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Shift Pairs and Shift Graphs

Remark. When listing the elements of a finite set of integers, we will always list
them in increasing order.

Definition. An ordered pair (A,B) of k-element subsets of {1, 2, . . . , n} is a
(k, n)- shift pair when there is a subset {i1, i2, . . . , ik+1} ⊆ S so that A =
{i1, i2, . . . , ik} and B = {i2, i3, . . . , ik+1}.

Definition. When 1 ≤ k < n, the (k, n)-shift graph S(k, n) is the graph whose
vertex set is the set of all k-element subsets of {1, 2, . . . , n} with a k-element set
A adjacent to a k–element set B in S(k, n) exactly when (A,B) is a (k, n)–shift
pair.

Historically, the graphs S(2, n) have been called shift graphs, and S(3, n) double
shift graphs.
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The Chromatic Number of Shift Graphs

Remark. S(1, n) is a complete graph on n vertices, so χ
(
S(1, n)

)
= n.

The next theorem is part of the folklore of the subject.

Theorem. For all n ≥ 2,

χ
(
S(2, n)

)
= dlg ne.

Question. How hard would it be to compute the chromatic number of the double
shift graph S(3, 7000)?
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Dedekind’s Problem

Definition. For an integer t, let A(t) count the number of antichains in the lattice
of all subsets of {1, 2, . . . , t}.

Note: In the preceding definition, we count the empty antichain.

Remark. There is a natural correspondence between antichains and down sets.
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Dedekind Numbers

A(1) = 3

A(2) = 6

A(3) = 20

A(4) = 168

A(5) = 7781

A(6) = 7828354

A(7) = 2414682040998

A(8) = 56130437228687557907788

Remark. Perhaps, the calculation of A(10) is beyond reach.
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Shift Graphs and Dedekind Numbers

Theorem. [Trotter, 1984] For every integer n ≥ 3, the chromatic number of the
double shift graph S(3, n) is the least t for which A(t) ≥ n.

Remark. The chromatic number of the double shift graph S(3, 7000) is 5.
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Dimension of Graphs

Definition. Let G = (V,E) be a graph. A family R = {L1, L2, . . . , Lt} of linear
orders on V is a realizer of G if

(∗) For every edge S and every x ∈ V − S, there exists Li so that x is larger than
all elements of S in Li.

Definition. The dimension of G, denoted dim(G), is the least t for which G has
a realizer R = {L1, L2, . . . , Lt} of size t.



8

The Dimension of Complete Graphs

Question. How hard would it be to compute the dimension of the complete graph
K1000?
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HM Down Sets

Definition. A down set D in the lattice of subsets of {1, 2, . . . , t} is HM if
S ∪ T 6= {1, 2 . . . , t} for all S, T ∈ D.

Definition. For an integer t, let HM(t) count the number of HM down sets in
the lattice of all subsets of {1, 2, . . . , t}.

Remark. The HM numbers have several other interpretations. For example, they
are also:

1. The number of maximal intersecting families of subsets of {1, 2, . . . , n}.

2. The number of self-dual monotone boolean functions.
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HM Numbers

HM(1) = 2

HM(2) = 4

HM(3) = 12

HM(4) = 81

HM(5) = 2646

HM(6) = 1422564

HM(7) = 229809982112

Remark. Probably HM(8) and HM(9) can also be found, but perhaps not
HM(10).
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HM Numbers and Dimension

Theorem. [Hoşten and Morris, 1998] For each integer n ≥ 2, the dimension
of the complete graph Kn is the least t for which HM(t− 1) ≥ n.

Remark. As a consequence,

dim(K1000) = 6.

Remark. In fact,

dim(K2646) = 6 and dim(K2647) = 7.
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An Extremal Problem for Graphs

Remark.

1. dim(G) ≤ 2 if and only if G is a disjoint union of caterpillars.

2. dim(G) ≤ 3 if and only if G is planar.

Problem. [Agnarsson, 1997] Find the maximum number M(n, k) of edges in a
graph G on n nodes with dim(G) ≤ k.

Proposition.

1. M(n, 2) = n− 1.

2. M(n, 3) = 3n− 6.
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Larger Values of k

Remark.

1. M(n, 4) =
(
n
2

)
when n ≤ 12.

2. M(n, 4) <
(
n
2

)
when n ≥ 13.

Although it may be possible to find an exact formula for M(n, 4) when n is large,
we are more concerned with asymptotic values.

Remark. For every k ≥ 4, there exists a constant µk so that

lim
n→∞

M(n, k)
n2

= µk.

Proposition. The sequence µk is increasing and converges to 1/2.
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k = 4: The First Interesting Case

It is relatively easy to see that the dimension of a graph is bounded as a function
of its chromatic number. Here is one important special case.

Proposition. If χ(G) ≤ 4, then dim(G) ≤ 4.

Proof. Let V = V1 ∪ V2 ∪ V3 ∪ V4 and let L be any linear order on V . Then set:

L1 = L(V1) < L(V2) < L(V3) < L(V4);
L2 = L(V4) < L(V3) < L(V2) < L(V1);
L3 = Ld(V3) < Ld(V4) < Ld(V1) < Ld(V2);
L4 = Ld(V2) < Ld(V1) < Ld(V4) < Ld(V3).

It is straightforward to verify that these linear orders form a realizer of G.
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Turán’s Theorem

Definition. Let T (n, k) denoted the balanced complete k-partite graph on n
nodes, and let t(n, k) denote the number of edges in T (n, k).

Theorem. [Turán, 1941]
The maximum number of edges in a graph on n nodes which does not contain a
complete subraph on k + 1 nodes is t(n, k).

Remark.

τk = lim
n→∞

t(n, k)
n2

=
1
2
− 1

2k

Remark.

µ4 ≥
3
8
.
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The Erdős/Stone Theorem

Theorem. [Erdős and Stone, 1946]
Let k be an integer with k ≥ 3 and let ε > 0. Then let G be a graph with
χ(G) ≤ k. Then there exists an integer n0 so that if n > n0 and H is any graph
on n vertices with more than (τk + ε)n2 edges, then H contains G as a subgraph.

.

Theorem. [Agnarsson, Felsner and Trotter, 1998]
For sufficiently large p, the Turán graph T (p, 5) has dimension 5.

Theorem. [Agnarsson, Felsner and Trotter, 1998]

µ4 =
3
8
.
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Larger Values of k

For k = 5, we can only show:

Theorem. [Agnarsson, Felsner and Trotter, 1998]

24
50

≤ µ5 ≤
40
81

.

And for larger k, the estimates fall back to those for the dimension of the
complete graph.

Theorem. [Agnarsson, Felsner and Trotter, 1998]

1
1/2− µk

= lg lg k +
(
1/2 + o(1)

)
lg lg lg k.
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Ramsey Theory for Probability Spaces
A Motivating Problem

If we flip a coin repeatedly and let Ei be the event that the ith toss is heads, then
for all i < j,

Prob[EiEj] =
1
4
.

Question. Can we do better? Does there exist an ε > 0 so that we can have
arbitrarily long sequences of events from any probability space for which

Prob[EiEj] >
1
4

+ ε

for all i < j.
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The Answer is NO!

Although we can do slightly better, for example by conditioning on n/2 of the
tosses being heads, in the limit we can not do better than 1/4.

Theorem. [Trotter and Winkler, 1998]
For every ε > 0, there exists n0 so that if n > n0 and E1, E2, . . . , En is any
sequence of events in a probability space, there exists i < j for which

Prob[EiEj] <
1
4

+ ε

There are several nice proofs of this result, using ramsey theory, expectation and
linear programming.
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A Generalization to Shift Graphs

Definition. Suppose we have a space in which there is an event for every k-element
subset of {1, 2, . . . , n}. Then we can find the minimum value of

Prob[AB]

over all (k, n)-shift pairs (A,B), and let λ(k, n) denote the maximum value of this
minimum, taken over all probability spaces. Finally, let

λk = lim
n→∞

λ(k, n).
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The Values k = 1 and k = 2

We have already seen that λ1 = 1/4. Here’s why λ2 ≥ 1/3. Take a random linear
order on {1, 2, . . . , n}. Then let A be a 2-element subset, say A = {i1, i2}. Let A
correspond to the event that i1 < i2 in the random linear order. For every shift
pair (A,B) with A ∪B = {i1, i2, i3}, we see that AB means that i2 is larger than
both i1 and i3 in the random linear order. This happens with probability 1/3.

On the other hand, this simple example is also asymptotically best possible.

Theorem. [Trotter and Winkler, 1998]

λ2 =
1
3
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Larger Values of k

Theorem. [Trotter and Winkler, 1998]

1. λk+1 > λk.

2. limk→∞ λk = 1/2.

3. λk ≥ 1/2− 1/(2k + 2).

4. λk ≤ 1/2− 1/(4k − 2), when k ≥ 2.

We believe that λ3 = 3/8 and λ4 = 2/5. Originally, we thought that
λk = 1/2− 1/(2k + 2) for all k. If this were true, then we would also have
λ5 = 5/12. However, we have since been able to show that λ5 > 27/64.
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Fractional Dimension of Posets

Fractional dimension is just the linear programming relaxation of dimension, an
integer valued parameter. More formally:

Definition. Let P be a poset and let F = {M1, . . . ,Mt} be a multiset of linear
extensions of P . F is a k-fold realizer of P if for each incomparable pair (x, y),
there are at least k linear extensions in F which reverse the pair (x, y), i.e.,

|{i : 1 ≤ i ≤ t, x > y in Mi}| ≥ k.

The fractional dimension of P , denoted by fdim(P ), is then defined as the least
real number q ≥ 1 for which there exists a k–fold realizer F = {M1, . . . ,Mt} of P
so that k/t ≥ 1/q.

Remark. For every poset P ,

fdim(P ) ≤ dim(P ).
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The Dimension of Posets
of Bounded Degree

Definition. Let f(k) denote the largest integer t for which there exists a poset P
with ∆(P ) = k and dim(P ) = t.

Theorem. [Rödl and Trotter, 1983]
f(k) ≤ 2k2 + 2.

Using the Lovász Local Lemma and other probabilistic methods, we have:

Theorem. [Füredi and Kahn, 1984]
f(k) = O(k log2 k).

Applying correlation techniques to random posets of height two, we have:

Theorem. [Erdős, Kierstead and Trotter, 1991]
f(k) = Ω(k log k).



25

The Fractional Dimension of Posets
of Bounded Degree

Brightwell and Scheinerman proved that if P is a poset and ∆(P ) = k, then
fdim(P ) ≤ k + 2. They conjectured that this inequality could be improved to
fdim(P ) ≤ k + 1. Their conjecture was correct and the proof yielded a much
stronger conclusion, a result with much the same flavor as Brooks’ theorem for
graphs.

Theorem. [Felsner and Trotter, 1992] Let k be a positive integer, and let P
be any poset with ∆(P ) = k. Then fdim(P ) ≤ k + 1. Furthermore, if k ≥ 2, then
fdim(P ) < k + 1 unless one of the components of P is isomorphic to Sk+1, the
standard example of a poset of dimension k + 1.
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The Dimension of Interval Orders

In general, large height is not a prerequisite for large dimension. For example,
consider the standard examples. The situation is completely different for interval
orders.

Definition. For an integer n, let i(n) denote the largest integer t for which there
exists an interval order of height n and dimension t.

Using connections with shift graphs, we have:

Theorem. [Füredi, Hajnal, Rödl and Trotter, 1984]

i(n) = lg lg n +
(
1/2 + o(1)

)
lg lg lg n.
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The Fractional Dimension of Interval Orders

Interval orders enjoy many special properties. Here is an example.

Lemma. Let A be a subset of a interval order P . Then there exists a linear
extension L with a > b in L whenever a ∈ A, b ∈ P −A and a‖b in P .

Here is an immediate consequence:

Corollary. [Brightwell and Scheinerman, 1992] If P is an interval order, then
fdim(P ) < 4.

Proof. Choose a subset A at random and apply the preceding lemma. For every
distinct pair x, y, the probability that x belongs to A but y does not is 1/4. This
show fdim(P ) ≤ 4. If we condition on A 6= ∅, then we get fdim(P ) < 4.
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The Inequality is Best Possible

Brightwell and Scheinerman conjectured that their upper bound on the fractional
dimension of interval orders was best possible—even though they did not know of
any example for which the parameter was more than 2.2.

However, using the techniques they developed to investigate ramsey theoretic
properties of probability spaces, the conjecture was settled in the affirmative.

Theorem. [Trotter and Winkler, 1998]
For every ε > 0, there exists an interval order P with

4− ε < fdim(P ).
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More on the Dimension of Interval Orders

Remark. If an interval order has large dimension, then it has both large width
and large height.

Theorem. [Kierstead and Trotter, 1997] For every interval order P , there
exists an integer t(P ) so that if Q is any interval order with dim(P ) > t(P ),
then Q contains a subposet isomorphic to P .

Remark. The proof depends on connections with the chromatic number of circle
graphs (the intersection graphs of chords of a circle).

Remark. In fact, if |P | = n, then t(P ) ≤ 10n. It might be true that t(P ) = o(n).
From below, we know that t(P ) = Ω(log log n).
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Dimension and Chromatic Number

There are many important connections between dimension and chromatic number.
Here is just one example.

Definition. Let G = (V,E) be a graph on n vertices. The adjacency poset of G,
denoted AG, is the poset whose point set consists of A∪B where A = {x′ : x ∈ V }
is the set of minimal elements, B = {x′′ : x ∈ V } is the set of maximal elements,
and x′ < y′′ if and only if xy is an edge in G. Note that x′‖x′′ for all x.

Proposition. For every graph G, the following inequalities hold:

1. dim(Ag) ≥ χ(G).

2. girth(Ag) > girth(G).

Theorem. [Felsner and Trotter, 1998] If G is planar, then dim(AG) ≤ 10.
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Dimension and Chromatic Number (2)

There is a natural interpretation of dimension in terms of chromatic number.

Definition. A linear extension L reverses the incomparable pair (x, y) if x > y in
L.

Proposition. A family R of linear extensions is a realizer of P if and only if for
every incomparable pair (x, y), there is some L ∈ R which reverses (x, y).

Definition. Given a poset P , define a hypergraph HP as follows. The vertex set
of HP is the set of incomparable pairs. A set S of incomparable pairs is an edge
if and only if there is no linear extension reversing all the pairs in S, but there is
one which reverses all the pairs in any proper subset of S. HP is the hypergraph
of incomparable pairs.

Proposition. For every poset P , dim(P ) = χ(HP ).
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Dimension and Chromatic Number (3)

Definition. The graph of incomparable pairs, denoted GP , is just the ordinary
graph determined by the edges in HP of size 2.

Proposition. For every poset P , dim(P ) = χ(HP ) ≥ χ(GP ).

The following result is somwhat more difficult than it appears. Its proof relies on
characterization theorems for comparability graphs.

Proposition. For every poset P , if χ(P ) = 2, then dim(P ) = χ(HP ) = 2.
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Dimension and Chromatic Number (4)

However, when the dimension of P is larger than 2, it may happen that
χ(HP ) > χ(GP ). In fact, I offer the following conjecture:

Conjecture. For every t ≥ 3, there exists a poset P for which

1. χ(GP ) = 3.

2. dim(P ) = χ(HP ) = t.


