the reason
why many languages esscatially doing pointer manipulation are implemented
on such machines), Association will provide the basis for storing any kind of
information as well as for the execution of sequential programs. In both cases
the machine has to do the things it has been constructed for: following

addresses in the storage.

Why setf-referential? After all that has been said before the reasons should be
clear.

Some prototvpical SALMs (called PSALMSs, of course) have been implemented.’

4 3. What all PSALMs Have in Common.

Pressure to learn some behaviour in some domain is supplied by the way the
hardware (the unchangeable parr of a certain PSALM) interpretes the entities
that collectivelv make up the system. Under certain conditions certain entiries
may trigger certain actions in an arbitrary environment. Furthermore every
interpreted entity can have an influence on the decision which entucs are to be
interpreted next. This is meant to allow some flow of control driven by the sys-

TEITL.

A critic of executed actions is getting active from time to time and may give
payoff 1o the system. The pragmatics of the world (partly) are given by the
evaluation functions the eritic uses to determine the amount of payofl

spends.

Payoff may be used by the system fo extend itself by creating new entitics or

associating old ones in some way or Just to strengthen certain parts of itself.

All entities that are interpreted by the hardware have to pay with a part of
their strength for that privilege. On the other side the hardware prefers (o con-
sider strong entities, So in the long run the hardware tends to support
scquences of actions that lead to success 1n the world by decreasing every
'senseless’ entity’s probability to be interpreted. One could draw an analogy to
the metabolism of biological individuals: Being active requires resources, but

resources are limited. (—> Competition!)

A primitive is an action that can not be decomposed by the system. Entifies
can be associated with actions that may be domain primitives or 'mental’ prirmi-
ives. Those that are associated with domain primitives represent the outgoing
connection to the warld (effectors). In turn the system can recelve Mmessages

from the environment (perceptions) which are also represented as entities.

The critic can notice only actions performed within the domain. The system 1is
free to use payolf as it likes, but it can not create payoff (otherwise it could

_ 98

escape the pragmatic pressure). This does not imply that it cannot transport

payoff to entities 1t considers to be adequate.

The transport of payoff, the creation of new entities and the building of assoc-
ations can be done by enuaties associated with some mental primitives.
Sequences or clusters of mental primitives also can (must !) work on themselves

to organize the way they orgamize the domain knowledge.

s S

4 4. PSALM 1.

The experiences with PSALM 1 led to a stricter distinction between the
language a PSALM uses and the pressure that forces the language to organize
self. It may be helpful to follow this evolutionary process (the author was part
of it) chronoclogically.

PSALM 1 was a straightforward implementation of a self -modifying associative
net based on weighted links. The basic structure was called an entity, At time t
each entity e could be associated with an action (an undecomposeable func-
ional representing a domain primitive or a mental primitive) and a set
assocs(e,t) of ordered pairs out of SE(t)x[0;1], where SE{(t) denotes the set of all
entities existing at time step t. Each pair represents an association between e
and some other entity, as well as the ’strength’ of that association. This
linkstrength between two entities € and ¢ at time t is defined by

s{e,e') 1= x if (e' ;x) € assocs(e,!), and 0 eise.

Let the agenda A(t) be the set of all entities interpreted in parallel by the
hardware at time step t. Then it is possible to define an order
‘moreinteresting{t)’ on SE(t):
el moreinteresting(t) e2 <> » s(c,el, 1) > > s{e,eld 1)
e € AN e € Al
The agenda A(t) can be sorted by the law of order defined by uself. Taking
one entity from or adding one entity 10 the agenda may result 1n a completely

different order of the elements it 1s consisting of .

At time 0 the payoff valuc is initialized with zero. At ume t the hardware
interpretes all {(or the most interesting) entities of A(t) by inspecting whether
they are associated with some action that is executed if there is the need.
Because some domain dependent entities may cause the extern critic to give
reward, pavolf in forms of a real number might be added to the old pavoffl

value.

At cach time step ©0 all links from A{(t-1} to entities € A(t) are punished or
rewarded (propertional to their old values):
el ¢ A(r) implies for all e € A(t-1}:
glee k=l
{ O — * : .
sleyeie) ces(e,el, -1} + P 3 5 G B

' € A =1) & eAl

P denotes a number that is gained by decreasing the payoff by some default
method, ¢ is a constant out of {0;1] close 1o 1. A(t+1) becomes the set of the
most interesting entities defined by A(t) unified with the set of perceptions that
may have appeared during tme step t. If there are no interesting entities {with
a strength greater than a given threshold), some random selection takes place.

To explicitly close the system on itself on a very low level some mental primi-

tives like the following ones were introduced:

~ create_entity: This one creates and initializes a new entity and associates il

with the whole agenda at the same nme.

o 50 =

- create_links: creates or strengthens links between the most interesting entity
and the rest of the agenda (if there is enough payoff to do so).

— shift_payoff: Takes payoff if available and distributes it on the links leading
from the agenda to the ’outside’.

‘The goal of PSALM 1 was to to avoid the massive parallelistn of bucket bri-
gade schemes hoping that the system will develop strategies composed out of
primitives that always place the 'right’ entities in the agenda. It was imple-
mented 1n INTERLISP and consisted of about 60 k of code most of which

were concerned with gaining some elficiency by using hashing techniques which
are not supported by INTERLISP [INTERLISP 85].

PSALM 1 was a flop. During the (very limited) times of observation no kind
of structure evolved that would be worth mentioning. Although a rate of 5

agenda cycles per second is clearly too slow this is not the only reason for
PSALM 1's failure,

4 5. Lessons Leamned from PSALM 1.

There seemed to be nothing wrong with the basic hardware parts of the system.
But nearly all of the mental primitives implicitely represented some unstated
heuristics ltke @ "If a new entity is created then it should make sense to associ-
ate some other entities with the new one, otherwise the new one will be lost
soon and become garbage.” Of course this heuristic may be helpful sometimes,
but often it will cause trouble among active entities. The point is that the sys-
tem has 1o build unnatural construcis to escape such trouble makers withourt
loosing their advantages. But 1t should discover special procedures for special

situations 1nstead of general ones.

Lesson 1. Make your primitives as primitive as possible, do not averload
them with heuristics that may help a little bit in the starting phase but
may be the reasons lor awkward and aruficial constmucts in the many

situations you have not foreseen.

Related to this 1s the ’parameter problem’: If we want to introduce self-
referential primitives that are able (o associate other entities it must be clear
which entities are taken as arguments. In PSALM | this was handled by using
defavlt arguments like ’the most interesung entity within the agenda’ etc. In
order to occasion the hardware to consider some distinct entity as a parameter
for the action create links, this entity had to be marked as the most interesting
one by references from other parts of the agenda ..., what again resulted in

very artificial constructs.

‘Lesson 2. Become aware of the problems involved with parameter handling

and provide the initial system with the potential to solve it naturaily.

‘The parameter problem seems to be solveable by the introduction of more men-
tal pnmitives that set é’iobal variables, which by default serve as arguments for
the currently active entities. Two global stacks seem to be enough for such an
‘extern’ parameter handling. But global variables like stacks have another
disadvantage, namely that they are global. This means that a program depend-
ing on such stacks has to be very careful. Misinterpreting one element popped

s B

from top of a stack may cause the failure of the whole program (think about
the consequences if an interpreter who evaluates a recursive funcrion did not
interpret some value on the stack correctly as the old base—pointer but as the

value of the last incarnation).

But learning systems often 'misinterpret’ (remember the fundamenial processes
of assimilarion and accommedation). Although potentnal Turing equivalence is
achieveable with two stacks and little more, the dangerous and unstructured
programs running on such simple devices are far away from being natural (and
from being similar to ocur way of thinking). A possibility to smoothe the effects

of misinterpreration is to keep all kinds of information locally instead of glo-
bally.

4.6. PSALM 2.

PSAILLM 2 took more care of parameter handling. Every (potenually active)
eatity could wander through a number of states. The current state depended on
how manv of the needed parameters already were instantiated. Every cntity
‘collected’ by some primitive action was interpreted as a missing parameter,

and the primitive changed 1ts state correspondingly.

Still it was felt that the handling of instantiations was not explicit enough to be
natural. The desire grew to allow purposive altcration of parameter instantia-

11ons,

The notions mentioned above led tw a kind of (minimal) object onented
approach. Each entity should ’know’ its parameters, send messages in form of
entities, perhaps interpret messages received from other entitics, serve as a van-
able etc. In order to implement these ideas 1t was helpful to separate the prob-
lem of meta-learning into two logically rather different parts: The language a
learning svstem is based on, and the pressure given by the hardware (and the
environrment] that forces the language to organize uself. (Remember, the
hardware 15 the unchangeable part of the system.)

The next section describes PSALM 3. PSALM 3 allows rather straightforward
implementations of programs that maintain the spurit of 'distributed program-

ming’.

4.7. PSALM 3.

4.7.1. The Language.

Most programs {including most Al-programs} show a rather strict separation
between procedural and declarative knowledge. This also holds for the many
systems written in potentially (syntactically) self-referential languages like
PROLOG. The conventional proceeding is to let some comparatively universal
algorithms work on an amount of somechow structured data (trecs, relations,
production rules ...}. Even if both the dara and the programs are represented
in the same syntactic form, say LISP-lists, the semantic frontier usually
rcmains sharp.

A proceeding more similar to the human way (0 handle information is to let
cach piece of data 'know’ what it is about, and ro provide in an associative
manner the algorithms that are needed. This leads to concepts like object-
orientation, demons etc. 'Real’ object-orientation seems to be achieved when all
the (non-primitive) parts of an algorithm again 'know’ what they are about,
what 1t means to be called by another algorithm a.so. Thus the frontier
between algorithms and data gets blurred. Data may be informed about the
algorithms they are suited to, and the algorithms might know which data to

process.

PSALM 3’s language is designed to achieve such an indistinctness. A piece of
data may sometimes just serve as information for some algorithm, 1n another
context it may be part of a program, or it may trigger one.

To allow self-referential structures in a form that might resemble to sequential
assernbler code as well as to scmantic networks the following claims to the

language of PSALM 3 were enforced:

~ An entity associated with an action should be able o define ar least one
‘exit’ 1o another entity, in order to enable the formation of ordinary
sequential programs. The exit may be viewed simply as the address of (he

next instruction.

— In order to create or change sequential programs the system must have a
possibility to define or redefine some entity’s exit(s). So at least one primi-
tive action that takes two entities as parameters and makes a "program’ out

of them has to be incorporated in the language.
- Primitives that can be used for parameter setting must be available.

— Any entity should be associateable in an annorated manner with any
number of other entities. "Annotated’ means that not only simple links
between entities are allowed, but that there can be additional information
about what a link means. This requirement supports a decentralized
management of information. It somehow provides the basis for object-
orientedness. It also makes it easy to supply sernantic comments to certain
parts of a program, in order to indicate 1o other analyzing programs what
¢c.g. some variable is about. Comments are very popular in the field of
automatic program synthesis, see e.g. [Dershowitz 83],] Sussman 75].

_ 33 -

— The language needs the capability to extend iself (e.g. in order to write
new programs that cannot be constructed out of already existing ones, or
in order to define new kinds of links ...). So at least one primitive action
that 1s able to create new entities 1s necessary. Others are needed to put

new entities to places where they may get a4 semantic interpretation.,

— The language has to provide a way to inspect any entity that is part of the
language. So primitives are necessary that take other entities as arguments
and find out whether they are associated with some action, with which
one, how the parameters of the action are instantiated, which exit 1s
defined by some entity, etc. Furthermore there must be a way to change
behaviour depending on such tests. At least one 'branching’ primitive has
to be incorporated.

— The language should be endowed with a potential way to follow sequences
of actions back into time, in order to allow reflections about the history

that led to the current state.

— All the primitives mentioned above as well as their parameters have to be

represented as entities 1n order to closec the language on itself,

Ta handle all primitives and the other entities in a homogeneous way they were

implemented 1n a frame-style manner:

The fundamental structure of PSALM 3 is called a token. In the imal version
of PSALM 3’s language any token was described by its name, eventually some
functional or procedural definition, and a set of ordered pairs of tokens that
represented the associations. Such an ordered pair can be viewed as a slot and
its filler in the sense of [Minsky 81}, or as a subject and an object {in the sense
of [Steels 86]), or as "component of the beta—structure” (Newell), or simply as
a property and its value (lisp}.

[Winograd 75] points cut that the notion of a frame is a vague one, and that
different people do have different requests to a frame system. An inheritance
mechanism along isa-links often is considered to be impertant. But bult-in
inheritance is exactly what PSALM 3 wants to avoid (remember the shallow
tree problem). If inheritance and isa-hierarchies are important {and certainly
they often are so) then a possibility should be given to construct them explicitly.
However, the potential possibility to escape the isa-links has to be provided,
too. Of course we want the system to learn when to switch between different

kinds of using available information.

Frames are often considered as a means to close the gap between declarative
and procedural knowledge. A common proceeding is te let frames inhent algo-
rithms. The most uniform {(and thus the most beautful) frame-oriented
languages are those where not only the fillers of the slots but also the slots
themselves are represented as frames. The slots should 'know’ what it means to
be asked for a value that is {perhaps virtually) stored on them. Because slots
are frames, they again have to be described in form of slots and fillers.
Although this looks rather circular, there is no big problem in constructing such
self-describing languages. This has been shown in [Greiner 80| where RLL-]
is cxplained, a self-modifying language that became the basis of EURISKO. A

B

reimplementation of RLL~1 in Prolog that has been done as a fopra at TUM
s described in [Stolcke 87]. Probably the most well-reasoned ’self’-language 1s
KRS [Steels 86] which is based on the insights of intensional logic. KRS also

has been used to do learning by discovery, see [Jonckers 86].

PSALM 3’s fillers and slots again are tokens that can be associated with slots
and hllers.

Some of PSALM 3’s tokens have a fixed slot interpretation. If for Instance a
slot called ‘action’ is filled with a token that has a functional definition the
hardware may apply that executeable definition to the fillers of some slots thart
are interpreted as the parameters. (The hardware is essentially given by one of
the top-level-loops described below.}

Of course every primitive action has to be implemented carefully, because it
st also handle the cases where some parameters are not correctly instan-
tdated. In such cases the system (in a very advanced stage) should be (poten-
tially) able to find out what went wrong. Perceptions (that also might be trig-
gered by the environment) are used to make information about errors explicit.
Of course, perceptions are represented as tokens, 10o, because only tokens arc

accessible for the language.

We arc looking for a simple 'orthogonal’ basis of primitive actions for a Turing
equivalent language that allows explicit self-reference. This basis can be rated
as an analogon to the set of fundamental lisp-primitives: {car, cdr, cons,

(cond)eq).

Due to the uniform representation of the language the number of initial mental
primitives can be heavily reduced. The most simple basis might be given by the
three tokens described below. Each has an even number of parameters, because
two values are needed to access some distinct entity: A token, and a slot stored
on that token, where the filler is regarded as the desired entity. The three basic

rokens with a functional definitnon are:

-~ Copy.Copy takes four parameclers (also represented as slots among the
associations of the token whose action—slot is filled with the action ‘copy’),
and interpretes them as follows: The second one is viewed as the name of
a slot of the tcken given by the first parameter. The filler of this slot (if
existing) is copied onto the token given by the third paramcter where it 18
stored under the name of a slot given by the fourth. Copy can be used to

redefine actions, exits, or any other kind of slot.

- Condeq. This is the fundamental token for testing and branching. Condeq
needs six parameters. The first four are taken to determine the fillers of
two slots hopefully stored on two distinct tokens. These fillers are tested on
equality. The remaining two parameters represent exits that are triggered

depending on the Tesult of the comparison.

- Create _token (two parameters). This one creates a new naked token that is
not yet associated with any other token. The new entity is sent o a token
given by the first parameter and stored under a slot given by the second.
Create _token is the fundamental primitive for self-extension. Newly
created tokens can be used as slots or fillers or both. They might get

" BE

'loaded’ with semantics, when contributing to the 'pragmatic success of

the whole system.

Copy, condeq, and create-token build the basis for the self-referential
behaviour of the language. Manipulation of already existing programs witten 1n
the language can be done in a straightforward way by using these primitive
actions. The manipulation of the manipulating programs of course is equally

casy, because the 'meta-programs’ are also written 1n the same language.

Another primitive that is able to manipulate tokens was considered to be 1mpor-

tant:

_ Remove. Remove takes two parameters and is able to erase some slot of a
token. (Copy overrides.) Using remove is the language’s only way 1o
reduce the number of entries a token has. This should be important,
because the efficiency of access to some token is subject to the “size’ of the
token (at least in the current implementation). Because the time of access
to some information has an influence on the success of the whole system

remnove 1s justified.

Some kinds of information the language should be able to gain about itseli do
have an inherent set—nature. This is true for the set of slots a token can have
(there is a primitive called get slots which determines that). Another example
can be given if the hardware does a parallel interpretation of tokens. In order
to fulfill the requirement of potential looking back inte ume 1t seems (o be
natural to store on every token accessible information about the set of tokens
that triggered 1t

Of course the previous capabilities of the language are sufficient to represent
sots or lists. Yet for reasons of efficiency the symmetry between slots and fillers
has been broken a little bit. The implementation in question allowed fillers of

slots that were no tokens bur lists of tokens.

In order to handle lists the language has to be enlarged by priminves that

enable list manipulation. Two of them seemed to be encugh:

~ push_token (four parameters) works analogue to copy. The only difference
is that no overriding takes place, instead the object that is copied is pushed
on the ’stack’ defined by the last two parameters.

— pop token (four parameters) splits a list (which 13 given by two parameters,
a token and a slot) into its head and its tail leaving the tail where the old
list was and sending the head to a place dcfined by the aother two parame-

ters.

Here 1s one example of a possible token:

tokenl?:
slots fillers
acrion copy
parl Clyde!3

I3 You remember that Clyde is an elephant, and that every ¢lephant is a mammal, and that
every mammal is an animal, and that every ammal ...

par? 153

par3 tokenl?
pard parl
slot354 token2347
support (tokenl7}

Token17 follows (strict) isa-hierarchies. Why holds that? Tokenl7 works directly
on itself (because its third parameter again 1s filled with tokenl7), and it 1s
resetting its own first parameter with the isa—generalization of 1s old instantia-
tion (if such an isa—hierarchy exists). Because the next token to be considered
by the hardware is proposed by the support-slat 10 be again tokenl/, a loop
structure can be identified. Dependent on the way the hardware is interpreung

rokens some perception may terminate the loop.

Bul how did tokenl7 come into existence? It was crcated by another token, say
token 12, that is or was associated with the action create token. Tokenl?7 was
sent to a place where it was interpreted as a parameter that should be A8S0OCI -

ated with the action copy (what again may have been done by some copy ...).

Tokenl7 easily can be changed {by some other token associated with a token
manipulating action) to a little program that follows neighbour~hierarchies. All
there is to do is to replace the filler of the slot par2 (which currently 1s '1sa’) by
the token ’is-necighbour’, presupposed that this token exists and that the
corresponding relation Is represented appropriately. The token that would do

this change would act like a generic function generator.

The more interesting cases, of course, may be those where many scquences of

tokens work on many other sequences of tokens in parallel

Obviously any distiction between different mera-levels seems to be abolished.
Circumstances permitting the same sequences of actions may work on the
domain level as well as on any other level. PSALM 3’s language is well suited
to handle ideas presented in [Perlis 85], where a theory of quotation 1s
described with the aim to stay in first-order logic and to avoid antinomes
involved within higher—order logics.

4.7.2. Some Words About Garbage Collection.

If the system frequently creates new tckens In an ‘uninformed’ way it often
may happen that tckens get lost. After some time of development there might
he no way to access some distinct token by following associations from the set
of initial tokens or from the current agenda. Tokens that have become garbage
may occupy large parts of the storage (especially during the starting phase when
the system does a lot of silly actions), and some kind of garbage collection rmust

take place.

.

In the case of PSALM 3 garbage collection is not so straightforward as it was
in the case of PSALM [, where a conventional atgorithm was used. What does
1t mean 1if a token is accessible by PSALM 3’s language? Ler SA(1) denote the
union of the set of initial tokens, the set of perceptions that emerged up until
time ¢, and the current agenda (if the hardware employs an agenda mechan-
ism). We are interested in the set SA (1) of all tokens that are ’accessible’ from
SA(t). Informally a token is accessible if a chain of associations starting in
SA(1) and leading to that token can be built where all referencing slots in that
chain are accessible tokens, tco. Some distinct token can be referenced only via
slots, and this is possible only if the slots themselves are referenceable by the
language,

[t seems as if we ought to know the set of accessible tokens before we can
define it. This is not true,as there Is a way to compute the desired set by com-
puting a fixed point like this:

1.Set SAq (1) equal ro the set T(t) of 1ll tokens existing at f(une t. Set n :=
(ks

2. Repeat:

Z2.1. Set n = n+1.

2.1. Let SA,(t) be equal to L) sa,(e.t) where sa,(e,t) is defined
e € 5A(D)
recursively as e U L sa (e’ ,t) and where C{e k1) is the set
£ : € Cfe,an =1,1)
of all fillers of e at time t where the fillers and the corresponding slots

are In SA*E(I‘),
until SA;(1)=8SA", _ (1.

3. Set SA (1) cqual to SA (t). The garbage is given by T(t) - SA (¢).

[nformally : Repeat conventional garbage collection thus reducing the number
of accessible slots until this number can not be reduced any more and a fixed
point SA(t) is reached. At the end of that procedure only tokens that are
accessible via accessible slots remaln.

The actual implementation performs only partial garbage collection from time
te time, due to reasons of efficiency. This does not mean a fundamental res-
triction. Now or then all lost tokens are recollected. The only restriction exists
in the fact that not all garbage tokens are recollecied at the same time. In order
to save time the garbage collector avoids to compute the complete fixed point at
time t, but it removes garbage slots whereever it Is possible to recognize them
durning the first and only cycle of recollection. So the next time the collector is
triggered 1t may recollect tokens that were not recoenized to be lost during the
previous time, in addition to new garbage tokens.

-

4 7.3. A Link to Geometnic Fractals.

A geometric fractal can be defined with the help of an initator and a genera-
tor. Informally: the initiator is medified in a way determined by the generator.
In the case of figure 2 the initator is a line. This line 1s altered, its middle
third is replaced by a geometrical figure similar to the generaior consisting out
of three of the four lines defining a square.

Abb. 2

Thus five new lines can be identified, and to each of them the procedure dep-
icted above is applied again. I such a proceeding 1is repeated an infinite
number of times, a self similar structure emerges: The whole is similar to an
infinite nurmber of its parts.

There is no need to follow such a stiff and deterministic scheme. The structures
similar fo the generator may be inserted into the developing initiators according
to some random distribution. Certain distributions, analogically applied to the
construction of 3—dimensional fractals, produce results strikingly similar to for
instance stone formations, plants, crystals etc. ({Mandelbrot 83]). In such cases
the evolving structures are only 'nearly’ self-similar.

An example is the growing of ice—crystals on a window, producing fractal
forms. This growing is constrained by the shape of the window as well as by
the already existing crystals: If two different parts of the evolving structure
rmeet, they may not overlap.

Let's draw an analogy to self-referential programming. Let us view the initia-
tor as a program, and the generator as another program that is able to do pro-
gram modifications. Then the generator could be applied to parts of the initia-
tor, a different and more complicated program may be the result, and so on.

= 8 e

It becomes interesting when the initiator and the generator are equal to each
other. This would mean that the initiators do not have to be changed always
nearly in the same way, because by being changed the generator changes, too.
I would like to call this the development of an ’'algorithmic meta-fractal’,
becausce a transformation constructing a new stage of the ’algorithmic’ fractal is

in gencral also transformed at the same time 1t works,

The analogy to the window is the frame for development given by the world ta
which the meta—fractal may be coupled by effectors and receptors. The prag-
matics of the world is like the window, but it has a very complicated, muludi-
mensional, alse fractally broken frame. If the ininator (and thus the generator)
can lake the form of any Turing computable program, the algorithmic fractal
should grow and refine itself thus more and more filling the window ...

Let’s have a closer look now on possibilities to introduce pressure, in order to

force the initiator-generator to fill its window.

_ 40 —

4.7.4. The Pressurc

A row of mechanisms are thinkable to force the language described above (o
organize itself. Common tc all of them 1s some pragrmatic pressure that has to
be established by the domain critic: It is the critic who states whether certain
actions performed within the domain are 'useful’ or not. Dependent on the
utterances of the critic the hardware should favour a development of the
language that results in successes within the environment, The semantic 1nter-
face between our conceptions and the language is given by the evaluation func-
tions the critic uses and the way the hardware translates criticism into 'proba-

bilities for informed structures to survive'.

During all the tests that were executed with PSALMs the critic spent payoff in
form of numbers. High numbers were given if a problem was solved well, low
numbers in other cases. [t is not true that a lot of information is lost by reduc-
ing perhaps complicated problems to simple numbers. This is because the dif-
ferent contexts that lead to the donation of high or low numbers, respectively,
represent a lot of information, too. This information somechow should be
reflected by the token language in form of informed structures.

To introduce competition every token can have a strength. Strength is measured
with the same basic unit as payoff (natural numbers were chosen to represent
payoff and the strengths in the actual implementation). The hardware has to
favour tokens with high strength, and a roken may have a high strength only if

the amount of payoff has been reduced adequately some nmc before.

The way strengths are handled links the language to the world. Narturally the
strength of some token is stored as an association 1 form of an accessible slot.
In order to maintain the philosophy of the language, namely that everything
should be explicit, the number representing the strength of some token also 1s
represented as a token. So any number can be associated with information in

the same way as any other token.

The explicitness of the strengths implies as a consequence that actions hike copy
need to be restricted. This is because it must be prohibited that the language
copys high strengths to tokens that do not deserve it. More precisely: The slot
called ’strength’ may be filled with a token representing a number only if there
is enough payoff to de so. Every time the language fills the strength—slot of

some token the amount of payeff is reduced correspondingly.

Another mental primitive was introduced that is able to do the inverse action:
decrease strength can increase the amount of payolf by decreasing some token’s

strength.

The idea behind this proceeding was: The sum of payoff plus the strengths of
all tokens may be increased only by the domain critic. What is happening to
the payoff is hidden from the eyes of the cniic. But it must be guaranteed that
the system can not escape the pragmatic pressure forever by creating payofl or
strengths out of nothing. Of course this does not mean that the language Is
not potentially able to reason about strengths and numbers. But it is well
advised to create some new slots to support such rcasoning processes, Decause

strength-slots are treated specially.

S

A difference to PSALM [is that the associations between tokens are not
welghted any longer. This has mainly aesthetic reasons: On the one side it is
not clear what for instance a weighted link to ihe actual parameter of some
action should mean. A parameter is instantiated, or it is not. This kind of
all-or-nothing nature seems to be inherent ta most of the initial slots. On the
other side there are slots where a weighting could be justified by experiments
carried out with neuronal nets [Rumelhart, Zipper 85}|Buhmann,Schulten ?).
This includes the ’support’-slot which is used to propose one or more tokens to
be interpreted next. But the introduction of special weighted links and their
special treatment (by a row of adapted mental primitives) would grievously
break the symmetry and beauty of the language’s previous form.

Instead one simple number indicates the worthiness of the whole complex called
a token, including the many all-or-nothing associations that may belong to it.
|Lenat 77] gives more justification for a similar proceeding in AM,

4.7.4.1. Whistling.

How can PSALM 3’s language start to develop? Note that in the beginning it
does not even know the difference between domain and mental primitives. No
token 1s associated with any kind of information in the initial state of the sys-

tern,

Schulten emphasizes the importance of 'random whistle’ for learning systems
based on a neurcnal net architecture [Buhmann, Schulten ?], I want to take
possession of these ideas and transform them into a symbol-manipulative analo-
gon.

PSALM 3’s hardware whistles, too: If a token rhat is to weak or that does nat
make any ’syntactic sense’ (which should be easy to find out) is considered by
the hardware, that token is associated randomly in a way that makes sense at
least on the syntactic level. This is true especially for tokens associated with an
action but also with clearly wrong parameters. 'Clearly wrong’ means that the

decision whether something is wrong can be taken on a pure syntactic basis.

If the syntax makes sense the hardware executes the action (what may trigger
perceptions that indicate semantic errors), and usually one or more new tokens
are proposed to be executed in a controlled manner: control suppresses the sym-

holic whistle,

Whistling somehow represents PSALM 3’s fundamental principle to handle
Erstmaligkeit, and to do accommodation (although accommodation in an
advanced stage of development should be mainly done by more informed struc-
turesj. The random element introduced by whistling reflects the fundamental
fact that unforeseen things may happen in the ’outer’ world. Its analogon in

meta—evolution is random crossover.

4.7.4.2. Equilibration and PSALM 3.

Assimilation takes place whenever some perception or a pattern of perceptions is
triggered that again triggers 'stabilized’ (sequences of) actions. |Ginsburg,Opper
751 criticize Piaget because he did not make clear how and under which

_ 49 _

circumstances equilibration takes place. But the up and down of assimilation
(expectation driveness} and accommodation can not be defined in detail. It 13
the pragmatic context that has to bring on an equilibrium, Simple models

suited to introduce equilibration are proposcd next.

4.7.4.3. Possible Top—Level-Loops for PSALM 3.
Different kinds of agenda mechanisms (similar to the one used by PSALM 1)

have becn tested. Differences were given e.g. by the way competition was
enforced, One way to determine the 'power’ of a token at time t 1s to compute
a bid by multiplying its strength with the number of tokens that proposed it
during the last time step. Another way 15 10 consider the strength of the propos-

ing tokens, too.

The highest bidders should win. What does this mean? One could introduce a
maximal lenght / that must not be exceeded by the length of the ‘active’
agenda, At time t the agenda A(t) is sorted by the 'power’ of the tokens 1t con-
sists of. Not more than the first ! tokens of the sorted agenda may be inter-
preted in parallel. Every token that got a chance to be active is thrown from
the agenda, and its strength may be decreased 1if there is no payoff available or
increased otherwise!t. If the strength is below a certain threshold, the token
may be 'over-whistled’.

Should some tokens out of the non—active rest of A(t) become part of A(t+l),
building seme kind of short term memory? Or should A(t+1) solely be built out
of tokens proposed by the active part of A{t}, in addinon to some eventually
appearing perceptions? Should perceptions really be part of the agenda, or
should they be kept on a special perception list where they can make proposals
for A(t+1} ? Should perhaps only one token be interpreted at each time step?
Or three? Or 231 ? Should a bucket brigade scheme'> be employed by default
{every token has to pay a part of its bid to its proposers) 7

Obviously there are many dimensions ulong which one could vary the central
cycle which is changing the system’s state at each tume step. All the possibilities
mentioned above have been investigated, but not in an exhaustive manner. A
systematic examination of the probably very complex interdependencies of com-
binations of schemes miscarried because of the large number of possible combi-

nations.

Furthermore the experiments indicated that the basic structure of the top-level-
loop may be not so important at all. Before interpreting some results let us
have a look through the eyes of statistics to find out what we can expect if
PSALM 3 starts with nothing.

'* The strength has to be decreased in order to prevent forever lasting loops that do not
cantribute something meaningful. On the other side there is no principal need 1o increase
strengths by default, because the system could do the payoff management on its own: When-
ever there is payoff the system may take over the task of sending payeff to tokens it considers
to be adequate. Payoff management is one of the processes which have to be adaptable 10
changing situations.

15 B.b. schemes alsa may not remain le decnier cri during the ongaing development of the
language. But they may be helpful during the inivial phase. (See the footnote above)

o B o

4.7.4.4. Statistical Expectations.

Statistical prophecies about PSALM 3's behaviour can be made only if they
refer to the initial phase. It 1s easy to predict how often certain constellations of
tokens will appear during the phase where most associations between tokens are
done tn a random manner by the symbol-manipulative whistle.

But 1t is practically impossible (in general) to predict what will happen if the
whistle is more and more suppressed by {self-referential) control. This is no
reason to become unhappy, the contrary is true. lf we could prophesy all details
of further development there would be no need for 2 mecra~learning systemn. In
the chapter about evolution I expressed the supposition that the unpredictability
of meanmngful states of learning systems might be fundamental, and that there
often may be no algorithm te compute such a ‘relevant’ state where the algo-
rithm 1s clearly cheaper than doing the whole simulation of the system. Statis-
tics may be no means to deal with ’‘chaotical’ sysiems, not even with the
relevant features of chaotical states (where ’'relevant’ 15 defined pragmartically,

of course).

Bur sratistics 1s well suited for the ignition phase. Iniually PSALM 3's disposes
of a set of n initial tokens. What is the probability for the spontaneous instan-
tiation of the four parameters a token asscciated with the action copy can have?

If we determine 4 actual parameters out of the set of imitial tokens this proba-

bility is —. The probability for the spontaneous creation of a sequence of two
Il

, : ; @ &
copies where the support-slot also has to be instantiated correctly 1s —, and so
n

onlé.

These numbers are not quite as hormible as they seem to be because usually
there are many syntactic ways to achieve a semantic goal. But obviously tokens
that need a lot of parameters are handicapped compared to simpler ones.

A fundamental dilemma of the ignition phase is: if n is too large we probably
will not observe very exciuing effects for a long ume. If n is too small the
language looses its self-analyzing capabilities, because there 1s a need for a cer-

tain amount of slots 1n order to descnibe the language explicitly.

It should be emphasized that this problem recally belongs te the ignition phase.
[f there already is a lot of knowledge about how to set parameters and 'exits’ in
a meaningful way statistics plays a minor role. But I do not see any plausible
way (o jump over the initial stage, because I do not know how knowledge
naturally is represented in a developing language like the one of PSALM 3.
PSALM 3 was designed to find out how the many kinds of using available
information like analogical connections could look like. If I had known this
before there would have been no motive for the construcrion of PSALM 3.
But all T can say after watching it at work is that the representation of

'6 This holds only if whistling is restricted to the initial tokens, which is the case in the ac-
tual implementation. So programs built out of initial tokens are rather 'unsafe’ compared 10
programs consisting mainly out of newly created tokens. A clever system should notice this and
act adequately.

_ 44 _

knowledge probably might look rather different from the representations

emploved by conventional (Al) programs, as will be seen next.

4.7.4.5. Some Empirical Results.

The domain of moving a robby through a room had been included into the sys-
tem (robbles are very popular among machine learners, Holland e.g. tested the
b.b. with a simple robot, too [Holland 84]). The term ’included’ means that
some domain actions like ’step—upward’, ’step—left’ etc. were incorporated 1nto
the vocabulary of the language. Furthermore some new perceptions were
allowed to be triggered in adequate situations, like ’error there is a_wall’. A
critic spent the more payoff the closer a robby (which was directed by PSALM
3) came to the place it should walk to.

Actually certain sequences (better ’clusters’) of actions evolved that led to stable
states 'fulfilling’ what the simple evaluation functions of the critic reguested.
Stable states in this context mean situations where the whistding is mainly
suppressed and the same actions are triggered again and again in answer 1o
some perception like 'start_to_go_to_the left_upper_corner’. Usually all tokens
participating in a stable state have maximal strength and are very uunlikely to
be destroyed by the whistle some time.

Of course stable states depend on the generosity of the cntic, If the critic gives
enough payoff for middling solutions then stable states may evolve that do not
have much to do with the pragmatic context we had in mind when posing the
problem. Under such circumstances it was often observed that tokens were
playing with each other throwing slots around or defining seme stacks on other
tokens thus pumping them up. Usually the system executes encugh ’'good’
domain actions to satisfy the evaluation functions, but its 'free’ time is often
spent with behaviour that does not make sense in human eyes. Yet it 1s Just
following the simple but general rules of evolution. [t is our problem to definc

the adeqate 'pragmatic intersection’.

Sharpening the evaluation criteria causes the unlearning of behaviour that is
Lot suited to solve the task. Then it usually takes some time until better suited
stable states evolve that have to do more with what the observer had in mind.

It was interesting to observe that constraints shortening the agenda led to more
sequential forms of behavieur while a large agenda supporting parallelism led
to the 'scattering’ of information in clusters:

In the first case often small programs could be identified representing loops
suitable to make the robby step into the same direction for a while.

In the second case such discoveries were rare: Many tokens were associated with
some often meaningful action, but they were triggered in a way that remained
opaque. Although Robby usually came close to his goal the ways he choose to
achieve it were quite different during consecutive criticism-periods. The parallel
version left the impression that perhaps some ‘general notion’ about how 10
approach the goal made the robby run.

Furthermore little artificial damages to the token structures were swallowed
much easier by the parallel PSALM. This redundancy comes closer to things

. -

observed in neuronal nets and human brains. More about redundancy 1n a

later section.

Introducing a bucket brigade scheme did not improve the performance signifi-
cantly, at least not within the choosen domain. But in gencral simple schemes

like b.h.s should be interesting only during ’ignition’ (see the last footnote).

Unfortunately the advantages of explicit possibilities to act self-referentially
could not be underpinned empirically. This is due to the inherent time prob-
lems involved with the ignition phase. Although PSALM 3 has learned a few
things it still is very far away from leaving the ignition phase bchind. In fact
a1l the domain dependent little sequences (clusters) of actions 1t has learned owe

their existence mainly to the whistle.

4 7.4.6. Some First Reflecions on the Empirical Results.

Every really self-referential evolving system should accelerate 1ts evclution
(hopefully exponentially or even faster - it depends on the complexity that the
environment allows). But in the beginning the flat part of the ’informedness-
curve' may stretch over a very long ignition phase. This 1s the case with
PSALM 3: A language that starts from nothing certainly will need a long time
before leav:ing the impression of being well informed!?. PSALM 3 in its
current implementation allowed the interpretation of about 30 tokens per second
(this value depends on the agenda mechanism), which is magnitudes below

what might be needed.

Although human neurons are certainly very different from PSALM 3's tokens,
it is inspiring to play with numbers a little bit: Many of the 107 to 10" neu-
ons within the brains can be active simultaneously, probably clearly more than
10° per second. These numbers represent magnitudes that also seem to be
desireable in the case of PSALM 3, because under such preconditions many ht-
tle meaningiu! self-referential sequences are thinkable that should evolve within

a few seconds spontaneously, building the basis for more complicated ones.

Since all I dispose of is a comparatively slow machine, 1 might want to Jump
over the initial phase by providing all well-suited little sequences from the
beginning, But which are the well—suited ones? How many different ones are
there® In what form do they appear {sequences or redundant clusters (how does
in general a redundant cluster look like)) ..? One could introduce explicit 1sa-
hierarchies, written in the token-language. A problem arises: programs as we
would write them are not very redundant. So if there appeared a task where the
generalization-methods do not work well, parts of the hierarchy probably will
be 'unlearned’. The unlearning may affect fundamental parts like some essen-
tial climbing algorithms which are supplied in a non-redundant form by
human programmers. Under such crcumstances the whole hierarchy may be

17 Biological evoulution shows another case of a long ignition phase. [t took at least 3 bal-
lion years ta bridge the gap between the first organisms and the first users of toals. It took
another few million years to do the step to division of labour. It took ancther few thousand
years to build a computer. The first human being whe used a twol to build another tool al-
ready had one foot on the moon, from a cosmical point of view.

_ B =

lost. The solution is not to put genl./spec. into the undestroyable hardware,

because then we would be there where we started. Exactly because it became

clear that flexible learning can not rely on a {ew things like isa-hierarchies, the
language of PSALM 3 was designed to be flexible enough to learn new
methods (most of which probably would be called analogical). The motive
behind PSALM 3 was the belief that the number of important methods is too

large and that the methods themselves arc wo opaguc and context-dependent to
be programmable.

The fundamental idea behind this work 15 “exphcily closing an initial system
on itself’. But fundamenial ideas should be questioned, too, Of course the
potential to act self-referentially must be provided 1n a learning system. But 1s
it necessary or only natural to introduce this potenual explicily, as e.g. in
PSALM 3’s language? The human neuronal system does not scem to be closed
on itself in a way similar to PSALM 3’s, still it obviously allows structures that
are self-referential. Something like a tcken might be represented as a (very

redundant) cluster of neurons in our brains, and this might have unknown
advantages.

Could it be that systems buased on the simultancous working of a great many of
very simple devices can leave the ignition phase behind in a clearly shorter
time? It might be possible that systems supporting and making use of conven-
tional concepts like paramicters, functions, if-then—clse etc. are not suited to
manage the fuzziness ol the world, at least not within a reasonable time-
interval, Although PSALM 3 represents a hybrid between a neuronal net and a
conventional object—oriented system, there might be too much influence from
the shore of symbol-manipulaton. The parallel versions of PSALM 3 tend to
scatter information, and to be redundant. But the tokens of PSALM 3 scem to
be not so adequate for the distribution of information, as for instance methods
known from the theory ol associative memories are |[Kohonen 77,80]. From
watching the behaviour of parallel SALMs one might get the impression that
the very important principle of redundancy oppresses the basic token structures.
The principle of error-toleration might be so important that there can't be a
powerful learning system without it. 50 this principle takes what it gets, and 1n
the case of PSALM 3 it gets tokens. But other methods might provide a much
better {rame for the development of redundancy (see the chapter about future
research). It is the old problem: Potential Tunng equivalence is easy, but how
to exploit it naturally after having achieved it?.

_ BT
5. Future Research.

5.1. PSALM 3-Specific.
Different kinds of pressure on PSALM 3’s language are imaginable that may

lecad to significant improvements under certain circumstances. Up untl now
only ’'positive’, excitatory support has been given to competiting tokens, for
example. But results obtained by [Dell 85] and [Buhmann, Schulten ?] as well
as observations made by neuro-physiologists indicate that inhibition may be as
important as excitation. The natural way to introduce inhibition inte PSALM 3
is to define an accessible slot ’inhibit” with a special hardware interpretation

contrasting the interpretation of the ’support’-slot.

Promising directions like inhibition have not yet been investigated. An impor-
tant reason for this is the assumption that only ‘rich’ domains will provide
enough structure to show the advantages of such newly introduced concepts.
('Rich’ means e.g. the inclusion of pretentious pattern recogunition tasks.} Bur
complicated domains usually imply complicated cnitic-actions, too. This means:
More time will be needed, and time 1s something that is scarce at the moment.
In general I believe that my machine should be at least 1000 times faster to
show rcally interesting effects (the most intercsting of which is self-reference,
of course). I would love to see an analoguc to PSALM 3 being implemented on
the Connection Machine [Hillis 86] {more than 65 000 processors working in
parallel, building connecticns among themselves, every processor e.g. being
used by one active token, and the whole coupled with some interesting domains

involving pattern recognition tasks as well as so—called higher-level problems).

Since PSALM 3 is settled somewhere between symbol-manipulation and con-
nectionist models there are at least two directions one might naturally follow 1n
order to abridge the ignition phase, if it is abridgeable at all. Of course, one

way leads to more symbol-manipulation, the other one to less.

5.2. Self-Reference and Associative Memones?

In 4.7.4.6. I expressed the supposition that an essential foundation of learning,
namely redundancy and the toleration of errors, may be achieved more conse-
quently with methods inspired from the theory of associative memories. The
typical feature of such memories is that information is accessed by its content
rather by its address. A popular related software method is hashing, but con-
ventional hashing is not suited for the recollection of 'fuzzy’ knowledge accessed
e.g. via incomplete keys. A nice content-addressable memory (CAM) should
allow the recollection of data if for instance only some constraining conditions
are specified. It should swallow noisy inputs and still find the most “adequate’
output. Information should be retrieveable even if the keys are damaged or

incomplete (~-> Autoassaciative memories).

A classic method {Kohonen 77, 80} is to represent keys as vectors out of R"
and map them by e.g. a linear transformation to some outpur vector ¢ RT
where the matrix doing the linear aperation stores the ‘correlations’ between the
patterns rather than the pattern themselves. [Kohonen 77] also describes

i

properties of an optimal (in the sense of least squares) adaptive process that
wransforms the transformation matrix thus achieving a learning effect.

[Geiger 87] takes input vectors out of {0,1} representing objects where a 1 or

a 0 indicate the presence or absence of some particular property an object may
possess. A simple adaptive algorithm makes the system learn new Input vectors

and the corresponding cutputs.

[Kohonen 77,80] shows how activities stretching over a longer time interval
(programs!) can be implemented 1n CAMs by using feedback in a straightfor-

ward way.

The methods mentioned above are reminiscent to the way a hologram stores
information: Essentially a two-dimensional fourier transformation ’scatters’
knowledge contained e.g. in a photograph over a large area, wherc every small
part of the hologram carries information about every part of the photograph.
Recollectian does not take place by considering a small part of the hologram
but by applying a re-transformation to the whole, or at least to a larger part of
1L,

The scattering of information leads to the toleration of crrors. Damaged or
incomplete inputs may be harmless as long as the degree of damage 1s sensibly
constrained. The allowed degree of "fuzziness’ 1s limited e.g. by the numbers of
itemns ’super-imposed’ within a CAM: The more iterns, the noisier the outputs.

Neuronal nets also tend to scatter information, and so did the parallel versions
of PSALM 3. But may be that tokens are still too localizeable’, too symbol-
manipulative, too much 'all-or-nothing’. Redundancy and the tolerance of
errors is possible by the creation of sequences running in parallel while having
more or less the same semantic effect. But could it be that a token already 1s
too bulky a primitive? That the lessen 1 from PSALM 1 still holds? Could 1t be
that structures that can do what a token can do should not be introduced exph-
citly, but evolve in a perhaps much fuzzier way? Could this lead to a faster

and more natural ignition phase?

How could e.g. a system based on fuzzy triggering conditions determined by
associative memories be ’closed onto itself’? 1 am very interested in this ques-

tion, and it will have a high prority among the things [want to examine next.

5.35. The Symbol—Oricnted Way.

Are there some (formally expressible) principles that have not yet been con-
sidered and that may be sufficient to explore the giant field of informed struc-
tures (esp. analogies) in an EURISKO-like manner? Is there a way to enable a
systern based on genl./spec. to change its basis without destroying itself?
EURISKO builds a hierarchy of heuristics, which leads to the reduction of the
number of heuristics applied in a particular context (n——>log"n). But often 1t
would be wiser to leave the hierarchy and sidestep into another related domain,
instead of fixing onesclf to the one-dimensional ficld of genl./spec. (shallow
tree). When to do this? Trial-and-error will help to find out, and the insights
have to be placed appropriately as new heuristics indicating how to move in the

s B8

space of analogue heuristics, when to leave the 1sa~hinks, etc. The resuit may
again be a distributed system (graph, network), where cach node of the graph
might 'know’ good directions for continuing a search. So one might imagine
that the isa-hierarchy and its specific algorithms become overgrown by more
analogical methods. This imagination leads to problems excmplified next:

From time to time EURISKO invents new rclarions (slots) by specializing or
generalizing old ones. (This is eased by RLL-I {Greiner 80] which takes over
the problems involved with consistency maintenance.) If we want to escape
strict genl./spec. then we should consequently provide a possibility to define
e.g. slots that are analogue to available slots. (Recursively, please. The part of
the system that invents definitions should be able to work on itself, of course.)

But what does consistency maintenance mcan then? Can a useful definition of
consistency been given in such a case? What about the fuzziness involved with

analogy? Analogics often help without being consisient at all.

It seems as if the pure symbol-oriented way is blocked with some obstacles, too.
But perhaps the most promising attempts ro understand learning will be
inspired from both the high-level and the low-level shores of the ocean of

research on knowledge representation,

5.4. Common Features of Object—Orientation and Connectionist—Models.

From my point of view the fields of neurconal nets, CAMs ectc. on one side and
object—criented programming on the other side somehow converge, The com-
mon element that is more and more e¢mphasized on both sides is the decentrali-
zation of information. One ceuld arguc that in object-oriented languages
(OOLs) information is distributed in order te gain transparency while e.g. con-
nectionist models make the distribution very unclear. However, this argument
does not take care of the different starting-points: Neuronal nets are usually
forced to organize themselves, OOLs are usually organized by programmers
who had semething in mind. No wonder they understand what they have pro-
grammed {although there are cases where this is doubtful). In the first case the
semantics has to develop, in the second case it is directly 'put’ into the system

and labeled with names that make sense to the programmer.

The hybrid PSALM 3 soon gets (nearly) as untransparent as a neuronal net.
The names it defines do not have any relation to human thoughts, stiil the
corresponding tokens do carry semantic information, which can be objectively
measured by including the pragmatic aspect of information.

A difference may live in the concept of physical neighbourhood introduced in
models of neuronal nets. Within PSALM 3 there is no notion of spatial 'dis-
tance’: Tokens may manipulate each other although their physical locations 1n

the storage are separated by miles.

But sequences of tokens may alter other tokens only if they 'know’ their names,
which means that there must be some slots which might serve as an entrance fto
other areas of the storage. So one might like to think of a "knowledge distance’
between certain clusters. But this notion stays informal, any sensible definition
of a metric based on such a distance misleads. This Is because there 15 an

- 50 -

infinity of unforeseen ways (o transport information, some of them more ’effec-

tive’, others less,

Another important difference to neuronal nets may he the availability of anno-
tated (and thus relational) information. Or is rthis a fallacy? In [Wahrn.u.
vis.Sys| ... reports an observation made by examining human neurons: There
are not only axons reaching from cell to cell, but there are connections between
the axons, too, and nobody knows what they are used for. A speculative ques-
tion: Could interaxonal connections mean an indexing of informaton, one

axon indicating a property, the other one an instantiation?

[believe that advances in machine learning will be made by people who are
familiar with both the symbol-manipulative and the 'low-level’ side of Al
[Hofstadter 83]'% advocates the view that no great progress will be made with
the understanding of the ’secondary’ processes of mind unless the primary
processes are not tackled (pattern recognition et¢.). Browns statement in
(Bobrow, Hayes 85] can be interpreted 1n a similar way:
"] had also hoped that by now we would have created more significant
bridges between symbohc and numeric computation where each leverages
the ather.”
ln their answer to |Richie,Hanna 84], {Lenat, Brown 83] argue to view their
‘concepts’ as a "new generation of perceptrons” that "opens exciting research
directions in the construction and orchestration of large parallel cognitive sys-

tems.” (For a review of some limitations of conventional perceptrons sce | Min-

sky 69]).

5.5. Domain Complexaty.

[suspect that there may be no way to avoid a long ignition phase for a learn-
ing system, 1n the best casc we might be able to abridge it a bit, Probably we
actually have to start some celf-referential mechanism on a really fast device.
Perhaps there is no sensible way to essentially shorten the time needed for col-
lecting analogical knowledge. Strong evidence for the correctness of this belief is

provided by our own biclogical and social development.

A growing number of people believe that the fundamental ingredience of intel-
ligence is complexity. The complexity of the domain(s) 1s equally important.
Only 1if the environment is diverse there can be a diverse picture of the
environment within a learning system., A system like PSALM 3 should be con-
fronted with a large number of domains. Only if there is a lot of potential
formation from different domains there is a sense in trying to find common
features and to analogize.

Since no programmer will be pleased (or not even be able) te represent a large
number of domains in a computer one should presumably make use of the rich-
ness that already is available outside of the machines: The ’real” world. T would
not be astonished at all if the first systems that are considered by humans to be
really learning are coupled to our world by broad channels building reccptors

‘6 If you read [Hofstadter 8,, also read [Newell 83].

_ 51 —

and effectors. Perhaps this 1s the only way to gain complexity in an unstruc-
tured system: To make use of the great amount of potential syntactic informa-
tion that already grew during the last 10 or 20 billion years (this growing can

be regarded as the essence of evolution, remember).

_ RO

6. The End.

Why does the word “self have such a strong attraction to human thoughts?

The most beautiful functions usually are considered to be thosc thar partly are
defined by themselves: computer scientists love recursion. The most interesting
programs often are those that write programs 1in the same language they are
written in. What is the reason for the beaury that can be found in things that

are defined by or working on themnselves?

The world seems to be structured in a way that often is well-described by cer-
tain critical’ fixpoints that serve to bootstrap the rest. As one of many exam-
ples for such defiming fixpoints consider the slot "ToGetValue' out of RLL-1
(Greiner 801.

ToGetValue’ is a slot that is virtually stored on any slot, including itself. It
serves to retrieve a function one should use to retrieve the value of some partic-
alar slot. ln order to find that fumction it is necessary to find out what 1t
means to ask for a value stored on the slot "ToGetValue’, this means the value
of of 'ToGerValue: ToGetValue' must be computed. This value 1s one of the few
initial fixpoints RLL-1 needs to bootstrap itselt.

An example of the 'eelf_nature’ of the physical world: The geometrical appear-
ance of our environment seems 10 be fractally broken [Mandelbrot 83]. 'Fix-
points’ to construct fractals are usually simple: The mere recursive application

of some generating principle results in an often astounding complexity.

Since the world often gets complicated by the application of simple principles to
themselves, it seems to be natural to reflect this complexity also by applying
simple principles to themselves. 'Natural’ means easy! We like recursion or
scif—referential languages because they appear to work although the particular
principles in each case do not seem to submit a lot of information, Because
these principles work and still are easy to understand we like to believe that
they have to do with the ’essence behind the things’.

The word self” also gives some justification for considering the sciences of the
mind {call 1t computer sciences or cybernetics or cognitive sclence etc.) as the

uliirnate sciences, as | want to make plausible:

Some scientists (ry to understand the physics of elementary particles. Some Ty
to understand the nature of micro~biclogical evelution, and some try to under-
stand why a" + b” # c” a,bh.c,neN,n 3.

Bur isn’t the most exciting science the one that tries 10 understand the nature
of understanding? Doesn’t this science potentially include all the others? Isn’t
this science the ‘fixpoint’ that might serve to bootstrap the other sciences’
Understanding how to understand requires to be informed about informanon,

to acquire information about how to acquire :nformation, to learn how to learn.

Acknowledgements.

I wish to thank Dr. Werner Konrad for the cncouragement he always was wil-
ling to give. Many discussions on the nature of learning helped to crystallize
the 1deas presented above. Werner Konrad also represented an inexhaustible
source of references to related literature.

I also like to thank Thomas Laullermair, whose many valuable comments on
this work helped to cdlanfy it a lot. Thomas shares my enthusiasm on the sub-
ject, and talking with him always resulted in less indefinite notions about the

essence of learning.

Hans~Peter Dommel also sacrificed a lot of ume to reading and commentung
the paper. Hans-Peter has made many suggestions for improvements, which
have been incerporated and which changed the face of this work.

Andreas Stolcke (who re—implemented RLL-1) also contributed to the final ver-
sion of this paper.

Thanks to those who reduced the number of syntactic errors.

Thanks to mama and papa, since without them this work never would have

been done. Thanks to grandma and grandpa, and to Adam and Eve, for the

S4ine reason.

s BE

7. Bibliography.
There are a few papers which are marked with a ’?* which means that I could

not find out the corresponding year of origin.

[Bobrow,Collins 75](Eds.)
Representation and Understanding. Advances in the Study of Cognition

Academic Press, New York 1975,

|Bobrow, Hayes 85}
Artificial Intelligence: Where Are We
Artificial Intelligence 25 (1983).

|Bulhmann, Schulten 2]
A Physiological Neural Network as an Autoassociative Memory.
Physik-Departement, Technische Universitat Minchen.

[Charniak,McDermott 85] (Eds.)
Artificial Intelligence,

Addison Wesley, 1985

|Clocksin, Mellish 84]
Programming in Prolog.
Springer Verlag, 1984

[Cramer 85]
A Representation for the Adaptive Generation of Simple Sequential Pro-
gTalms

in [Grefenstette 85]

[Crutchfield, Farmer, Packard, Shaw 87]
Chaos
in Spektrum der Wissenschaft Feb.87.

| Davis 80]
Meta-Rules: Reasoning about Control
Artificial [ntelligence 15 (1980).

(Dell 85]

Positive Feedback in Hierarchical Connectionist Models: Applications to

Language Production.
in Cognitive Science 9 (1983}

[De Jong 75]
Analysis of the Behaviour of a Class of Genetic Adapuve Systermns

o B

Ph.D. thesis, Dept. of Computer and Comm. Sciences, University of
Michigan 1979,

[Dershowitz 83]
The Evolution of Programs.
Boston: Birkhiuser 1983.

| Dickmanns, Schmidhuber, Winklhofer 86]
Der genetische Algorithmus: eine Implementierung in Prolog.
Arbelt zum Fongeschrittenen—-Praktikum

Technische Universitit Miinchen.

|LCAT 86]
European Conference on Artificial Intelligence
Brighton (U.K.) .25, Py 1986,

|Eigen 86]
Stufen zum Leben. Die Entstehung des Lebens aus molckularbiologischer
Sicht.
in [Maier Leibnitz 86].

[Feigenbaum 81](ed.)
Computers and Thought.
New York: McGraw-Hill 1963,

[Forrest 86]
Implementing Semantic Network Structures Using the Classifier Systern.

in |Grefenstette 85]

|Geiger 871
Only the address of the firm can be given in this casc:
Gerhard Kratzer GmbH, Automatisierungstechnik Miunchen
MaxTeldhof 6, 8044 Unterschleifheim.

|Ginsburg,Opper 75]
Piagets Theorie der geisugen Entwicklung. Eine Einfdhrung
Frnst Klett Verlag, Stuttgart 1975
original: Piaget’s Theory of Intellectual Development. An [ntroduction
Prentice—Hall, Inc., Englewood Cliffs, New Jersey 1969.

|Grefenstette 85)(ed.)
Proceedings of an International Conference on Genetic Algorithms and

their Applications.
Carnegic Mellon University, Pitrsburgh, P.A., July 24-26 1983.

= 56 e

[Goldberg 85]
Genetic Algorithms and Rule Learning in Dynamic System Control.
in [Grefenstette 85]

|Greiner 80]
RLL-1: A Representation Language Language.
Expanded Version of the paper published in the proceedings of the First
National Conference of the American Association for Artificial Intelli-

gence.
Stanfeord University 1984,

[Haase jr. 86}
Discovery 3ystems
in [ECAI 86]

[Hillis 86]
The Connection Machine,

MI'T Press 1986.

[Hofstadter 85]
Godel, Escher, Bach: Ein endlos geflochtenes Band.
Klett-Cotta, Stuttgarr 1983,
(Godel, Escher, Bach: An Eternal Golden Braid.
Basic Books, New York 1979. "

[Hofstadter 83]
Subcognition as Computation.
in [Machlup, Mansfield 83]

[Holland 75}
Adaption in Natural and Aruficial Systems
University of Michigan Press, Ann Arbor, Michigan, 1975.

[Holland 85]
Properties of the Bucket Brigade
in {Grefenstette 85}

[Holland 86]
Escaping Brittleness
in [Michalsk: 86]

[INTERLISP 85]
Siemens INTERLISP Version 4, Benutzerhandbuch.
Siemens AG, ZTI SOF 222, 1985,

T .

[Jonckers 86|
Exploring Algorithms Through Mutations.
in {ECAI 86]

[Knuth 74]
Surreal Numbers
Addison-Woesley Publishing Company 1974,

| Kohonien 771
Associative Memory
Springer 1977.

|[Kohonen 80]
Content—Addressable Memornies
Springer—Verlag 1980.

| Kiichenhotf 86]
Synthesis of Prolog Programs by Knowledge Guided Genertical Learning.
Diplomarbeit, Technische Universitat Miinchen 1986

| Kiippers 86]
Der Ursprung biclogischer Information
Piper, Munchen 86 ‘

|[Lenat 77]
The Ubiquity of Discovery.
Artficial Intelligence 9, 1977,

[Lenat &2a]
EURISKO:; A Program That Learns New Heuristics and Domain Con-

cepts.
Heuristic Programming Project, Stanford University, Stanford, Cal.
94305.

[Lenat 82b]
The Nature of Heuristics
in Artificial Intelligence 19 (1982).

[Lenat 83]
Theory Formation by Heurnstic Search
in Artificial Intelligence 21 (1983).

| Lenat, Brown 83]
Why AM and EURISKO Appear to Work

_ 58 —
in Artificial Intelligence 23, (1984).

[Machlup, Mansfield 83]
The Study of Information.
New York: Wiley 1983,

[Maes 861
Inrrospection in Knowledge Representation.
in [ECAI 86/

[Mandelbrot 83]
The Fractal Geometry of Nature,
New York: Freeman 1983.

[Markl 86]
Evolution und Fretheit. Das schopferische Leben
in |Maier Leibnitz 86].

[Maier Leibnitz 86]
Zeugen des Wissens
v.Hase & Kohler, 1986,

[Michalski 84](ed.)
Machine Learning: An Artificial Intelligence Approach.
Tioga Publishing Company, 1983.
Springer Verlag 1984,

| Michalsky 86]
Machine Learning 2: An Artificial Intelligence Appreach
Morgan Kaufman, Los Altos 1986.

[Minsky 69]
Perceptrons.

The MIT Press, Mass. Inst. of Technology 1969.

|Minsky 81]
Steps Towards Artificial Intelligence
in [Feigenbaum 811

[Néwell 83]
Fndnotes to the Papers on Artificial Intelligence,

in [Machlup,Mansfield 83]

e

[Perlis 85]
Languages with Self~-Reference 1: Foundatous
(or: We can have everything in First-Order Logic!)
in Artificial Intelligence 23 (1983).

[Piaget 73]
Genetische Epistemologie (Einfihrung in die genetische Erkenntnistheorie)
s+w Suhrkamp 1973.

{Ritchie, Hanna 84|
AM: A Case Study in Al-Methodology
in Artificial Intelligence 23 (1984).

[Rumelhart, Zipper 85]
Feature Discovery by Competitive Learning

in Cognitive Science 9 (1985).

[Schulten 7|
Ordnung aus Chaos, Vernunft aus Zufall - Physik biclogischer und digi-
taler Informanionsverarbeitung.
Technische Universitdit Manchen.

|Simon 691
The Sciences of the Artihiaal
Cambridge, Mass.: MIT Press 1969,

[Steels 86|
KRS: Definition of Knowledge Representation Primitives.
ESPRIT PROJECT 440.

[Stolcke 87]
Implementicrung einer selbstreferentiellen Reprisentationssprache in Pro-
log.
Arbeit zum Fortgeschrittenen-Prakukum
Technische Universitit Muanchen 1987,

[Sussman 75]
A Computational Model of Skill Acquisition,
American Elsevier, 197).

[W’qu 86]
Wahrnehmung und visuelles Systemn.
Spektrum Rethe, 1986,

Bl

[Wallich 2]
Is Al the Next Logical Step in Data Processing?

i °

[Weiss 77}
(System) Das lebende System: Ein

1Smus.
in Das neue Menschenbild, edd. Koestler, Smythies, W

Beispiel fur den Schichtendetermin-

ien 1978,

[Weizsicker 85|
Der Aufbau der Physik
Carl Hanser Verlag, Munche, Wien, 1985,

[Weizsicker, E+C 72]
Wiederaufnahme der begrifflichen Frage: Was

Nova Acta Leopoldina 206

st Information?

[Westerdale 85]
The Bucket Brigade is not Genetic.

in [Grefenstette 85].

[Winograd 75]
Frarme Representations and the Dec

in [Bobrow, Collins T

larative—Procedural Controversy.

[Winston 81 |
Artificial Intelligence

Second edition

Addison Wesley, 1981,

s B e

Table of Contents

o TOIFGHNEHEE oot s 5 o O R A R S ST 7 3
2. An Algorithm for Meta-Evalution. ..o 7
S0 I F'e% a0 b Uak & (o 1 » SRR (PP S PO e 7
9.90.1. Hollaitd 58 (GRS, vorveremmron snmsmms SRR 0 e F o s 91 B0 S5 7
2.1.2. A Symbol-Manipulative GA. ..o 8
T Meta=evolafIOIy hss s s ve s oo s s s S S SR s S e 54 9
2.3. Critique of Meta—evolution.nn T S SR 12
3. Ewvolution and LEAFNING. . covsmrmmneimmsnsnmmnssmnmsasynmng i nmns gaas s s me b 14
2.1 What is EvolUtion 2 . oveeeirerveeunrsmnnnmmmm s srsr o bas 2o bes duanisuagsis 14
3.2, Pragmatic [nformation.oooeiiiiiin 16
3.3, A Link to Plaget. ..o T —— 16
3.4, What 15 a Learning System? ...t oo s o v s 17
3.5. Symbiosis Versus Parasitismm. ..o...ooiiiiimmis s e 20
3.6. Erstmaligkeit, Bestatigung, Symbiosis and Meta-evolution. ... 20
4, Self-referential Associating Learning Mechanisms. ... 23
SR B 50 sV LUVl £ T+ A O PP R e 23
4.1.1. Classifier Systems and the Bucket Brigade. ... 23
4.1.2. Symbiosis and the B.B. ..o i e — 23
$.1.3. Mew-=capacity for the B.B. oo inimmn s 24
£ 0 GAI N PSATMEL o mimms s s e s e i L s s s e 27
4.3 What all PSALMs Have i COmMMON. ..ovnrvsmcmmumrnnmmmmres st 27
2.8, PEERLN e covmeeummeesmssmsesmesmsm s s msssesaib O a wess 29
4.5. Lessons Learned from PSALM L. ... v, 30
. . T e 31
A OPERENTE B e e s w8 o A e S A s e 32
4.7.1. "The LEAGUARE: crsscmmmmmmmmmssonsmumsisnmsng i s s S0 0HHE 6 32
4.7.2 Some Words About Garbage Collection. ... 36
£.7.3. A Litk to Geometrie Fractals. .oovivomremmmnse s iesing et s 38
4. .4 THE PEESSUTE copvvvmsuseismmns vasmnme s ss e 60080080008 5@ vesizas 40
20t TWHEIE, . oorsommmmmmmennansnsns s s SRR BRI 41
4.7.4.9. Equilibration and PSALM 3. ... oo 41
4.7.4.3. Possible Top-Level-Loops for PSALM 3. oo 42
4.7.4.4. Statistical EXPECATIONS. ovvmrneiiinranr i s 43

4.7.4.5. Some Empirical Results. v s 44
4 746 Some First Reflections on the Empirical Results. .. . 45
B TGO B, oot s R e S s s SRR 47
Sd. BSALNL B S8eiil senvmemmsmeemmassr e R R 47
5.9. Self-Reference and Associative Memories? ... 47
5.3. The Symbol-Oriented Way, ... 48
5.4. Common Features of Object-Orientation and Connectionist-

| I e P T e 49
5.5. Domain Complexily, svvivsaemammms iy o wamms i siss s ss s o 50
B, The Brod o o s s s i s s s s v s A s s S s v 52

T DIHGEPABHY, s i s s s oo s s s A e Ay A 8 54

