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Abstract

In evolutionary biology it is common practice to represent the evolution of species,

populations, and organisms with graphs called phylogenetic or species trees [C. Sem-

ple and M. Steel, Phylogenetics, Oxford University Press, Oxford, (2003)]. Ideally

these are rooted leaf-labeled trees where non-root internal vertices have degree at

least three and each label is used once. Leaf-multi-labeled trees are a generalization

of phylogenetic trees that are used in the study of gene versus species evolution and as

the basis for phylogenetic network construction. Unlike a phylogenetic tree, in a leaf-

multi-labeled tree it is possible to label more than one leaf by the same element of the

underlying label set. In this thesis we first derive formulae for generating functions of

leaf-multi-labeled trees and use these to derive recursive functions for counting such

trees. In particular, we prove results which generalize previous theorems by Hard-

ing [Advances in Appl. Probability 3 (1971), 44-77] on so-called tree-shapes, and by

Otter [Ann. of Math. (2) 49 (1948), 583-599] on relating the number of rooted and

unrooted unlabeled trees. We provide some numbers for these trees using a program

written using the open-source software program Sage.

Turning our attention to rooted phylogenetic or species trees we show the asypm-

totic normality of phylogenetic trees with a fixed number of leaves where the internal

number of vertices is allowed to vary. P.L. Erdős and L.A. Székely [Adv. Appl. Math.

10 (1989), 488–496] gave a bijection between rooted semi-labeled trees and set parti-

tions. L.H. Harper’s results [Ann. Math. Stat. 38 (1967), 410–414] on the asymptotic

normality of the Stirling numbers of the second kind translate into asymptotic nor-

mality of rooted semi-labeled trees with given number of vertices, when the number of
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internal vertices varies. The Erdős-Székely bijection specializes to a bijection between

phylogenetic trees and set partitions with classes of size at least two. We consider

modified Stirling numbers of the second kind that enumerate partitions of a fixed

set into a given number of classes of size at least two, and obtain their asymptotic

normality as the number of classes varies. The Erdős-Székely bijection translates this

result into the asymptotic normality of the number of phylogenetic trees with given

number of vertices, when the number of leaves varies. We also show the asymptotic

normality of the number of phylogenetic trees with given number of leaves and vary-

ing number of internal vertices, which is more interesting to students of phylogeny.

This is accomplished by showing the asymptotic normality of the number of parti-

tions of n + m elements into m classes of size at least two, when n is fixed and m

varies, which with the Erdős-Székely bijection gives the result we want. The proofs

are adaptations of the techniques of L.H. Harper [Ibid.].
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Chapter 1

Introduction

1.1 Background and Summary

The enumeration of trees has a rich history with many applications. Kirchoff’s Laws

led to a natural interest in trees and in counting them [29]. Various formulae have been

developed for counting leaf-labeled trees, many of them included in the monograph

by Moon [34]. Cayley [7] formulated that the number of labeled trees on n vertices

is nn−2. Similar formulae have also been derived for the number of rooted binary

leaf-labeled trees [24] (a rooted tree is a tree with one distinguished vertex called the

root).

Harding [24] described ordinary generating functions for rooted, binary tree-shapes

(i.e. isomorphism classes of unlabeled trees) with or without a specified number of

internal vertices. Counting rooted unlabeled trees with the Pólya–Redfield method

can be found, e.g., in [33]. Otter contributed a method for relating the counts of

unlabeled trees to the counts of rooted unlabeled trees [36]. The functional equation

for the ordinary generating function of the number of rooted unlabeled trees was

already known (see Cayley [36]). Using methods due to Otter and Pólya (described

in e.g. [23]), Dobson [11] also gave the generating function for unrooted, binary tree-

shapes in terms of Harding’s function. In addition, in [40, p.22], a formula involving

the exponential generating function for rooted binary trees is given.

Studies in evolutionary biology have led to the enumeration of another type of

trees. It is common practice to use leaf-labeled (or phylogenetic) trees to represent
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the evolution of species, populations, organisms, and the like [40]. A leaf-labeled tree

is a simple, connected graph with no cycles, and each of its leaves (i.e. vertices of

degree 1) is labeled by precisely one element from a given label set. The set of labels

corresponds to the set of species, populations or organisms under consideration. For

phylogenetic trees the non-root, non-leaf vertices must have degree at least three. A

simple example of such a tree is presented in Figure 1.1 (a).

Recently it has become apparent that it is useful to employ a more general type

of tree when trying to understand, for example, gene evolution. In particular, due

to processes such as gene (or genome) duplication or lateral gene transfer, trees can

often arise in which more than one leaf is labeled by the same element of the label

set. We will call such trees leaf-multi-labeled trees. Leaf-multi-labeled trees in which

the root has degree at least two and internal vertices with degree at least three are

known as MUL-trees [27]. An example of such a tree, and how it may arise, is

presented in Figure 1.1 (b) and (c). Note that leaf-labeled trees form a subclass

of leaf-multi-labeled trees. In addition their usefulness in the study of gene versus

species evolution (e.g. [14, 39]), leaf-multi-labeled trees have been used to construct

phylogenetic networks (e.g. [28, 27, 32]), and they naturally arise in biogeography

(e.g.[19]).

As with leaf-labeled trees, for the purposes of applications it is important to

develop a mathematical understanding of leaf-multi-labeled trees. Although at first

sight leaf-multi-labeled trees do not seem very different from leaf-labeled trees, the

theory of leaf-multi-labeled trees is quite rich in its own right, and several results on

theoretical and algorithmic properties of such trees have recently appeared (cf. e.g.

[14, 19, 20, 26]).

In this thesis, we shall derive formulae for ordinary generating functions for leaf-

multi-labeled trees, and describe how they can be used to develop recursions for

counting such trees. As we only consider ordinary generating functions we drop
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a b c d e

(a)
a

X
b c d e

(b)
a b c a c d d e

(c)

Figure 1.1: [a] A leaf-labeled “species tree” labeled by the set of species {a, b, c, d, e}.
[b] A “gene tree” (in bold) representing the evolution of a gene, depicted within the
species tree (in dotted) from [a] — we see two gene duplication events, and a gene
loss (indicated with a cross). [c] The leaf-multi-labeled tree corresponding to the gene
tree in [b], for which the label set is {a, b, c, d, e}.

the term “ordinary” from now on; the basics on generating functions that we shall

use may be found in Introductory Combinatorics by R. Brualdi [2]. We then show

the asymptotic normality of the number of phylogenic trees with a given number

of vertices where the number of internal vertices varies using adaptations of the

the method developed by Harper [25]. The same approach leads to the asymptotic

normality of phylogenetic trees with a fixed number of leaves where the number of

internal vertices is allowed to vary.

We begin in Chapter 2 with a formula (Theorem 2.1) involving the generating

function for the number of rooted binary leaf-multi-labeled trees, and use this to

develop a recursion for counting such trees (see equation (2.2)). This formula is a

straightforward extension of Harding’s [24] formula for generating functions of tree-

shapes (see also equation (2.1)), since the class of leaf-multi-labeled trees includes

the class of tree shapes. (A tree-shape can be considered as a leaf-multi-labeled tree

in which only one label is used to label all leaves.) In this chapter we also develop

generating functions for rooted gene trees and for rooted leaf-multi-labeled trees. In

Chapter 3, we will present a theorem (Theorem 3.3), which will allow us to relate gen-

erating functions of rooted binary leaf-multi-trees to unrooted versions of these trees.

3



Otter [36] gave a formula for unrooted trees that provided a relationship between

counts for rooted trees and counts for unrooted trees. F. Harary [22] generalized

Otter’s theorem to include unlabeled graphs. Unfortunately the proof he gave seems

to contain a flaw. However, Harary’s theorem can easily be proved for semi-labeled

graphs (Theorem 3.3), as the introduction of labels allows us to use Harary’s original

approach to prove this extension. This, in turn, gives us an extension of Otter’s the-

orem for semi-multi-labeled trees, which allows us to use our generating functions for

rooted trees to find generating functions of unrooted trees. In Chapter 4 we consider

unrooted trees, giving formulae for generating functions in the unrooted binary trees,

unrooted gene trees and unrooted leaf-multi-labeled trees.

Turning our attention to the asymptotic normality and phylogenetic trees, we

lay the ground work in Chapter 5. We use a bijection developed by P.L. Erdős and

L.A. Székely [13] to relate semi-labeled trees with a fixed number of vertices and a

varying number of leaves to the Stirling numbers of the second kind. We also provide

an overview of the method used by Harper [25] to show the asymptotic normality

of the Stirling numbers of the second kind. In Chapter 6 we show the asymptotic

normality of a variant of the Stirling numbers and hence the asymptotic normality of

the phylogenetic trees mentioned. These results are extended to phylogenetic trees

in which the number of leaves is fixed and the number of internal vertices is allowed

to vary.

We also present three programs in Sage (open-source programming language)

designed to use the recursive functions for the leaf-multi-labeled trees to calculate the

numbers of the various categories of these trees. This code can be found in Appendix

1. In Appendix 2 and 3 we provide the Maple programs used in our calculations.
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1.2 Basic definitions, statements, and notation

For the general terminology describing graphs the reader is referred to Graphical

Enumeration, by Harary [22].

By graph, we will mean simple finite graphs, i.e. the vertex set is finite and there

are no loops or multiple edges. Formally:

Definition 1.1. A graph G = (VG, EG) has a finite vertex set VG and and edge set

EG is a set of 2-subsets of V (G).

We will use the notation xy for an edge {x, y} ∈ EG; thus, xy = yx when we talk

about edges of a graph.

Definition 1.2. A trivial graph consists of one vertex and no edges.

Definition 1.3. A labeled graph is a graph in which every vertex is labeled from a

set X and each element of the label set X is used at most once. If G is a labeled

graph there exists an injective function αG : VG → X.

Definition 1.4. A multi-labeled graph is a graph in which every vertex is labeled,

but elements of the label set may be used for more than one vertex. So we have a

function αG : VG → X.

The family of multi-labeled graphs includes the family of labeled graphs.

Definition 1.5. A semi-labeled graph is a graph in which a subset of the vertices are

labeled and each element of the label set is used at most once. Given a graph G, a

fixed subset LG of the vertex set VG, and an injective function αG : LG → X , G is a

semi-labeled graph. The set LG is the set of labeled vertices.

Again, the family of semi-labeled graphs contains the family of labeled graphs.
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Definition 1.6. A semi-multi-labeled graph is a graph in which a subset of the vertices

are labeled. Labels may be used more than once. Given such a graph G, if LG is the

labeled (fixed) subset of the vertex set VG, there exists a function αG : LG → X.

Unless otherwise specified, label set of all graphs in this dissertation will be [[[k]]] =

{1, 2, . . . , k}.

Definition 1.7. If G is a semi-multi-labeled graph with labeling αG : LG → [[[k]]] then

we define α? : VC → [[[k]]] ∪ {0} as

α?G(v) =


α(v) if v ∈ LG

0 otherwise.

Note that α?G
∣∣∣
LG

= αG and α?G
∣∣∣
VG\LG

≡ 0. Notice that semi-multi-labeled graphs

and multi-labeled graphs are not fundamentally different. If G is a semi-multi-labeled

graph, with labeling given by the function αG : LG → [[[k]]], then we may view it as a

multi-labeled graph using α? : VG → [[[k]]] ∪ {0}. Thus we can now consider unlabeled

graphs, semi-labeled graphs, labeled graphs and multi-labeled graphs as subfamilies

of the family of semi-multi-labeled graphs. The label 0 is a special label that can

be reused even if we require the other labels to be used only once, and the original

labeling α can be reconstructed from α? with LG = VG \ (α?)−1(0). Consequently,

any definition referring to semi-multi-labeled graphs using the labeling function α?G

will refer to these subclasses as well.

Definition 1.8. A special vertex in the graph G is a single vertex ρG ∈ VG. De-

pending on our goals, we will call this special vertex a root or a marked vertex, and

the graph a rooted graph or marked graph. Note that from now on we will use the

notation ρG exclusively to indicate the special vertex.

Using Definition 1.8, the rooted and marked graphs are the same. We will however

still use these separate terms. The reason for the distinction is that certain families

6



of trees consist of rooted trees where the root has stated properties. When we wish

to use a special vertex that may not have these stated properties, we will refer to a

marked graph instead of a rooted graph to emphasize the distinction.

Definition 1.9. A graph isomorphism φ between two semi-multi-labeled graphs G

and H is a bijection between vertex sets that has the following properties

1. Both φ and φ−1 are adjacency preserving, hence vivj ∈ EG ⇔ φ(vi)φ(vj) ∈ EH .

2. φ is label preserving: for every v ∈ VG we have α?H(φ(v)) = α?G(v).

3. φ preserves the special vertex; either both G and H have a special vertex and

φ(ρG) = ρH , or neither of them has a special vertex .

Definition 1.10. Two graphs G and H are considered to be identical (the same) if

there exists graph isomorphism φ between them.

Definition 1.11. A graph automorphism is a graph isomorphism between a graph

and itself.

The set of graph automorphisms is a group with the composition being the group

operation, the identity function is the identity, and inverse being the usual inverse of

a function.

Definition 1.12. Given a graph G, two vertices, v1, v2 ∈ VG are equivalent if there

is an automorphism, φ of G such that φ(v1) = v2.

It is a routine exercise to prove that the relationship in Definition 1.12 is an

equivalence relation. This motivates the following definition

Notation 1.13. The number of equivalence classes under the relation in Defini-

tion 1.12 is denoted by pG.

Definition 1.14. A cut-vertex of a non-trivial graph is a vertex of the graph whose

removal increases the number of components of the graph.

7



Definition 1.15. A non-separable graph is a connected non-trivial graph which does

not have a cut-vertex.

Definition 1.16. A block of a graph is a maximal non-separable subgraph of the

graph.

Definition 1.17. Given a non-trivial graphG with blocks B1, . . . , Bk and cut-vertices

v1, v2, . . . , vm, the block-cutpoint graph, b(G) is a bipartite graph in which one partite

set consists of the cut-vertices of G and the other set contains a vertex bi for each

block Bi of G. We include vjbi as an edge of b(G) if and only if vj ∈ Bi.

The proof of the following can be found in standard graph theory books, i.e. [9]

We will use this fact later.

Claim 1.18. If G is a connected nontrivial graph, then b(G) is a tree whose leaves

are precisely the vertices corresponding to the blocks of G with exactly one cut-vertex.

Consequently, G is either non-separable (is a single block) or it has at least one block

with precisely one cut-vertex, and the removal of any blocks that have one cut-vertex

does not disconnect G.

Definition 1.19. Two blocks B1 and B2 of G are equivalent if there exists an auto-

morphism φ of G such that φ(V (B1)) = V (B2).

Definition 1.20. A tree is an acyclic connected graph. If the tree has only one

vertex, it will be referred to as a trivial tree.

Note that many authors refer to (unlabeled) trees as tree shapes, emphasizing the

fact that they consider two such trees different only if they are not isomorphic.

Definition 1.21. A leaf of a non-trivial tree is a vertex of degree 1. Unless stated

otherwise, in this dissertation, the vertex of the trivial tree will also be considered a

leaf.

8



a b c d e

(a)
a b c d e

(b)
a

(c)

a
(d)

Figure 1.2: (a) A leaf-labeled “species tree” labeled by the set of species {a, b, c, d, e}
where the root has degree one. (b) The same information depicted using a tree where
the root has degree two. (c) A tree with one leaf and root with degree one. (d) The
same information depicted by a singleton vertex which is considered both a leaf and
a root and is labeled.

Definition 1.22. A leaf-labeled tree is a semi-labeled tree in which the set of labeled

vertices is the set of non-root vertices of degree one.

Definition 1.23. Leaf-multi-labeled trees are trees in which the set of labeled vertices

is the set of non-root vertices of degree one. The labels are not necessarily unique

and may be used for more than one leaf.

The following definition is the motivation for introducing the terminology of

marked graphs earlier, as this definition is standard for rooted binary trees. We

will make use of binary trees whose special vertex is not a root in the sense of the

standard definition and we will refer to these trees as marked binary trees.

Definition 1.24. A rooted binary tree is either a trivial tree (where the root is the

single vertex) or a tree in which the root has degree two and all non-root, non-leaf

vertices have degree three.

Since phylogenetic trees represent the evolutionary relationships between species

with internal non-root vertices corresponding to speciation events, such internal non-

root vertices must have an edge that leads towards the root, and and at least two

edges corresponding to the new species that were created by the speciation event.

9



Therefore such vertices should have degree at least three, and the root would corre-

spond to the common ancestor of all the species represented in the phylogenetic tree.

Non-root leaves corresponding to existing species are labeled with the name of the

species. What are the properties of the root of such a tree? As the edges represent

the time-period when the corresponding species existed, having a root of degree one

would mean that we draw the edge corresponding to this time period of the common

ancestor, and having a root of degree greater than one would mean that we do not

draw this edge. Clearly, there is a one-to-one correspondence between these represen-

tations (removing the degree one root and rooting the resulting tree at the neighbor

of the original root). Therefore we can use species trees where the root has degree

one, or species trees where the degree of the root is at least two (see Figure 1.2).

As these two depictions are equivalent, the choice one of these conventions is made

according to convenience. For the techniques used in this dissertation it will be more

convenient to require that the root does not have degree one. This implies that for

trees which have only one leaf, that vertex will be considered both a leaf and a root,

and will be labeled.

Gene trees or MUL-trees, as they are also referred to in the literature, represent

the evolutionary relationships of copies of the same gene across several species, and

due to processes such as duplication or deletion of genetic material, the topology of a

gene tree may look very different from its corresponding species tree. See Figure 1.1.

As the leaves still are labeled with the name of the species the corresponding gene

sample came from, any label that appeared in the species tree may appear several

times or not at all in the gene tree. The same reasoning regarding the root applies

as on phylogenetic trees.

Since it is not reasonable to assume that during a speciation event more than two

new species is created, ideally a phylogenetic tree is a rooted leaf-labeled binary tree.

However, these trees are created from data, which may not be sufficient to completely

10



resolve the tree, and the placement of the root is difficult. Thus, these trees may or

may not be binary or rooted. These facts motivate the following definitions.

Definition 1.25. MUL-trees or gene trees are leaf-multi-labeled trees that may be

rooted or unrooted. Every leaf is labeled whether it is a root or not. Non-root,

non-leaf vertices have degree at least three. The root, if exists, does not have degree

one.

Definition 1.26. Phylogenetic trees are MUL-trees where labels are not reused. They

are leaf-labeled trees that may be rooted or unrooted. Every leaf is labeled whether

it is a root or not. Non-root, non-leaf vertices have degree at least three. The root,

if exists, does not have degree one.

We reiterate one of our earlier remarks as these definitions are the main reason

to introduce the terminology for marked trees. In rooted binary trees the root must

have degree two, and in non-trivial rooted phylogenetic or MUL-trees, the root must

have degree at least two and is unlabeled. While a marked tree, just as rooted

tree, is a tree with a special vertex identified, the terminology “marked gene tree”,

“marked phylogenetic tree” and “marked binary tree” will refer to the cases where

the underlying tree is an unrooted version of the tree class (i.e. unrooted gene tree,

phylogenetic tree or binary tree) and the marked vertex is any vertex of this tree

(either a labeled leaf or an unlabeled vertex of degree at least three).

Finally we will return to the graph automorphisms and the idea of equivalence,

and define two more concepts for trees.

Definition 1.27. For a semi-multi-labeled tree T , two edges, e1, e2 ∈ ET are equiv-

alent if there exists an automorphism φ of T that maps the end vertices of e1 to the

end vertices of e2.

Notation 1.28. The number of equivalence classes on the set of edges of a tree T

defined by the equivalence relation in Definition 1.27 is denoted by qT

11



Definition 1.29. An edge e of a (semil-multi-labeled) tree T is said to be symmetric

if there exists a graph automorphism φ that exchanges the endpoints of the edge.

As the removal of a symmetry edge must result in two trees that have the same

number of vertices, it is clear that there can be at most one symmetry edge for any

tree.

Notation 1.30. The number of symmetry edges of a tree T is denoted by sT . By the

preceding remark, sT ∈ {0, 1}.

1.3 Generating functions

In this section we will define ordinary and exponential generating functions and state

without proof some basic results about them. The interested reader should refer to

one of the standard books, such as Generatingfunctionology [44] for more details.

As usual, for k-dimensional vectors ~x = (x1, . . . , xk) and ~y = (y1, . . . , yk) over an

additive semigroup ~x+ ~y will denote the vector (x1 + y1, . . . , xk + yk).

Definition 1.31. Let F (x1, . . . , xk) be a function on k variables and n ∈ N where N

is the set of nonnegative integers. . For shortness, we denote F (xn1 , . . . , xnk) by F (·n),

and F (·1) by F (·).

Definition 1.32. Let A be a set and and k ∈ Z+. The function β is a k-type on A,

if β is a function from A to Nk. A type is a k-type for some k.

Definition 1.33. Let A be a set equipped with a k-type β and a ∈ A. The term of

a with respect to β (or the term of x, for short, if the choice of β is clear) on variables

x1, . . . , xn defined as

termβ(a) =
n∏
j=1

x
nj
j ,

where β(a) = (n1, . . . , nk). When β is clear from the text, we will use the notation

term(a).
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At this point we are ready to define ordinary generating functions.

Definition 1.34. Let B be a set equipped with a k-type β. The ordinary generating

function of B with respect to the type β on variables x1, . . . , xk is

B(x1, x2, . . . , xk) =
∑
b∈B

termβ(b) =
∑

(n1,n2,...,nk)∈Nk
an1,n2,...,nk

k∏
j=1

x
nj
j ,

where an1,...,nk =
∣∣∣{b ∈ B : type(b) = (n1, . . . , nk)}

∣∣∣. We will also refer toB(x1, . . . , xk)

as the ordinary generating function for the counts an1,...,nk .

The following claims are well known, and also easily follow from the definitions.

Their proofs will be omitted.

Claim 1.35. Let A1,A1 be disjoint sets and let βi be a k-type on Ai for i ∈ {1, 2}.

For B = A1 ∪ A2 define the k-type β by β1 ∪ β2, i.e. β(a) = β1(a) if a ∈ A1 and

β(a) = β2(a) otherwise. Denote the ordinary generating function of Ai by Ai(·) and

the ordinary generating function of B by B(·). Then B(·) = A1(·) + A2(·).

Claim 1.36. Let A1,A2 be sets and let βi be a k-type on Ai for i ∈ {1, 2}. For

B = A1×A2 define the k-type β by β(a1, a2) = β1(a1) + β2(a2). Denote the ordinary

generating function of Ai by Ai(·) and the ordinary generating function of B by B(·).

Then B(·) = A1(·) · A2(·).

Tğhe first part of this last claim easily follows by induction from the previous

claim.

Claim 1.37. Let A be a set equipped with a k-type γ, and n ∈ Z+. Let B1 = ∏n
i=1A,

B2 ⊆ B1 by (a1, . . . , an) ∈ B2 iff a1 = · = an. Define the k-type β on B1 (and

consequently on B2 by β(a1, . . . , an) = ∏n
j=1 γ(aj). Denote the ordinary generating

function of A by A(·) and the ordinary generating function of Bi by Bi(·). Then

B1(·) = An(·) and B2(·) = A(·n).
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In the rest of the thesis, we will refer to ordinary generating functions simply as

generating functions. We also use exponential generating functions with one variable,

so we define those here.

Definition 1.38. Let B = ∪Bn, where Bn is a set of structures defined on [[[n]]], and

bn = |Bn|. The exponential generating function (EGF) B(t) of B (or alternatively, of

the counts bn) is

B(t) =
∑
n∈N

bn
tn

n! .

The following claim is immediate from the definition

Claim 1.39. Let B(t) be the exponential generating function of the counts bn. Then
d
dt

(B(t)) is the exponential generating function of the counts cn = bn+1.

The following is the Product Rule of Exponential Generating Functions:

Claim 1.40. Let A and B be two classes of objects with exponential generating func-

tions A(t) and B(t). Let C = ∪Cn be the set of objects, where Cn is the set of objects

on [[[n]]] that consist of all pairs of objects that can be obtained by taking an ordered

pair (A, [[[n]]] \A) of possibly empty subsets of [[[n]]], and inserting an object from A|A| on

A and an object from B|[[[n]]]\A| on [[[n]]] \A. The exponential generating function C(t) of

C is A(t) ·B(t).
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Chapter 2

Rooted leaf-multi-labeled trees

2.1 Rooted binary trees

We begin by considering the generating function for rooted, binary leaf-multi-labeled

trees (see Definition 1.23). Let tn denote the number of rooted unlabeled binary tree

shapes with n leaves. (This is equivalent to the set of rooted leaf-multi-labeled binary

tree shapes in which all the leaves are labeled with one label.) Harding [24] observed

(see also Wedderburn [43]) that the ordinary generating function for {tn}∞n=0,

T (z) =
∞∑
n=0

tnz
n

satisfies the equation

T (z) = z + 1
2T

2(z) + 1
2T (z2). (2.1)

This can be argued as follows: It is clear that t0 = 0 and t1 = 1. For n ≥ 2,

since the root has degree 2, the tree is composed of two subtrees, the roots of which

are neighbors of the original root. Since the new roots have degree two, they are

rooted binary trees. T 2(z) counts the subtree pairs (T1, T2). When T1 6= T2 the

pair is counted twice. When T1 = T2 the pair is counted once. The trees with two

isomorphic subtrees are counted by T (z2). Putting this information together yields

the formula.

The same argument can be used to find a formula for the ordinary generating

function for rooted, binary leaf-multi-labeled trees using the label set [[[k]]]:

R(x1, . . . , xk) =
∞∑
n=0

rn1,...,nkx
n1
1 · · ·x

nk
k ,
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where rn1,...,nk is the number of rooted, binary leaf-multi-labeled trees with ∑k
i=1 ni

leaves in which each label j ∈ [[[k]]] is used on nj leaves. Note that nj may be 0. We

have:

Theorem 2.1.

R(x1, . . . , xk) = (x1 + · · ·+ xk) + 1
2R

2(x1, . . . , xk) + 1
2R(x2

1, . . . , x
2
k).

This theorem can be used in a straight-forward fashion to find obtain a recursion

for calculating the numbers rn1,...,nk as follows. Let

hn1,...,nk =
n1∑

m1=0

n2∑
m2=0

· · ·
ni∑

mi=0
· · ·

nk∑
mk=0

rm1,...,mkrn1−m1,...,nk−mk .

Thus,

R2(x1. . . . , xk) =
∑

m1....,mk

hm1,...,mk

k∏
j=1

x
mj .
j

Then

rn1,...,nk =



0 if
k∑
i=1

ni = 0,;

1 if
k∑
i=1

ni = 1,;

1
2

(
rn1/2,...,nk/2 + hn1,...,nk

)
if all ni are even;

and
k∑
j=1

ni ≥ 2, ;

1
2hn1,...,nk else.

(2.2)

Two observations are of interest. Suppose we let rn;k denote the number of rooted

binary leaf-multi-labeled trees with n leaves on the set [[[k]]], and let Rk(z) = ∑
n
rn;kz

k

be the associated generating function. If we let x1 = x2 = · · · = xk = z, then we

obtain R(z, z, . . . , z) = ∑
n

∑
(n1,...,nk)

n1+···+nk=n

rn1,...,nkz
n = ∑

n
rn;kz

n = Rk(z). By Theorem 2.1

we now have

Rk(z) = kz + 1
2R

2
k(z) + 1

2Rk(z2),

The case k = 1 yields (2.1), as expected. Note that this formula also yields the

recursion:
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rn;k =



0 if n = 0,

k if n = 1,

1
2

n−1∑
j=1

rj;krn−j;k if n > 1 odd,

1
2

(
rn/2;k +

n−1∑
j=1

rj;krn−j;k

)
else.

(2.3)

Secondly, we consider the case where we only count those trees which use every

label in [[[k]]] (i.e. the numbers rn1,...,nk where each ni is positive). Let vn,k denote

the number of rooted binary leaf-multi-labeled trees with label set [[[k]]] that use each

label at least once and let Vk(z) be the corresponding generating function. Then the

inclusion-exclusion principle yields

vn;k =
k−1∑
j=0

(−1)j
(
k

j

)
rn;k−j. (2.4)

Consequently we have

Vk(z) =
∞∑
n=0

vn;kz
n =

k−1∑
j=0

(−1)j
(
k

j

)
Rk−j(z).

We include some values of rn;k in Table 2.1 and some values for vn,k in Table 2.2.

The program used to calculate these numbers is in Appendix A.1
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Table 2.1: The first few values of rn;k, the number of rooted binary MUL-trees
with n leaves on the label set [[[k]]], obtained using recursion equation (2.3).

n\k 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 1 3 6 10 15 21 28
3 1 6 18 40 75 126 196
4 2 18 75 215 495 987 1778
5 3 54 333 1260 3600 8568 17934
6 6 183 1620 8010 28275 80136 194628
7 11 636 8202 53240 232500 785106 2213036
8 23 2316 43188 366680 1979385 7960638 26037431
9 46 8610 232947 2590420 17287050 82804806 314260765
10 98 32763 1282824 18674660 154041450 878729418 3869500208

Table 2.2: The first few values of vn;k, the number of rooted binary leaf-multi-
labeled trees with n leaves on the label set [[[k]]], obtained using equation (2.4).

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 4 3 0 0 0 0
4 2 14 27 15 0 0 0
5 3 48 180 240 105 0 0
6 6 171 1089 2604 2625 945 0
7 11 614 6333 24180 42075 34020 10395
8 23 2270 36309 207732 554820 755370 509355
9 46 8518 207255 1710108 6578550 13408740 14963130
10 98 32567 1184829 13739550 73169250 209434995 343863135

2.2 Rooted gene trees

In this next section, we will consider rooted leaf-multi-labeled trees.

Let Rk denote the set of isomorphism classes of rooted leaf-multi-labeled trees

on label set [[[k]]]. Rk includes the single vertex trees and the trees where the degree

of every non-root, non-leaf vertex is at least three, and the degree of the root is

least two. Note that for a binary tree with n ≥ 2 leaves, the number of internal

vertices can be given as a function of n ((n − 1) if rooted and (n − 2) if unrooted);
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however, for non-binary trees this is not the case. In particular, an element of Rk

with n ≥ 2 leaves can have any number of internal vertices between 1 and n− 1. It

is therefore useful to keep track of the number of internal, unlabeled vertices. For

this reason, we define the (k + 1)-type β on Rk by β(T ) = (u, n1, . . . , nk) if the

tree T has u unlabeled vertices and ni leaves labeled with i. Let au,n1,...,nk to be

the number of trees in Rk with u unlabeled nodes and nj nodes with label j, and

A(z;x1, . . . , xk) = ∑
au,n1,...,nkz

uxn1
1 . . . xnkk be the corresponding generating function.

We can now give a Cayley-type equality for A(·). Consistent with our earlier

notation, for any T ∈ Rk let `j(T ) be the number of vertices that have label j, by

un(T ) the number of unlabeled vertices, and let

term(T ) = zun(T )
k∏
j=1

x
`j(T )
j .

Theorem 2.2.

A(z;x1, . . . , xk) =
(x1 + · · ·+ xk − z) + z · Exp

(∑∞
n=1

1
n
A(zn;xn1 , . . . , xnk)

)
z + 1

Proof. There is precisely one tree in Rk that is a single vertex and is labeled by j.

Thus, A(z;x1, . . . , xk) − (x1 + · · · + xk) counts non-trivial trees in Rk. If we take a

non-trivial tree in Rk the root has degree at least two. Remove the unlabeled root

of this tree and root each tree of the resulting forest at the neighbors of the old root.

Since the neighbors at the old root are either leaves or vertices of degree at least three,

the roots of this forest are either labeled vertices of a singleton or unlabeled vertices

of degree at least two. Therefore all of the trees in the resulting forest are trees in

Rk. Also, any forest of trees from Rk with at least two components cant be obtained

this way from a tree of Rk. Let H1(·) count the rooted finite forests that have at least

two components. Note that H1(·) counts the rooted finite forests that are not just a

single tree (i.e. disjoint unions of at least two elements in Rk). Thus the trees in Rk
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having at least two vertices are in one-to-one correspondence with the rooted forests

that have at least two components. Subtracting the number of singleton trees from

A(z;x1, . . . , xk) and dividing by z to reduce the number of unlabeled vertices by one

(removal of the root), we have

H1(·) = A(z;x1, . . . , xk)− (x1 + · · ·+ xk)
z

.

Let H2(·) be the number of all rooted finite nonempty forests. Since A(x1, . . . , xk)

counts the rooted forests with precisely one component,

H2(·) = A(z;x1, . . . , xk) +H1(·) = (1 + z)A(z;x1, . . . , xk)− (x1 + · · ·+ xk)
z

.

If H3(·) is the number of all rooted finite forests of trees, including the empty forest,

then

H3(·) = H2(·) + 1 = (1 + z)A(z;x1, . . . , xk)− (x1 + · · ·+ xk − z)
z

.

Any rooted forest (including the empty one) is determined by the number of copies

of any tree in Rk that appears within it. Therefore H2(·) is an infinite sum where

each term is of the following form: Let D be a (possibly empty) finite subset of Rk,

for each T ∈ D let mT be a positive integer. Then the product ∏T∈D (term(T ))mT is

the term corresponding to the forest where each T ∈ D appears precisely mT times.

Moreover, H3(·) is the sum of all terms of this type. Therefore

H3(·) =
( ∏
T∈Rk

( ∞∑
j=0

term(T )j
))

=
 ∏
T∈Rk

(
1− term(T )

)−1


=
∏

(u;n1,...,nk)

 ∏
T∈Rk

β(T )=(u;n1,...,nk)

(
1− term(T )

)−1


=
∏

(u;n1,...,nk)


(1− term(T )

)−1

∣∣∣{T∈Rk:β(T )=(u;n1,...,nk)}

∣∣∣
=

∏
(u;n1,...,nk)

(1− zuxn1
1 · · ·x

nk
k

)−au;n1,...,nk

.
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This follows from collecting the terms corresponding to the trees that have the

same form for term(T ) and the definition of the numbers au;n1,...,nk . This implies that

log(H3(·)) = −
∑

(u;n1,...,nk)
an1,...,nk log(1− zuxn1

1 · · ·x
nk
k )

=
∑

(u;n1,...,nk)
au;n1,...,nk

∞∑
n=1

(
zuxn1

1 · xnkk
)n

n

=
∞∑
n=1

1
n

∑
(u;n1,...,nk)

an1,...,nk

(
(zn)u(xn1 )n1 · (xnk)nk

)

=
∞∑
n=1

1
n
A(zn;xn1 , . . . , xnk),

from which the statement of the theorem follows.

As an immediate corollary, we can now give a formula involving the generating

function for the number of trees inRk where the label j is used precisely nj times: Let

gn1,...,nk be the number of such trees in Rk, with corresponding generating function

G(x1, . . . , xk) =
∑

(n1,...,nk)
gn1,...,nk

k∏
j=1

x
nj
j ,

Then gn1,...,nk = ∑
u au;n1,...,uk and we have

A(1;x1, . . . , nk) =
∑

(n1,...,nk)

(∑
u

au;n1,...,nk · 1u
)

k∏
j=1

x
nj
j

 = G(x1, . . . , xk),

from which we obtain the following.

Corollary 2.1.

G(x1, . . . , xk) = 1
2

(x1 + · · ·+ xk − 1) + Exp
( ∞∑
n=1

1
n
G(xn1 , . . . , xnk)

).
We use this formula to derive a recursion for the number gn;k of trees in Rk on n

leaves using [[[k]]] as label set. Clearly Gk(x) = ∑
n gn;kx

k = G(x, . . . , x). Let

G?
k(x) =

∑
n≥1

1
n
Gk(xn) =

∑
n≥0

g?n;kx
n.
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Then g?0;k = g0;k = 0. We have

∑
m≥1

g?m;kx
m =

∑
n≥1

1
n
Gk(xn) =

∑
n≥1

1
n

∑
j≥1

gj;kx
nj

=
∑
n≥1

∑
j≥1

gj;k
n
xnj =

∑
m≥1

xm
∑
n≥1

∑
j≥1:
jn=m

gj;k
n

=
∑
m≥1

xm
∑
j:j|m

jgj;k
m

Then it follows that

g?n;k = 1
n

∑
d:d|n

dgd;k = gn;k + 1
n

∑
d:d|n
d<n

dgd;k.

Therefore g?1;k = g1;k. From Corollary 2.1 it follows that

Gk(x) = 1
2
(
kx− 1 + eG

?
k(x)

)
= 1

2

kx− 1 +
∑
m≥0

(G?
k(x))m
m!


= 1

2

kx+
∑
m≥1

(G?
k(x))m
m!

 .
So:

2Gk(x) =
kx+

∑
m≥1

(G?
k(x))m
m!

.
In particular, we get g1;k = 1

2(k + g1;k) (i.e. g1;k = k, as expected, since g1;k counts

the labeled single vertex trees). Moreover, for n ≥ 2 we get

2gn;k =
n∑

m=1

 1
m!

∑
(n1,...,nm):ni≥1
n1+···+nm=n

m∏
j=1

g?nj ;k



= g?n;k +
n∑

m=2

 1
m!

∑
(n1,...,nm):ni≥1
n1+···+nm=n

m∏
j=1

g?nj ;k

,
from which, using, we can obtain (for n ≥ 2) that

gn;k = 1
n

∑
d:d|n
d<n

dgd;k +
n∑

m=2

 1
m!

∑
(n1,...,nm):ni≥1
n1+···+nm=n

m∏
j=1

(
1
nj

∑
d:d|nj

dgd;k

). (2.5)

We include some values of gn;k in Table 2.3.
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Table 2.3: The first few values of gn;k, the number of rooted gene trees with n
leaves on the label set [[[k]]]. These counts were obtained using recursion (2.5).

n\k 1 2 3 4 5 6
1 1 2 3 4 5 6
2 1 3 6 10 15 21
3 2 10 28 60 110 182
4 5 40 156 430 965 890
5 12 170 948 3396 9376 21798
6 33 785 6206 28818 97775 269675
7 90 3770 42504 256172 1068450 3496326
8 261 18805 301548 2357138 12081605 46897359
9 766 96180 2195100 22253672 140160650 645338444
10 2312 502381 16307598 214370398 1658936806 9059465175

2.3 Alternative recursive function for rooted gene trees.

In the interest of developing a time efficient program to calculate counts of rooted

MUL-trees, an alternative recursive function for gn;k was found. For the singleton

tree we have n = 1 and g1;k = k, so we now consider rooted gene trees that are

non-trivial. As before, we establish a bijection between non-trivial rooted gene trees

and forests of rooted gene trees with at least two components. When the number of

leaves n ≥ 2, this bijection can be described as follows: We remove the root of the tree

and designate the neighbors of the original root as roots of the trees in the resulting

forest. The total number of leaves in the forest is still n. The forest can be described

as a partition of n into at least two classes, where the elements in each class represent

the number of leaves for the corresponding tree in the forest. Thus, our goal is to

have a suitable description of such partitions of n and the counts for the forests that

result in this partition. Let Pn be the set of all partitions of n into at least 2 classes.

Each such partition can be written as a unique sequence α = (aβ1
1 , a

β2
2 , . . . , a

βj
j ) with

n > a1 ≥ a2 ≥ · · · ≥ aj ≥ 1, βi are positive integers with β1 + · · · + βj ≥ 2 and

n = β1a1 + · · ·+ βjaj [42]. Each such partition describes a forest of trees. For each
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n = 1 [1]

n = 2
[1, 1]

n = 3

[1, 1, 1] [1, 2]

n = 4

[1, 1, 1, 1] [1, 1, 2] [2, 2]

[1, 3] [1, 3]

n = 5

[1, 1, 1, 1, 1] [1, 1, 1, 2] [1, 2, 2] [1, 1, 3]

[1, 1, 3] [2, 3] [2, 3] [1, 4]

[1, 4] [1, 4] [1, 4] [1, 4]

Figure 2.1: MUL-trees with one to five leaves on label set [[[1]]]
generated using the recursion 2.6.
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ai, the forest will contain a multiset of size βi of MUL-trees which have ai leaves.

The number of rooted MUL-trees with ai leaves is gai;k. The number of ways to

take a multiset of cardinality βi from a set of cardinality gai;k is
(
gai;k+βi−1

βi

)
(choosing

βi objects from a set of gai;k items with replacement). Note that if βi = 0, then(
gai;k−1

0

)
= 1. It follows that:

gn;k =



0 if n = 0,

k if n = 1,
∑
α∈Pn

α=
(
a
β1
1 ,...,a

βj
j

)
j∏
i=1

(
gai;k + (βi − 1)

βi

)
if n > 1.

(2.6)

Figure 2.1 depicts the MUL-trees with one to five leaves on label set [[[1]]]. The partition

under each tree is the one used in the construction of the tree.

2.4 Rooted leaf-multi-labeled trees in general

This section considers a different set of isomorphism classes of rooted leaf-multi-

labeled trees on label set [[[k]]], Fk. This set includes the single vertex trees, trees in

which unlabeled degree two vertices are allowed and trees in which the root may

have degree one. The singleton tree in Fk is a root and a labeled leaf, but for all

other trees in Fk, the root is not labeled and is not considered a leaf, even if it is of

degree one (see Definition 1.23). As before, we define the (k + 1)-type β on Fk by

β(T ) = (u, n1, . . . , nk) if the tree T has u unlabeled vertices and ni leaves labeled with

i. Let fu,n1,...,nk to be the number of trees in Fk with u unlabeled nodes and nj nodes

with label j, and F (z;x1, . . . , xk) = ∑
fu,n1,...,nkz

uxn1
1 . . . xnkk be the corresponding

ordinary generating function. As in the previous chapter, for a leaf-multi-labeled

T ∈ Fk, let `j(T ) be the number of vertices that have label j, by un(T ) the number
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of unlabeled vertices, and let

term(T ) = zun(T )
k∏
j=1

x
`j(T )
j .

Theorem 2.3.

F (z;x1, . . . , xk) = (x1 + · · ·+ xk − z) + z · Exp
 ∞∑
n=1

1
n
F (zn;xn1 , . . . , xnk)



Proof. There is exactly one tree on a single vertex with label j and this tree has no

unlabeled vertices. Thus, F (z;x1, . . . , xk)−(x1 + · · ·+xk) counts the trees in Fk with

more than one vertex and is therefore divisible by z. The trees from Fk with at least

one unlabeled vertex are in one to one correspondence with the nonempty forests,

composed of trees from Fk. This correspondence is obtained by removing the root

and designating the neighbors of the removed root as the roots of the appropriate

trees in the forest. The forest has at least one component, since the degree of the

root was at least one. If a root in the forest has a label, the corresponding vertex in

the original tree was a leaf. If the degree of the new root was m ≥ 2 in the original

tree, it is an unlabeled root of degree m − 1 in the forest. Let H2(·) count the non

empty rooted finite forests of trees from Fk. Then

H2(·) = F (z;x1, . . . , xk)− (x1 + · · ·+ xk)
z

Let H3(·) = H2(·) + 1, that is all finite rooted forests of trees in Fk, including the

empty forest. Using the same argument an in Theorem 2.2 we have

H3(·) =
∏
T∈Fk

( ∞∑
j=0

term(T )j
)

=
∏
T∈Fk

(
1− term(T )

)−1

=
∏

(u;n1,...,nk)

(1− zuxn1
1 · · ·x

nk
k

)−fu;n1,...,nk

.
Thus log(H3(·)) = ∑∞

n=1
1
n
F (zn;xn1 , . . . , xnk), from which the theorem follows.
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Chapter 3

Otter’s Theorem

3.1 Background and statement

R. Otter presented a theorem in [36], which can be used to relate counts of rooted

unlabeled trees to counts of unrooted unlabeled trees, using the idea of equivalent

vertices (Definition 1.12), equivalent edges (Definition 1.27), and the symmetry edge

(Definition 1.29) of a given tree.

More specifically, he showed the following:

Theorem 3.1. In any tree the number of nonequivalent vertices minus the number

of nonequivalent lines (symmetry line excepted) is one.

Using our notation (see Notations 1.13, 1.28, 1.30), the above can be expressed as

pT − (qT − sT ) = 1.

F. Harary has stated a generalization of this theorem for unlabeled graphs [22]. Re-

call that for any semi-multi-labeled graph G, pG denotes the number of non-equivalent

vertices (Definition 1.12). We will let q?G be the number of non-equivalent blocks (Def-

inition 1.19), and {B1,B2, . . . ,Bq?G} be the set of classes of isomorphic blocks. Also,

we will use bG,i be the number of nonequivalent vertices in Bi. Then the theorem as

stated by Harary is:

Theorem 3.2. For any unlabeled connected nontrivial graph G,

pG − 1 =
q?G∑
i=1

(bG,i − 1).
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1
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2

3

5

6

4

3
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6

Figure 3.1: The numbers on the vertices are not labels, but are used to indicate which
vertices are equivalent. There are three classes of blocks; one contains the two small
4-cycles (B1), the one large 4-cycle (B2) and the 3-cycle (B3). In this example, q?G = 3,
pG = 6, bG,1 = 3, bG,2 = 3, and bG,3 = 2.

The example in figure 3.1 will help illustrate the theorem.

The proof of his theorem in Graphical Enumeration [22] is not entirely correct

(for explanation, see Section 3.3). However, by introducing labels, the theorem can

easily be proved for semi-multi-labeled graphs using the line of thought suggested by

Harary.

3.2 Harary’s Theorem and its consequences

This section will be devoted to the proof of Harary’s Theorem for semi-multi-labeled

graphs:

Theorem 3.3. For any semi-multi-labeled connected nontrivial graph G,

pG − 1 =
q?G∑
i=1

(bG;i − 1). (3.1)

Proof. Given any graph G with the corresponding labeling function α(vi), we use

induction on k, the number of blocks q?G. If q?G = 1, either G has only one block

or G has several isomorphic blocks and a single cut-vertex. In either case, equation
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(3.1) trivially holds. Let k ≥ 1 and assume the statement holds for any graph G′

with q?G′ = k. Consider a semi-labeled graph G with q?G = k + 1 ≥ 2 and assume

that αG uses the label set [[[n]]]. Choose any block of G that has exactly one cut-vertex

(such a block exists by Claim 1.18). This block belongs to one of the classes in

B1,B2, . . . ,Bk+1. Without loss of generality we may assume that it belongs to block

class Bk+1. Delete all the vertices of the blocks in class Bk+1 except the cut vertices

of G to obtain G′, which is a connected nontrivial subgraph of G by Claim 1.18 and

the fact that q?G ≥ 2. Define the function α?G′ : VG′ → {0, 1, . . . , n + 1} as follows.

If vi /∈ B for some B ∈ Bk+1, then α?G′(vi) = α?G(vi). If vi ∈ B ∩ V (G′) for some

B ∈ Bk+1 (vi is a cut-vertex of G in a block of Bk+1) then α?G′(vi) = n+ 1. Note the

label n + 1 has not been used by α?G, so we have not inadvertently created any new

equivalencies—a cut-vertex in a block of Bk can only be equivalent to another such

cut-vertex in G′, and therefore no new equivalencies between blocks or vertices have

been created.

At this point we will argue that{
φ
∣∣∣
V (G)′

: φ is an automorphism of G
}

=
{
φ : φ is an automorphism of G′

}
First we will show that the left-hand side of this equation is a subset of the

right-hand side. Given any automorphism of φ of G, it is clear that φ
∣∣∣
V (G′)

is an

automorphism of the graph G′ which preserves labels for those vertices v of G′ which

are not vertices in any block in Bk+1, since in this case we must have α?G′(v) = α?G(v) =

α?G(φ(v)) = α?G′(φ(v)) by definition of α?G′ . If v is a cut-vertex in a block belonging

to the class Bk+1, then, because the labeling α?G′ uses a new label for these vertices,

v is equivalent precisely with the cut vertices in blocks within Bk+1 both in G and in

G′. In particular, v is equivalent in G′ with φ(v), and α?G′(v) = n + 1 = α?G′(φ(v)).

Therefore we have that φ
∣∣∣
V (G′)

is an automorphism of G′ with the labeling α?G′ .

What remains to be seen that the right hand side of the above equation is a subset

of the left hand size. Given an automorphism φ′ of (the semi-labeled graph) G′, then
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φ′ must map the vertices that were cut-vertices of a block in Bk+1 to a cut-vertex in

a block in Bk+1 since φ′ must preserve the label n+ 1. Since any two blocks in Bk+1

were isomorphic with the corresponding cut vertices mapped to each other, φ′ can

be extended to G by using these isomorphisms to some automorphism φ of G, thus,

φ′ = φ
∣∣∣
V (G′)

.

ThereforeG′ has the nonequivalent block classes B1, . . . ,Bk from the nonequivalent

block classes of G and for i ∈ {1, . . . , k}, we have bG′;i = bG;i. Consequently, pG′ =

pG − (bG;k+1 − 1). By the induction hypothesis equation (3.1) holds for G′, thus,

pG − 1 = (bG;k+1 − 1) + (pG′ − 1) = (bG;k+1 − 1) +
k∑
i=1

(bG′;i − 1)

=
k+1∑
i=1

(bG;i − 1) =
q?G∑
i=1

(bG;i − 1)

We can now obtain Otter’s Theorem as a corollary, but it will be helpful to use

notation referring specifically to trees. Given a nontrivial unrooted semi-labeled tree

T , pT is the number of non-equivalent vertices and q?T is the number of non-equivalent

block classes in T . In a nontrivial tree the blocks are the edges with their end-

vertices. Two edges are equivalent in the sense of Definition 1.27 when their blocks

are equivalent in the sense of Definition 1.19, thus we have q?T = qT , motivating the

strong similarity in the notations. As before let bT ;i be the number of non-equivalent

vertices in Bi. If Bi consists of a symmetry edge (Definition 1.29) then bT ;i = 1,

otherwise bT ;i = 2. We know that sT , the number of symmetry edges is 0 or 1.

The generalization of Otter’s Theorem to semi-multi-labeled trees is stated in the

following corollary.

Corollary 3.4. For any semi-labeled tree T , we have

pT − (qT − sT ) = 1 (3.2)
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T

2 2

1
1

1
1

T ′

2 2

3

3

Figure 3.2: A semi-labeled tree T on label set {1, 2} and a semi-labeled tree T ′ on
label set {1, 2, 3}. The shapes, coloring and line types illustrate equivalence: vertices
and edges that are depicted by the same kind of shape or line are equivalent. The
jagged edge connecting the two vertices labeled by 2 is a symmetry edge. Note that
pT = qT = 4, sT = sT ′ = 1 and pT ′ = qT ′ = 3. The equivalent blocks in T are the
white circular nodes connected to the labeled leaves where the white circular nodes
are the cut-vertices. Removing the leaves attached to these vertices and relabeling
them as in the proof results in the tree T ′.

Proof. If T is a singleton vertex, then pT = 1, qT = sT = 0, and the statement holds.

Assume that T is nontrivial, so Theorem 3.3 applies, and we only need to show

that
qT∑
i=1

(bT ;i − 1) = qT − sT .

For each class of blocks other than one containing the symmetry edge the number

of non-equivalent vertices is two. If an edge is a symmetry edge, the two vertices

in this block are equivalent. Therefore, if there is no symmetry edge, sT = 0, and
qT∑
i=1

(bT ;i − 1) = qT = qT − sT . If there is a symmetry edge, sT = 1, and
qT∑
i=1

(bT ;i − 1) =

qT − 1 = qT − sT .

We are now ready to use Corollary 3.2 to relate counts of rooted leaf-multi-labeled

trees to counts of unrooted leaf-multi-labeled trees, as Otter did for unlabeled trees.

For this, the concept of marking will be used extensively.

Let T be an unrooted leaf-multi-labeled tree and mark one of its vertices. Clearly,
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the number of non-isomorphic markings is pT , since marking at two vertices gives rise

to different marked trees if and only if the marked vertices are not equivalent. We

use the term marking instead of rooting here, since, for example, if T is a nontrivial

binary tree, the degree of the marked vertex is one (in the case of a labeled leaf)

or three (in the case of an unlabeled vertex), unlike the root of a nontrivial rooted

binary tree which must have degree two.

We can also obtain a marked tree by subdividing an edge of T into two edges

and marking the resulting vertex of degree 2. If T was a nontrivial binary tree, the

resulting marked tree can be considered a rooted binary tree with the marked vertex

as root. Thus, qT corresponds to the number of ways to root the tree T at one of

its edges, and sT corresponds to the number of ways to root the tree T at one of its

edges so that the subtrees resulting from the removal of this root are isomorphic.

3.3 Counterexamples

The proof stated in of Harary’s theorem for unlabeled graphs uses the same idea as

our proof, claiming that removing a class of equivalent blocks in which the blocks each

have exactly one cut-vertex results in a new graph in which the number of nonequiv-

alent blocks is one less than in the original graph. Unfortunately, this statement is

not true for unlabeled graphs in general, and is false even for trees, as shown by the

counterexamples shown in figures 3.3 and 3.4

Generalizing the proof to include multi-labeled graphs removes this difficulty,

since relabeling of the cut vertices insures that any set of blocks in G have the same

equivalency relationships in the resulting subgraph G′.
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Figure 3.3: First counterexample: The numbers shown here are not labels, but indi-
cate the equivalence classes of the vertices. The unlabeled graph G has two equivalent
bridges and two nonequivalent 4-cycles. Thus, q?G = 3 and pG = 6. If the class of
equivalent bridges is removed, for the resulting G′, q?G′ = 1, not 2 as claimed, and
pG′ = 3. Thus, pG − 1 6= 1 + pG′ as claimed.

2 3

1

1

1

4

4
Virginia rocks 2 1
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1

1

Figure 3.4: Second counterexample: as above, the numbers on the vertices are not la-
bels, but indicate equivalence classes. The unlabeled tree T has three sets of nonequiv-
alent bridges and four sets of nonequivalent vertices. Thus, qT = 3 and pT = 4. If
the class with two equivalent bridges is removed, for the resulting T ′ is a star, so,
qT ′ = 1, not 2 as claimed, and pT ′ = 2.Thus, pT − 1 6= 1 + pT ′as claimed.

33



Chapter 4

Unrooted leaf multi-labeled trees

4.1 Unrooted binary trees

In this section, we will present an equation for the generating function for unrooted

binary leaf-multi-labeled trees.

As indicated in the previous section, in order to count unrooted binary trees it will

be helpful to first count marked binary trees, where the marked vertices are either

labeled leaves or internal vertices of degree three. We will denote the set of such

marked binary trees with label set [[[k]]] by Mk, the corresponding k-type, as usual,

is (n1, . . . , nk) where ni is the number of leaves with label i, mn1,...,nk is the number

of trees inMk with type (n1, . . . , nk), and the corresponding generating function is

M(x1, . . . , xk) = ∑
mn1,...,nkx

n1
1 · · ·xnkk .

We have the following:

Theorem 4.1.

M(x1, . . . , xk) = (x1 + · · ·+ xk)
(

1 +R(x1, . . . , xk)
)

+ 1
6R

3(x1, . . . , xk)

+1
2R(x1, . . . , xk)R(x2

1, . . . , x
2
k) + 1

3R(x3
1, . . . , x

3
k).

Proof. Let T ∈ Mk with marked vertex ρT . If ρT is a leaf of T marked with label

j, then either T is a single vertex or the degree of ρT is one. In the latter case we

can obtain a rooted binary tree T ′ ∈ Rk from T by setting T ′ = T \ {ρT} and ρT ′ be

the unique neighbor of ρT in T . As ρT ′ is either a (labeled) leaf of T or it has degree

three in T , T ′ is either a (labeled) singleton tree or it has degree two in T ′, therefore

T ′ ∈ Rk as claimed.
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It follows that the counts for the trees inMk with the marked vertex being a leaf

have generating function (x1 + · · ·xk)(1 +R(x1, . . . , xk)). It only remains to describe

the generating function for marked trees where an internal vertex (i.e. vertex of

degree three) is marked.

This is determined by the collection of forests consisting of three not necessarily

different rooted binary leaf-multi-labeled trees. From any tree T ∈ Mk where the

marked vertex ρT has degree three we can obtain such a forest by removing ρT and

rooting each of the resulting trees at the corresponding neighbor of ρT . Since any

neighbor of ρT was either a leaf, or it had degree three in T , the new root is either a

vertex or it has degree two, as required.

Now, consider the the three terms 1
6R

3(x1, . . . , xk), 1
2R(x1, . . . , xk)R(x2

1, . . . , x
2
k),

and 1
3R(x3

1, . . . , x
3
k). We will use Claims 1.35 and 1.37. A forest with three non-

isomorphic trees in Rk is counted by 1
6 · 6 = 1 times by the first term, and is not

counted by the other two terms. A forest with two isomorphic trees and the third non-

isomorphic to the first two is counted by the first term 1
6 · 3 = 1

2 times, by the second

term 1
2 times and the third term does not count it. A forest with three isomorphic

trees forest is counted 1
6 + 1

2 + 1
3 = 1 times by the sum of these three terms. Thus, the

forests with three trees from Rk are counted by 1
6R

3(·) + 1
2R(·)R(·2) + 1

3R(·3). This

completes the proof of the theorem.

Now, let un1,...,nk denote the number of unrooted leaf-multi-labeled binary trees

where the label j is used nj times, and let U(x1, . . . , xk) = ∑
un1,...,njx

n1
1 · · ·xnkk . Using

Corollary 3.4 we obtain the following:
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Theorem 4.2.

U(x1, . . . , xk) = M(x1, . . . , xk) + (x1 + · · ·+ xk)−R(x1, . . . , xk)

+R(x2
1, . . . , x

2
k)

=
(
R(x1, . . . , xk) + 2

)(
x1 + · · ·+ xk − 1 + 1

2R(x2
1, . . . , x

2
k)
)

+2 + 1
3R(x3

1, . . . , x
3
k) + 1

6R
3(x1, . . . , xk).

Proof. Fix n1 . . . , nk and sum equation (3.2) over all leaf-multi-labeled binary trees

T where for all j ∈ [[[k]]] the label j is used precisely nj times. If we start from a

non-singleton tree, pT is the number of marked trees that are isomorphic to T , qT

is the number of rooted binary trees that are isomorphic to T after suppressing the

root, and sT is the number of rooted binary trees isomorphic to T , where the two

rooted subtrees obtained by removing the root and rooting the remaining trees at the

neighbor of the root are isomorphic to one another. So we obtain

un1,...,nk =



1 if ∑nj = 1,

mn1,...,nk − rn1,...,nk + rn1/2,...,nk/2 if 2|nj for all j ∈ [[[k]]],

mn1,...,nk − rn1,...,nk otherwise.

We obtain the theorem by multiplying both sides with xn1
1 · · ·xnkk and summing

over all values of n1, . . . , nk.

We note that if we let un;k denote the number of unrooted leaf-multi-labeled binary

trees using label set [[[k]]] that have n leaves , and let

h?n;k = krn−1;k − rn;k + 1
6

n−2∑
i=1

n−i−1∑
j=1

n−i−j∑
`=1

ri;krj;kr`;k + 1
2

∑
(i,j)

2i+j=n

ri;krj;k,

with rn;k as defined in Chapter 2.1, we can use the last theorem to obtain the following
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recursion for computing un;k.

un;k :=



0 if n = 0,

k if n = 1,

h?n;k + 1
3rn/3;k + rn/2;k if n = 6`, ` ∈ N,

h?n;k if n = 6`± 1, ` ∈ N,

h?n;k + rn/2;k if n = 6`± 2 ≥ 2, ` ∈ Z,

h?n;k + 1
3rn/3;k if n = 6`+ 3 ≥ 2, ` ∈ Z.

(4.1)

We include some values of un;k in Table 4.1. We can also count only those trees

which use every label in [[[k]]] using the inclusion-exclusion principle and equation (4.1).

Table 4.2 shows counts of these trees for trees with between 1 and 10 leaves. Notice

that the first column in both tables gives the number of unlabeled unrooted binary

trees with the indicated number of leaves.

Table 4.1: The first few values of un;k, the number of unrooted binary
leaf-multi-labeled trees with n leaves on the label set [[[k]]], obtained using
recursion (4.1)

n\k 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 1 3 6 10 15 21 28
3 1 4 10 20 35 56 84
4 1 6 21 55 120 231 406
5 1 12 63 220 600 1386 2842
6 2 31 227 1040 3530 9772 23366
7 2 78 891 5480 23250 77112 214718
8 4 234 3876 31420 165510 655599 2122099
9 6 722 17790 190360 1243825 5878446 22102577
10 11 2376 85536 1202930 9733950 54845721 239432081
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Table 4.2: The first few values of un;k, the number of unrooted bi-
nary leaf-multi-labeled trees with n leaves on the label set [[[k]]], with
each label used at least once. These counts were obtained using the
inclusion-exclusion principle with recursion (4.1).

n\k 1 2 3 4 5 6 7
1 1 0 0 0 0 0 0
2 1 1 0 0 0 0 0
3 1 2 1 0 0 0 0
4 1 4 6 3 0 0 0
5 1 10 30 36 15 0 0
6 2 27 140 310 300 105 0
7 2 74 663 2376 3990 3150 945
8 4 226 3186 17304 44850 59805 39690
9 6 710 15642 123508 462735 925890 1018710
10 11 2354 78441 874998 4550955 12810825 20766375

4.2 Unrooted gene trees

Using Corollary 3.4, we now obtain analogous results for counting unrooted non-

binary leaf-multi-labeled trees. LetWk denote the class of unrooted leaf-multi-labeled

trees where every internal vertex has degree at least 3. We define the (k + 1)-type β

on Wk by β(T ) = (u, n1, . . . , nk) if the tree T has u unlabeled vertices and ni leaves

labeled with i. Let wu,n1,...,nk to be the number of trees inWk with u unlabeled nodes

and nj nodes with label j, and W (z;x1, . . . , xk) = ∑
wu,n1,...,nkz

uxn1
1 · · ·xnkk be the

corresponding generating function.

To give a formula for the function W in terms of A, it is helpful to slightly

extend the definition of pT given in Section 3.2. We denote by pT ;un the number

of nonequivalent, unlabeled points of a leaf-multi-labeled unrooted tree, and by pT ;j

the number of nonequivalent points of T that are labeled with j. Clearly, pT =

pT ;un +∑k
j=1 pT ;j, and

pT − qT + sT = pT ;un +
k∑
j=1

pT ;j − qT + sT = 1. (4.2)

Using this we obtain
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Theorem 4.3.

W (z;x1, . . . , xk) = (1 + x1 + · · ·+ xk)A(z;x1, . . . , xk)

−1
2

(
(z + 1)A2(z;x1, . . . , xk) + (z − 1)A(z2;x2

1, . . . , x
2
k)
)
.

Proof. By (4.2),

W (·) =
∑
T∈Wk

term(T ) =
∑
T∈Wk

term(T )(pT ;un +
k∑
j=1

pT ;j − qT + sT ).

For any unrooted leaf-multi-labeled tree T , pT ;un is the number of trees in Rk that

are isomorphic to T and whose root is an unlabeled vertex of T (note that the root

has degree at least 3). In addition, pT ;j is the number of leaf-multi-labeled trees that

are isomorphic to T and have a leaf-vertex with label j marked; qT is the number of

trees in Rk where the root has degree 2 and, after suppressing the root vertex, we

obtain a tree that is isomorphic to T ; and sT is the number of trees that are counted

by qT for which the two subtrees at the root are isomorphic.

Now, to obtain the terms of W (·) corresponding to ∑T term(T )∑j pT ;j, first note

that the contribution of the single vertex trees marked at a (leaf-)vertex is counted by∑
j xj. Also, the contribution of the trees with at least two vertices that are marked at

a leaf-vertex is counted by A(·)∑j xj, since removing the marked vertex and rooting

the remaining tree at the neighbor of this marked vertex gives a tree in Rk. Thus∑
T term(T )∑j pT ;j = (A(·) + 1)∑xj.

We now consider the terms corresponding to ∑T term(T )pT ;un. If we consider the

unlabeled marked vertex root, we get a tree in Rk whose root must have degree at

least 3. Also, using similar arguments to those used in the proof of Theorem 2.1,

The trees in Rk with root having degree less than 3 (so 2 or 0) are counted by
z
2(A2(·) + A(·2)) +∑

j xj, therefore

∑
T

term(T )pT ;un = A(·)− z

2(A2(·) + A(·2))−
∑
j

xj

.
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Therefore, ∑T∈B term(T )(pT ;un +∑
j pT ;j) = (1 +∑

j xj)A(·)− z
2(A2(·) + A(·2)).

To complete the proof, note that ∑T∈Wk
term(T )(qT − sT ) counts those rooted

gene trees (without counting their roots) where the root has degree 2 and the two

rooted subtrees obtained when removing the original root are non-isomorphic. Again,

using arguments similar to the ones used in Theorem 2.1 we obtain

∑
T∈Wk

term(T )(qT − sT ) = 1
2(A2(·)− A(·2)).

We now use this result to give a formula for the generating function for the un-

rooted leaf-multi-labeled trees without having to keep track of the number of un-

labeled vertices: Let sn1,...,nk denote the unrooted leaf-multi-labeled trees where no

vertex has degree 2, and where exactly nj copies of the label j used. Let the gen-

erating function be S(x1, . . . , xk) = ∑
sn1,...,nkx

n1
1 · · ·xnkk . Then setting z = 1 in the

statement of Theorem 4.3 we obtain the following corollary.

Corollary 4.1.

S(x1, . . . , xk) = G(x1, . . . , xk)(x1 + · · ·+ xk + 1)−G2(x1, . . . , xk).

Using this in a similar way to that described above for gn;k, we obtain a recursion

for counting the number sn;k of unrooted leaf-multi-labeled trees on n leaves using

[[[k]]] as label set:

sn;k =



0 if n = 0,

k if n = 1,

kgn−1;k + gn;k +
n−1∑
j=1

gj;kgn−j;k if n ≥ 2.

(4.3)

We include some values of sn;k in Table 4.3.
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Table 4.3: The first few values of sn;k, the number of unrooted non-binary
leaf-multi-labeled trees with n leaves on the label set [[[k]]]. These counts were
obtained using the recursion 4.3.

n\k 1 2 3 4 5 6
1 1 2 3 4 5 6
2 3 11 24 42 65 93
3 5 28 82 180 335 560
4 12 109 444 1250 2840 5607
5 31 470 2688 9756 27151 63462
6 83 2145 17394 81770 279465 774543
7 233 10300 118470 721508 3028655 9953952
8 670 51135 835980 6599982 34035550 132664149
9 1981 260930 6062392 62041488 393044405 1816894738
10 5966 1359391 44897274 595614158 4635468832 25412433213

4.3 Unrooted leaf-multi-labeled trees in general

Using Corollary 3.4, we now obtain analogous results for counting unrooted trees

without any degree restrictions. These trees may have internal non-root vertices of

degree two. Since we can always obtain a new tree from an old one by replacing

an edge with a path of any length, there are infinitely many different trees with the

same number of labeled leaves. Note that we are absolutely forced to keep track of

the number of internal vertices in this case. For example infinitely many different

paths exist with the two leaves labeled by 1, and those paths are distinguished by

the number of their internal vertices. Let D denote the class of unrooted leaf-multi-

labeled trees, where these trees do not have any restrictions on the degree of tinternal

vertices (see Definition 1.23). Let du;n1,...,nk denote the number of trees in D that have

u unlabeled vertices and in which precisely nj copies of the label j are used, and let

D(z;x1, . . . , xk) = ∑
du;n1,...,nkz

uxn1
1 · · ·xnkk .

To give a formula for the function D in terms of F , we will again denote by pT ;un

the number of nonequivalent, unlabeled points of a leaf-multi-labeled unrooted tree

T , and by pT ;j the number of nonequivalent points of T that are labeled with j. Using
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equation (4.2) we obtain

Theorem 4.4.

D(z;x1, . . . , xk) = (1− z + x1 + · · ·+ xk)F (z;x1, . . . , xk)

−1
2

(
F 2(z;x1, . . . , xk) + F (z2;x2

1, . . . , x
2
k)
)
.

Proof. By (4.2),

D(z;x1, . . . , xk) =
∑
T∈D

term(T ) =
∑
T∈D

term(T )(pT ;un +
k∑
j=1

pT ;j − qT + sT ).

For any unrooted leaf-multi-labeled tree T , pT ;un is the number of trees in D that are

isomorphic to T and whose root is an unlabeled vertex of T (in particular, the root

has degree at least 2). In addition, pT ;j is the number of leaf-multi-labeled trees that

are isomorphic to T and have a leaf-vertex with label j marked; qT is the number

of trees in D where the root has degree 2 and, after suppressing the root vertex, we

obtain a tree that is isomorphic to T ; and sT is the number of trees that are counted

by qT for which the two subtrees at the root are isomorphic.

Now, to obtain the terms of D(·) corresponding to ∑T term(T )∑j pT ;j, first note

that the contribution of the single vertex trees marked at a (leaf-)vertex is counted by∑
j xj. Also, the contribution of the trees with at least two vertices that are marked at

a leaf-vertex is counted by F (·)∑j xj, since removing the marked vertex and rooting

the remaining tree at the neighbor of this marked vertex gives a tree in D. Thus∑
T term(T )∑j pT ;j = (F (·) + 1)∑xj.

We now consider the terms corresponding to ∑T term(T )pT ;un. If we consider the

unlabeled marked vertex a root, we have a tree in F whose root must have degree

at least 2. Also, trees in F with root of degree less than 2 (so 1 or 0) are counted

by the singleton trees, ∑j xj, and z(F (·)), where an unlabled root has been added to

the root of any tree in F . Therefore ∑T term(T )pT ;un = F (·)− z(F (·))−∑j xj.

Therefore, ∑T∈D term(T )(pT ;un +∑
j pT ;j) = (1− z +∑

j xj)F (·).
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To complete the proof, note that ∑T∈B term(T )(qT −sT ) counts those rooted gene

trees (without counting their roots) where the root has degree 2 and the two rooted

subtrees obtained when removing the original root are non-isomorphic. Again, using

arguments similar to the ones used in Theorem 2.1 we obtain

∑
T∈D

term(T )(qT − sT ) = 1
2(F 2(·)− F (·2)),

from which the theorem follows.
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Chapter 5

Asymptotics for leaf-labeled trees

5.1 Leaf-labeled trees and set partitions

We now turn our attention to rooted phylogenetic trees. Our aim is to develop

asymptotic formulae for such trees.

To this end, we first describe a bijection between the set of rooted leaf-labeled trees

with n non-root vertices and k leaves, and partitions of an n element set into n−k+1

classes, developed by Erdős and Székely [13]. As is customary, the Stirling number

S(n, k) denotes the number of partitions of [[[n]]] into k partition classes. We will use

F (n, k) to denote the number of rooted leaf-labeled (not necessarily phylogenetic)

trees with k uniquely labeled non-root leaves and n non-root vertices, where the root,

if it is of degree one, is unlabeled and is not counted as a leaf. The vertex of the trivial

tree, as usual, will be both a root and a leaf, and will be labeled. Note that when

k ≥ 2 then our tree can not be trivial, and therefore the non-root vertices include all

the k labeled leaves. Thus we must have F (n, k) = 0 for all k > 1 and 0 ≤ n < k.

Also, F (n, 1) = 1 for all n ≥ 0 (there is precisely one such tree, a path of length n).

For all n ≥ 0, we have F (n, 0) = 0 .

The label set for such trees with k leaves is assumed to be [[[k]]], the root may

have degree one and internal vertices may have degree two, so these are not yet the

phylogenetic trees of interest. Péter Erdős and László Székely [13] gave a bijection

between the trees counted by F (n, k) and partitions of an n-element set into n−k+1

classes. We give a brief sketch of this bijection after a few definitions. The first are
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terms that help us refer to the structure of the rooted tree:

Definition 5.1. Let T be a rooted tree with root ρT . If the path from the root ρT

to a vertex a contains the vertex b, the vertex a is said to be below vertex b. This

relationship is a well-known partial order on the vertices of T .

A child of a vertex a is any vertex c adjacent to and below a. The vertex a is referred

to as the parent of c.

The Erdős-Székely bijection uses the antilexicographic order on subsets of an

ordered set

Definition 5.2. Let X be an ordered set. The antilexicographic order <AL on the

power set of X is defined as follows:

A <AL B ⇔ max(A∆B) = max{(A\B) ∪ (B\A)} ∈ B.

The bijection can be described as follows.

If T is a trivial tree, i.e. a single vertex labeled with 1, then n = 0, k = 1. This is

the only tree that has these parameters, so F (0, 1) = 1. In this case n − k + 1 = 0,

so we need to assign a partition of the empty set to no partition classes (the empty

partition) to this. This agrees with the usual definition S(0, 0) = 1.

Given a non-trivial leaf-labeled tree T with n non-root vertices and k labeled

leaves we have n ≥ k ≥ 1, and n − k + 1 ≥ 1. Since the root is not a leaf, T has

n + 1 vertices, and n− k + 1 is the number of non-leaf vertices in T . We will give a

partition of [[[n]]] into n − k + 1 classes by first establishing a bijection φ between [[[n]]]

and the set of non-root vertices of T , and then assigning to each non-leaf vertex x the

set {φ(c) : c is a child of x}. Since each non-root vertex of T is a child of precisely

one non-leaf node, and non-leaf nodes have at least one child, the sets assigned to the

non-root vertices will form a partition of [[[n]]], as required. The number of partition

classes is the number of non-leaf vertices, n − k + 1. By construction, the size of
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each partition class is the number of children of the corresponding non-leaf vertex,

a property we will want to exploit later. The special properties of φ ensure that for

any appropriate partition we can determine the tree that gave rise to it.

The set of labels [[[k]]] is clearly an ordered set, where the ordering is the usual

ordering on the numbers. We need to construct the bijection φ between the n non-

root vertices and [[[n]]]. Given a leaf-labeled tree, each non-root vertex is assigned a

subset of [[[k]]] as follows. Every leaf is assigned the set consisting of its label. Each

non-leaf, non-root vertex is assigned the set containing the labels of the leaves below

this vertex. Once every non-leaf vertex has been assigned a subset of [[[k]]], these subsets

are ordered using the antilexicographic ordering. If some of the internal vertices have

degree two, it may happen that some sets occur more than once. In this instance the

set of the vertex closer to the root is considered the“larger”. Each non-root vertex

is then given a new label corresponding to the position of its assigned set in the

ordering. The tree is then assigned the partition in which there is a partition class

corresponding to each non-leaf node containing the numbers assigned to its children.

The properties of the antilexicographic ordering together with the way we define

the partition for the tree ensure the following:

1. The size of each partition class is equal to the number of children of the corre-

sponding vertex.

2. The partition class which contains n is the set containing the children of the

root.

3. The partition class corresponding to a non-root, non-leaf vertex a with φ(a) = m

contains the number m−1, and all other numbers in this class are smaller than

m− 1.

Note that in the context of this terminology, a phylogenetic tree is simply a leaf-

labeled tree where all non-leaf vertices have at least two children.

46



Given a partition P of [[[n]]], with n > 0 we can find the corresponding tree T as

follows. We must have a rooted tree with n + 1 vertices and k = n + 1− |P| leaves.

Since 1 ≤ |P| ≤ n, we have that 1 ≤ k ≤ n, so this, at first glance, is possible.

Begin with n + 1 vertices; one is designated the root and the others are labeled

by 1, 2 . . . , n, which correspond the values of φ taken on the tree.

Let A ∈ P be a partition class that contains n; connect the vertices labeled by

elements of A to the root. For any B ∈ P , if B 6= A then b := max(B) < n. Connect

the vertices labeled by elements of B to the vertex labeled b+ 1.

It is easy to show (and is omitted) that the resulting graph is cycle-free. Since the

graph has n+1 vertices and n edges, it is a tree. Since elements of each partition class

have the same parent, and elements of different partition classes have different parents,

we have |P| vertices that are parents of some vertex, and so we have n+ 1− |P| = k

leaves, as required. We omit the proof that the resulting tree indeed gives rise to the

partition P , as claimed above. For further details, the reader should consult [13].

See Figures 5.1 and 5.2 for an example of the bijection. (A similar result was

established independently by Haiman and Schmitt [21].)

For all other (n, k) pairs, i.e. when (n, k) /∈ {(0, 1)} ∪ {(a, b) ∈ Z+ : a ≥ b}, we

have F (n, k) = 0, since there are no trees with those parameters. Also, it is easy to

see that S(n, n− k + 1) = 0 for these (n, k) pairs. Thus, the Erdős-Székely bijection

means that F (n, k) = S(n, n− k + 1) for all integers n, k.

It immediately follows that ∑k F (n, k) = ∑
i S(n, i) = B(n), the n-th Bell num-

ber, the number of ways to partition [n], A000110 in The On-Line Encyclopedia of

Integer Sequences [41]. Inverting the relationship S(n, i) = F (n, n − i + 1), and the

abundant information available on the Stirling numbers of the second kind translates

to information on the counts of rooted leaf-labeled trees. In this section we discuss

some results on the Stirling numbers of the second kind for two reasons: they im-

mediately apply to the counts of these trees and will provide guidelines for Harper’s
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a{a}

{a}

d{d}

{b,c,d}

{b,c}

b{b} c{c}

V
irginia

{a} < {a} < {b} < {c} < {b, c} < {d} < {b, c, d}

1andd2andd3andd4adndd5anddd6adddnd7
V

irginia

1

{1} 2

{2,7}

6

7{5,6}

5{3,4}

3 4

{2, 7}, {5, 6}, {3, 4}, {1}

Figure 5.1: Demonstrating the steps of the Erdős-Székely bijection from a rooted leaf-
labeled tree to a partition of [[[7]]].
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{2, 7}, {6, 5}, {4, 3}, {1}

Virginia

{2, 7}

{6, 5}

{4, 3}, {1}
.....................................

{2, 7}

{6, 5}

{4, 3}, {1}

2 7

5 6

1 3 4

Virginia

d

a b c

Figure 5.2: Demonstrating the steps of the Erdős-Székely bijection from a partition
of [[[7]]] to a rooted leaf-labeled tree.

method to obtain results in sections 6.1 and 6.3.

The bivariate generating function (page 88 [44])

∑
n≥0

∑
k≥0

S(n, k)xk t
n

n! = ex(et−1) (5.1)

becomes ∑
n

∑
k

F (n, k)xk t
n

n! = xe(etx−1)/x

after substituting 1/x into x, tx into t, and multiplication by x as shown below. Since

F (n, k) = 0 when min(n, k) = 0 and k 6= 1, we have ∑(n,k):min(n,k)=0 F (n, k)xk tn
n! = x.
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Also, ∑(n,k):min(n,k)=0 S(n, k)xk tn
n! = 1. Thus,

x
(
e
etx−1
x − 1

)
= x

 ∞∑
n=0

n∑
k=0

S(n, k)x−k (tx)n
n! −

∑
(n,k):min(n,k)=0

S(n, k)xk t
n

n!


= x

∞∑
n=1

n∑
k=1

S(n, k)x−k (tx)n
n! =

∞∑
n=1

n∑
k=1

S(n, k)xn−k+1 t
n

n!

=
∞∑
n=1

n∑
j=1

S(n, n− j + 1)xj t
n

n! =
∞∑
n=1

n∑
j=1

F (n, j)xj t
n

n!

=
( ∞∑
n=0

∞∑
k=0

F (n, k)xk t
n

n!

)
−

 ∑
(n,k):min(n,k)=0

F (n, k)xk t
n

n!


=

( ∞∑
n=0

∞∑
k=0

F (n, k)xk t
n

n!

)
− x

For 1 ≤ k ≤ n we have the recurrence relation

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), (5.2)

since S(n − 1, k − 1) counts the partitions of [[[n]]] where {n} is a partition class, and

kS(n − 1, k) counts those partitions of [[[n]]] where the partition class containing n

contains some other element of [[[n − 1]]] as well. Since 1 ≤ k ≤ n is equivalent with

1 ≤ n−k+1 ≤ n, this translates to F (n, k) = F (n−1, k)+(n+1−k)F (n−1, k−1),

as follows

F (n, k) = S(n, n− k + 1)

= S(n− 1, n− k) + (n− k + 1)S(n− 1, n− k + 1)

= F
(
n− 1, (n− 1)− (n− k) + 1

)
+(n− k + 1)F

(
n− 1, (n− 1)− (n− k + 1) + 1

)
= F (n− 1, k) + (n− k + 1)F (n− 1, k − 1)

Applying formula (5.2) for the polynomials Rn(x) = ∑
k S(n, k)xk one obtains the

recurrence relation

Rn(x) = x

(
R′n−1(x) +Rn−1(x)

)
(5.3)

with initial condition R1(x) = x.
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5.2 Harper’s Method

Harper [25] gave a very elegant proof for the asymptotic normality of the array S(n, k).

We follow the interpretation of Canfield [4] and Clark [8], who clarified and explained

the details of Harper’s method. Let A(n, j) be an array of non-negative real numbers

for j = 0, 1, . . . , dn, and define An(x) = ∑
j A(n, j)xj.

Observe that ∑j A(n, j) = An(1). Let Zn denote the random variable, for which

the probability P(Zn = j) = A(n,j)
An(1) . In terms of An(x), there is a well-known [8]

expression for the expectation and variance of Zn:

E(Zn) = A′n(1)
An(1) and D2(Zn) = A′n(1)

An(1) +
A′n(x)
An(x)

′∣∣∣∣∣∣
x=1

. (5.4)

As E(Zn) and D(Zn) are determined by the array A(n, j), we will also write them as

E(A(n, .)) and D(A(n, .))

The array A(n, j) is called asymptotically normal in the sense of a central limit

theorem, if
1

An(1)

bxnc∑
j=1

A(n, j) −→ 1√
2π

∫ x

−∞
e−t

2/2dt (5.5)

as n→∞ uniformly in x, where

xn = E(Zn) + xD(Zn).

Note that the left side of (5.5) is P(Zn ≤ xn), so asymptotic normality of the

array A(n, k) means that the cumulative density function of Zn−E(Zn)
D(Zn) approaches the

standard normal cumulative density function uniformly everywhere.

Let {−ynk : k = 1, 2, . . . , dn} be the set of roots of the polynomial An(x) and

assume that all −yn,k are non-positive. Define the independent random variables Ynk

by P(Ynk = 0) = ynk/(1 + ynk) and P(Ynk = 1) = 1/(1 + ynk).

Then the probability generating function of the random variable Zn isAn(x)/An(1);

and the probability generating function of the random variable Ynk is x+ynk
1+ynk

. Since the
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probability generating function of a sum of independent random variables is the prod-

uct of their probability generating functions, we have that the probability generating

function of ∑k Ynk is ∏dn
k=1

x+ynk
1+ynk

. However, as

dn∏
k=1

x+ ynk
1 + ynk

= An(x)
An(1) ,

we conclude that Zn and ∑k Ynk have identical distribution.

Let Gnj(x) = P
(
Ynj−E(Ynj)
D(Zn) ≤ x

)
denote the cumulative distribution function of

Ynj−E(Ynj)
D(Zn) for j = 1, . . . , dn. The Lindeberg–Feller Theorem applies ([12] pp. 98–101)

to the sequence Zn−E(Zn)
Dn(Zn) = ∑

j
Ynj−E(Ynj)
Dn(Zn) . The condition of the cited theorem, for all

ε > 0

lim
n→∞

dn∑
j=1

∫
|y|>ε

y2dGnj(y) = 0

follows from

lim
n→∞

D(Zn) =∞. (5.6)

Therefore, the cited theorem proves the normal convergence (5.5), provided (5.6)

holds and all the roots of the polynomials An(x) have non-positive real numbers.

A sequence ak is called unimodal, if first it increases, and then decreases. An array

A(n, k) is called unimodal, if for every n, the sequence ak = A(n, k) is unimodal. A

sequence ak, which is 0 for k < t and ` < k, with at 6= 0 and a` 6= 0, is called strictly

log-concave (SLC) if a2
k−ak−1ak+1 > 0 for t+1 ≤ k ≤ `−1. An array A(n, k) is called

strictly log-concave (SLC), if for every fixed n, the sequence ak = A(n, k) is strictly

log-concave. It is clear that any SLC sequence is unimodal in the variable k. Some LC

sequences may not be unimodal, like 0,1,1,0,0,1,1,0. However, LC sequences, which

do not have 0 terms both preceded and followed by non-zero terms (have no internal

zeroes property) are also unimodal. Dobson [10] showed the unimodality of S(n, k),

Klarner [31] was the first to show the SLC property of S(n, k).

Using Newton’s Inequality, Lieb [31] showed that if a polynomial ∑N
k=1 Ckx

k has
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only real roots, then for k = 2, . . . , N − 1

C2
k ≥ Ck+1Ck−1

(
k

k − 1

)(
N − k + 1
N − k

)
. (5.7)

Therefore, the Ck sequence is SLC. E.R. Canfield [4] noted that for asymptotically

normal sequences (5.5), the SLC property and D(Zn)→∞ implies the following local

limit theorem:

lim
n→∞

D(Zn)
An(1) A(n, bxnc) = 1√

2π
e−x

2/2 (5.8)

uniformly in x.

Again, the left side of (5.8) is

D(Zn)P(Zn = bxnc) =
P
(
xn−1
D(Zn) <

Zn−E(Zn)
D(Zn) ≤ xn

D(Zn)

)
1

D(Zn)
,

which gives a justification why we want this local condition.

Furthermore, from the fact that the convergence of the array A(n, j) to the Gaus-

sian function is actually uniform, Canfield concluded that the number k = Jn maxi-

mizing A(n, k) satisfies

Jn − E(Zn) = o(D(Zn)); (5.9)

and

A(n, Jn) ∼ 1√
2π

An(1)
Dn(Zn) . (5.10)

For the Stirling numbers of the second kind, A(n, j) = S(n, j), An(1) = Bn, and

one has

E(S(n, .)) = Bn+1

Bn

− 1,

D2(S(n, .)) = Bn+2

Bn

−
(
Bn+1

Bn

)2
−1. (5.11)

Harper [25] showed that ∑k S(n, k)xk has distinct nonpositive roots, and that (5.11)

goes to infinity, which is sufficient for the asymptotic normality of the Stirling numbers

of the second kind. In showing the former, Harper observed that the functionHn(x) =

exRn(x) has the same roots as Rn(x) and by (5.3), Hn(x) = xH ′n−1(x) as follows.

xH ′n−1(x) = x
d

dx
(exRn−1(x)) = xex

(
Rn−1(x) +R′n−1(x)

)
= exRn(x) = Hn(x).

53



Rn(x) is a polynomial of degree n with a leading coefficient of one, so Rn(x) andHn(x)

have at most n different real roots. By induction on n we can see that Hn(x) has

precisely n different nonpositive real roots, one of which is x = 0. For n = 1, we have

H1(x) = exR1(x) = (ex)(x) has one root at x = 0. Let n ≥ 2. Then since xH ′n−1(x) =

Hn(x), the real roots of Hn(x) are x = 0 and the roots of H ′n−1(x). Assume by the

induction hypothesis that the real roots of Hn−1 are 0 = α0 > α2 > · · · > αn−2.

By Rolle’s Theorem, H ′n−1 has at least one root between any two consecutive roots

of Hn−1. Since Hn−1(αn−2) = 0 = lim
x→−∞

Hn−1(x) and Hn−1(x) is continuous and

nonzero on (−∞, αn−2), H ′n−1(x) has a root βn−1 ∈ (−∞, αn−2). Therefore H ′n−1 has

n − 1 different negative roots, so Hn has n different nonpositive real roots, one of

which is x = 0.

The SLC property of S(n, k) implies the SLC property and unimodality of F (n, k).

Consequently, the F (n, k) array is also asymptotically normal, in the sense of both

the central and local limit theorems, with

E(F (n, .)) = n+ 1− E(S(n, .))

and

D(F (n, .)) = D(S(n, .)).

5.3 Asymptotics for Bell numbers

An asymptotic formula for the Bell numbers, in terms of the solution of the unique

real solution of the equation rer = n, was obtained by Moser and Wyman [35]:

Bn ∼ (r + 1)− 1
2 en(r+r−1−1)−1

(
1− r2(2r2 + 7r + 10)

24n(r + 1)3

)
.

Iteration gives

r = r(n) = lnn− ln lnn+O(1).

The function r(n) is also known as the Lambert function and is also denoted by

LambertW (n). The explicit form of their result is not convenient to obtain asymp-
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totics for the expectation and the variance, as r will vary with n. Canfield and Harper

[6], and Canfield [5] made minor modifications on the proof of Moser and Wyman

[35] to develop an estimate for Bn+h, which holds uniformly for h = O(lnn), using a

single r = r(n) value, as n→∞:.

Bn+h = (n+ h)!
rn+h

ee
r−1

(2πB)1/2 (5.12)

×

1 + P0 + hP1 + h2P2

er
+ Q0 + hQ1 + h2Q2 + h3Q3 + h4Q4

e2r

+ O
(
e−3r

),
where B = (r2 + r)er, Pi and Qi are explicitly known rational functions of r. We list

and use in the Maple worksheet B their exact values from Canfield [3]. Using those,

formula (5.12) provides asymptotics for E(S(n, .)) and D(S(n, .)), as in [3] (note that

[3] only claimed O(r/n) error term in (5.14)):

E(S(n, .)) = n

r
− 1 + r

2(r + 1)2 +O
( 1
n

)
. (5.13)

D2(S(n, .)) = n

r(r + 1) + r(r − 1)
2(r + 1)4 − 1 +O

( 1
n

)
. (5.14)

With symbolic calculations Salvy and Shackell [37] obtained the following asymptotics

just in terms of n, with a compromise at the error term:

E(S(n, .)) = n

lnn + n(ln lnn+O(1/ lnn))
ln2 n

, (5.15)

D2(S(n, .)) = n

ln2 n
+ n(2 ln lnn− 1 +O(1/ lnn))

ln3 n
. (5.16)
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Chapter 6

Asymptotics for rooted phylogenetic trees

6.1 Set partitions corresponding to phylogenetic trees

We now turn our attention to rooted phylogenetic trees.

In Chapter 5.1 we discussed the Erdős and Székely [13] bijection between the

trees counted by F (n, k) and partitions of an n-element set into n − k + 1 classes,

under which the number of children of each of the non-leaf vertices corresponds to

class sizes in the partition. As mentioned in the previous chapter, phylogenetic

trees are precisely the leaf-labeled trees where every non-leaf vertex has at least two

children. Let F ?(n, k) denote the number of phylogenetic trees with k leaves and

n non-root vertices and S?(n, k) denote the number partitions of an n element set

into k classes such that each class contains at least two elements. The bijection still

provides F ?(n, k) = S?(n, n−k+ 1) and S?(n, i) = F ?(n, n− i+ 1). Any information

available on the array S?(n, k) translates to information on the array F ?(n, k). In

this section we will prove central and local limit theorems for S?(n, k) (Theorem 6.7)

which translate into such theorems for F ?(n, k), with E(F ?(n, .)) = n+1−E(S?(n, .))

and D(F ?(n, .)) = D(S?(n, .)).

First we derive a bivariable generating function (which is neither completely ex-

ponential nor completely ordinary). To this end, weight the partitions as follows:

Assign to a partition class of size k the weight xk, and to the entire partition the

product of the weight of its partition classes. In particular, the counts of the number

of partitions that contain only singleton classes are S(n, n) = 1. The weight of such
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a partition on [[[n]]] is xn, since the partition must have n singleton classes. The expo-

nential generating function of the weighted partitions that contain singleton classes

only is
∞∑
n=0

S(n, n)xn t
n

n! =
∞∑
n=0

(xt)n
n! = etx. (6.1)

Now consider all weighted partitions, regardless of class sizes. Every weighted parti-

tion can be identified with a pair of (possibly empty) partitions on a pair of disjoint

underlying sets: the first partition has only singleton classes and covers some (possi-

bly empty) subset A of [[[n]]], the second partition covers the remaining set [[[n]]] \A and

has no singleton classes. Using equations (5.1), (6.1) and the multiplication rule of

EGF’s (see claim 1.40), we obtain that the EGF of weighted partitions is

etx
∑
n

∑
k

S?(n, k)xk t
n

n! =
∑
n

∑
k

S(n, k)xk t
n

n! = ex(et−1),

or ∑
n

∑
k

S?(n, k)xk t
n

n! = e−tx
∑
n

∑
k

S(n, k)xk t
n

n! = e−tx · ex(et−1)

At this point we have the mixed bivariate generating function

∑
n

∑
k

S?(n, k)xk t
n

n! = ex(et−t−1). (6.2)

Inclusion-exclusion or (6.2) implies that

S?(n, k) =
n∑
`=0

(−1)`
(
n

`

)
S(n− `, k − `).

After substituting 1/x into x, tx into t, and multiplication by x into equation

(6.2), we obtain ∑
n

∑
i

F ?(n, i)xi t
n

n! = xe(etx−tx−1)/x

as shown below. Since F ?(n, k) = 0 when min(n, k) = 0 and k 6= 1, we have
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∑
(n,k):min(n,k)=0 F

?(n, k)xk tn
n! = x. Also, ∑(n,k):min(n,k)=0 S

?(n, k)xk tn
n! = 1. Thus

x
(
e
etx−tx−1

x − 1
)

= x

 ∞∑
n=0

n∑
k=0

S?(n, k)x−k (tx)n
n! −

∑
(n,k):min(n,k)=0

S?(n, k)xk t
n

n!


= x

∞∑
n=1

n∑
k=1

S?(n, k)x−k (tx)n
n! =

∞∑
n=1

n∑
k=1

S?(n, k)xn−k+1 (t)n
n!

=
∞∑
n=1

n∑
j=1

S?(n, n− j + 1)xj (t)n
n! =

∞∑
n=1

n∑
j=1

F ?(n, j)xj (t)n
n!

=
 ∞∑
n=0

n∑
j=0

F ?(n, j)xj (t)n
n!

−
 ∑

(n,k):min(n,k)=0
F ?(n, k)xk t

n

n!


=

 ∞∑
n=0

n∑
j=0

F ?(n, j)xj (t)n
n!

− x
Define B?

n = ∑
k S

?(n, k); this is the number of all partitions of an n-element set

which do not contain singleton classes [41] A000296 in The On-Line Encyclopedia of

Integer Sequences [41]. Then the exponential generating function of the counts B?
n is

∑
n

B?
n

tn

n! = ee
t−t−1 = 1 + t2

2! + t3

3! + 4t4
4! + 11t5

5! + ....

Becker [1] observed that

Bn = B?
n+1 +B?

n. (6.3)

This identity can be shown as follows. Given a partition of [[[n]]], either the partition

has no singleton sets in which case it is counted in B?
n, or it contains at least one

singleton class. In the later case, there is a bijection between these partitions and

partitions without singleton classes of an (n + 1)-element set where a new class has

been built with all the element of all singletons with the addition of n+ 1. These sets

are counted by B?
n+1.

Using Claim 1.39, the generating function proof of identity (6.3) is simply

ee
t−1 = d

dt
(eet−t−1) + ee

t−t−1.

From Bi = B?
i +B?

i+1 for i = 1, 2, . . . , n, and B?
0 = 1, we obtain ∑n

i=1 Bi(−1)n−i =

B?
n+1 + (−1)n−1B?

0 . As the Bn sequence is strictly increasing, we immediately obtain
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the following: Bt − Bt−1 <
∑t
i=1 Bi(−1)t−i < Bt for t > 4, and with t = n − h the

asymptotical formula

B?
n+1 = Bn −Bn−1 + . . .+ (−1)hBn−h +O(Bn−h−1). (6.4)

In the special case h = 0, using (5.12), we obtain:

B?
n+1 = Bn −O(Bn−1) = Bn

(
1−O

( r
n

))
. (6.5)

The following recurrence relation

S?(n, k) = (n− 1)S?(n− 2, k − 1) + kS?(n− 1, k) (6.6)

can be easily seen by considering the placement of the nth element in any partition

counted by S?(n, k). If the nth element is not in a partition class of size two, then

it can be removed and the resulting partition is counted in S?(n − 1, k). There are

k classes in this count that could contain the nth element. If the nth element is in

a partition class of size two, the removal of that class results in a partition of n − 2

elements into k − 1 partition classes. There are n− 1 elements that could have been

paired with n. Notice that the recursion drops back two steps.

We define the polynomial sequence Sn(x) = ∑
k S

?(n, k)xk. It is easy to see that

S1(x) = 0, S2(x) = x, and for n ≥ 3 equation (6.6) gives

Sn(x) = (n− 1)xSn−2(x) + xS ′n−1(x). (6.7)

It is useful to note that the polynomial Si(x) has zero constant term, and for all

1 ≤ k ≤ deg(Si(x)) the coefficient S(i, k) is positive.

Induction immediately gives the following lemma.

Lemma 6.1. For n ≥ 2, S ′n(0) > 0, the degree of Sn(x) is deg(Sn(x)) =
⌊
n

2

⌋
, and

the root 0 has multiplicity one.

Proof. Since S ′n(0) = S?(n, 1) > 0 for n ≥ 0, the first part of the claim is true.
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For n = 2, 3, S2(x) = S3(x) = x has degree 1 = b2
2c = b3

2c and the polynomial

has 0 as a root of multiplicity one. Assume the statement is true for n ≤ k and

consider Sk+1(x). By the induction hypothesis, xkSk−1(x) has degree bk−1
2 c + 1 =

bk+1
2 c, and xS

′
k(x) has degree bk2c − 1 + 1 ≤ bk+1

2 c. Since the leading coefficients of

both of these polynomials are positive, regardless of the parity of k the polynomial

Sk+1(x) = xkSk−2(x) + xS ′k−1(x) has degree bk+1
2 c. By the induction hypothesis, 0 is

a root of Sk(x) of multiplicity one. The constant term of S ′k is positive by the first,

already proven part of this lemma, therefore no power of x divides kSk−1(x) +S ′k(x).

Since Sk+1(x) = x (kSk−1(x) + S ′k(x)), we have that x2 is a not factor of Sk+1(x), and

the root x = 0 has multiplicity one.

To be able to refer to the roots of Sn(x) in order, we will introduce the following

notation

Notation 6.2. The bn2 c roots of Sn(x) are denoted by

γ
(n)
1 ≤ γ

(n)
2 ≤ · · · ≤ γ

(n)
bn2 c

We will also use

Notation 6.3. For a real number r

sgn(r) =



1, if r>0

0 if r=0

−1 otherwise.

It is easy to see that for real numbers a, b we have sgn(ab) = sgn(a) sin(b).

6.2 The roots of the polynomial Sn(x).

In order to use Harper’s method, we need to show that the roots of Sn(x) are non-

positive real numbers and that every root occurs with multiplicity one. This section

is devoted to the task.
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The following lemma must be divided into two cases, as depending on the parity

of n, the number of roots of Sn(x) and Sn+1(x) may or may not be the same.

Lemma 6.4. Let k ≥ 2 be an integer. Then the following are true:

First, if the roots of S2k−2(x) and S2k−1(x) occur with multiplicity one and satisfy

γ
(2k−2)
1 < γ

(2k−1)
1 < γ

(2k−2)
2 < γ

(2k−1)
2 < · · · < γ

(2k−1)
k−2 < γ

(2k−2)
k−1 = 0 = γ

(2k−1)
k−1 ,

then the roots, {γ(2k)
i } of S2k(x) satisfy

γ
(2k)
1 < γ

(2k−1)
1 < γ

(2k)
2 < γ

(2k−1)
2 < · · · < γ

(2k)
k−1 < γ

(2k−1)
k−1 = 0 = γ

(2k)
k .

Second, if the roots of S2k−1(x) and S2k(x) occur with multiplicity one and satisfy

γ
(2k)
1 < γ

(2k−1)
1 < γ

(2k)
2 < γ

(2k−1)
2 < · · · < γ

(2k)
k−1 < γ

(2k−1)
k−1 = 0 = γ

(2k)
k

then the {γ2k+1
i } roots of S2k+1 satisfy

γ
(2k)
1 < γ

(2k+1)
1 < γ

(2k)
2 < γ

(2k+1)
2 < · · · < γ

(2k+1)
k−2 < γ

(2k)
k−1 < γ

(2k+1)
k−1 < γ

(2k)
k = 0 = γ

(2k+1)
k .

Proof. In proving the first statement, our initial goal will be to show that under the

assumption S2k(x) has a root in the interval (γ(2k−1)
i , γ

(2k−1)
i+1 ) for each i ∈ [k − 2].

Since S2k(x) has k roots, one of which is 0, all that will remain to show is that S2k(x)

has a root that is less than γ(2k−1)
1 . To achieve this goal, it is enough to show that

for each i ∈ [k − 1] we have

sgn
(
(2k − 1)S2k−2(γ(2k−1)

i ) + S ′2k−1(γ(2k−1)
i )

)
= (−1)k−1−i, (6.8)

since using Rolle’s Theorem and equation (6.7) we get that S2k(x)
x

has a root in the

interval (γ(2k−1)
i , γ

(2k−1)
i+1 ) for each i ∈ [k − 2]. We determine the right side of equa-

tion (6.8) as follows. We know that S ′2k−1(x) is a polynomial of degree k − 2 with

exactly one root between the k − 1 distinct consecutive roots of S2k−1(x), therefore
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we must have sgn
(
S ′2k−1(γ(2k−1)

i )
)

= − sgn
(
S ′2k−1(γ(2k−1)

i+1 )
)
for 1 ≤ i ≤ k − 2. Recall

(Lemma 6.1) that S ′2k−1(γ(2k−1)
k−1 ) = S ′2k−1(0) > 0. Therefore, sgn

(
S ′2k−1(γ(2k−1)

k−1 )
)

= 1

and

sgn
(
S ′2k−1(γ(2k−1)

i )
)

= (−1)k−1−i for each i ∈ [k − 1]. (6.9)

Observe that sgn
(
S2k−2(γ(2k−1)

i )
)

= − sgn
(
S2k−2(γ(2k−1)

i+1 )
)
for 1 ≤ i ≤ k−3, since

by the hypothesis, for these values of i the polynomial S2k−2(x) has exactly one root

in the interval
(
γ

(2k−1)
i , γ

(2k−1)
i+1

)
. The polynomial S2k−2(x) has positive coefficients

and k − 1 non positive roots, with S2k−2(γ(2k−1)
k−1 ) = 0. We know that S ′2k−2(0) > 0

and that S2k−2(x) has no roots between the roots γ(2k−2)
k−1 = 0 and γ(2k−2)

k−2 . Therefore,

since γ(2k−1)
k−2 ∈ (γ(2k−2)

k−2 , γ
(2k−2)
k−1 ), we must have that sgn

(
S2k−2(γ(2k−1)

k−2 )
)

= −1, which

implies that

sgn
(
S2k−2(γ(2k−1)

i )
)

= (−1)k−1−i = sgn
(
S ′2k−1(γ(2k−1)

i )
)

for all i ∈ [k − 2]. (6.10)

The required equation (6.8) now follows from the facts that 2k − 1 > 0, equations

(6.9) and (6.10), and the fact that sgn
(
S2k−2(γ(2k−1)

k−1 )
)

= 0.

It remains to be shown that S2k(x)
x

(and consequently S2k(x)) changes sign, and

therefore has a root in
(
−∞, γ(2k−1)

1

)
. Since the degree of S2k−2 is greater than the

degree of S ′2k−1, by equations (6.7) and (6.10), it is enough to show that S2k−2 changes

sign in this interval. However, this follows from the fact that γ(2k−2)
1 ∈

(
−∞, γ(2k−1)

1

)
.

In proving the second statement, we will show that under the assumption, S2k+1(x)

has a root in the interval (γ(2k)
i , γ

(2k)
i+1 ) for each i ∈ [k− 1]. Since S2k+1(x) has k roots,

one of which is 0, this achieves our goal. For this, it is enough to show that for each

i ∈ [k] we have

sgn
(
2kS2k−1(γ(2k)

i ) + S ′2k(γ
(2k)
i )

)
= (−1)k−i, (6.11)

since using Rolle’s Theorem and equation (6.7) we know that S2k+1(x)
x

has a root in

the interval (γ(2k)
i , γ

(2k)
i+1 ) for each i ∈ [k− 1]. We determine the right side of equation

(6.11) as in the previous case. We know that S ′2k(x) is a polynomial of degree k − 1
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with exactly one root between the k distinct consecutive roots of S2k(x). Therefore we

must have sgn
(
S ′2k(γ

(2k)
i )

)
= − sgn

(
S ′2k(γ

(2k)
i+1 )

)
for 1 ≤ i ≤ k−1. Recall (Lemma 6.1)

that S ′2k(γ
(2k)
k ) = S ′2k(0) > 0. Thus, sgn

(
S ′2k(γ

(2k)
k )

)
= 1 and

sgn
(
S ′2k(γ

(2k)
i )

)
= (−1)k−i for each i ∈ [k]. (6.12)

Observe that sgn
(
S2k−1(γ(2k)

i )
)

= − sgn
(
S2k−1(γ(2k)

i+1 )
)
for 1 ≤ i ≤ k − 2, since

by the hypothesis, for these values of i the polynomial S2k−1(x) has exactly one root

in the interval
(
γ

(2k)
i , γ

(2k)
i+1

)
. The polynomial S2k−1(x) has positive coefficients and

k− 1 non positive roots, with S2k−1(γ(2k)
k ) = 0. By hypothesis, S2k−1(x) has no roots

between the roots γ(2k−1)
k−1 = 0 and γ

(2k−1)
k−2 . Furthermore S ′2k−1(0) > 0 and, since

γ
(2k)
k−1 ∈ (γ(2k−1)

k−2 , γ
(2k−1)
k−1 ), we must have that sgn

(
S2k−1(γ(2k)

k−1)
)

= −1. This implies

that

sgn
(
S2k−1(γ(2k)

i )
)

= (−1)k−i = sgn
(
S ′2k(γ

(2k)
i )

)
for all i ∈ [k − 1]. (6.13)

The required equation (6.11) now follows from the facts that 2k > 0, equations (6.12)

and (6.13), and the fact that sgn
(
S2k−1(γ(2k)

k )
)

= 0.

Lemma 6.5. Let n ≥ 2 be an integer. The roots of Sn(x) are non positive real

numbers each of which occurs with multiplicity one. Furthermore, for k ≥ 2 the roots

of S2k(x) and S2k−1 satisfy the following inqualities:

γ
(2k)
1 < γ

(2k−1)
1 < γ

(2k)
2 < γ

(2k−1)
2 < · · · < γ

(2k)
k−1 < γ

(2k−1)
k−1 = 0 = γ

(2k)
k .

while the roots of S2k(x) and S2k+1 satisfy

γ
(2k)
1 < γ

(2k+1)
1 < γ

(2k)
2 < γ

(2k+1)
2 < · · · < γ

(2k+1)
k−2 < γ

(2k)
k−1 < γ

(2k+1)
k−1 < γ

(2k)
k = 0 = γ

(2k+1)
k .

Proof. We will show this for all Sn(x) by induction on n.

The lemma is vacuously true for S2(x) = S3(x) = x. The roots of S4(x) = 3x2 +x

are γ(4)
1 = −1

3 and γ(4)
2 = 0, are ordered as stated, satisfying the lemma. The roots of

S5(x) = 10x2 + x are γ(5)
1 = −1

10 and γ(5)
2 = 0 also satisfying the lemma.
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Let n ≥ 4. and assume that the statement is true for all Sm(x) where 2 ≤ m ≤

n− 1.

If n = 2k for some integer k, then the statement follows from the induction

hypothesis and the first part of Lemma 6.4.

If n = 2k + 1, for some integer k, then the statement follows from the induction

hypothesis and the second part of Lemma 6.4.

Let the roots of Sn(x) be {−ynk : k = 1, 2, . . . , bn/2c}. Define the independent

random variables Ynk by P(Ynk = 0) = ynk/(1 + ynk) and P(Ynk = 1) = 1/(1 + ynk).

Set Wn = ∑
k Ynk. We have for the expectation and variance, from (5.4), using (6.7)

repeatedly,

E(Wn) = B?
n+1
B?
n

− n
B?
n−1
B?
n

;

D2(Wn) = B?
n+2
B?
n

+ 2nB
?
n+1B

?
n−1

(B?
n)2 + n(n− 1)B

?
n−2
B?
n

−
(
B?
n+1
B?
n

)2
−n2

(
B?
n−1
B?
n

)2
−n

B?
n−1
B?
n

− (2n+ 1).

Lemma 6.6. We have the asymptotic formulae

E(Wn) = n

r
− r − 1

2r + 1
2r(r + 1)2 +O

( 1
n

)
,

D2(Wn) = n

r(r + 1) − r + 1− 2
r + 1 −

1
2(r + 1)2 −

1
2(r + 1)3 + 1

(r + 1)4 +O
( 1
n

)
.

Proof. We started with the closed forms above, used (6.4) to substitute the B? num-

bers, and then substituted the B numbers with (5.12), changed e−r to r/n, using

Maple. For details, see the Maple worksheet.

Note that E(Wn) − E(Zn) = O(r) and D2(Wn) − D2(Zn) = O(r), where Zn still

denotes the random variable associated with the Bell numbers in Section 5.2. It

follows from these remarkably small differences that (5.15) and (5.16) still hold when

Zn is changed to Wn.
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Theorem 6.7. For the sequence A(n, j) = S?(n, j) the central limit theorem 5.5) and

the local limit theorem (5.8) holds with En = B?
n. Furthermore, the number k = Jn

that maximizes S?(n, k) satisfies

Jn = n

r
+ o(
√
n

r
)

and

S?(n, Jn) = rBn−1√
2nπ

(1 + o(1)).

Proof. The central and local limit theorems hinge on D(Wn)→∞ that we have from

Lemma 6.6. The arguments leading to (5.9) and (5.10) hold for S?(n, k) instead of

S(n, k). B∗n is approximated with Bn−1 by (6.5).

We obtain for free the asymptotically normal distribution of F ?(n, k). Defining a

random variable Yn with P(Yn = j) = F ?(n, j)/B?
n = P(Wn = n − j + 1), we have

E(Yn) = n+ 1−E(Wn) = n− n/r+ r+ 1 + o(1) and D2(Yn) = D2(Wn), and we have

the asymptotic normality results on the F ?(n, k) numbers instead of F (n, k), with

B?
n instead of Bn.

65



6.3 Biologically relevant distributions of phylogenetic trees

Felsenstein [15, 16], and also Foulds and Robinson [18] investigated the numbers Tn,m.

Tn,m is the number of rooted phylogenetic trees with n labeled leaves, m unlabeled

internal vertices (the root, if it is not a leaf, is one of them). Clearly, for m ≥ 2 we

have

Tn,m = F ?(n+m− 1, n) = S?(n+m− 1,m). (6.14)

If we are interested only in evaluating certain Tn,m numbers, the results in Section 6.7

would suffice. However, as the Tn,m notation suggests, the distributions of F (n, k)

and F ?(n, k) studied in Sections 5.1, and 6.7 for large but fixed number of vertices

n and varying number of leaves k, albeit is mathematically interesting, is not really

relevant for phylogenetics. The relevant distribution for phylogenetics is large but

fixed number of leaves and varying number of internal vertices, with which total

number of vertices must vary as well. Let tn = ∑
k Tn,k denote the number of all

phylogenetic trees with n labeled leaves. This sequence is A000311 in The On-Line

Encyclopedia of Integer Sequences [41], which is the solution to Schroeder’s fourth

problem [38].

Felsenstein [16, 15] proved the recurrence relation

Tn,k = (n+ k − 2)Tn−1,k−1 + kTn−1,k (6.15)

for k > 1 with the initial condition Tn,1 = 1 for n > 1. Let T ′ be a [phylogenetic tree

with n leaves (and label set [[[n]]]). The removal of the leaf labeled n will result in a

phylogenetic tree with n − 1 leaves if n is a child of a vertex of T ′ that has at least

two more children. If n is a child of a vertex of T ′ that has just one other child than

the removed leaf, then the removal of n results either in a tree that can be obtained

by subdividing an edge of a phylogenetic tree with n− 1 leaves (and the subdividing

vertex is the parent of n in T ′, which is not a root), or a tree that can be obtained

from a rooted phylogenetic tree with n − 1 leaves by adding a new root of degree
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1 to the old root (and the new root is the parent of the removed leaf). Using this

logic, we can obtain this recurrence relation by considering the addition of an nth leaf

to an already existing tree with n − 1 leaves. There are k ways to add a new leaf

labeled n as a child of an existing internal vertex of a rooted phylogenetic tree T with

k internal vertices, and this takes care of the second term of the right hand side of

equation (6.15). All other cases that we need to take care of change the number of

internal vertices. Fix a rooted phylogenetic tree T with n − 1 leaves (and label set

[n− 1]), and assume it has k − 1 internal vertices. There are n+ k − 3 ways to add

a leaf labeled n by subdividing an edge of T with an additional (internal) vertex an

make this new leaf the child of the subdividing vertex. The nth leaf can also be added

to T by adding a root and two edges; one edge between the new and old root and

on edge between the new root and the nth leaf, which takes care of the first term of

(6.15). See figure 6.1 for an example using T4,2

Consider the polynomials Pn(x) = ∑
k Tn+1,kx

k. Then Pn(1) = tn+1 and the degree

of Pn(x) is n. Felsenstein’s recurrence relation (6.15) implies the identity

Pn(x) = nxPn−1(x) + (x+ x2)P ′n−1(x) (6.16)

with initial terms P0(x) = 1, P1(x) = T2,1x = x, P2(x) = 3x2 + x, and

P3(x) = 15x3 + 10x2 + x. We show this identity as follows. For n ≥ 2,

Pn−1 =
n−1∑
k=1

Tn,kx
k so:

nxPn−1 =
n−1∑
k=1

nTn,kx
k+1 =

n∑
k=2

nTn,k−1x
k
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(a) T3,2

1 2

3

4 1 2
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(b) T4,3

1 2

34
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34

(c) T4,3

1 2

3

4

(d) T4,3

Figure 6.1: (a) The original T3,2 tree. (b Adding an internal vertex an leaf by subdi-
viding the edges adjacent to existing leaves. (c) Adding an internal vertex and leaf
by subdividing the edges between non-leaf vertices. (d) Adding one non-leaf and one
leaf vertex by re-rooting the tree at the new non-leaf vertex.
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Also,

P ′n−1(x) =
n−1∑
k=1

kTn,kx
k−1 so:

(x+ x2)P ′n−1(x) =
n−1∑
k=1

kTn,k
(
xk + xk+1

)
= x+ x2 + 2Tn,2(x2 + x3) + 3Tn,3(x3 + x4) + . . .

= x+
n∑
k=2

(kTn,k + (k − 1)Tn,k−1)xk

Now, using these with the recursion (6.15) one easily obtains

Pn(x) =
n∑
k=1

Tn+1,kx
k

= Tn+1,1x+ Tn+1,2x
2 + Tn+1,x

3 + . . .

= x+
n∑
k=2

((n+ k − 1)Tn,k−1 + kTn,k)xk

=
n∑
k=2

nTn,k−1x
k + x+

n∑
k=2

(kTn,k + (k − 1)Tn,k−1)xk

= nxPn−1 + (x+ x2)P ′n−1(x)

Theorem 6.8. For n ≥ 1, the polynomial Pn(x) has n distinct real roots, one of

them is zero, and the other n− 1 roots are in the open interval (−1, 0).

Proof. We prove the theorem with mathematical induction on n. The small cases

(n ≤ 2) above are easy to verify. It is easy to see (by a different induction) that

P1(−1) = −1 and from (6.16), Pn(−1) = (−n)Pn−1(−1), thus

sgn(Pn(−1)) = (−1)n. (6.17)

So assume that n ≥ 2, and, using the induction hypothesis, let the roots of Pn(x) be

−1 < α1 < · · · < αn−2 < αn−1 < αn = 0.

By Rolle’s theorem, P ′n(x) has a root βi in (αi, αi+1) for i = 1, 2, ..., n−1. From (6.16),

observe that sgn(Pn+1(βi)) = − sgn(Pn(βi)). As the sign of Pn(x) must alternate on

the βi, so must the sign of Pn+1(x), and therefore Pn+1(x) has a root in (βi, βi+1) for
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i = 1, 2, ..., n− 2. We have to find 3 more roots: one is x = 0, and we will show that

the other two are in the intervals (−1, β1) and (βn−1, 0), respectively.

Indeed, sgn(Pn(x)) differs in −1 and β1, since Pn(x) has a single root α1 between.

Also, sgn(Pn+1(−1)) = − sgn(Pn(−1)) by (6.17) and from our earlier observation,

sgn(Pn+1(β1)) = − sgn(Pn(β1)). Hence, sgn(Pn+1(x)) differs in −1 and β1, and there-

fore Pn+1(x) has a root in (−1, β1).

Observe (6.16) with induction implies that for n ≥ 1 the coefficient of xn in Pn(x)

is positive. On one hand, we have that for x < 0 but x sufficently close to zero,

sgn(Pn+1(x)) = −1. On the other hand, sgn(Pn+1(β1)) = − sgn(Pn+1(−1)) = (−1)n,

sgn(Pn+1(βi)) = (−1)n+i−1, and sgn(Pn+1(βn)) = 1. Therefore Pn+1(x) has a root in

(βn−1, 0).

As Pn(x) has distinct real roots, Lieb’s result (5.7) applies and the coefficients of

Pn(x) have the SLC property. An alternative way to prove this is the following:

Kurtz [30] studied triangular arrays of numbers defined with a recurrence relation

A(n, k) = f(n, k)A(n−1, k−1)+g(n, k)A(n−1, k) with initial conditions A(1, 1) = 1,

A(n, 0) = A(n, n+ 1) = 0. He showed that if

2f(n, k)− f(n, k − 1)− f(n, k + 1) ≥ 0 for 1 < k < n;n = 1, 2, . . .

and

2g(n, k)− g(n, k − 1)− g(n, k + 1) ≥ 0 for 1 < k < n;n = 1, 2, . . . ,

then the A(n, k) array has the SLC property.

Note that the array A(n, k) = Tn+1,k satisfies the conditions of Kurtz’ result with

f(n, k) = n+k−1 and g(n, k) = k; therefore A(n, k) and Tn,k have the SLC property.

Consider the following bivariate generating function for Tn,k:

H(x, z) =
∑
n≥1

∑
k

Tn,kx
k z

n

n! =
∑
n≥1

Pn−1(x)z
n

n! ,
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in particular, H(1, z) = z
1! + z2

2! + 4z3

3! + 26z4

4! + ... . Flajolet [17] observed the functional

equation

H(x, z) = z + x
(
eH(x,z) − 1−H(x, z)

)
,

which immediately follows from the Exponential Formula, and obtained from this

equation an expression for H(1, z) in terms of the Lambert function, which is the

compositional inverse of xe−x:

H(1, z) = −LambertW
(
−1

2e
z−1

2

)
+z − 1

2 .

He also observed that H(1, z), the EGF of the tn sequence, has a singularity at

ρ = −1 + 2 log 2, and it is the only singularity at this radius; and furthermore, for

|z| < ρ, there is a singular expansion of H(1, z) in terms of ∆ =
√

1− z/ρ, of which

the first few terms are

H(1, z) = log 2−√ρ∆ +
(1

6 −
1
3 log 2

)
∆2 − ρ3/2

36 ∆3 +O(∆4). (6.18)

Flajolet [17] used (6.18) to obtain asymptotic formula for tn as

tn ∼
n!

2
√
πn3/2ρn−1/2 ,

and noted that asymptotic expansion can be obtained by this method. Using Maple,

we went further and actually obtained the following asymptotic expansion:

tn ∼
n!

√
πρn−

1
2

 1
2n3/2 + 3

16n5/2 + 25
256n7/2 +O

( 1
n9/2

).
The details are on the Maple worksheet in Appendix C.

Let the roots of Pn(x) be {−ynk : k = 1, 2, . . . , n}. Define the independent

random variables Ynk by P(Ynk = 0) = ynk/(1 + ynk) and P(Ynk = 1) = 1/(1 + ynk).

Set Zn+1 = ∑
k Ynk. Clearly P(Zn+1 = j) = Tn+1,j/tn+1. We have for the expectation

and variance, from (5.4), using (6.16) repeatedly,

E(Zn+1) = tn+2

2tn+1
− n+ 1

2 ; (6.19)

D2(Zn+1) = tn+3

4tn+1
−

t2n+2
4t2n+1

− tn+2

2tn+1
− n+ 1

4 . (6.20)
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Flajolet [17] computed asymptotics for E(Zn+1). In addition, we computed the needed

variance. The details are in a Maple worksheet.

Lemma 6.9. We have the asymptotic formulae

E(Zn+1) = 1− ρ
2ρ n+O(1) and D2(Zn+1) = n

4

( 1
ρ2 −

2
ρ
− 1

)
+O(1).

Theorem 6.10. For the sequence A(n, j) = Tn+1,j the central limit theorem (5.5)

and the local limit theorem (5.8) holds with En = tn+1. Furthermore, the number

k = Jn that maximizes Tn+1,k satisfies

Jn = 1− ρ
2ρ n+ o(

√
n)

and

Tn+1,Jn = n!(1 + o(1))
π
√

2nρn+ 1
2
√

( 1
ρ2 − 2

ρ
− 1)

.

Proof. The central and local limit theorems hinge on D(Zn)→∞ that we have from

Lemma 6.9. The arguments leading to (5.9) and (5.10) hold for Tn+1,k instead of

S(n, k).

From the identity (6.14) we immediately obtain the following central and local

limit theorems:
1
tn+1

bxnc∑
j=1

S?(n+ j, j)→ 1√
2π

∫ x

−∞
e−t

2/2dt

and

lim
n→∞

D(Zn)
tn+1

S?(n+ bxnc, bxnc)→
1√
2π
e−x

2/2

as n → ∞ uniformly in x, xn = E(Zn) + xD(Zn), and E(Zn) and D(Zn) are defined

by (6.19) and (6.20).
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Appendix A

Sage programs which count mul-trees

A.1 Rooted and unrooted binary MUL-trees

This program counts the various types of rooted and unrooted binary MUL-trees

described in Chapters 2 and 4.

#Calculates the number of different types of

#Semi-labelled Binary Trees with n leaves and k labels.

#Answers given in this order. Rooted (R), Rooted using all labels (V),

#Marked (M), Marked using all labels (VM),

#Unrooted (U), Unrooted using all labels (VU)

#The number of times each label is used is not specified in first set.

#Each label used at least once in second answer set

#AUTHOR: Virginia Johnson (2011-07) version 1

def T(n,k):

#Gets input and will return the number of trees

#with leaves 0-n on k labels"""

#first section calculates the rooted binary trees

#(R_k in documentation) number of leaves varies,

#number of labels fixed

LL=[] #stores r_n,0, r_n,1, ...r_n,k

for p in range(k+1):
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L=[0]*(n+1) #stores r_0,k, r_1,k, ...r_n,k

LL.append(L)

for i in range(n+1):

#"0 if no leaves"

if i==0:

L[i]=0

#"p if one leaf"

elif i==1:

L[i]=p

#"if number of leaves is even"

elif (mod(i,2)==0) and (i!=0):

L[i]=1/2*L[i/2]

for j in range(1,i):

L[i]+=1/2*L[j]*L[i-j]

else:

for j in range(1,i):

L[i]+=1/2*L[j]*L[i-j]

#Calculates Rooted semi-labeled binary trees

#n= number of leaves,

#k= number of labels

#Each label is used at least once.

V=[0]*(n+1)

for i in range(n+1):

for j in range (0,k):

V[i]+=(-1)^j*binomial(k,j)*LL[k-j][i]

#this section calculates the sums
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#needed for a_n;k in documentation"""

BA=[] # this holds values for smaller number of leaves0-k

for h in range(k+1):

B=[0]*(n+1)

BA.append(B)

for i in range(1,n+1):

if i==0:

B[i]=0

else:

B[i]=h*LL[h][i-1] #adds in first term

for j in [0..floor(i/3)]:

#selects combinations of i,j,k,which sum to n

for m in [j..floor((i-j)/2)]:

p = i-j-m

t=[j,m,p]

#t is created to determine how many

#elements in set to create

#c_i,j,l documentation

if (2*j)+p==i and len(set(t))!=1:

#adds in third term first

#testing for j=m

B[i]+=(1/2)*LL[h][j]*LL[h][p]

#and eliminating j=m=p which

#is included in

#next if statement
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if j+(2*m)==i:

#this gets j=m=p and

#m=p all needed

#in third term

B[i]+=(1/2)*LL[h][j]*LL[h][m]

# have now added in third term

if len(set(t))==1:

#sets the coefficient c and

#adds in second term

c=1

B[i]+=1/6*c*LL[h][j]*LL[h][m]*LL[h][p]

elif len(set(t))==2:

c=3

B[i]+=1/6*c*LL[h][j]*LL[h][m]*LL[h][p]

elif len(set(t))==3:

c=6

B[i]+=1/6*c*LL[h][j]*LL[h][m]*LL[h][p]

#have now completed adding in

#2nd term

#this section calculates the numbers of

#Marked trees...(M in documentation)
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MA=[]

# this holds values for smaller number of leaves0-k

for h in range(k+1):

M=[0]*(n+1)

MA.append(M)

#calculates the final sum

for i in range(n+1):

if i==0:

M[i]=0

elif i==1:

M[i]=h

elif (mod(i,3)==0) and (i!=0):

M[i]=BA[h][i]+(1/3)*LL[h][i/3]

else:

M[i]=BA[h][i]

#This section calculates M^* trees in documentation.

#Each label is used

VM=[0]*(n+1)

for i in range(n+1):

for j in range (0,k):

VM[i]+=(-1)^j*binomial(k,j)*MA[k-j][i]

#This section calculated unrooted binary trees.

#(U in documentation)

AU=[]

# this holds values for smaller number of leaves0-k
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for h in range (k+1):

U=[0]*(n+1)

AU.append(U)

for i in range(n+1):

if i==0:

U[i]=0

elif i==1:

U[i]=h

elif (mod(i,2)==0) and (i!=0):

U[i]=MA[h][i]-LL[h][i]+LL[h][i/2]

else:U[i]=MA[h][i]-LL[h][i]

#This section calculates U^*

#in documentation

#unrooted binary MUL trees using all k labels

VU=[0]*(n+1)

for i in range(n+1):

for j in range (0,k):

VU[i]+=(-1)^j*binomial(k,j)*AU[k-j][i]

#__________________________

#This section returns the calculated numbers"""

print "Number of leaves= ", n, " number of labels= ",k
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print "Rooted MUL Binary Trees"

print L

print "Rooted MUL Binary Trees using all k labels"

print V

print "Marked MUL Binary Trees"

print M

print "Marked MUL Binary Trees using all k labels"

print VM

print "Unrooted MUL Binary Trees"

print U

print "Unrooted MUL Binary Trees using all k labels"

print VU

A.2 Rooted and unrooted non-binary trees; first program

This program counts rooted and unrooted non-binary MUL-trees using the recursive

function 5.4

#Given the number of leaves "n" and number of labels "k"

#this program returns the number of rooted multi-leafllabeled

#trees where the degree of the root is >=2, degree of

#non-root, non-leaf vertices is >=3

#AUTHOR: Virginia Johnson (2011-10) version 1

def G(n,k):

#Gets input and will return the number of trees

#with leaves 0-n where k is the size of the label set.
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T=[0]*(n+1)

for i in range (n+1):

#easy cases

#no leaves

if i==0:

T[i]=0

#1 leaf

elif i==1:

T[i]=k

#for n>=2

else:

#find m= how many partitions there are of i

m=Partitions(i).cardinality()

#set up a counter that will stop the loop

#when finished with all partitions (m-1)

count=0

#get the partitions 1 at a time

#and omit the first one

g=iter(Partitions(i))

g.next()

while count != m-1:

#fix this partition for the duration

#of the first calculation

L=g.next()

#print "L"

#print L
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#set up a string which holds counts

S=[]

#count the number of times each integer

#in{1,...i-1} appears in partition

for c in range (0,i):

S.append(list(L).count(c))

#create string for product

P=[0]*(i)

P[0]=1

for d in range (1,len(list(S))):

P[d]=binomial(T[d]+S[d]-1,S[d])

T[i]+=prod(P)

count=count+1

#Uses T to calculate number of unrooted trees

#on n leaves using label set size k.

U=[0]*(n+1)

for i in range (n+1):

#easy cases first

#no leaves

if i==0:

U[i]=0
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#1 leaf

elif i==1:

U[i]=k

#for n >=2

else:

U[i]=k*T[i-1]+T[i]

for j in range(1,i):

U[i]+=T[j]*T[i-j]

print "Number of leaves=", n, " Number of labels=", k

print "Rooted Non-binary Multi-leaf-labeled Trees"

print T

print "Unrooted Non-binary Multi-leaf-labeled Trees"

print U

A.3 Rooted and unrooted non-binary trees; second program

This program counts rooted and unrooted non-binary MUL-trees using the recursive

function 5.2.

##Given the number of leaves "n" and number of labels "k"

#this program returns the number of rooted multi-leaf- labeled

#trees where the degree of the root is >=2, degree of non-root,

#non-leaf vertices is >=3

#Author:Virginia Johnson 11/2011

def G(n,k):

#Gets input and will return the number of trees

#with leaves 0-n where k is the size of the label set.

T=[0]*(n+1)
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for i in range (n+1):

#easy cases

#no leaves

if i==0:

T[i]=0

#1 leaf

elif i==1:

T[i]=k

#for n>=2

else:

#find d= divisors of i

d=divisors(i)

#set up a counter that will stop the loop

#when finished with all divisors

#except last one (m-1)

m=len(d)

g=0

#create the first sum

while g != m-1:

T[i]+=d[g]/i*T[d[g]]

g=g+1

outsum=0

for mm in range(2,i+1):

for c in Compositions(i,length=mm):

insum=0

inprod=1

for nj in c:
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divlist = divisors(nj)

divsum=0

for d in divlist:

divsum+=d*T[d]

inprod=inprod*divsum/nj

insum+=inprod

outsum+=insum/factorial(mm)

T[i]+=outsum

print "Number of leaves=", n, " Number of labels=", k

print T
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Appendix B

Maple Code: Bell Numbers

(8)(8)

(4)(4)

(1)(1)

(3)(3)

(6)(6)

(5)(5)

(2)(2)

(7)(7)

P0dK
2$r4 C 9 r3 C 16$r2 C 6$rC 2

24$r$ rC 1 3

K
1

24
 

2 r4 C 9 r3 C 16 r2 C 6 rC 2
r rC 1 3

P1dK
r2 C 3$rC 1
2$r$ rC 1 2

K
1
2

 
r2 C 3 rC 1
r rC 1 2

P2dK
1

2$r$ rC 1

K
1

2 r rC 1

Q0d
6C 24$rC 100$r2 K 636$r3 K 588$r4 K 384$r5 K 143$r6 K 12$r7 C 4$r8

1152$r2$ rC 1 6

1
1152

 
6C 24 rC 100 r2 K 636 r3 K 588 r4 K 384 r5 K 143 r6 K 12 r7 C 4 r8

r2 rC 1 6

Q1d
6C 32$rC 56$r2 C 135$r3 C 101$r4 C 37$r5 C 6$r6

48$r2$ rC 1 5

1
48

 
6C 32 rC 56 r2 C 135 r3 C 101 r4 C 37 r5 C 6 r6

r2 rC 1 5

Q2d
20C 90$rC 190$r2 C 105$r3 C 20$r4

48$r2$ rC 1 4

1
48

 
20C 90 rC 190 r2 C 105 r3 C 20 r4

r2 rC 1 4

Q3d
5C 15$rC 5$r2

12$r2$ rC 1 3

1
12

 
5C 15 rC 5 r2

r2 rC 1 3

Q4d
1

8$r2$ rC 1 2

1
8 r2 rC 1 2
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(12)(12)

(10)(10)

(11)(11)

(9)(9)

Bd n, h /
nC h !
rh

$ 1C P0C h$P1C h2$P2 $
r
n
C Q0C h$Q1C h2$Q2C h3$Q3

C h4$Q4 $
r2

n2  C r3$O
1
n3 ;

n, h /
1
rh

nC h ! 1C
P0C h P1C h2 P2  r

n

C
Q0C h Q1C h2 Q2C h3 Q3C h4 Q4  r2

n2 C r3 O
1
n3

Bstard n, h / B n, hK 1 KB n, hK 2 CB n, hK 3 KB n, hK 4 CB n, hK 5 KB n,
hK 6 CB n, hK 7 CC$B n, hK 8 ;

n, h /B n, hK 1 KB n, hK 2 CB n, hK 3 KB n, hK 4 CB n, hK 5 KB n, h
K 6 CB n, hK 7 CC B n, hK 8

sort simplify asympt
Bstar n, 2
Bstar n, 0

C 2$n$
Bstar n, 1 $Bstar n,K1

Bstar n, 0 2  C n$ nK 1 $
Bstar n,K2
Bstar n, 0

K
Bstar n, 1

2

Bstar n, 0 2 K n2$
Bstar n,K1 2

Bstar n, 0 2 K n$
Bstar n,K1
Bstar n, 0

K 2$nC 1 ,               n, 5   ,    order

= plex n, r ;

1
2

 
1

rC 1 4 r
2 n r3 C 6 n r2 C 6 n rC 2 nK 2 r6 C 2 O

1
n

 r5 K 6 r5 C 8 O
1
n

 r4

K 8 r4 C 12 O
1
n

 r3 K 9 r3 C 8 O
1
n

 r2 K 9 r2 C 2 O
1
n

 rK 2 r

sort simplify asympt
Bstar n, 1
Bstar n, 0

K n$
Bstar n,K1
Bstar n, 0

,               n, 2   ,    order = plex n, r ;

1
2

 
1

rC 1 2 r
2 n r2 C 4 n rC 2 nK 2 r4 K 4 r3 C 2 O

1
n

 r3 K 3 r2 C 4 O
1
n

 r2

K 2 rC 2 O
1
n

 r
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Appendix C

Maple code: Phylogenetic trees

(6)(6)

(5)(5)

(2)(2)

(3)(3)

(4)(4)

(1)(1)

log
10
a

b H
z
dKLambertW K

1
2 exp

1
2 $zK

1
2 C

1
2 $zK

1
2 ;

KLambertW K
1
2

 e
1
2

 zK
1
2 C

1
2

 zK
1
2

Hs d subs z = K1C 2$ln 2 $ 1KD
2

, Hz ;

KLambertW K
1
2

 e
1
2

 K1 C 2 ln 2  1 K D2 K
1
2 C

1
2

 K1C 2 ln 2  1KD
2

K
1
2

rho dK1C 2$ln 2 ;
K1C 2 ln 2

Hsing d map simplify, series Hs, Delta = 0, 10 ; Delta = sqrt `` 1Kz / rho ;

ln 2 K
1
2

 2  K2C 4 ln 2  DC
1
6
K

1
3

 ln 2  D
2
K

1
72

 2  K2C 4 ln 2  K1

C 2 ln 2  D
3
K

1
270

 K1C 2 ln 2 2 D
4
K

1
8640

 2  K2C 4 ln 2  1K 4 ln 2

C 4 ln 2 2  D
5
C

1
17010

 K1C 2 ln 2 3 D
6
C

139
10886400

 2  K2C 4 ln 2  K1

C 6 ln 2 K 12 ln 2 2 C 8 ln 2 3  D
7
C

1
204120

 K1C 2 ln 2 4 D
8

C
571

4702924800
 2  K2C 4 ln 2  1K 8 ln 2 C 24 ln 2 2 K 32 ln 2 3

C 16 ln 2 4  D
9
CO D

10

D = 1K
z

K1C 2 ln 2
Hasympt d n!$asympt coeff Hsing, Delta, 1 $rho^ Kn $subs cos Pi$n = 1, O = 0 ,

simplify asympt binomial 1 / 2, n , n, 2 , n ;

 

1
4

 
n! 2  K2C 4 ln 2  

1
n

3 / 2

p  K1C 2 ln 2 n

Hasymptexpansion d n!$asympt coeff Hsing, Delta, 1 $rho^ Kn $subs cos Pi$n = 1 ,

simplify asympt binomial 1 / 2, n , n, 4 , n, 8 ;

1
K1C 2 ln 2 n n! 

1
4

 
2  K2C 4 ln 2  

1
n

3 / 2

p

91



(6)(6)

(7)(7)

(8)(8)

(9)(9)

C
3
32

 
2  K2C 4 ln 2  

1
n

5 / 2

p
C

25
512

 
2  K2C 4 ln 2  

1
n

7 / 2

p

CO
1
n

9 / 2

A d unapply  (6), n ;

n/
1

K1C 2 ln 2 n n! 
1
4

 
2  K2C 4 ln 2  

1
n

3 / 2

p

C
3
32

 
2  K2C 4 ln 2  

1
n

5 / 2

p
C

25
512

 
2  K2C 4 ln 2  

1
n

7 / 2

p

CO
1
n

9 / 2

expectd simplify asympt
A nC 2

2$A nC 1
 K
nC 1

2
, n, 5 ;

1
4

 
4 nK 4 n ln 2 C 3K 4 ln 2 K 4 O

1
n

C 8 O
1
n

 ln 2

K1C 2 ln 2

dsquare = simplify asympt
A nC 3

4 $A nC 1
K
A nC 2 2

4$A nC 1 2 K
A nC 2

2$A nC 1
K
nC 1

4
, n, 7 ;

dsquare =
1
8

 
1

K1C 2 ln 2 2 4 nK 8 n ln 2 2 C 1C 4 ln 2 K 8 ln 2 2 C 8 O
1
n

K 32 O
1
n

 ln 2 C 32 O
1
n

 ln 2 2
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