
Evolutionary Principles in Self—Referential Learning
(Diploma Thesis)

Jargen Schmidhube:

Technische Universitat Miinchen

May 14, 1987

Evolutionary Principles in Self—Referential Learning
(Diploma Thesis)

Jargen Schmidhuber
Technische Universitat Minchen

Abstract

There exists a number of algorithms which encapsulate parts of thebehaviour we call learning. Programs have been written that do learning bychunking, generalization, certain kinds of analogical matching etc. These algo-rithms work nicely in certain well-chosen domains bur fail in many others.
The fundamental statement of this thesis is that we can not capture the essenceof learning by relying on a small number of algorithms. Rather on the contrarythere is a need for a whole bunch of context-dependent learning strategies toacquire domain specific information by using information that is already avail-able. Because of the complexity and richness of these strategies and theirtriggering conditions the obvious escape seems to be: Giving a system the abil-ity to learn the methods how to learn, too. A system with such meta-learningcapabilities should view every problem as consisting out of at least two prob-lems: Solving it, and improving the strategies employed to solve it. Of coursewe do not want to stop at the first meta-level !
The only approach to achieve meta-capacity seems to be: ’Closing (feeding
back) some initial strategies onto themselves’ so that more complicated andbetter suited ones can evolve. This requires an initial representation of the sys-tem that allows it to introspect and manipulate all of its relevant parts. Further-
more some kind of evolutionary pressure is needed to force the system to organ-ize itself in a way that makes sense in the environment it is living in. The fun-damental role of the very general principle called evolution and its deep interre-ladons to the field of learning will be emphasized, Connections tov Weizsackers understanding of Pragmatic information as well as to Piagetsmodel of equilibration will be shown.

Two approaches to the goal of learning how to learn will be presented, both of
them being inspired from seemingly rather different corners of artificial intelli-
gence and cognitive science: One source of ideas is to be found in symbol-
manipulative learning programs as EURISKO and CYRANO,theother one in
work done on neuronal nets, associative networks, genetical algorithms andother weak’ methods (an analogy to geometric fractals will be drawn). In thiscontext it is argued that object oriented Programming and neuronal nets have
more things in common than is usually assumed.

The second approach which leads to the notion of self-referential associating
learning mechanisms (SALMs, PSALMs)is illustrated by the implementation

ao

of a simple self-referential and self-extending language and a few empirical

results obtained by putting pressure on that language to organize itself. How-

ever, these results are not suited to show concrete cases of self-reference. It

will be made obvious that the available machine capacity is clearly below the

level that would be necessary to make the creation of "semantic self-reference’

Hikely (on the basis of the second approach and within a reasonable time}. Thus

this paper tends to having inspiring character rather than presenting a practical

guidance to universal learning capabiliues.

A table of contents is supplied at the end of this work.

Keywords

self-reference, introspection, learning, meta, evolution, associative nets, neu-

ronal nets, genetical algorithm, bucket brigade, SALM, PSALM, EURISKO,

fractals.

1. Introduction

Within the AI community there exists the general agreement that the most

important part of intelligent behaviour at the same time is the one understood

least at all: the ability to learn. Although systems have been built that are able

to learn certain domain concepts or discover certain algorithms, the strong

suspicion remains that the essential ingredients of self-reflexivity and full
introspection still have to be discovered.

In some of his famous experiments Piaget has shown that children below the
age of 5 do not dispose of the concept of generalization, let alone the qualifica-

tion for logical thinking that is not distinct before the age of 11. But all the

computer programs we create (including those we write to do learning) are

based on logical thinking (are they ?). These programs are far away from show-

ing such impressive performance in many domains as a littl baby does,

although babies tend to draw conclusions neither from general statements to

more special ones (as a logician or an automatic theorem prover would do) nor

from special statements to more’ general ones (as a physician would do), but

from special ones to special ones (as everybody does but no one would admit) !

This special-to~special-thinking described by Piaget is closely related to the

notions involved with the phenomenons often summarized under the diffuse

name analogy. Some definitions of analogy in termsoffirst order logic can be

found in [ECAI 86]. Nearly as many critical statements about these definitions
can be found, too. The reason is that frequently good-looking definitions are

too specific. They make sense in special cases of relations between some

objects, but in many other cases they do not capture connections we intuitively

would call analogical, too

Most approaches to make programs learn are based on symbol-manipulative

languages like LISP or PROLOG that do not formally distinguish between

algonthmic and data structures. Usually some basic methodlike filing unknown

or only partly known objects in isa-hierarchies (generalization, specialization) is

the decisive factor for the performance of the system [Michalsky 84][Lenart

82a]. Sussmans program (Sussrnan 75] also learns by refining general pro-

cedural knowledge while "pushing it down the hierarchy”.

Another method considered to be important is chunking (building macros): If

sequences of actions often have proven to be successful in a certain domain

they are packed into a mew procedure that again may be used as part of a

higher-level~chunk (Newell in [Michalsky 84]).

Some attempts have been made to do learning by analogy [ECAI 86], often by

trying to find some kind of match between existing structures in predicate cal-

culus. I adopt the widespread view that it is most important to find out how

analogy works, but furthermore I want to argue that formal languages like

predicate calculus are not very well suited to understand analogy. This opinion

is compatible with Minsky’s commentcited in [Wallich ?]: ” Formatization [in

Al] has been a disaster.”

The main motivation behind the work presented here is the belief that there is

a large number of ways for a learning system to make use of the things it

afew

already has learned, call it learning by analogy or whatever you like. It is

assumed that this number is indeed so large and that the set of strategies to

acquire new information in a domain is so diverse and context-dependent that

there is little chance in trying to supply the initial system with a fewplausible

algorithms and hoping that they will cover everything.

The strongest support for this assumption is provided by empirical results

delivered by already existing programs. Especially the probably most outstand-

ing effort to do symbol-manipulative learning, Lenat’s discovery program

EURISKO [Lenat 82a] which actually shows some kind of introspective

behaviour by not only learning domain concepts but also the heuristics to

acquire domain concepts, illustrates the need for systems that are able to learn

how to learn in two different ways:

On one side EURISKO elicits the advantages of including the domain of creat~

ing heuristics in the set of domains to be explored by improving its perfor-

mance within the other domains. Not just only by redefinition of its search

space(s) depending on newly created concepts but also by change of the ways,

howto progress in these spaces EURISKO keeps up to date with its discoveries

On the other side EURISKO's activities are constrained by the fundamental

process of incorporating concepts (including heuristics) somewhere into the large

generalization hierarchy. Simon, Bledsoe and Lenat interpreted the results and

found something they called the ‘shallow tree problem’. This term stands for

the observation that the developing lattice of concepts and heuristics did not

reflect very well the ‘real’ connections between them. In fact many of the

heuristics found in higher levels of the lattice were in no way more general

than others found below. Simon et al. were able to rearrange the generaliza-

tion tree into an equivalent, very bushy one which had a small depth. But a

great variety of other relations besides the inclusion held between certain nodes

of the tree, thus ’structuring’ the knowledge. It was concluded that not so much

genl./spec. but analogy is the natural way to organize learned knowledge, and

it was admitted that much more must be known about this form of organization

|Lenat 82b].

Analogies in this context could be provided by every kind of link between con-

cepts that is no isa-link. This of course holds only if we want to introduce a

strict distinction between genl./spee. and analogies. But perhaps it is more

natural to view genl./spec. as nothing else but a special case of analogy Let

me explainthis.

A very broad informal definition would be : Learning by analogy is every kind

of building ‘senseful’! structures that is supported by already existing relations

between already existing structures. (This view contrasts with more formal bur

also narrower approaches found for instance in [ECA 86]. The disadvantage,

of course, is that it is less clear how to realize such a view within an implemen-

tation). If you substitute the word ’relation’ by the word *isa-links’ then you

will get a nice informal definition of learning by generalization.

1 More about the term ‘senseful’ in the chapter on evolution

In order to avoid naming confusions and conflicts with definitions in the stan-

dard Hrerature I would like to introduce the likewise very broad and informal
notion of an “informed structure’ that comes close to my comprehension of the
term analogy. A flexible learning system has to build informed structures

(representations, methods modifying and making use of representations etc.)

dependent on the hardware that is at its disposal and that provides the

unchangeable framework for its development. An informed structure is any
‘identifiable part’? of the system that supports the system in having success in
its environment (which includes the construction of informed structures), The

degree of ‘informedness’ a structure can have is given pragmatically by the
contributions it gives to the success of the whole system. This view is strongly

inspired by v.Weizsaeckers saying : ‘Information is what generates informa-
tion.’ (See the chapter on evolution.)

Meta-capacity is considered to be important in large expert systems. Often

heuristic meta-rules are introduced to select among a great amount of applica-

ble rules proposed by such a system during a specific computation [Davis 80]
Meta-capacity probably is also essential for trulyflexible learning systems. The

more parts of a system are accessible by the sytem itself (in a non-destructive

manner), the more senseful self-modification may take place. (EURISKO
shows meta-capacity in a sense that is for instance constrained by its hierar-

chy.) Of course the self-accessibility should include the meta—rules, too.

A flexible approach to universal learning capabilities might be to define a sys-
tem that (syntactically) allows the evolutionary creation of informed stnictures

like the algorithmic methods mentioned above as well as the invention of new

learning strategies that do not fall in any of the categories generalization,

macro-building ete.. In the following two approaches to meta-learning will be

specified. Since the history of the basic ideas reflects the reasons for the

proceeding, I will stick to a more orless chronological order. [Knuth 74] advo-

cates not only the presentation of the results but also the explanation of the

faults that led to the formulation of the results (standing in a sharp contrast to

the opinions of the giant mathematician C.F, Gauf). In Knuth’s sense this

paper describes the evolution of ideas dealing with evolution. (If you have read

(Hofstadter 85] you mightlike it.)

The second chapter will present a first approach to meta-learning by making

practical use of evolutionary principles. This approach will be criticized

Chapter 3 wants to gain a deeper understanding ofthe generality of the princi-

ples that cause evolution. The insights gained from these chapters will lead to a

more natural second approach described in the fourth chapter. This second

approach is accompanied by several implementations of the principles outlined.

It will be seen, however, that purposive self-referential behaviour on the basis

of these principles can not be expected, unless the machine power available is

increased by some orders of magnitude. Thus the empirical results do not

2 Identification presupposes an observer who is able to identify. The observer usually is a
learning system, too. More about the problems involved with the term ‘identifiable’ in the
chapter about evolution.

6 =

underpin the main thesis of this work, namely, that universal self~reference is

the foundation of flexibility. Nevertheless the results indicate some interesting

directions for future research.

Although the time sacrificed for the different concrete implementations exceeded

the time needed for designing and writing this paper by an order of magnitude,

the character of this work is inspirative rather than instructive. The important

idea you should come to share is: The introduction of potential self-reference

can be easy, if it is consequently supported from the beginning of the design of

a self-developing system.

2 ha

2. An Algorithm for Meta-Evolution.

2.1. Introduction.

This chapter proposes an algorithmic method to capture ‘learning howto learn’

based on a modified symbol-manipulative version of a genetic algorithm. To

understand this approach a short reviewof the principles of genetic algorithms (

GAs) follows.

2.1.1. Holland ’s GAs.

Holland is considered as the father of GAs. He defined the finding of a solu-

tion for a problem posed in the context of a certain domain as a search. The

search space has n dimensions and is put up by 2” possible compositions of n

relevant features that a solution can have or not (Holland 75]

In the beginning of the learning phase each member of a pool of randomly
generated bitstrings of size n representing candidates for solutions is tested by a

critic. The critic applies a domain dependent evaluation function and assigns a

*worthmeasure’ (a real number) to each bitvector.

The next step is to select probabilistically one or two candidates from the pool,

where the probability for the selection of a distinct bitvector is equal to its

worth divided by the sumof the warths of all members of the pool.

If only one candidate has been selected, a mutation may occur. This means

that a 1 may be changed to a 0 or vice versa somewhere in the bitstring, thus

affecting the existence of some property of the candidate. Mutations should

happen very rarcly (see [Grefenstette 85] if you want to know why). The more

interesting case occurs when two strings have been selected. Then a procedure

called *crossover’? may take place which generates a new plan by exchanging

parts of the genetic material of the two ancestors. This means that parts of the

bit sequences of one string override the corresponding parts of the other one

In any case the newly generated plan is tested by the critic which determines

the new worthmeasure. If the latter is bigger than the worthmeasure of e.g. the

worst candidate in the pool, this one may be replaced by the newone. (Alter-

native scenarios are thinkable, but common to all of them is some element of

competition that in the long run leads to preference of the ‘fit’ plans.)

The cycle described in the last three paragraphs is repeated over and over again

until some termination criterium is reached. This could be the appearance of a

very highly rated candidate .

Some interesting properties of GAs have been proven that often make them the

first choice if it has to come to a decision what kind of search method to apply

to a given problem (see for instance {[DeDong 75], and {Goldberg 85] for prac-

tical applications). In fact GAs have become so popular that the second interna-

tional conference dealing with them is about to come up soon.

2.1.2. A Symbol-Manipulative GA.

In a practical course at TUM the author experimented with a modified version
of Hollands GAs in order to explore ways to apply the principles explained
above to the domain of automatic program synthesis {Dickmanns, Schmidhuber,
Winklhofer 86]. The main difference to conventional GAs resided in represen-
tational issues.

Our candidates were (potentially) Turing equivalent programs represented as
lists of arbitrary length. These lists contained statements written in a special
language (a funny mixture of prolog and assembler) that allowed a controlled
execution of programs being composed out of domain primitives. Control, of
course, was delegated to a critic who attributed worthmeasures to the plans it
tested, depending on their performance in the environment (domain)}.

Some words about potential Turing equivalence. There is no criterion to decide
whether a program written in a language that is ‘mighty’ enoughwill ever stop
‘or not. So the only thing the critic can do is to break a program if it did not
terminate within a given numberof time-steps. Of course this is a restriction
to Turing equivalence, but the degree of restriction can easily be modified (all
there is to do is to change a variable). It is no more fundamental restriction
than the one given by the finiteness of any storage device

Because plans were not confined to have a fixed length, crossover was not so
straightforward an operation as it is considered to be in the literature on the
subject. Moreover the signs solidified that programming is a task that depends
on better informed structures than the ones like crossover or the other genetic
primitives are. Sometimes crossover proved to be useful by sensibly connecting
sequences of actions gathered from two different plans. But often it was annoy-
ing to watch it for instance breaking a loop apart and leaving a plan that obvi-
ously made no sense. (The really annoying thing was to knowthat crossover
never would changeits silly behaviour by evolving to 4 more informed structure
that avoids certain pitfalls. Why was that the case? The crossover algorithm was
part of the "hardware’ (the unchangeable parts of a system) and so there was
no possibility for other parts of the system to introspect and change it.)

Some additional primitives specific to our special form of GA were added, each
of them improving the overall performance of the system alittle bit. But soon
new primitives reached their limits and led to a situation as unsatisfactory as
the one depicted above.

The adhocness of the newly introduced primitives as well as the insight that
really interesting domains like programming are unlikely to be treated success-
fully solely by some simple non-self-evolving methods led to the desire to
enable the system to meta-learn the methods of how to learn. The notion of
meta-meta—learning the methods how to meta-learn the methods etc. suggests
itself, and a possible algorithmic framework for such a system with any number

2 Something not dissimilar was done by [Cramer 85]. But here the programs were
represented as bitstrings of a fixed small size (the conventional method) thus leaving no room
for universality. The same is true for [Kiichenhoff 86]

of meta-levels is shown next.

2.2. Meta—evolution.

Meta-evolution is a non-deterministic algorithmic scheme to develop algo-
rithms making use of a few primitives that can be used to manipulate plans
(programs). On the domain level we want to observe the development of plans
that are useful in the domain. They are composed out of domain primitives and
elements of the programming language chosen to structure and arrange the
domain primitives in an algorithmic manner. These lowest-level plans can
prove their adequacy by holding their own in the environment they are tested
within.

On the level above the domain level the construction of plans is a new domain
by itself. This means that operators like crossover (or more informed ones) are

again represented as plans that can be atomized into elements of the program-

ming language and plan manipulating primitives working on the lower level

Because plan primitives are able to work on plans, and plan manipulating pro-
grams are represented as plans, there is no formal reason why the next level,

the level of constructing plan manipulating plans, could not be tackled, too.

And so on.

Of course this proceeding requires plan primitives that are fundamental
enough, so that compositions out of them can achieve any imaginable effect
(Turing equivalence}. One might think of simple plan editing primitives that
are able to define some kind of ’current expression’, to detect the ‘end-of-line’,

to set markers, to compare elements of plans to be edited, to insert branchings
dependent on such tests, to insert loops and pushs and pops(at least two stacks
are necessary for well known reasons), to take two plans and insert parts of one
plan into the other one or to delete certain parts. The primitives themselves

4
 however, their possible combinations building plans should be

arbitrarily complex.

To start from scratch it is necessary that the hardware is able to generate syn-

tactically correct plans for the initial phase. To create a first-order-plan by

default means to intermix elements of the language and the set of domain
primitives at haphazard or by any other default method but in a waythat is

constrained by the syntax of the language. To create an nth-order-plan where

n > 1 is essentially the same with the exception that the set of plan primitivesis

included in that mixing process.

Here is the top level loop of meta-evolution written in a pseudo-algorithmic

language that should be self-explanatory:

To do meta—evolution :

1. Seen = 1,

2, Forever do :

—~j0-

2.1. Call S(n) the set of nth-order-plans and set S(n) = {}.

2.2. While | S(n) | < maxpoolsize(n) do :

2.2.1. Create a new nth-order-plan by default,

give it a new name P.

2.2.2. Set S(n) = S(n) U {P].
2.2.3, Test_andcriticize P.

2.3» Sét a = wel.

As long as the pool of a certain level is not complete, it is enlarged. If a poolis

filled, the pool corresponding to the level above is created. Pools of lower levels

are changed by members of higher levels in a way that is hidden in the pro-

cedure test_and_criticize to which the main work is delegated.

To test_and_criticize a plan P out of S(n) :

1. If n=l

then

1.1. Transmit P to the domain critic who executes P in

the environment and assigns a worthmeasureto it.

else

1.2. While no termination criterium is reached do :

1.2.1. Select probabilistically some plans from S(n-1)

and generate a newcandidate P’ by applying P

to the selected plans.

1.2.2. Test_and_criticize P’,

treating it like a memberout of S(n-1)

1.2.3. update the current worthmeasure of P by using

information about changes of performance gained

by comparing the worthmeasure of P’ and its

ancestors.

2. Decide whether P displaces another member of S(n).

Test_and_criticize gains worthmeasures for the meta-plans it considers by

applying itself recursively to the plans of lower levels generated by the meta~

plans,

oe T=

Termination of the whileloop may be caused by the observation that lower—
level-plans did not improve for a long time.

The element of competition is introduced by the decision in step 2. which

should of course favour highly rated plans. Cornpetition takes place in every

level below the highest meta—level, the members of the highest one do not (yet)

have to participate in the struggle for live.

One should expect that in the long run more and more informed structures

evolve in form of domain- and meta-plans. So default plans like e.g. a simple

random crossover should be replaced by more methodical ones. One might ima-

gine plans that represent information about howto build repeat-untils, perhaps

by inserting conditions at ‘plausible looking’ places in endless loops of programs

found on the level below. There is no limit to ones imagination if the set of

initial primitives is chosen appropriately.

Probably the most interesting informed structures are those that aid to shorten

the time to find new ones. Suppose the domainis the invention of plans that

move a roboter through a large room. Suppose that the set of domain primitives

includes simple actions like ‘stepforth’, stepright’ etc. Then a good informed

plan of the second level could be one that frames domain primitives with loops.

This behaviour might often produce awkward results (imagine that the name of

another domain primitive is ‘grasp_object’ !). Burt statistics might say that this

principle is more promising in the environment than mixing primitives at ran-

dom. This should result in a higher probability for survival for this informed

structure.

Of course a plan from level 3 might profit by changing the level 2 plan men-

tioned above to an even more informed structure, This could be realized by

inserting pieces of code that restrict the number of domain primitives the lower

plan works upon.

Nobody said that random crossover is no informedstructure. It is | It somehow

represents the very general heuristic saying that the world often is continuous

and that it makes sense to create new information by somehow connecting

information gathered from available structures‘.

Since the world is not only continuous but also manifold, general heuristics

need refinement. (I will not state that they are to be specialized because spe-

cialization is only one part of the story as the shallowtrce problem shows). The

need for a universal refinement scheme represents a good deal of the justifica-

tion of meta-evolution.

Reward is running bottom up. Effects in the domain may indirectly have an

influence on the ratings of high-order plans, but the critic can not have a look

into the whole system. All it can watch and recompense is the domain level.

Because of the cascade-recursive behaviour of test_andcriticize we can not

expect the rapid creation of very high levels if the domain critic needs a’ notice-

able time to do its work. Learning is a process that takes time.

+ Crossover looks a little bit like the root of analogy !

wo fF

Meta~evolution seems to be a way to learn the domain of learning. One can
easily imagine evolved structures that practice genl./spec. or others that canni-
balize certain plans in order to do learning by building macros. The good news
is that there is no pledge to use a particular one of these popular methods.

Anything could potentially evolve, depending only on the set of initial primi-

tives. The bad news is that there are still several reasons for not considering
meta-evolution as the best way to achieve our goal .

2.3. Critique of Meta-evolution.

The cri

ability to fearn, Church's thesis says that Turing equivalence catches everything

cism presented here is not concerned with the question of the potential

that can be catched. It is the question of naturality that remains. (Computabil-
ity versus Feasibility.)

Hownatural is the creation of meta-levels, meta-meta-levels and so on? At
least human beings do not learn like this, instead we permanently mix levels.
We do not use a counter that says: Now you are at level seventeen3.
Hownatural is the general representation of knowledge in the meta-hierarchy ?
Every type of knowledge (static or dynamic) must be represented somewhere in
a plan. Access to knowledge ensues from actions executed by meta-—plans.
Often this kind of access might look unnatural, less like a straightforward
inspection of a variable but more like a strange kind of search for some part of
a program that some meta-plan interpretes as something. This is connected
with the next question :

How natural is it to basically employ a genetic algorithm at all levels ? Isn’t
this too much bias ? Symbol-manipulative GAs seem to leave more room for
development than e.g. strict genl./spec. frameworks. But should it not be posst-
ble that the GA some day may beabolished and replaced by some other kind of
scheme, a scheme that imukes beuer use of the capabiliiles of the physical
machine it is running on ?

There are more arguments against the algorithmic scheme meta—evolution,
arguments delivered by the field that provided the inspiration for GAs : The
field of molecular biology. Although we can’t exclude the possibility that some
sort of higher-order evolution took and takes place on the molecular level (in
fact the contrary is rather doubtful), the development of biological organisms
self indicates that information processing on this level has reached its limits.
The evidence for this claim is given bythe fact that biological GAs discovered a
faster way of doing evolution: A possibility to evocuate the main part of infor-
mation processing to the phenotype by providing it with some (probably rather
unstructured) hardware (baby’s brains) and some (probably sophisticated)
software. The clue is that the software is rather a germ suited to acquire more
software than a set “of fixed programs®,

* The number 17 is an hormmage 10 Prof, Giintzer.
® Andit is obvious why this is necessary

:

The DNA stcings are just too short to carry allthe information necessary for, say, an adult primate to survive. ‘The number of neuronswithin a human brains is about 10'” (Schulten ?), and what seems to be of even greater im-portance, the number of connections between them is again larger by a factor af 1000. (To

= {8 =

The reflections in this section will lead to a second more natural approach tc

meta-learning. Evolutionary principles still will play the fundamental role, but

appear in a garment that does not look similar to the principles of GAs any

more. What is the essence of evolution ? The next section is intended to show

that the notions behind evolution are much more general than the purely

darwinistic conceptions influenced solely by ideas from biology.

speak with Schulten : It is the connections that carry, the information.) But the maximal
amount of syntactic info a DNA can carry is about 10'° bits, and most of them are used for
things that do not have much to do with the brains. There are 101(?) othercells in a human
body.

~ Poe

3. Evolution and Learning.

3.1. What is Evolution ?

"Als Evolution bezeichnet man vorzugsweise die Herausbildung der

Gestaltenfiile des organischen Lebens im Laufe der Erdgeschichte. Die

Herausbildung einer Fille von Gestalten ist freilich nicht auf den Gegen-

standsbereich der Biologie beschrankt. Einerseits gibt es eine reiche spon-

tane Gestaltenbildung im Anorganischen; heute unter den allgemeinen

Kategorien der Synergetik mitumfafr. Andererseits schafft auch die men-

schliche Kultur immer neue Gestalten. Evolution als Vorgang umfafr also

die ganze Wirklichkeit, die wir kennen. Sie bedarf also auch ciner

umfassenden Erklarung.”

This quotation is an excerpt from [Weizsicker 85].In the following Weizsacker

argues that the growth of entropy is identical to the growth of Gesralrenfiille

(the plentyness of forms) if certain premises hold. With a little mathematical

experiment he shows that the introduction of simple binding forces into a model

(condensation model) similar to the kinetic gas model promotes the growth of

Gestaltenfiille. (The kinetic gas model led to the formulation of the second law

of thermodynamics). In a world like ours a row of binding forces exists. This

makes it probable that the often cited ’warmth-death’ of the universe does not

result in an uniform distribution of atomar particles, as one might conclude

naively by extrapolating the gas model. On the contrary the final state might

rather resemble a "collection of complicated skeletons ” (Weizsacker 85].

So the phenomenon of evolution does not contradict the growth of entropy, as It

is assumed. A frequently cited argument says that a decrease of entropy in one

part of the world has to be compensated by an increase somewhere else

Without denying the existence of processes of this kind v.Weizsacker says that

the development of for 3 docs result in an increase of entropy He argies tht

the many ungood feelings relating thereto have their roots in a verbal o:

notional negligence. He shows that the definition of syntactic informauon

H = -Yp(k) Idp(k) (where k disjoint events E(k) may occur with probability
k

p(k)) is in substance the sameasthe one given for entropy, including the sign:

”Man hat Information mit Wissen , Entropie mit Nichtwissen korrehert

und folglich die Information als Negentropie bezeichnet. Dies ist aber eine

begriffliche oder verbale Unklarheit. Shannons H ist auch dem Vorzeichen

nach gleich der Entropie. H ist der Erwartungswert des Neuigkeisgehalts

eines noch nicht geschehenen Ereignisses, also ein Ma dessen was ich

wissen kénrite, aber zur Zeit nicht wei& H ist ein Ma& potentiellen

Wissens und somit eine definierte Art von Nichtwissen. Genau dies gilt

auch von der thermodynamischen Entropie. Sie ist ein Ma der Anzahl

der Mikrozustande im Makrozustand. Sie mi&t also, wieviel derjenige, der

den Makrozustand kennt, noch wissen kénnte, wenn er auch den Mikrozu-

stand kennenlernte.”

= {8 =

In the following v.Weizsacker distinguishes between potential and actual Infor-

mation. He regards actual information as negative entropy or as the informa-

tion about a micro state that one possesses only by knowing the macro state.

Potential information is what could be gained by knowing the microstate.

Entropy is potential information, Whether entropy is a measure of

Gestaltenfdlle or of disorder is only a differentiation between degrees of

knowledge.

Evolution is sometimes viewed as the principle that generates order out of

chaos. But according to v.Weizsacker and to commonsense order is something

subjective. Consider figure 1 that shows a table of 9x9 partly colored fields.

The colored fields are scattered chaotically as long as you do not know that

every pth field is black (counting them by rows) iff p is a prime number.

Abb. 1
Order depends on knowledge.

That is,order depends on knowledge. Following {Weizsicker 85} we may con-

clude that the statement "disorder gets larger and larger” is a wrong conclusion

out of the 2. theorem of thermodynamics. Entropy grows, but that does not

mean that disorder grows.

In fact the world is becoming more and more ordered in the eyes of a learning

observer, because he by himself provides the subjective scale of order. Simply

because he is acquiring more and more knowledge about the world, the order of

the world increases.

Weizsacker argues that operational definitions of information and usefulness

can be given, making both essentially identical. He pleads mathematically for

the view to see information as a real function of usefulness for subjective pro-

babilities. He describes evolution as the growing of potential syntactic informa-

dion and shows that it is the most likely phenomenon.

= fio

3.2. Pragmatic Information.

The conventional every-day notion of information does not refer ta the syntac-

tically defined form of a message, but to “what is understood” ((Weizsacker85],

Thesis!). [Kuppers 86] explains that the objectivation of the semantical

aspect of information is possible only if we include the pragmatic component of

information ”. This leads to the formulation of v.Weizsackers Thesis 2: Infor-

mation is only what generates information. This thesis is meant as a ughten-

ing up of the statement that pragmatic information is only what works, i.e.

whatis effective [Weizsacker 85]. It is no circular definition.

{Weizsacker E+C 72] introduce two variables that help to define pragmatic

information : Erstmaligkeit (first occurence) and Bestdtigung (confirmation).

Useful information is only possible if some things are happening that are fami-

liar to the information processing system (Bestatigung), But of equal impor-

tance is the appearance of unexpected events (Erstmaligkel®).

"Nahe dem Grenzfall hundertprozentiger Bestatigung kann jede Neuigkeit

registriert werden. [..] {die Verfasser} schlagen vor, in diesem Grenzfall

die Erstmaligkeit direkt durch die Information im Sinne Shannons zu

messen. [..] Nimmt aber der Bruchteil der Bestdtigung ab, so kann nicht

mehr jede Neuigkcit pragmatisch effektiv registricrt werden.”

If there is no Bestdtigung, there is no useful informationeither.

"BloBe Bestatigung entspricht der Karikatur des Spezialisten: er weil alles

ber nichts; blo®e Erstmaligkeit entspricht der Kankatur des Generalisten:

er weif nichts tiberalles.”

(Quotations from {Weizsacker 85])

3.3. A Link to Piaget.

Erstmaligkeit and Bestatigung are connected with two notions introduced by

! on and assimilation, (A good introduction to Piaget is given

in [Ginsburg, Opper 75]). A learning child performs assimilation by giving

existing schemes the chance to apply themselves to the environment. If the

child already disposes of a structure that represents internally the falling of a

ball on the ground it may apply that structure to other objects that are no balls,

e.g. eggs. Assimilation describes the tendency of available patterns to apply

themselves to the world (expectation driven programs assimilate, too). Assimila-

tion relates to Bestatigung. Assimilation is justified because the world is not a

random world but structured in a way thatoften allows Bestatigung.

Onthe otherside the phenomenon of accommodation describes the forced crea-

tion of new structures within a learning system. The child may apply its

scheme for ‘falling objects’ to a bird. But this scheme is not compatible with

the real-world-event, because the bird is flying away. Nowthe child may

accommodate structures that give room for objects that do not fall. Tt may, but

it often won't. This depends on how important the accommodation of new

structures is for the ‘success’ of the child, which again depends on the prag-

matic context. Erstmaligkeir is relared to accommodation in an obvious way.

Te

We can regard assimilation as an oppression of the world by the brains, and

accommodation as an oppression of the mind by the world. The alternate play

of assimilation and accommodation is called equilibration [Piaget...]. The prin-

ciples of equilibration can be found not only in the developmentof children but

everywhere where expectation driven evolution takes place. Before we shall

localize assimilation and accommodation in meta-evolution we want to gain a

little more understanding of the nature of learning systems.

3.4. Whatis a Learning System?

To clear up this question it should be helpful to know what the term ’system’

stands for. But the notion of a ‘system’ is something subjective and vague.

(Weiss 77] tried to give an operational definition: For all material sub-comlexes

5; (i=1..n) of a complex S consider the cumulative balances v; of fluctuations of

physical and chemical parameters of s; around some mean value. Let V be the

variance ofall identifiable properties of S. Then S is a system if V « Dv.

"Das wesentliche Merkmal eines Systems wird hier durch ein

Stabilitatskriterium beschrieben, das dic grunds&tzliche Invarianz eines

Systems gegentiber den Schwankungen in seinen Subsystemen zum Aus-

druck bringt.” [Kappers 86]
There remains a lot of room for subjective arbitrariness, most strikingly located

in the sign *<<’ and the word ‘identifiable’. If there are difficulties with the

term ‘system’, then how much more are there with the term ‘learning system’ ?

Due to these problems the following discussion will have only informal charac-
ter.

Intuitively we would say that a learning systemis a system that (partly) consists

of evolving sub-systems reflecting the outer world in a way that assists the

entire system to survive. Within the system some sort of mini~evolution must

take place in order to build informed structures inar help the whole ta hold its

own in the world. Of course the identification of sub-systems is equally depen-

dent on subjectiveness as the identification of systems in general

Provisionally let us view a learning system as a set of informed structures being

separated from the rest of the world it is existing in. The world should be

interesting, which means it should allow ‘arbitrarily complex’ structures. The

learning system should be connected to the world by effectors and receptors,

because a system without connections can neither observe nor be observed.

Effectors are structures belonging to the system that have an influence on

structures belonging to the rest of the world. Receptors are structures belong-

ing to the system that have an influence on other system structures dependent

on structures belonging to the rest of the world. The notion of a ‘structure’

indulges in subjectivity - one could say ’sub-system’ instead of "structure’.

What does it mean to identify a learning system? Someone must be there who

does the act of identification. This one will be called the observer, Difficulties

arise with the fact that at least in our world the observers are evolving learning

systems, too. Let’s imagine that a learning observer who observes his

wo [Be

environment may try to discover other learning systems’.

Because learning seems to enforce the modification of subsystems (informed

structures) the observer will have even greater problems to discover structures

that are permanent and can be regarded as the essence of some lcarning sys-

tem. This is because only patterns that are familiar to the observer will be

regarded. In other words: The observer who himself is a learning system can

only identify something if the Bestdtigung he gains by observing that something

is above zero. Moreover it has to be so clearly above zero that he can do either

assimilation or that he is at least motivated to do accommodation, in order to

learn more about the complex in focus and which may turn out to be a learn-

ing system, The subjectiveness of the observer is determined by the knowledge

he accommodated during his own development.

Obviously it is not easy for an observer to decide what is a closed learning sys-

tem in our general sense and what is not. If the world is too complicated it is

impossible. The point is that in an interesting world like ours systems making

use of evolutionary principles are products of evolution again, as well as the

observer himself. But the pragmatic contexts relevant to the different systems

are different, in fact they might be too different. An observer watching his own

evolving environment might nor discover certain evolving learning systems Gf

the world is complicated enough and the observer is simple enough, which

might be applicable in the case of the universe and human beings as

observers). If the observer’s knowledge about the world is limited, the world is

only partially ordered in his eyes whilst other parts look chaotical. How can he

recognize informed structures if he does not see any structures at all ? If he

does not have any access to the pragmatic context that is relevant to these

structures? He often will not be able to identify a set of structures and find the

line that separates it from the rest of the world.

Surprising examples for structures holding their own in a certain environment

come from chaos theory (see ¢.g. (Crutchfield, Farmer, Packard, Shaw87j}. Ic

took a long time for the learning system mankind to discover many of these

structures. By having discovered them the order of the world increased (the

observers are learning systems, too). But how much more can be found ? It

seems that our informal definition given above often does not make too much

sense.

The conclusion from this at all is nearly a platitude: Learning systems are

learning systems only if they are considered as such by other learning systerns.

This requires enough ’pragmatic intersection’ between observer and the system

being observed, otherwise there simply is no other system in the eyes of the

observer. In turn, he by himself probably will not be identified as such a sys-

tem by ‘the other side’.

7 An example for a learning system in our broader sense (identified by biologists) is given
by the set of all genotypes of a particular race. Informed structures are for instance the DNA
strings themselves. The phenotypes are the effectors!

= 15 =

Of course we have rather clear notions about what a learning system imple-

mented on a computer should learn, because by defining the world we provide

the pragmatics. The pragmatical aspect of the world presented to a learning

program should have a big intersection with the pragmatics of our world. Oth-

erwise, if for instance some evaluation function of the critic in meta-evolution

js not chosen appropriately, the system could escape into a direction we can not

follow, and we will say the system failed to learn the task we posed. We will

not consider it as a learning system, although it just followed the rules of evo-

lution. But in fact we failed by not supplying the correct "pragmatic pressure’.

Note that it is less clear how the system should learn its task, at least qf the ini-

tial germis flexible enough to be ‘interesting’. Learning systems are identified

being of such a kind only because they evolve in a way that is familiar to the

observer. I consider my brother to be a learning system. But T am far away

from knowing what is happening inside.

The glance into a learning system might be as meaningless as the observation

of chaos (sce the literature about neuronal nets). This somehow contrasts with

the desire to understand everything that is happening within such a system. But

the inability of learning systems to understand completely other equally complex

ones might be fundamental.

In the theory of cellular automata (cellular automata can accomplish for

instance certain pattern recogniuon tasks) Many systems are known where cer-

tain initial states under certain conditions evolve chaotically. ’Chaotically’ in

this sense means that the shortest algorithm to compute the final state takes

about as much expense as the complete simulation of the automaton, In other

words, the automaton represents the shortest algorithm to compute the subse-

quent slates.

It remains an open question whether these nearly unpredictable processes play a

fundamental role in learning. But intuitively it seems to be plausible that

‘interesting’ learning systems some day will escape some initial (well under-

stood) schemes that are provided by other learning systems as for instance

human beings

AMgives an example for escaping some initial algorithms, namely the name

giving procedures, These were thought to construct new names for newly com-

posed cancepts out of the names of the elements. Soon these names were get-

ling stranger and stranger [Lenat 82]. This may be a symptom of a more gen-

eral law: Any(interesting) learning system will get in conflict with those initial

algorithms that do not evolve. Of course the name giving must not be changed

by the system, because it represents a part of the semantic interface to the

human observers. On the other hand it should be changed because otherwise

the observers also loose their ability to observe as they do not understand the

new names any longer. Im the case of AM the problem is solved by humans

who interprete certain new concepts as something that is familiar to them (like

primes) and who supply a related name.

But if a learning system gets significantly larger than AM there will be no

chance for humansto find all good’ concepts, simply because there will be too

- 20 -

many of them. Humanswill not have enough timeto look at every concept and

decide whetherit is related to something they know. Moreover certain concepts

with a strange name may help the system in a way that has not been foreseen.

A truly interesting system will find so many unforeseen ways that an observer

will not be able to follow.

‘This has to do with another problem pointed out by Winston: The reasons for

AMconsidering a concept as being of interest are often strikingly different

from the reasons that cause a humanto like the same concept. Whyis thar?

In fact the concepts are not the same, but the namesare.

3.5. Symbiosis Versus Parasitism.

A parasite usually is viewed as a structure that survives because it makes profit

from the existence of other structures without contributing to their survival (a

soon disappearing parasite would be one that destroys the structures it depends

on).

Symbiosis takes place if two ore more stnictures complete each other and gain

mutual advantages.

But the distinction between symbiosis and parasitism is as hard as the discovery

of learning systems, for analogue reasons. Furthermore if something was identi-

fied as a parasitizing structure it may turn out to be part of a symbiosis if it is

viewed from a different angle. The TBC germ was a parasite of the human

race. But didn’t it trigger important medicinal developments that helped mank-

ind more than the TBC bacillus did damage to? From this point of view it was

part of a symbiotic systern, at least as long as it was not extincted by the

development its appearance stimulated. The frontier between symbiosis and

parasitismis an indistinct one and depends on subjective knowledge.

Symbiosis plays an important role in the evolution of complexity, Structures

appear that are decomposable into many smaller structures that can not survive

alone. A system that owes its existence to symbiotic principles is the human

body with its masses of specialized cells. A larger one is the humansocicty

with its masses of specialized humans.

3.6. Erstmaligkeit,Bestatigung, Symbiosis and Mcta-evolution.

To be able to handle Erstmaligkeit a learning system has to dispose of a princi-

ple to build structures that reflects the possible appearance of unexpected things

in the real world. In GAs this principle is given by the possibilities of muta-

tions, of random changes of already existing structures.

Pragmatic Bestatigung is introduced by the critic which establishes the connec-

tion to the world, So e.g. meta—evalution is the basis for an expectation driven

system able to do accommodation if necessary.

Information generates information. The abstract quality called information is

carried by something that I called informed structures in the introduction. So

informed structures should generate informed structures. In meta—evolution the

physical realizations of plans on a machine are examples for informed struc-

tures. Their degree of informedness is defined pragmatically by the advantages

won BE oe

they cause on the lowest level, the physical environment’, In fact the informed-
ness of a plan is indicated by its probability to survive. Each plan’s existence is

justified only to the degree in which it is contributing to the success of the

whole system in the ‘real’ world.

Remember that the motivation for the algorithm called meta—evolution came

from biology. Biological evolution is a kind of evolution that was successful

enough to become well-established. But it is only one manifestation of the gen-

eral principle that may be expressed in its simplest form: Everything that sur-

vives, exists (if it is realized!). This principle does not only apply to physical
individuals but also to ways of doing evolution as well as to other abstract

ideas: The abstractum ‘death’, for instance, survived because the way of doing

evolution by letting individuals multiply and die survived.

At the end of the last chapter it was mentioned that biological evolution led to

a more ‘advanced’? kind of evolution. By providing the phenotypes with a

framework to do some sort of mini~evolution (learning) the genotypes found a

way that put their own role into the background. Although the invention of

sexuality (the first exchange of information located on DNA strings) led to

dramatic evolutionary leaps (Eigen 86] some day this kind of evolution was

relieved. DNA strings came into existence that supported an external informa-

tion processing (external relative to the DNA) thus allowing more promising

directions for development. Up to nowthis culminated in the evolution of

hurnan societies. The inventions of language, printing of books or computer

nets are symptoms of this ongoing development that unties (in our subjective

eyes) the main part of information processing from molecular structures ({Markl

86] : "Language is the sex of culture”).

Let’s return to our goal to make machines learn. Most computer scientists today

depend on a von Neumann machine as the basis for their learning programs

(so do ij. Consequemiy the basic software germ whose task will be to acquire
more software should be designed to allow structures that make use of what a

von Neumann machine can do well (setting pointers, interpreting sequential

programs ...). The development of ‘natural’ structures should be supported.

Naturality is prescribed by the kind of data structures and algorithms a v.N.

machine can process efficiently. Due to the reasons mentioned at the end ofthe

last chapter meta-evolution does not seem to meet these criteria very well.

Another argument against this algorithm is given here: Meta-evolution does not

leave much room for symbiosis. Symbiosis and parasitism surely might be iden-

tified in chains’ of plans from different levels, But an important idea behind

the unchangeable algorithmic scheme is the parallel holding of information in a

manner that supports competition but not so much the collaboration of plans.

Although competition plays a fundamental role in symbiotic systems (in order

to favour certain kinds of symbiosis), a system implemented on a computer

® Of course it does not matter if the ‘world’ again is simulated on some (probably the same

) machine. Simulation pragmatically changes into reality if all aspects relevant for the critic
are contained.

9 The word ‘advanced’ means something very subjective

& BE =

should support the specialization of ‘plans’ and not wy to make every plan a

universal genius (as meta—cvolution prefers to do by throwing less rated plans

awayalthough they might be very useful in certain situations),

In the next section another approach to self-referential learning is presented

that seems to be better suited. It is based on ideas leaving more room for sym-

biosis!°.

- 23 -

4. Sclf-referential Associating Learning Mechanisms.

4.1. Introduction

In this chapter I want to propose another approach to meta-learning, where

more care is given to principles of symbiosis and their realizations on

v.Neumann machines. Originally this approach was inspired by another idea

of Holland!!; The bucket brigade (b.b.)[Holland 85]{Holland 86]. B.b.s scem

to be a way to handle a problem mentioned in [Minsky 81]: "The Basic Credit

Assignment Problem for Complex Reinforcement Learning Systems”

4.1.1. Classifier Systems and the Bucket Brigade.

On a global message list messages in form of bitstrings of size n can be placed

either by the environment or by entities called classifiers. Each classifier con-

sists out of a condition part and an action part defining a message it might
a

send to the message Hist. Both parts are strings out of fou1, | where the ’’-f os

serves as a ‘don’t care’ if it appears in the condition part and as a 'pass—

through’ if it appears in the action part. A real numberis associated with every

classifier indicating its ’strength’.

During one cycle all the messages on the message list are compared to all clas-

sifiers of the system. Each matching classifier computes a bid by multiplying its

specifity (the number of non—don’t_cares in its condition part) with the product

of its strength and a small factor. The highest bidding classifiers may place

their message on the next list, but they have to pay with their bid which is dis-

tributed among theclassifiers active during the last time step which set up the

triggering conditions (this explains the name bucket brigade).

Certain messages result in an action within the environment (like moving a

sails,

crane step) Because some of these actions maybe criticized as ‘useful’ by
an extern critic who can give payoff by increasing the strengths of the currently

active classifiers, learning behaviour may take place.

Classifier systems seem to be simple, but they are potentially mighty. E.g.

(Forest 85| shows that classifiers are well suited to implement semanuc network

structures (although Forest does not refer to the learning of such structures)

4.1.2. Symbiosis and the B.B.

In contrast to GAs the bucket brigades are subgoal-reward schemes [Westerdale

85]: in the long run only thoseclassifiers becorne stronger that are *setting the

stage’ for actions that lead to payoff. These classifiers have higher chances to

assert themselves during the bidding phases, and sequences of useful actions

1 Probably many schemes similar to b.b.s have already been in practical use before Hol-,
lands analysis, but they were not outlined explicitly. During a lecture on connectionist models
heid by Scott Fahlman in Munich in summer 86 he reported the advantages of the “back -
propagation method’ developed by one of his students. I asked Fahlman whether back -
propagation isn't essentially a b.b. scheme. After some hesitation he agreed

we DA vas

triggered by messages from the environment evolve.

Only the teamwork of manylittle entities produces structures that survive.

Although the competitive element is not abandoned(it is indispenseable), struc-

tures with symbiotic character are supported. Usually there are no classifiers
that could survive alone.

4.1.3. Meta—capacity for the B.B.

After some time it is necessary to create newclassifiers (if the environment 1s

fastidious and not trivial). It is no wonder that Holland in his capacity as pope

of GAs employs a genetical algorithm to solve this problem. Strong classifiers

are preferably engaged in the process of exchanging ‘genetic material’ thus

creating new onesto be tested.

The augmentation of the b.b. by a GA can be viewed as a simple form of

meta-learning. But there is only one additional level above the basic level.

There is no further means to augment the genetical algorithin. The system

described above is not ‘closed onitself’, at least not explicitly.

Wouldn’t it be more natural to apply the principles of the bucket brigade to the

augmenting of itself? A possibility to do this would be the introduction of

‘mental’ primitives (an analogue to plan-primitves in meta—cvoluton) that can

be used to analyze or to create classifiers. There should be no essential differ-

ence between the triggering of domain primitives and the triggering of mental

ones. Both types should be able to appear as part of the evolving sequences of

actions.

In the long run a b.b. scheme that is closed on itself in such a manner should

develop ‘good’ heuristics (in form of appropriate classifier sequences) to create

new classifiers. ‘Good’, of course, again is defined pragmatically by the

environment.

The artificiality of the many levels in meta—evolution disappears, because all

meta-levels collapse into a single one.!?

Again the main argument for such an approach is the fundamental increase of

flexibiliry. A system making use of such self-referential principles does not

depend forever on certain initial algorithms. On the contrary, it should adapt

itself to the increasing demands of aninteresting (non-trivial) environment as

well as to the increasing demands of its own internal representations. To avoid

signs of stagnation such a system must be able to refine its methods if its

representations are refined.

Experiences with stagnation have been made with AM, the predecessor of

EURISKO. More than fifty initial heuristics referring to mathematics (and to

mutations of lisp expressions representing mathematical functions) caused AM

to ‘discover’ and to name new concepts from maths. Starting with a few con-

cepts from set theory it created many more related to numbers, multiplication,

primes, and conjectures like the famous one by Goldbach.

12 This is probably closer to the way human beings handle meta ~ knowledge

= 25 -

After some time AM’s hit rate sank, i.e. the number of concepts considered as

senseful by human observers decreased (rapidly). One reason for this was local-

ized in the fact that the initial heuristics applied well to the initial concepts

from set theory (and their representations), but not to more advanced

mathematical concepts created by AM. These observations led to the desire to

include the field of heuretics into the learning process, and EURISKO [Lenat

83] was born.

EURISKO and CYRANO(a ‘thoughtful reimplementation of EURISKO’ by

Kenneth W.Haase jr. [Haase jr. 86]) are the only systems 1] know that

somehow are explicitly closed on themselves. EURISKO is potentially able to

introspect and modify all of its parts, because it is written in a language that

makes everything explicit [Greiner 80]. Even the lisp interpreter building the

basis for the system is represented explicitly.

But there is a great difference between introspection and potential introspective

abilities [Maes 86].Certain parts of EURISKO are accessible in a natural way,

for instance the concepts that represent the current domain, and the heuristics ,

that work on domain concepts. But e.g. the fundamental modification of the

organization of heuristics would almost certainly result in a failure of the whole

system. This is because EURISKO’s successes are largely dependent on its gen-

eralization hierarchy. If something happened that damages this hierarchy it

would be extremely unlikely that an equally or better suited form of organiza-

tion evolves at the same moment. The deeper reason for this is that big parts of

EURISKO as for instance the truth maintenance system depend on the hierar-

chy, and that these parts are not very well described in the eyes of the system.

It is not explicit which kind of changes to these parts are harmless or perhaps

catastrophic. The system may want to find it out of its own accord by using its

learning capabilities, but it may be the last thing it finds out. Changing fun-

damental parts of its behaviour may be the last self-modification the system

execuies. An example: lisp programming was included as 4 gondii iv be

explored by EURISKO. Whenstarting to modify its ownlisp code EURISKO

soon ran into bugs [Lenat 82a].

There seems to be no obvious way how EURISKO could reconfigure itself into

a system that represents its knowledge in an e.g. more analogical form. But the

shallow wee problem mentioned in the introduction indicates that most relations

between objects do have a more analogue nature, and that the isa-link is only

one of many important links.

So called low-level methods as GAs, b.b.s and neuronal nets seer to be better

suited to make use of the giant field of analogous connections. An initially

simple but potentially mighty syste should allow the creation of generalization

trees as well as the development of the many other methods to organize

+ knowledge. Bucket brigades are powerful enough to let default hierarchies

emerge [Holland 80]. Are they simple enoughto allow anything else one might

imagine? And in a ‘natural’ way ? If the answers are yes, then closing the b.b.

on itself should be an exciting experiment. But at least on a v.N. machine the

answer seems to be no: the massively parallel matching of messages and

condition parts simply takes too much time. (Holland makes use of a special

hardware, [Holland 86]).

To build a learning germ for a v.N. machine we will follow a different

approach: SALMs.

-2o7-

4.2, SALMs, PSALMs.

The word SALM is an acronym for ‘self-referential associating learning

mechanism’. This term stands for a domain independent mechanism that pro-

vides a simple but broad framework for the further development of a software

germ defining the initial state of a learning system.

Whyassociating? Because the basic action of conventional association is setting

or following a pointer, which is easy for v.N. machines. (This is the reason

why many languages essentially doing pointer manipulation are implemented

on such machines), Association will provide the basis for storing any kind of

information as well as for the execution of sequential programs. In both cases
the machine has to do the things it has been constructed for: following

addresses in the storage.

Whyself-referential? After all that has been said before the reasons should be

clear.

Some prototypical SALMs (called PSALMs, of course) have been implernented.”

4.3. What all PSALMs Have in Common.

Pressure to learn some behaviour in some dornain is supplied by the way the

hardware (the unchangeable part of a certain PSALM) interpretes the entities

that collectively make up the system. Under certain conditions certain entities

maytrigger certain actions in an arbitrary environment. Furthermore every

interpreted entity can have an influence on the decision which entities are to be

interpreted next. This is meant to allow some flowof control driven by the sys-

tem,

A critic of executed actions is getting active from time to time and maygive

payoff to the system, The pragmatics of the world (partly) are given by the

evaluation functions the critic uses to determine the amount of payoff it

spends

Payoff may be used by the system to extend itself by creating new entines or

associating old ones in some wayor just to strengthen certain parts ofitself.

All entities that are interpreted by the hardware have to pay with a part of

their strength for that privilege. On the other side the hardware prefers (o con-

sider strong entities, So in the long nin the hardware tends to support

sequences of actions that lead to success in the world by decreasing every

‘senseless’ entity’s probability to be interpreted. One could draw an analogy to

the metabolism of biological individuals: Being active requires resources, but

resources are limited. (—> Competition!)

A primitive is an action that can not be decomposed by the system. Entities

can be associated with actions that may be domainprimitives or mental’ primi-

tives. Those that are associated with domain primitives represent the outgoing

connection to the world (effectors). In turn the system can receive messages

from the environment (perceptions) which are also represented as entities.

The critic can notice only actions performed within the domain. The systemis

free to use payoff as it likes, but it can not create payoff (otherwise it could

— 28+

escape the pragmatic pressure). This does not imply that it cannot transport

payoff to enuines it considers to be adequate.

The transport of payoff, the creation of new entities and the building of associ-

ations can be done by entities associated with some mental primitives

Sequencesor clusters of mental primitives also can (must !) work on themselves

to organize the way they organize the domain knowledge.

sx OG a

4.4. PSALM 1.

The experiences with PSALM 1 led to a_ stricter distinction between the

language a PSALM uses and the pressure that forces the language to organize

itself, It may be helpful to follow this evolutionary process (the author was part

of it) chronologically.

PSALM1 wasa straightforward implementation of a self--modifying associative

net based on weighted links. The basic structure was called an entity, At time t

each entity e could be associated with an action (an undecomposeable func-

tional representing a domain primitive or 4 mental primitive) and a set

assocs(e,t) of ordered pairs out of SE(t)x[0;1], where SE(t) denotes the set of all

entities existing at time step t. Each pair represents an association between e

and some other entity, as well as the ‘strength’ of that association. This

linkstrength between two entities e and e’ at time t is defined by

s(e,e' ,f) i= x if (e" 5x) € assocs(e,t), and 0 else.

Let the agenda A(t) be the set of all entities interpreted in parallel by the

hardware at time step t. Then it is possible to define an order

*moreinteresting(t)’ on SE(t):

el moreinteresting(t) e2 <> EY s(e,elt)> 2 sleet.)
2 € AW) 2 EAC)

The agenda A(t) can be sorted by the law of order defined by itself. Taking

one entity from or adding one entity to the agenda may result in a completely

different order of the elements it is consisting of.

At time 0 the payoff value is initialized with zero. At time t the hardware

interpretes all (or the most interesting) entities of A(() by inspecting whether

they are associated with some action thar is executed if there is the necd.

Because some domain dependent entities may cause the extern critic to give

reward, payoff in form of a real number might be added to the old payoff

value.

At cach time step 20 all links from A(t-1) to entities € A(0Q) are punished or

rewarded (proportional to their old values):

el ¢ A(t) implies for all ¢ € A(e-l) :

s(e,e1,t) i= ces(e,e1,f-1) + Pee See ae

e' €Atr-1)EA)

P denotes a number that is gained by decreasing the payoff by some default

method, ¢ is a constant out of (0;1} close to 1. A(t+1) becomes the set of the

most interesting entities defined by A(t) unificd with the set of perceptions that

may have appeared during timestept. If there are no interesting entities (with

a strength greater than a given threshold), some randomselection takes place

To explicitly close the system on itself on a very low level some mental primi-

tives like the following ones were introduced:

- create_entity: This one creates and initializes a new entity and associates it

with the whole agenda at the same time.

30 -

~ create_links: creates or strengthens links between the most interesting entity
and the rest of the agenda (if there is enough payoff to do so)

~ shift_payoff: Takes payoff if available and distributes it on the links leading
fromm the agendato the ‘outside’.

The goal of PSALM 1 was to to avoid the massive parallelism of bucket bri-
gade schemes hoping that the system will develop strategies composed out of
primitives that always place the ‘right’ entities in the agenda. It was imple-
mented in INTERLISP and consisted of about 60 k of code most of which
were concerned with gaining someefficiency by using hashing techniques which
are not supported by INTERLISP [INTERLISP 85].
PSALM | was a flop. During the (very limited) times of observation no kind
of structure evolved that would be worth mentioning. Although a rate of 5
agenda cycles per second is clearly too slow this is not the only reason for
PSALM1’s failure,

4.5. Lessons Learned from PSALM 1.

There seemed to be nothing wrong with the basic hardware parts of the system.
But nearly all of the mental primitives implicitely represented some unstated
heuristics like ; "If a new entity is created then it should make sense to associ-
ate some other entities with the new one, otherwise the new one will be lost

soon and become garbage.” Of course this heuristic may be helpful sometimes,
but often it will cause trouble among active entities. The point is that the sys-
tem has to build unnatural constructs to escape such trouble makers without
loosing their advantages, But it should discover special procedures for special
situations instead of general ones

Lesson 1. Make your primitives as primitive as possible, do not overload

them with heuristics that may help a little bit in the starting phase but
may be the reasons for awkward and artificial constructs in the many

situations you have not foreseen.

Related to this is the ’parameter problem’: If we want to introduce self-
referential primitives that are able to associate other entities it must be clear

which entities are taken as arguments. In PSALM1 this was handled by using

default arguments like ‘the most interesting entity within the agenda’ ete. In

order to occasion the hardware to consider some distinct entity as a parameter

for the action create_links, this entity had to be marked as the most interesting

one by references from other parts of the agenda ..., what again resulted in
very artificial constructs.

Lesson 2. Become aware of the problems involved with parameter handling

and provide the initial system with the potential to solve it naturally.

The parameter problem seems to be solveable by the introduction of more men-

tal primitives that set global variables, which by default serve as arguments for
the currently active entities. Two global stacks seem to be enough for such an

‘extern’ parameter handling. But global variables like stacks have another
disadvantage, namely that they are global, This means that a program depend-

ing on such stacks has to be very careful. Misinterpreting one element popped

31 =

from top of a stack may cause the failure of the whole program (think about

the consequences if an interpreter who evaluates a recursive function did not

interpret some value on the stack correctly as the old base-poinier but as the

value of the last incarnation).

But learning systems often ‘misinterpret’ (remember the fundamental processes

of assimilation and accommodation). Although potential Turing equivalence is

achieveable with two stacks and little more, the dangerous and unstructured

programs running on such simple devices are far away from being natural (and

from being similar to our way of thinking). A possibility to soothe the effects

of misinterpretation is to keep all kinds of information locally instead of glo-

bally.

4.6. PSALM 2.

PSALM 2 took more care of parameter handling. Every (potentially active)

entity could wander through a numberof states. The current state depended on

how manvof the needed parameters already were instantiated. Every entity

‘collected’ by some primitive action was interpreted as a missing parameter,

andthe primitive changed its state correspondingly.

Suill it was fele that the handling of instantiations was not explicit enough to be

natural. The desire grew to allow purposive alteration of parameter instantia-

uons.

The notions mentioned above led to a kind of (minimal) object oriented

approach. Each entity should ’know’ its parameters, send messages in form of

entities, perhaps interpret messages received from other entities, serve as a van-

able etc. In order to implement these ideas it was helpful to separate the prob-

lem of meta-learning into two logically rather different parts: The language a

learning system is based on, and the pressure given by the hardware (and the

environment) that forces the language to organize itself. (Remenaber, the

hardware is the unchangeable part of the system.)

The next section describes PSALM 3. PSALM 3 allows rather straightforward

implementations of programs that maintain the spirit of ‘distributed program-

ming’.

4.7. PSALM 3.

4.7.1. The Language.

Most programs {including most AlL-programs) show a rather strict separation
between procedural and declarative knowledge. This also holds for the many
systems written in potentially (syntactically) self-referential languages like
PROLOG.The conventional proceeding is to let some comparatively universal
algorithms work on an amount of somehow structured data (trees, relations,
production rules ...), Even if both the data and the programs are represented
in the same syntactic form, say LISP-lists, the semantic frontier usually
remains sharp.

A proceeding more similar to the human way to handle information is to let
each piece of data ‘know’ whatit is about, and to provide in an associative
manner the algorithms that are needed. This leads to concepts like object—
orientation, demons etc. Real’ object-orientation seems to be achieved when all
the (non-primitive) parts of an algorithm again ‘know’ what they are about,
what it means to be called by another algorithm a.s.o. Thus the frontier
between algorithms and data gets blurred. Data may be informed about the
algorithms they are suited to, and the algorithms might know which data to
process.

PSALM3’s language is designed to achieve such an indistinctness. A piece of
data may sometimes just serve as information for some algorithm, in another
context it may be part of a program,or it may trigger one.

To allowself-referential structures in a form that might resemble to sequential
assembler code as well as to semantic networks the following clairns to the
language of PSALM 3 were enforced:

~ An entity associated with an action should be able to define at least one
exit’ to another entity, in order to enable the formation of ordinary
sequential programs. The exit may be viewed simply as the address of the
next instruction.

- In order to create or change sequential programs the system must have a
possibility to define or redefine some entity’s exit(s). So at least one primi-
tive action that takes two entities as parameters and makes a *program’ out
of them hasto be incorporated in the language.

- Primitives that can be used for parametersetting must be available.

- Any entity should be associateable in an annotated manner with any
number of other entities. ’Annotated’ means that not only simple links
between entities are allowed, but that there can be additional information
about what a link means. This requirement supports a decentralized
management of information. It somehow provides the basis for object-
orientedness. It also makes it easy to supply semantic comments to certain
parts of a program, in order to indicate to other analyzing programs what
e.g. some variable is about. Comments are very popular in the field of
automatic program synthesis, see e.g. (Dershowitz 83],[Sussman 75).

— 33 -

— The language needs the capability to extend itself (e.g. in order to wnte

new programs that cannot be constructed out of already existing ones, or

in order to define new kinds of links ...). So at least one primitive action

that is able to create new entities is necessary. Others are needed to put

new entities to places where they may get a semantic interpretation,

— The language has to provide a way to inspect any entity that is part of the

language. So primitives are mecessary that take other entities as arguments

and find out whether they are associated with some action, with which

one, how the parameters of the action are instantiated, which exit 1s

defined by some entity, etc. Furthermore there must be a way to change

behaviour depending on such tests. At least one ‘branching’ primitive has

to be incorporated.

— The language should be endowed with a potential way to follow sequences

of actions back into time, in order to allow reflections about the history

that led to the currentstate.

- All the primitives mentioned above as well as their parameters have to be

represented as entities in order to close the language on itself.

To handle all primitives and the other entities in a homogeneous way they were

implemented in a frame-style manner:

The fundamental structure of PSALM3 is called a token. In the initial version

of PSALM 3’s language any token was described by its name, eventually some

functional or procedural definition, and a set of ordered pairs of tokens that

represented the associations. Such an ordered pair can be viewed as a slot and

its filler in the sense of [Minsky 81], or as a subject and an object (in the sense

of [Steels 86]), or as "component of the beta-structure” (Newell), or simply as

a property and its value (lisp).

[Winograd 75] points out that the notion of a frame is a vague one, and that

different people do have different requests to a frame system. An inheritance

mechanism along isa-links often is considered to be important. But built-in

inheritance is exactly what PSALM 3 wants to avoid (remember the shallow

tree problem). If inheritance and isa-hierarchies are important (and certainly

they often are so) then a possibility should be given to construct them explicitly.

However, the potential possibility to escape the isa-links has to be provided,

too. Of course we want the system to learn when to switch between different

kinds of using available information.

Frames are often considered as a means to close the gap between declarative

and procedural knowledge. A common proceeding is to let frames inhent algo-

rithms. The most uniform (and thus the most beautiful) frame-oriented

languages are those where not only the fillers of the slots but also the slots

themselves are represented as frames. The slots should *know’ what it means to

be asked for a value that is (perhaps virtually) stored on them. Because slots

are frames, they again haye to be described in form of slots and fillers.

Althoughthis looks rather circular, there is no big problern in constructing such

self--describing languages, This has been shown in {Greiner 80] where RLL-1

is explained, a self-modifying language that becamethe basis of EURISKO. A

28d =

reimplementation of RLL-1 in Prolog that has been done as a fopra ar TUM

is described in [Stolcke 87]. Probably the most well-reasoned ‘self’-language is

KRS [Steels 86] which is based on the insights of intensional logic. KRSalso

has been used to do learning by discovery, see [Jonckers 86].

PSALM3’s fillers and slots again are tokens that can be associated with slots

and fillers.

Some of PSALM 3’s tokens have a fixed slot interpretation. If for instance a

slot called ’action’ is filled with a token that has a functional definition the

hardware may apply that executeable definition to the fillers of some slots that

are interpreted as the parameters. (The hardware is essentially given by one of

the top-level-loops described below.)

Of course every primitive action has to be implemented carefully, because it

must also handle the cases where some parameters are not correctly instan-

tiated. In such cases the system (in a very advanced stage) should be (poten-

tially) able to find out what went wrong. Perceptions (that also might be trig-

gered by the environment) are used to make information about errors explicit.

Of course, perceptions are represented as tokens, too, because only tokens are

accessible for the language.

We are looking for a simple ‘orthogonal’ basis of primitive actions for a Turing

equivalent language that allows explicit self-reference. This basis can be rated

as an analogon to the set of fundamental lisp-primitives: {car, cdr, cons,

(cond)eq}.

Due to the uniform representation of the language the number of initial mental

primitives can be heavily reduced. The most simple basis might be given by the

three tokens described below. Each has an even number of parameters, because

two values are needed to access some distinct entity: A token, and a slot stored

on that token, where the filler is regarded as the desired entity The three basic

tokens with a functional definiuon are:

~ Copy.Copy takes four parameters (also represented as slots among the

associations of the token whose action-slot is filled with the action *copy’),

and interpretes them as follows: The second one is viewed as the name of

a slot of the token given by the first parameter. The filler of this slot (if

existing) is copied onto the token given by the third parameter where it is

stored under the nameof a slot given by the fourth. Copy can be used to

redefine actions, exits, or any other kind of slot.

- Condeg. This is the fundamental token for testing and branching. Condeg

needs six parameters. The first four are taken to determine the fillers of

two slots hopefully stored on two distinct tokens. Thesefillers are tested on

equality. The remaining two parameters Tepresent exits that are triggered

depending on the result of the comparison.

~ Create_token (two parameters). This one creates a new naked token thatis

not yet associated with any other token. The new entity is sent to a token

given by the first parameter and stored under a slot given by the second.

Create_token is the fundamental primitive for self-extension. Newly

created tokens can be used as slots orfillers or both. They might get

BF =

‘loaded’ with semantics, when contributing to the ‘pragmatic success’ of

the whole system.

Copy, condeq, and create-token build the basis for the self-referential

behaviour of the language. Manipulation of already existing programs witten in

the language can be done in a straightforward way by using these primitive

actions. The manipulation of the manipulating programs of course is equally

easy, because the ’meta~programs’ are also written in the same language.

Another primitive that is able to manipulate tokens was considered to be impor-

tant:

—~ Remove. Remove takes two parameters andis able to erase some slot of a

token. (Copy overrides.) Using remove is the tanguage’s only way to

reduce the number of entries a token has. This should be important,

because the efficiency of access to some token is subject to the ‘size’ of the

token (at least in the current implementation). Because the time of access

to some information has an influence on the success of the whole system

removeis justified.

Some kinds of information the language should be able to gain about itself do

have an inherent set-nature. This is true for the set of slots a token can have

(there is a primitive called get_slots which determines that), Another example

can be given if the hardware does a parallel interpretation of tokens, In order

to fulfill the requirement of potential looking back into time 1 seems to be

natural to store on every token accessible information about the set of tokens

that triggeredit.

Of course the previous capabilities of the language are sufficient to represent

sets or lists. Yet for reasons of efficiency the symmetry betweenslots andfillers

has been broken a little bit. The implementation in question allowedfillers of

slots that were no tokens but lists of tokens.

In order to handle lists the language has to be enlarged by primitives that

enable list manipulation. Two of them seemed to be enough:

- pushtoken (four parameters) works analogue to copy. The only difference

is that no overriding takes place, instead the object that is copied is pushed

on the ’stack’ defined by the last two parameters.

- poptoken (four parameters) splits a list (which is given by two parameters,

a token and

a

slot) into its head andits tail leaving the tail where the old

list was and sending the head to a place defined by the other two parame-

ters.

Here is one example of a possible token:

token17:

slots fillers

action copy

parl Clyde!3

13 You rememberthat Clyde is an elephant, and that every elephantis a mammal, and that
every mammal is an animal, and that every animal

par2 isa

par3 token17

part parl

slot354 token2347

support (token17)

Token17 follows (strict) isa-hierarchies. Why holds that? Token!7 works directly

on itself (because its third parameter again is filled with tokeni7), and it is

resetting its own first parameter with the isa-generalization ofits old imstantia-

tion (if such an isa-hierarchy exists), Because the next token to be considered

by the hardware is proposed by the support-slot to be again token17, a loop

structure can be identified. Dependent on the way the hardware is interpreting

tokens some perception may terminate theloop.

But how did token17 come into existence? It was created by another token, say

token!2, that is or was associated with the action create token. Tokenl? was

sent to a place where it was interpreted as a parameter that should be associ-

ated with the action copy (what again may have been done by some copy...).

Token17 easily can be changed (by some other token associated with a token

manipulating action) to a little program that follows neighbour-hierarchies. All

there is to do is to replace the filler of the slot par2 (which currently is isa’) by

the token ’is-ncighbour’, presupposed that this token exists and that the

corresponding relation is represented appropriately. The token that would do

this change would act like a generic function generator.

The more interesting cases, of course, may be those where many sequences of

tokens work on many other sequences of tokens in parallel

Obviously any distiction between different meta-levels seems to be abolished.

Circumstances permitting the samme sequences of actions may work on the

domain level as well as on any other level. PSALM3’s language is well suited

to handle ideas presented in [Perlis 85], where a theory of quotation is

described with the aim to stay in first-order logic and to avoid antinomies

involved within higher-order logics.

4.7.2. Some Words About Garbage Collection.

If the system frequently creates new tokens in an ‘uninformed’ way it often

may happen that tokens get lost. After some time of development there might

be no way to access some distinct token by following associations from the set

of initial tokens or from the current agenda. Tokens that have become garbage

may occupy large parts of the storage (especially during the starting phase when

the system does a lot ofsilly actions), and some kind of garbagecollection must

take place.

Bia

In the case of PSALM garbage collection is not so straightforward as it was
in the case of PSALM1, where a conventional algorithm was used. What does

it mean if a token is accessible by PSALM 3’s language? Let SA(i) denote the
union of the set of initial tokens, the set of perceptions that emerged up until
ume t, and the current agenda (if the hardware employs an agenda mechan-
ism). We are interested in the set SA‘(t) of all tokens that are ‘accessible’ from
SA(t). Informally a token is accessible if a chain of associations starting in
SA(t) and leading to that token can be built where all referencing slots in that
chain are accessible tokens, too. Somedistinct token can be referenced only via
slots, and this is possible only if the slots themselves are referenceable by the
language,

Tt seems as if we ought to know the set of accessible tokens before we can
define it. This is not true,as there is a way to compute the desired set by com-
puting a fixed point like this:

1,Set SAg(e) equal to the set T(t) of all tokens existing at time t. Set n :=
0.

2. Repeat:

2.1. Setn i= nel.

2.1. Let SAj(t) be equal to LJ sajfe,r) where sa,(¢,t) is defined
e € SAU)

recursively as e U U sa,(e',¢) and where C(e,k,t) is the set
e' € Clea ~1,r)

of all fillers of e at time t wherethefillers and the correspondingslots
are in SA‘,(t).

unl SA,(r)=SA",_\().

3. Set SA“(t) equal to SA;(t). The garbage is given by T(t) - SA‘(t).

Informally : Repeat conventional garbage collection thus reducing the number

of accessible slots until this number can not be reduced any more and a fixed

point SA“(t) is reached. At the end of that procedure only tokens that are
accessible via accessible slots remain.

The actual implementation performs only partial garbage collection from time

to time, due to reasons of efficiency. This does not mean a fundamental res-

triction. Now or then all Jost tokens are recollected. The onlyrestriction exists

in the fact that not all garbage tokens are recollected at the same time. In order
to save time the garbage collector avoids to compute the complete fixed pointat

time t, but it removes garbage slots whereeverit is possible to recognize them

during the first and only cycle of recollection. So the next time the collector is
triggered it mayrecollect tokens that were not recognized to be lost during the

previous Ume, in addition to new garbage tokens.

soo SG} =

4.7.3. A Link to Geometric Fractals.

A geometric fractal can be defined with the help of an initiator and a genera-

tor. Informally: the initiator is modified in a way determined by the generator.

In the case of figure 2 the initiator is a line. This line is altered, its middle

third is replaced by a geometrical figure similar to the generator consisting out

of three of the fourlines defining a square.

Abb. 2

Thus five new lines can be identified, and to each of them the procedure dep-

icted above is applied again. If such a proceeding is repeated an infinite

number of times, a self similar structure emerges: The whole is similar to an

infinite numberofits parts.

There is no need to follow such a stiff and deterministic scheme. The structures

similar to the generator may beinserted into the developing initiators according

to some random distribution. Certain distributions, analogically applied to the

construction of 3-dimensional fractals, produce results strikingly similar to for

instance stone formations, plants, crystals etc. ({Mandelbrot 83]}. In such cases

the evolving structures are only ‘nearly’ self-similar.

An example is the growing of ice-crystals on a window, producing fractal

forms. This growing is constrained by the shape of the window as well as by

the already existing crystals: If two different parts of the evolving structure

meet, they may not overlap.

Let's draw an analogy to self-referential programming. Let us view the initia-

tor as a program, and the generator as another program that is able to do pro-

gram modifications. Then the generator could be applied to parts of the initia-

tor, a different and more complicated program may bethe result, and so on.

BP

It becomes interesting when the initiator and the generator are equal to each

other. This would mean that the initiators do not have to be changed always

nearly in the same way, because by being changed the generator changes, too.

I would like to call this the development of an ‘algorithmic meta-fractal’,

because a transformation constructing a newstage of the ’algorithmic’ fractal is

in general also transformed at the same time it works.

The analogy to the window is the frame for development given by the world to

which the meta-fractal may be coupled by effectors and receptors. The prag-

matics of the world is like the window, but it has a very complicated, muludi-

mensional, also fractally broken frame. If the initiator (and thus the generator)

can take the form of any Turing computable program, the algorithmic fractal

should grow and refine itself thus more and morefilling the window ...

Let’s have a closer look now on possibilities to introduce pressure, in order to

force the initiator~generatorto fill its window.

— 40 —

4.7.4. The Pressure

A row of mechanisms are thinkable to force the language described above to

organize itself. Commonto all of them is some pragmatic pressure that has to

be established by the domain criti

actions performed within the domain are ‘useful’ or not. Dependent on the
It is the critic who states whether certain

utterances of the critic the hardware should favour a development of the

language that results in successes within the environment. The semantic inter-

face between our conceptions and the language is given by the evaluation func-

tions the critic uses and the way the hardware translates criticism into ’proba-

bilities for informed structures to survive’.

Duringall the tests that were executed with PSALMsthe critic spent payoff in

form of numbers. High numbers were given if a problem was solved well, low

numbers in othercases. [t is not true that a lot of information is lost by reduc-

ing perhaps complicated problems to simple numbers. This is because the dif-

ferent contexts that lead to the donation of high or low numbers, respectively,

represent a lot of information, too. This information somehow should be

reflected by the token language in form of informed structures.

To introduce competition every token can have a strength. Strength is measured

with the same basic unit as payoff (natural numbers were chosen to represent

payoff and the strengths in the actual implementation). The hardware has to

favour tokens with high strength, and a token mayhave a high strength only if

the amount of payoff has been reduced adequately some tme before.

The way strengths are handled links the language to the world. Naturally the

strength of some token is stored as an association in form of an accessible slot.

In order to maintain the philosophy of the language, namely that everything

should be explicit, the number representing the strength of some token also is

represented as a token. So any number can be associated with information in

the same wayas any other token.

The explicitness of the strengths implies as a consequence that actions like copy

need to be restricted. This is because it must be prohibited that the language

copys high strengths to tokens that do not deserve it. More precisely: The slot

called *strength’ may befilled with a token representing a numberonly if there

is enough payoff to do so. Every time the language fills the strength-slot of

some token the amount of payoff is reduced correspondingly.

Another mental primitive was introduced that is able to do the inverse action:

decrease_strength can increase the amount of payoff by decreasing some token’s

strength.

The idea behind this proceeding was: The sum of payoff plus the strengths of

all tokens may be increased only by the domain critic. Whar is happening to

the payoff is hidden from the eyes of the critic. But it must be guaranteed that

the system can not escape the pragmatic pressure forever by creating payoff or

strengths out of nothing. Of course this does not mean that the language is

not potentially able to reason about strengths and numbers. But it is well

advised to create some new slots to support such reasoning processes, because

strength-slots are treated specially.

os EY oe

A difference to PSALM 1 is that the associations between tokens are not
weighted any longer. This has mainly aesthetic reasons: On the one side it is
not clear what for instance a weighted link to the actual parameter of some
action should mean. A parameter is instantiated, or it is not. This kind of

all-or-nothing nature seems to be inherent to most of the initial slots. On the
other side there are slots where a weighting could be justified by experiments
carried out with neuronal nets [Rumelhart, Zipper 85]{[Buhmann,Schulten 2].
This includes the ’support’-slot which is used to propose one or more tokens to
be interpreted next. But the introduction of special weighted links and their
special treatment (by a row of adapted mental primitives) would grievously
break the symmetry and beauty of the language’s previous form.

Instead one simple numberindicates the worthiness of the whole complex called
a token, including the many all-or-nothing associations that may belongto it.
[Lenat 77] gives more justification for a similar proceeding in AM,

4.7.4.1. Whistling.

How can PSALM 3’s language start to develop? Note that in the beginning it
does not even know the difference between domain and mental primitives. No
token is associated with any kind of information in the initial state of the sys-
tem,

Schulten emphasizes the importance of ’random whistle’ for learning systems
based on a neuronal net architecture [Buhmann, Schulten ?], I want to take

possession of these ideas and transform them into a symbol-manipulative analo-
gon.

PSALM 3’s hardware whistles, too: If a token that is to weak or that does not

make any ‘syntactic sense’ (which should be easy to find out) is considered by
the hardware, that token is associated randomly in a way that makes sense at

least on the syntactic level. This is true especially for tokens associated with an

action but also with clearly wrong parameters. ’Clearly wrong’ means that the

decision whether something is wrong can be taken on a pure syntactic basis.

If the syntax makes sense the hardware executes the action (what may trigger

perceptions that indicate semantic errors), and usually one or more new tokens

are proposed to be executed in a controlled manner: control suppresses the sym-

bolic whistle.

Whisding somehow represents PSALM 3’s fundamental principle to handle

Erstmaligkeit, and to do accommodation (although accommodation in an

advanced stage of development should be mainly done by more informed struc-

tures). The random element introduced by whistling reflects the fundamental

fact that unforeseen things may happen in the ‘outer’ world. Its analogon in

meta-evolution is random crossover.

4.7.4.2. Equilibration and PSALM 3.

Assimilation takes place whenever some perception or a pattern of perceptionsis

triggered that again triggers ’stabilized’ (sequences of) actions. [Ginsburg,Opper

75] criticize Piaget because he did not make clear how and under which

—~42-

circumstances equilibration takes place. But the up and down of assimilation

(expectation driveness) and accommodation can not be defined in detail. [t is

the pragmatic context that has to bring on an equilibrium, Simple models

suited to introduce equilibration are proposcd next.

4.7.4.3. Possible Top-Level—Loops for PSALM 3.

Different kinds of agenda mechanisms (similar to the one used by PSALM 1)

have becn tested. Differences were given e.g. by the way competition was

enforced, One way to determine the ’power’ of a token at time t is to compute

a bid by multiplying its strength with the number of tokens that proposed it

duringthe last time step. Another wayis to consider the strength of the propos-

ing tokens, too.

The highest bidders should win. What does this mean? One could introduce a

maximal lenght / that must not be exceeded by the length of the ‘active’

agenda, At time t the agenda A(t) is sorted by the ‘power’ of the tokens it con-

sists of. Not more than the first / tokens of the sorted agenda may be inter-

preted in parallel. Every token that got a chance to be active is thrown from

the agenda, and its strength may be decreased if there is no payoff available or

increased otherwise!*. If the strength is below a certain threshold, the token

may be ‘over-whistled’.

Should some tokens out of the non-active rest of A(t) become part of A(t+l),

building some kind of short term memory? Or should A(t) solely be built out

of tokens proposed by the active part of A(t), in addition to some eventually

appearing perceptions? Should perceptions really be part of the agenda, or

should they be kept on a special perception list where they can make proposals

for A(t+1) ? Should perhaps only one token be interpreted at each time step?

Oythree? Or 231 ? Should a bucket brigade scheme!® be employed by default

{every token has to pay a part of its bid to its proposers) ?

Obviously there are many dimensions ulong which one could vary the central

cycle which is changing the system’s state at each time step. All the possibilities

mentioned above have been investigated, but not in an exhaustive manner. A

systematic examination of the probably very complex interdependencies of com-

binations of schemes miscarried because of the large numberof possible combi-

nations.

Furthermore the experiments indicated that the basic structure of the top-level-

loop may be not so important at all. Before interpreting some results let us

have a look through the eyes of statistics to find out what we can expect if

PSALM83 starts with nothing.

\ The strength has to be decreased in order to prevent forever lasting loops that do not
contribute something meaningful. On the other side there is no principal need to increase
strengths by default, because the system could do the payoff management on its own: When-
ever there is payoff the system maytake over the task of sending payoff to tokens ix considers
to be adequate. Payoff management is one of the processes which have to be adaptable to
changing situations,

15 B.b. schemes alsa may not remain le dernier cri during the ongoing developmentof the

language. But they may be helpful during the initial phase. (See the footnote above.)

wn BG

4.7.4.4. Statistical Expectations.

Statistical prophecies about PSALM3’s behaviour can be made only if they

refer to the initial phase. It is easy to predict howoften certain constellations of

tokens will appear during the phase where most associations between tokens are

done in a random manner by the symbol~manipulative whistle.

But it is practically impossible (in general) to predict what will happen if the

whistle is more and more suppressed by (self-referential) control. This is no

reason to become unhappy, the contrary is true. If we could prophesyall details

of further development there would be no need for a meta~learning system. In

the chapter about evolution I expressed the supposition that the unpredictability

of meaningful states of learning systems might be fundamental, and that there

often may be no algorithm to compute such a ‘relevant’ state where the algo-

rithm is clearly cheaper than doing the whole simulation of the system. Statis-

tics may be no means to deal with ’chaotical’ systems, not even with the

relevant features of chaotical states (where ‘relevant’ is defined pragmatically,

of course).

But statistics is well suited for the ignition phase. InitiaHy PSALM 3’s disposes

of a set of n initial tokens. What is the probability for the spontaneous instan-

tiation of the four parameters a token associated with the action copy can have?

If we determine 4 actual parameters out of the set of initial tokens this proba-

bility is —.. The probability for the spontaneous creation of a sequence of twoa
4 st

copies where the support~slot also has to be instantiated correctly is —>, and so
an

on!6,

These numbers are not quite as horrible as they seem to be because usually

there are many syntactic ways to achieve a semantic goal. But obviously tokens

that need a lot of parameters are handicapped compared to simpler ones

A fundamental dilemmaof the ignition phase is: if n is too large we probably

will not observe very exciting effects for a long time. If nm is too small the

language loosesits self-analyzing capabilities, because there is a need for a cer-

tain amountof slots in order to describe the language explicitly

Tt should be emphasized that this problem really belongs to the ignition phase.

{f there already is a lot of knowledge about howto set parameters and ‘exits’ in

a meaningful way statistics plays a minor role. But { do not see any plausible

way to jump over the initial stage, because I do not know how knowledge

naturally is represented in a developing language like the one of PSALM 3.

PSALM 3 was designed to find out how the manykinds of using available

information like analogical connections could look like. If I had known this

before there would have been no motive for the construction of PSALM 3.

But all I can say after watching it at work is that the representation of

‘6 This holds only if whistling is restricted to the initial tokens, which is the case in the ac

tual implementation, So programs built out of initial tokens are rather ‘unsafe’ compared to
programs consisting mainly out of newly created tokens. A clever system should notice this and
act adequately.

— 44 —

knowledge probably might look rather different from the representations

employed by conventional (AI) programs, as will be seen next.

4.7.4.5. Some Empirical Results.

The domain of moving a robby through a room had been included into the sys-

tem (robbies are very popular among machine learners, Holland e.g. tested the

b.b. with a simple robot, too [Holland 84]). The term ‘included’ means that

some domain actions like ’step-upward’, ’step-left’ etc. were incorporated into

the vocabulary of the language. Furthermore some new perceptions were

allowed to be triggered in adequate situations, like ‘error_there_is_a_wall’. A

critic spent the more payoff the closer a robby (which was directed by PSALM

3) came to the place it should walk to.

Actually certain sequences (better ‘clusters’) of actions evolved that led to stable

states ‘fulfilling’ what the simple evaluation functions of the critic requested.

Stable states in this context mean situations where the whistling is mainly

suppressed and the same actions are triggered again and again in answer to

some perception like *start_to_go_to_the_left_upper_corner’. Usually all tokens

participating in a stable state have maximal strength and are very unlikely to

be destroyed by the whistle some time.

Of course stable states depend on the generosity of the critic. If the critic gives

enough payoff for middling solutions then stable states may evolve that do not

have much to do with the pragmatic context we had in mind when posing the

problem. Under such circumstances it was often observed that tokens were

playing with each other throwing slots around or defining some stacks on other

tokens thus pumping them up. Usually the systern executes enough ’good’

domain actions to satisfy the evaluation functions, but its ‘free’ time is often

spent with behaviour that does not make sense in human eyes. Yet it is just

following the simple but general mules of evolution. It is our problem to define

the adeqate ‘pragmatic intersection’.

Sharpening the evaluation criteria causes the unlearning of behaviour that is

not suited to solve the task. Then it usually takes some time until better suited

stable states evolve that have to do more with what the observer had in mind.

It was interesting to observe that constraints shortening the agenda led to more

sequential forms of behaviour while a large agenda supporting parallelism led

to the ‘scattering’ of information in clusters:

In the first case often small programs could be identified representing loops

suitable to make the robby step into the samedirection for a while.

In the second case such discoveries were rare: Many tokens were associated with

some often meaningful action, but they were triggered in a waythat remained

opaque. Although Robby usually came close to his goal the ways he choose to

achieve it were quite different during consecutive criticism—periods. The parallel

version left the impression that perhaps some *general notion’ about how to

approach the goal made the robby run.

Furthermore little artificial damages to the token structures were swallowed

much easier by the parallel PSALM. This redundancy comes closer to things

=~ 45 =

observed in neuronal nets and human brains. More about redundancy in a

later section.

Introducing a bucket brigade scheme did not improve the performancesignifi-

cantly, at least not within the choosen domain. But in general simple schemes

like b.b.s should be interesting only during ’ignition’ (see the last footnote).

Unfortunately the advantages of explicit possibilities to act self—referentially

could not be underpinned empirically. This is due to the inherent time prob-

lems involved with the ignition phase. Although PSALM3 has learned a few

things it still is very far away from leaving the ignition phase behind. In fact

all the domain dependentlittle sequences (clusters) of actions it has learned owe

their existence mainly to the whistle.

4.7.4.6. Some First Reflections on the Empirical Results.

Every really self-referential evolving system should accelerate its evolution

(hopefully exponentially or even faster - it depends on the complexity that the

environment allows), But in the beginning the flat part of the ’informedness~

curve’ may stretch over a very long ignition phase. This is the case with

PSALM3: A language that starts from nothing certainly will need a long time

before leaving the impression of being well informed!?, PSALM 3 in its

current implementation allowed the interpretation of about 30 tokens per second

(this value depends on the agenda mechanism), which is magnitudes below

what might be needed.

Although human neurons are certainly very different from PSALM 3’s tokens,

it is inspiring to play with numbersa little bit: Many of the 10° to 10" neu-

rons within the brains can be active simultaneously, probably clearly more than

10? per second. These numbers represent magnitudes that also seem to be

desireable in the case of PSALM 3, because under such preconditions many lit-

tle meaningful self-referential sequences are thinkable that should evolve within

a few seconds spontaneously, building the basis for more complicated ones.

Since all I dispose of is a comparatively slow machine, I might want to jump

over the initial phase by providing all well-suited little sequences from the

beginning. But which are the well-suited ones? How many different ones are

there? In what form do they appear (sequences or redundant clusters (how does

in general a redundant cluster look like)) ..? One could introduce explicit isa~

hierarchies, written in the token-language. A problem arises: programs as we

would write them are not very redundant. So if there appeared a task where the

generalization-methods do not work well, parts of the hierarchy probably will

be ‘unlearned’. The unlearning may affect fundamental parts like some essen-

tial climbing algorithms which are supplied in a non-redundant form by

human programmers. Under such circumstances the whole hierarchy may be

17 Biological evoulution shows another case of a long ignition phase. Tt took at least 3 bil

lion years to bridge the gap between the first organisms and the first users of toals. It took

another few million years to do the step to division of labour. Tt took another few thousand

years to build a computer. The first human being who used a tool to build another tool al-

ready had one foot on the moon, from a cosmical point of view.

— 46 -

lost, The solution is not to put genl./spec. into the undestroyable hardware,

because then we would be there where we started. Exactly because it became

clear that flexible learning can not rely on a few things like isa—hierarchies, the

language of PSALM 3 was designed to be flexible enough to learn new

methods (most of which probably would be called analogical), The motive

behind PSALM 3 was the belief that the number of important methods is too

large and that the methods themselves are too opaque and context-dependent to

be programmable.

The fundamental idea behind this work is explicitly closing an initial system

on itself’. But fundamental ideas should be questioned, too, Of course the

potential to act self-referentially must be provided in a learning system. But is

it necessary or only natural to introduce this potential explicitly, as e.g. in

PSALM 3’s language? The human neuronal system does not scem to be closed

on itself in a way similar to PSALM 3’s, still it obviously allows structures that

are self-referential. Something like a token might be represented as a (very

redundant) cluster of neurons in our brains, and this might have unknown

advantages.

Could it be that systems based on the simultaneous working of a great many of

very simple devices can leave the ignition phase behind in a clearly shorter

time? It might be possible that systems supporting and making use of conven-

tional concepts like paranicters, functions, if-then-else etc. are not suited to

manage the fuzziness of the world, at least nol within a reasonable time-

interval. Although PSALM

3

represents a hybrid between a neuronal net and a

conventional object-oriented system, there might be too much influence from

the shore of symbol-manipulation. The parallel versions of PSALM3 tend to

scatter information, and to be redundant. But the tokens of PSALM3 seem to

be not so adequate for the distribution of information, as for instance methods

known from the theory of associative memories are [Kohonen 77,80]. From

watching the behaviourof parallel SALMs one might get the impression that

the very important principle of redundancy oppresses the basic token structures.

The principle of error-toleration might be so important that there can’t be a

powerful learning system withoutit. So this principle takes what it gets, and in

the case of PSALM

3

it gets tokens. But other methods might provide a much

better frame for the development of redundancy (see the chapter about future

research). It is the old problem: Potential Turing equivalence is easy, but how

to exploit it naturally after having achieved it?.

-47-

§. Future Research.

5.1. PSALM 3-Specific.

Different kinds of pressure on PSALM 3’s language are imaginable that may

lead to significant improvements under certain circumstances. Up until now

only ‘positive’, excitatory support has been given to competiting tokens, for

example. But results obtained by (Dell 85] and [Buhmann, Schulten ?] as well

as observations made by neuro—physiologists indicate that inhibition may be as

important as excitation. The natural way to introduce inhibition into PSALM 3

is to define an accessible slot ‘inhibit’ with a special hardware interpretation

contrasting the interpretation of the ’support’—slot.

Promising directions like inhibition have not yet been investigated. An impor-

tant reason for this is the assumption that only ‘rich’ domains will provide

enough structure to show the advantages of such newly introduced concepts.

(Rich’ means e.g. the inclusion of pretentious pattern recognition tasks.) But

complicated domains usually imply complicated critic-actions, too. This means:

More time will be needed, and time is something that is scarce at the moment.

In general I believe that my machine should be at least 1000 times faster to

showreally interesting effects (the most interesting of which is self-reference,

of course). 1 would love to see an analogue to PSALM3 being implemented on

the Connection Machine [Hillis 86] (more than 65 000 processors working in

parallel, building connections among themselves, every processor e.g. being

used by one active token, and the whole coupled with some interesting domains

involving pattern recognition tasks as well as so-called higher-level problems).

Since PSALM 3 is settled somewhere between symbol-manipulation and con-

nectionist models there are at least two directions one might naturally follow in

order to abridge the ignition phase, if it is abridgeable at all. Of course, one

way leads to more symbol-manipulation, the other one to less.

5.2. Self—Reference and Associative Memories?

In 4.7.4.6. I expressed the supposition that anessential foundation of learning,

namely redundancy and the toleration of errors, may be achieved more conse-

quently with methods inspired from the theory of associative memories. The

typical fearure of such memories is that information is accessed by its content

rather by its address. A popular related software method is hashing, but con-

ventional hashing is not suited for the recollection of ‘fuzzy’ knowledge accessed

e.g. via incomplete keys, A nice content-addressable memory (CAM) should

allow the recollection of data if for instance only some constraining conditions

are specified. It should swallow noisy inputs and still find the most adequate’

output. Information should be retrieveable even if the keys are damaged or

incomplete (--> Autoassociative memories).

A classic methed {Kohonen 77, 80] is to represent keys as vectors out of R"

and map them bye.g. a linear transformation to some output vector ¢ R™

where the matrix doing the linear operation stores the ‘correlations’ between the

patterns rather than the pattern themselves. {Kohonen 77] also describes

= AQ =

properties of an optimal (in the sense of least squares) adaptive process that

transforms the transformation matrix thus achieving a learning effect.
a

{Geiger 87] takes input vectors out of {o.1} representing objects where a 1 or

a 0 indicate the presence or absence of some particular property an object may

possess. A simple adaptive algorithm makes the system learn new input vectors

and the corresponding outputs.

(Kohonen 77,80] shows how activities stretching over a longer time interval

(programs!) can be implemented in CAMsbyusing feedback in a straightfor-

ward way.

The methods mentioned above are reminiscent to the way a hologram stores

information: Essentially a two-dimensional fourier transformation ‘scatters’

knowledge contained e.g. in a photograph over a large area, where every small

part of the hologram carries information about every part of the photograph.

Recollectian does not take place by considering a small part of the hologram

but by applying a re-transformation to the whole, or at least to a larger part of

it.

The scattering of information leads to the toleration of crrors. Damaged or

incomplete inputs may be harmless as long as the degree of damageis sensibly

constrained. The allowed degree of fuzziness’ is limited e.g. by the numbers of

items ’super-imposed’ within a CAM: The more items, the noisier the outputs.

Neuronal nets also tend to scatter information, and so did the parallel versions

of PSALM 3. But may be that tokensare still too ‘Jocalizeable’, too symbol-

manipulative, too much *all-or-nothing’. Redundancy and the tolerance of

errors is possible by the creation of sequences running in parallel while having

more or less the same semantic effect. But could it be that a token already is

too bulky a primitive? That the lesson | from PSALML still holds? Could it be

that structures that can do what a token can do should not be introduced expli-

citly, but evolve in a perhaps much fuzzier way? Could this lead to a faster

and more natural ignition phase?

How could e.g. a system based on fuzzy triggering conditions determined by

associative memories be ‘closed onto itself’? 1 am very interested in this ques-

tion, and it will have a high prority among the things I want to examine next.

5.3. The Symbol-Oriented Way.

Are there some (formally expressible) principles that have not yet been con-

sidered and that may be sufficient to explore the giant field of informed struc-

tures (esp. analogies) in an EURISKO-like manner? Is there a way to enable a

system based on genl./spec. to change its basis without destroying itself?

EURISKObuilds a hierarchy of heuristics, which leads to the reduction of the

number of heuristics applied in a particular context (n-->log’n). But often ic

would be wiser to leave the hierarchy and sidestep into another related domain,

instead of fixing oneself to the one-dimensional field of genl./spec. (shallow

tree). When to dothis? Prial-and-error will help to find out, and the insights

have to be placed appropriately as new heuristics indicating how to move in the

= 2o a

space of analogue heuristics, when to leave the isa-links, etc. The result may

again be a distributed system (graph, network), where each node of the graph

might ‘know’ good directions for continuing a search, So one might imagine

that the isa-hierarchy and its specific algorithms become overgrown by more

analogical methods. This imagination leads to problems exemplified next:

From time to time EURISKO invents new relations (slots) by specializing or
generalizing old ones. (This is eased by RLL-1 {Greiner 80] which takes over

the problems involved with consistency maintenance.) If we want to escape

strict genl./spec. then we should consequently provide a possibility to define

e.g. slots that are analogueto available slots. (Recursively, please. The part of

the system that invents definitions should be able to work on itself, of course.)

But what does consistency maintenance mean then? Can a useful definition of

consistency been given in such a case? What about the fuzziness involved with

analogy? Analogies often help without being consistentat all.

It seems as if the pure symbol-oriented wayis blocked with some obstacles, too.

But perhaps the most promising attempts to understand learning will be

inspired from both the high-level and the low-level shores of the ocean of

research on knowledge representation.

5.4. CommonFeatures of Object-Orientation and Connectionist-Models.

From my point of viewthe fields of neuronal nets, CAMsetc. on one side and

object-oriented programming on the other side somehow converge. The com-

mon element that is more and more emphasized on both sides is the decentrali-

zation of information. One could argue that in object-oriented languages

(OOLs) information is distributed in order to gain transparency while e.g. con-

nectionist models make the distribution very unclear. However, this argument

does not take care of the different starting-points: Neuronal nets are usually

forced to organize themselves, OOLs are usually organized by programmers

who had something in mind. No wonder they understand what they have pro-

grammed (although there are cases where this is doubtful). In the first case the

semantics has to develop, in the second case it is directly put’ into the system

and labeled with names that make sense to the programmer.

The hybrid PSALM 3 soon gets (nearly) as untransparent as a neuronal net.

The names it defines do not have any relation to human thoughts, still the

corresponding tokens do carry semantic information, which can be objectively

measured byincluding the pragmatic aspect of information.

A difference may live in the concept of physical neighbourhood introduced in

models of neuronal nets. Within PSALM 3 there is no notion of spatial ‘dis-

tance’: Tokens may manipulate each other although their physical locations in

the storage are separated by miles.

But sequences of tokens may alter other tokens only if they ’know’ their names,

which meansthat there must be some slots which might serve as an entrance to

other areas of the storage. So one might like to think of a ’knowledge distance”

betweencertain clusters. But this notion stays informal, any sensible definition

of a metric based on such a distance misleads. This is because there is an

~ 50 -

infinity of unforeseen ways to transport information, some of them more ’effec-

tive’, others less.

Another importantdifference to neuronal nets may be the availability of anno-

tated (and thus relational) information. Or is this a fallacy? In [Wahrn.u.

vis.Sys] ... reports an observation made by examining human neurons: There

are not only axons reaching from cell to cell, but there are connections between

the axons, too, and nobody knows what they are used for. A speculative ques-

tion: Could interaxonal connections mean an indexing of information, one

axon indicating a property, the other one an instantiation?

J believe that advances in machine learning will be made by people who are

familiar with both the symbol—manipulative and the ‘low-level’ side of Al.

[Hofstadter 83]'® advocates the view that no great progress will be made with

the understanding of the ‘secondary’ processes of mind unless the primary

processes are not tackled (pattern recognition etc.). Browns statement in

[Bobrow, Hayes 85] can be interpreted in a similar way:

"Tl had also hoped that by now we would have created more significant

bridges between symbolic and numeric computation where each leverages

the other.”

In their answer to [Richie, Hanna 84], [Lenat, Brown 83] argue to view their

‘concepts’ as a "new generation of perceptrons” that "opens exciting research

directions in the construction and orchestration of large parallel cognitive sys-

tems.” (For a review of some limitations of conventional perceptrons see [Min-

sky 69).

5.5. Domain Complexity.

I suspect that there may be no way to avoid a long ignition phase for a learn-

ing system, in the best case we might be able to abridge it a bit. Probably we

actually have to start some self-referential mechanism on

a

really fast device.

Perhaps there is no sensible way to essentially shorten the time needed for col-

lecting analogical knowledge. Strong evidence for the correctness of this belief is

provided by our ownbiological and social development.

A growing number of people believe that the fundamental ingredience of intel-

ligence is complexity. The complexity of the domain(s) is equally important.

Only if the environment is diverse there can be a diverse picture of the

environment within a learning system. A system like PSALM 3 should be con-

fronted with a large number of domains. Only if there is a lot of potential

information from different domains there is a sense in trying to find common

features and to analogize.

Since no programmer will be pleased (or nor even be able) to represent a large

number of domains in a computer one should presumably make use of the rich-

ness that alreadyis available outside of the machines: The ‘real’ world. I would

not be astonished atall if the first systems that are considered by humansto be

really learning are coupled to our world by broad channels building receptors

"8 If you read (Hofstadter 84, also read (Newell 83}.

—~51-

and effectors. Perhaps this is the only way to gain complexity in an unstruc-

tured system: To make use of the great amount of potential syntactic informa-

uion that already grew during the last 10 or 20 billion years (this growing can

be regarded as the essence of evolution, rernember).

= Be

6. The End.

Whydoes the word *self have such a strong attraction to human thoughts?

The most beautiful functions usually are considered to be those thar partly are

defined by themselves: computer scientists love recursion. The most interesting

programs often are those that write programs in the same language they are

written in, Whatis the reason for the beauty that can be found in things that

are defined by or working on themselves?

The world seems to be structured in a way that often is well-described by cer-

tain ‘critical’ fixpoints that serve to bootstrap the rest. As one of many exam-

ples for such defining fixpoints consider the slot "ToGetValue’ out of RLL-1

(Greiner 80).

'ToGetValue’ is a slot that is virtually stored on anyslot, including itself. It

serves to retrieve a function one should use to retrieve the value of some partic-

ular slot. In order to find that function it is necessary to find out what it

means to ask for a value stored on the slot "ToGetValue’, this means the value

of of “ToGetValue:ToGetValue’ must be computed.This value is one of the few

initial fixpoints RLL-1 needs to bootstrap itself

An example of the ‘self-nature’ of the physical world: The geometrical appear-

ance of our environment seems to be fractally broken [Mandelbrot 83]. ’Fix-

points’ to construct fractals are usually simple: The mere recursive application

of some generating principle results in an often astounding complexity.

Since the world often gets complicated by the application of simple principles to

themselves, it seems to be natural to reflect this complexity also by applying

simple principles to themselves. ’Natural’ means easy! Welike recursion or

self-referential languages because they appear to work although the particular

principles in each case do not seem to submit a lot of information, Because

these principles work andstill are easy to understand we like to believe that

they have to do with the ’essence behind the things’.

The word ‘self’ also gives some justification for considering the sciences of the

mind (call it computer sciences or cybernetics or cognitive science etc.) as the

ultimate sciences, as 1 want to make plausible:

Sore scientists try to understand the physics of elementary particles. Some try

to understand the nature of micro-biological evolution, and some try to under-

stand why a” +b” # ct a,b.c,neN p22.

Bur isn’t the most exciting science the one that tries to understand the nature

of understanding? Doesn't this science potentially include all the others? Isn’t

this science the “fixpoint’ that might serve to bootstrap the other sciences?

Understanding how to understand requires to be informed about information,

to acquire information about how to acquire information, to learn howto learn.

Acknowledgements.

I wish to thank Dr. Werner Konrad for the encouragement he always was wil-

ling to give. Many discussions on the nature of learning helped to crystallize

the ideas presented above. Werner Konrad also represented an inexhaustible

source of references to related literature.

I also like to thank Thornas LauRermair, whose many valuable comments on

this work helped to clarify it a lot. Thomas shares my enthusiasm on the sub-

ject, and talking with him always resulted in less indefinite notions about the

essence oflearning.

Hans-Peter Dommel also sacrificed a lot of time to reading and commenting

the paper. Hans-Peter has made manysuggestions for improvements, which

have been incorporated and which changed the face of this work.

Andreas Stolcke (who re-implemented RLL-!) also contributed to the final ver-

sion of this paper.

Thanks to those who reduced the numberof syntactic errors.

Thanks to mama and papa, since without them this work never would have

been done. Thanks to grandma and grandpa, and to Adam and Eve, for the

same reason.

ox 5 a

7. Bibliography.

There are a few papers which are marked with a ’?”, which means that I could

not find out the corresponding yearof origin.

(Bobrow,Collins 75](Eds.)

Representation and Understanding. Advances in the Study of Cogmition

Academic Press, New York 1975.

[Bobrow, Hayes 85]

Artificial Intelligence: Where Are We

Artificial Intelligence 25 (1985).

[Buhmann, Schulren ?]

A Physiological Neural Network as an Autoassociative Memory.

Physik-Departement, Technische Universitat Miinchen.

[Charniak,McDermott 85] (Eds.)

Artificial Intelligence,

Addison Wesley, 1985

[Clocksin, Mellish 84]

Programming in Prolog.

Springer Verlag, 1984

(Cramer 85]

A Representation for the Adaptive Generation of Simple Sequential Pro-

grams

in [Grefenstette 85]

[Crotchfield, Farmer, Packard, Shaw 87]

Chaos

in Spektrum der Wissenschaft Feb.87.

[Davis 80]

Meta-Rules: Reasoning about Control

Artificial {Intelligence 15 (1980).

{Dell 85]

Positive Feedback in Hierarchical Connectionist Models: Applications to

Language Production.

in Cognitive Science 9 (1985).

[DeJong 75]

Analysis of the Behaviour of a Class of Genetic Adaptive Systems

= hh =

Ph.D. thesis, Depr. of Computer and Comm, Sciences, University of

Michigan 1975.

[Dershowitz 83]

The Evolution of Programs.

Boston: Birkhauser 1983.

|Dickmanns, Schmidhuber, Winklhofer 86]

Der genetische Algorithmus: eine Implementierung in Prolog

Arbeit zum Fortgeschrittenen—Praktikum

Technische Universitat Miinchen.

{ECAT 86]

European Conference on Artificial Intelligence

Brighton (U.K.) 21-25. July 1986.

[Eigen 86]

Stufen zum Leben. Die Entstehung des Lebens aus molckularbiologischer

Sicht.

in [Maier Leibnitz 86].

[Feigenbaum 81](ed.)

Computers and Thought.

New York: McGraw-Hill 1963.

[Forrest 86]

Implementing Sernantic Network Structures Using the Classifier System.

in [Grefenstette 85]

[Geiger 87}

Only the address of the firm can be given in this case:

Gerhard Kratzer GmbH, Automatisierungstechnik Minchen

Maxfeldhof 6, 8044 Unterschleifheim.

|Ginsburg,Opper 75]

Piagets Theorie der geistigen Entwicklung. Eine Einfdhrung

Ernst Klett Verlag, Stuttgart 1975

original: Piaget’s Theory of Intellectual Development. An Introduction

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1969.

[Grefenstette 85](ed.)

Proceedings of an International Conference on Genetic Algorithms and

their Applications.

Carnegic Mellon University, Pittsburgh, P.A., July 24-26 1985.

= Be

[Goldberg 85]

Genetic Algorithms and Rule Learning in Dynarnic System Control.

in [Grefenstette 85]

[Greiner 80]

RLL-1: A Representation Language Language

Expanded Version of the paper published in the proceedings of the First

National Conference of the American Association for Artificial Intelli-

gence.
Stanford University 1980.

[Haase jr. 86}

Discovery Systems

in [ECAI 86}

(Hillis 86}

The Connection Machine.

MIT Press 1986.

[Hofstadter 85]

Gédel, Escher, Bach: Ein endlos geflochtenes Band

Klett-Cotta, Stuttgart 1985.

Gédel, Escher, Bach: An Eternal Golden Braid.

Basic Books, New York 1979.

[Hofstadter 83]

Subcognition as Computation.

in [Machlup, Mansfield 83]

[Holland 75]

Adaption in Natural and Artificial Systems

University of Michigan Press, Ann Arbor, Michigan, 1975.

[Holland 85]

Properties of the Bucket Brigade

in [Grefenstette 85}

[Holland 86]

Escaping Brittleness

in [Michalski 86]

(INTERLISP 85]

Siemens INTERLISP Version 4, Benutzerhandbuch.

Siemens AG, ZTI SOF 222, 1985.

-57-

{Jonckers 86]

Exploring Algorithms Through Mutations

in [ECAI 86]

{Knuth 74]
Surreal Numbers

Addison-Wesley Publishing Company 1974.

[Kohonen 77]

Associative Memory

Springer 1977.

{Kohonen 80]

Content-Addressable Memories

Springer-Verlag 1980.

|[Kichenhoff 86]

Synthesis of Prolog Programs by Knowledge Guided Genetical Learning.

Diplomarbeit, Technische Universitat Munchen 1986

{Kuppers 86]

Der Ursprung biologischer Information

Piper, Miinchen 86 °

[Lenat 77]

The Ubiquity of Discovery.

Aruficial Intelligence 9, 1977.

[Lenat 82a]

EURISKO: A Program That Learns New Heuristics and Domain Con-

cepts.

Heuristic Programming Project, Stanford University, Stanford, Cal.

94305.

[Lenat 82b]

The Nature of Heuristics

in Artificial Intelligence 19 (1982).

{Lenat 83]

Theory Formation by Heuristic Search

in Artificial Intelligence 21 (1983).

|Lenat, Brown 83]

Why AM and EURISKO Appear to Work

— 58 -

in Artificial Intelligence 23, (1984).

[Machlup, Mansfield 83]

The Study of Information.

New York: Wiley 1983.

[Maes 86]

Introspection in Knowledge Representation

in [ECAI 86]

{Mandelbrot 83]

The Fractal Geometry of Nature.

NewYork: Freeman 1983.

(Markl 86}

Evolution und Freiheit. Das schépferische Leben

in [Maier Leibnitz 86].

[Maier Leibnitz 86]

Zeugen des Wissens

v.Hase & Kohler, 1986.

[Michalski 84](ed.)

Machine Learning: An Artificial Intelligence Approach.

Tioga Publishing Company, 1983.

Springer Verlag 1984.

[Michalsky 86]

Machine Learning 2: An Artificial Intelligence Approach

Morgan Kaufman, Los Altos 1986.

[Minsky 69]

Perceptrons.

The MIT Press, Mass. Inst. of Technology 1969.

{Minsky 81]

Steps Towards Artificial Intelligence

in [Feigenbaum 81}

[Newell 83]

Endnotes to the Papers on Artificial Intelligence

in [Machlup,Mansfield 83]

- 59 ~

[Perlis 85]

Languages with Self-Reference 1: Foundations

(or: We can have everything in First-Order Logic!)

in Artificial Intelligence 25 (1985).

[Piaget 73]

Genetische Epistemologie (Einfthrung in die genetische Erkenntnistheorie)

stw Suhrkamp 1973.

(Ritchie, Hanna 84}

AM: A Case Study in Al-~Methodology

in Artificial Intelligence 23 (1984).

[Rumelhart, Zipper 85]

Feature Discovery by Competitive Learning
in Cognitive Science 9 (1985).

[Schulten ?]

Ordnung aus Chaos, Vernunft aus Zufall

~

Physik biologischer und digi-

taler Informationsverarbeitung.

Technische Universitat Miinchen.

[Simon 69]

The Sciences of the Artificial

Cambridge, Mass.: MITPress 1969.

{Steels 86]

KRS: Definition of Knowledge Representation Primitives.

ESPRIT PROJECT 440.

[Stolcke 87]

Implementicrung ciner selbstreferentiellen Reprisentationssprache in Pro-

log.

Arbeit zum Fortgeschrittenen—Praktikum

Technische Universitat Miinchen 1987.

[Sussman 75]

A Computational Model of Skill Acquisition.

American Elsevier, 1979.

(WuvS 86]

Wahrnehmung undvisuelles System.

Spektrum Reihe, 1986.

. 60 =

[Wallich ?]
Is AI the Next Logical Step in Data Processing?

in ?

[Weiss 77]

(System) Das lebende System: Ein

ismus.

in Das neue Menschenbild, edd. Koestler, Smythies, Wien 1978.

Beispiel fur den Schichtendetermin-

[Weizsacker 85]

Der Aufbau der Physik

Carl Hanser Verlag, Miinche, Wien, 1985.

[Weizsicker, E+C 72]

Wiederaufnahme der begrifflichen Frage: Wasist Informa’

Nova Acta Leopoldina 206

don?

[Westerdale 85]

The Bucket Brigade is not Genetic.

in [Grefenstette 85].

[Winograd 75]§)

Frame Representations and the Declarative-Procedural Controversy

in [Bobrow, Collins 751,

[Winston 81]

Artificial Intelligence

Second edition

Addison Wesley, 1981.

es Of =

Table of Contents

1. Introduction 3

2. An Algorithm for Meta—Evolution.-cesssseeeeeee etter nsee erences 7

Dil. Introduction. ceccccccecce etre eee erect tees ere bee eeae eens centenarians nee eree ed 7

2.1.1. Holland ’s GAs. oo... cece ce ec ee eter bende beg erent re eta ea tes 7

OCB, H SymboleWfanipulative|GA, gceeenenumsensnssemnwsnoromanansenn 8

2.2. Meta-evolution.cccciscene ce cb eee ee ete eee nee eaters ener enee en eter nees 9

2.3. Critique of Meta-evolution.2..ccsep eee eereenter crete 12

3. Evolution and Learning.ccc:ccccceceneeeeee eee er erect eee eee entree nn nes 14

3.1. What is Evolution 2 o..ccccccccccere teretetennis 14

3.2, Pragmatic Information. .2....:.::sccecceeeeeerriee eet e enters rset nee serene 16

3.3. A Link to Piaget. cece erect eersteeee ene e eres 16

3.4. What is a Learning System? 17

3.5. Symbiosis Versus Parasitism. 20

3.6. Erstmaligkeit,Bestatigung, Symbiosis and Meta-evolution. 20

4, Self-referential Associating Learning Mechanisms 23

4.1. Introduction s tp 23

4.1.1. Classifier Systems and the Bucket Brigade.----0--s scree 23

4.1.2. Symbiosis and the BB.,.:::sbeseeeeee eee eee terete erent renee 23

4.1.3. Meta~capacity for the B.B. ...:ccciceeese ese ee eee ee tent ee rete terse eins ot

4.0. SAdMs, PSATIMS: gap wncanmncnmnmenrosasernenmmaneneccnnmameomanmnnnesice 2

4.3. Whar all PSALMs Have in Common.ee eerie teeter etter 27

BAe, BQASENG Bee saemecsnsemsnae-enemencanmamemienemannnciamennsmmense eaeean 29

4.5. Lessons Learned from PSALM 1.: ccc cee seer tener erent eee 30

4.6... PSALM Bo cescesemusnunsacnnd hee eseanie hear mneute seem ieaMEmN eM eaeiteo es 31

df, PSAIEM 3. ...iegusseggerevancssecsemrmemnmasemsneemaninemasenmnacmtetend 82

4.7.1. The Language.cieee eerie eeett er etinnernnnnenntnenness 32

4.7.2. Some Words About Garbage Collection. 36

4.7.3. A Link to Geometric Fractals. 38

4.7.4. The Pressure 40

AeRatbcths WHIBtLIHE:. ser. onen carenrecensanenenenendenteanyeunens 41

4.7.4.2. Equilibration and PSALM 3.0... 41

4.7.4.3. Possible Top-Level-Loops for PSALM 3. wivceeeeecreertreereeeees 42

4.7.4.4. Statistical Expectations.---sceeereee etter tence

seenetereener

ences 43

- 62-

4.7.4.5. Some Empirical Results. 44

4.7.4.6. Some First Reflections on the Empirical Results. 45

§. Future Research: sevacsneseereone : ; 47

5.1. PSALM 3-Specific. 47

5.2. Self-Reference and Associative Memories?c.eeeseeeeceee eee 47

5.3. The Symbol-Oriented Way. o...cc.sccescereeeeee sees entree etre tees en cree enna 48

5.4. Common Features of Object-Orientation and Connectionist-

Models... ceccccnenesnsenenesenanlliigiygh py et aimeemmmeremNa mem ememnnmete 49

5.5. Domain Complexity. .cccccceccseseeeeseee sitesi eeeecee nen ee erst erinnneresennnes 50

6. ‘The End, jxcaresangesnwnsrrreencw ma cneasmmmasasonvsumumenmmniscmunennans 52

Fa BiDNOSPAPhY, seiasecerasmeenamranenanensenennammesnanssnenassmsenennnnn RK 54

