
INTEGRAL SOLUTIONS OF APÉRY-LIKE RECURRENCE EQUATIONS

Don Zagier

Abstract. In [4], Beukers studies the differential equation

`

(t3 + at2 + bt)F ′(t)
´

′

+ (t − λ)F (t) = 0 , (*)

where a, b and λ are rational parameters, and asks for which values of these parameters this equation

has a solution in Z[[t]], the motivating example being the Apéry sequence with a = 11, b = −1, λ = −3.

We describe a search over a suitably chosen domain of 100 million triples (a, b, λ). In this domain there

are 36 triples yielding integral solutions of (*). These can be further subdivided into members of four

infinite classes, two of which are degenerate special cases of the other two, and seven sporadic solutions.

Of these solutions, twelve, including all the sporadic ones, have parametrizations of Beukers type in terms

of modular forms and functions. These solutions are related to elliptic curves over P1 with four singular

fibres.

1. Beukers’s recurrence equation. Beukers [4] considers the differential equation

(
tP (t)F ′(t)

)′
+ (t − λ)F (t) = 0 (1)

with P (t) a quadratic polynomial, which we can take to have the form t2 + at+ b. This equation has

a unique solution which is regular at the origin with F (0) = 1, given by F (t) =
∞∑

n=0
untn with u0 = 1

and
b(n + 1)2un+1 + (an2 + an − λ)un + n2un−1 = 0 (n ≥ 0) (2)

so that u1 = λ/b, u2 = (λ2−2aλ+b)/4b2, etc. We are interested in finding values of (a, b, λ) for which
F (Dt) ∈ Z[[t]] or Dnun ∈ Z (∀n ≥ 0) for some D ∈ N. After a rescaling (a, b, λ) 7→ (a/D, b/D2, λ/D),
un 7→ Dnun we can assume D = 1 or un ∈ Z, and in future we shall assume after such a rescaling that
the un are all integral, that there is no D > 1 such that Dn|un for all n, and that u1 ≥ 0. Beukers
further assumes that b = −1, but this scaling can only be made over C and destroys the desired
integrality property of the un, and in fact there seem to be almost no cases of integral solutions with
b = −1. (See below.)

To search for rational values of a, b and λ leading to un ∈ Z, we observe that equation (2) for
n ∈ {0, 1, 2} gives three linear equations for (a, b, λ) in terms of (u1, u2, u3) which can be solved
uniquely if the corresponding determinant is non-zero. We can therefore search over a domain of
(u1, u2, u3) ∈ Z3, compute (a, b, λ) for each choice of these three initial values, and then see whether
the further un (up to some pre-assigned search limit) are also integral. This search was performed in
the range 0 ≤ u1 ≤ 30, |u2| ≤ 100, |u3| ≤ 2000 (time on a Sun workstation: 52 hours) and yielded 19
solutions, listed below. If we restrict to the case b = −1 considered by Beukers, then we need only
search over (u1, u2) ∈ Z2, since these values already determine a, λ, and the further un. A search
in the domain 0 < u1 ≤ 100, |u2| ≤ 3000 yielded only a single case (a, λ) = (11,−3) (the Apéry
numbers) with integral values of un.
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In all 19 cases found in the range searched, the numbers A = −a/b, B = 1/b and Λ = λ/b were
integral. In terms of the new parameters A and B, the recurrence relation (2) becomes

(n + 1)2un+1 − An(n + 1)un + Bn2un−1 = λun (n ≥ 0) (3)

where we have changed the name of the eigenvalue from Λ back to λ. (The corresponding changes in
the differential equation (1) are to take P (t) = Bt2 −At + 1 and replace the factor t− λ by Bt− λ.)
The observation just made then becomes

Conjecture. If (3) has a solution with u0 = 1 and un ∈ Z for all n, then A, B and λ are integral.

Notice that it is equivalent to conjecture that just A is integral, since (3) for n = 0 and n = 1 then
gives λ = u1 ∈ Z, B = (2A + λ)u1 − 4u2 ∈ Z. Also, it seems reasonable to guess that the Conjecture
is true even if we do not suppose that u0 = 1.

2. Numerical data. Assuming the above conjecture, we can do a new and much more rapid
search over integral values of A, u1 and u2. As explained above, we can suppose that u1 ≥ 0. The
search can also be speeded up by noticing that the integrality of u3 is equivalent to a congruence for
A modulo 1, 3 or 9 (namely: A is arbitrary if u1 and u2 are both divisible by 3, A ≡ −u1/3 (mod 3) if
u1 is divisible by 3 but u2 is not, and A ≡ 4u1+u1u2(2+3u2+2u2

1) (mod 9) if u1 is not divisible by 3)
and the integrality of u4 is equivalent to the simple congruence u1 ≡ u2 (mod 2). Inserting these
two congruences into the triple loop results in a reduction of the search domain by a factor 7/54. We
performed the search for the 100 million triples in the domain |A| ≤ 250, 0 ≤ u1 ≤ 100, |u2| ≤ 1000
(time on the Sun workstation: 19 hours), finding altogether 36 solutions, listed in the table below.
The integrality of the un was checked up to the limit n = 25 (it was subsequently verified that in
each of the 36 “solutions” satisfying this criterion the un are indeed integral for all n) and this was
by no means unnecessarily large, since the maximum value of n0 := min{n | un /∈ Z} in this range
was in fact 23. This value occurred exactly once, for the triple (a, u1, u2) = (229, 4,−660). The other
values of n0 which occurred were 5, 7, 8, 9, 11, 13, 16, 17 and 19, the last four occurring for 5926,
45, 344 and 17 triples, respectively. (Note that n0 is automatically at least 5 since we have done the
search in such a way that u0, . . . , u4 are always integral.) The fact that n0 is always a prime power
is a consequence of a result of Beukers ([4], Prop. 3.3), according to which the smallest n (if any) for
which a given prime p occurs in the denominator of un is always a power of p.

3. Analysis of the data. Looking at the table, we observe that the solutions found can be
divided into five classes.

Terminating solutions. The sequences numbered 1, 4, 12, 18, 23, 28, 30, and 32 in the table have
un = 0 for all sufficiently large n (although in the last two cases the table does not extend to the
first vanishing value). By inspection, we discover that these values are given by the formula

(A,B, λ) = (−1, 0, d2 + d), un =

(
d

n

)(
d + n

n

)
, (4)

where d is a non-negative integer. The corresponding function F (t) =
∑

untn is given by

F (t) = F (−d, 1 + d; 1; t) = Pd(1 − 2t) . (5)

Here F (a, b; c; t) denotes the hypergeometric function and Pd(X) the dth Legendre polynomial.

Polynomial solutions. The solutions numbered 3, 6 and 15 in the table are also easily recognized:
they are given by un = 1, un = 2n + 1, and un = 3n2 + 3n + 1, respectively. Looking for further
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index A B λ u0 u1 u2 u3 u4 u5 u6

#1 −1 0 0 1 0 0 0 0 0 0

#2 0 −16 0 1 0 4 0 36 0 400

#3 2 1 1 1 1 1 1 1 1 1

#4 −1 0 2 1 2 0 0 0 0 0

#5 7 −8 2 1 2 10 56 346 2252 15184

#6 2 1 3 1 3 5 7 9 11 13

#7 9 27 3 1 3 9 21 9 −297 −2421

#8 10 9 3 1 3 15 93 639 4653 35169

#9 11 −1 3 1 3 19 147 1251 11253 104959

#10 12 32 4 1 4 20 112 676 4304 28496

#11 16 0 4 1 4 36 400 4900 63504 853776

#12 −1 0 6 1 6 6 0 0 0 0

#13 17 72 6 1 6 42 312 2394 18756 149136

#14 27 0 6 1 6 90 1680 34650 756756 17153136

#15 2 1 7 1 7 19 37 61 91 127

#16 −27 0 12 1 12 −126 2100 −40950 864864 −19171152

#17 −16 0 12 1 12 −60 560 −6300 77616 −1009008

#18 −1 0 12 1 12 30 20 0 0 0

#19 32 256 12 1 12 164 2352 34596 516912 7806224

#20 64 0 12 1 12 420 18480 900900 46558512 2498640144

#21 2 1 13 1 13 55 147 309 561 923

#22 −64 0 20 1 20 −540 21840 −1021020 51459408 −2715913200

#23 −1 0 20 1 20 90 140 70 0 0

#24 2 1 21 1 21 131 471 1251 2751 5321

#25 54 729 21 1 21 495 12171 305919 7794171 200412801

#26 32 256 28 1 28 580 10992 199524 3530352 61417616

#27 −27 0 30 1 30 −180 2640 −48510 989604 −21441420

#28 −1 0 30 1 30 210 560 630 252 0

#29 2 1 31 1 31 271 1281 4251 11253 25493

#30 −1 0 42 1 42 420 1680 3150 2772 924

#31 2 1 43 1 43 505 3067 12559 39733 104959

#32 −1 0 56 1 56 756 4200 11550 16632 12012

#33 2 1 57 1 57 869 6637 33111 124223 380731

#34 −16 0 60 1 60 420 −1680 13860 −144144 1681680

#35 −64 0 84 1 84 −924 30800 −1316700 62990928 −3212537328

#36 −27 0 84 1 84 630 −5460 81900 −1493856 30126096
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polynomial solutions, we find that the sequences 21, 24, 29, 31 and 33 are also of this type, and that
these 8 solutions are the cases 0 ≤ d ≤ 7 of an infinite family given by

(A,B, λ) = (2, 1, d2 + d + 1), un = Hd(n) ,

where Hd(n) is a polynomial of degree d of the form

Hd(n) =
(2d)!

d!3
nd + · · · +

( d∑

k=1

2

k

)
n + 1 .

Looking at the first few polynomials Hd(x), we find that they satisfy Hd(−x − 1) = (−1)dHd(x)

and H2r(− 1
2 ) = 2−4r

(
2r
r

)2
, but beyond this they are not easy to recognize. However, the fact that

un is a polynomial of degree d in n means that the corresponding solution Fd(t) =
∑

untn of the
differential equation (1) is a rational function with denominator (1 − t)d+1, and looking at the first
few values of the polynomial (1− t)d+1Fd(t) we immediately find that its coefficients are the squares

of the binomial coefficients
(

d
n

)
, i.e., these solutions are given by

F (t) =
∞∑

n=0

Hd(n)tn =
F (−d,−d; 1; t)

(1 − t)d+1
=

1

1 − t
Pd

(1 + t

1 − t

)
, (6)

where again Pd(X) denotes the dth Legendre polynomial. Notice that for these solutions the discrim-
inant of the polynomial P (t) = Bt2 − At + 1 in equation (1) is 0, a degenerate case which Beukers
excluded from consideration.

Hypergeometric solutions. We next find that the table contains four solutions where un has
a simple multiplicative expression as a multinomial coefficient. These are of two types. The first
corresponds to A = λ = 0, so that the recursion (3) relates un+1 and un−1. Up to normalization,
there is only one solution of this kind, namely the sequence #2 in the table,

Sequence #2: (A,B, λ) = (0,−16, 0), un =

{ (
2r
r

)2
if n = 2r,

0 if n is odd.

The other type occurs when B = 0, so that the recursion (3) relates only un+1 and un. There are 10
sequences of this type in our table, with the numbers 11, 14, 16, 17, 20, 22, 27, and 34–36. Some of
these are easy to recognize by inspection, e.g.:

Sequence #11: (A,B, λ) = (16, 0, 4), un =

(
2n

n

)2

=
(2n)!2

n!4
,

Sequence #14: (A,B, λ) = (27, 0, 6), un =

(
3n

n

)(
2n

n

)
=

(3n)!

n!3
,

Sequence #20: (A,B, λ) = (64, 0, 12), un =

(
4n

2n

)(
2n

n

)
=

(4n)!

(2n)!n!2
,

and there are similar formulas in the other cases, e.g. the values of un for the two sequences #16 and
#17 are given by (−1)n−1(3n + 1)!/(3n− 1)n!3 and (−1)n−1(2n)!(2n + 1)!/(2n − 1)n!4, respectively.
The general case is easily seen to be given by the same formula as in (4), except that d is now an
arbitrary rational number rather than a non-negative integer and we must make a corresponding
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rescaling A → DA, λ → Dλ, un → Dnun for some positive integer D in order to achieve integrality.
(The smallest choice of D is M 2

∏
p|M p, where M is the denominator of d.) The corresponding

generating function is given by the same formula as in (5), except that the variable t must be
replaced by Dt and the function Pd(X) is now the Legendre function of order d, which is no longer
a polynomial when d is not an integer. The index d for the above-listed cases # 11, 14, 16, 17, 20,
22, 27, 34, 35 and 36 are −1/2, −1/3, 1/3, 1/2, −1/4, 1/4, 2/3, 3/2, 3/4 and 4/3, respectvely. (One
has a choice here between d and −1 − d as parameters, and we have chosen d ≥ −1/2.)

Legendrian solutions. Next, we see that (apart from the polynomial solutions considered above)
there are three triples in the table for which A2 = 4B, namely, those with labels 19, 25 and 26. Here
there is no evident pattern for the numbers un, but after a bit of thought we realize that these are
(up to a normalization t 7→ Dt, un 7→ Dnun with suitable D ∈ N) given by the same formula as in
(6), but where now d is allowed to be a rational number rather than an integer and Pd(X) is again
the Legendre function of index d, which for non-integral d is not a polynomial in X. (The coefficient
Hd(n) of tn in Fd(t) is also no longer a polynomial in n for fixed d, though it is a polynomial in d for
fixed n.) This time the smallest choice of D for given d ∈ Q making the coefficients un = DnHd(n)
integral for all n is given by M 2

∏
p|M p∗ , where M is the denominator of d and p∗ = 4 if p = 2,

p∗ = p if p is odd.

Sporadic solutions. Finally, the table contains six solutions which do not fall into any of the
four infinite families above, and these are the only really interesting ones. (They are also the only
ones Beukers considered, since he assumed that the polynomial P had non-vanishing quadratic term,
constant term, and discriminant.) For convenience we list these 6 solutions again, with labels A–F.
We also add #2 to this list, with label G, since although it is hypergeometric it does not belong to
the 1-parameter family of hypergeometric solutions discussed above.

new label index A B λ u0 u1 u2 u3 u4 u5 u6

A #5 7 −8 2 1 2 10 56 346 2252 15184

B #7 9 27 3 1 3 9 21 9 −297 −2421

C #8 10 9 3 1 3 15 93 639 4653 35169

D #9 11 −1 3 1 3 19 147 1251 11253 104959

E #10 12 32 4 1 4 20 112 676 4304 28496

F #13 17 72 6 1 6 42 312 2394 18756 149136

G #2 0 −16 0 1 0 4 0 36 0 400

Since all of these are contained in the domain 0 < A ≤ 17, 0 < u1 ≤ 6, 0 < u2 ≤ 42, which comprises
less than 0,005% of the domain of our search, one could hazard a rather optimistic

Conjecture. Up to normalizations, the only cases with B/A2 6= 0, 1/4 where the recursion (3) has
an integral solution are the hypergeometric family

HGd : (A, B, λ) = (−1, 0, d2 + d) (d ∈ Q, d ≥ −1/2)

(which for d ∈ Z≥0 is terminating), the Legendre family

Legd : (A, B, λ) = (2, 1, d2 + d + 1) (d ∈ Q, d ≥ −1/2)

(which for d ∈ Z≥0 is polynomial), and the seven sporadic solutions A–G.
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4. Binomial coefficient sums. The sequence “D” in the table just given is immediately
recognized to be the Apéry numbers, which are given by a well-known expression as a sum of products
of binomial coefficients, so it is reasonable to look for similar expressions for the other solutions. Apart
from relatively uninteresting expressions of this form for certain hypergeometric solutions such as

(3n)!

n!3
=

2n∑

k=0

(−1)n−k

(
2n

k

)3

, and the evident binomial coefficient sum expression for Hd(n) obtained

by equating the coefficients of tn on both sides of (6), we have the following binomial coefficient
representations, covering all but one of the sporadic solutions (G is trivial):

Sequence A: un =

n∑

k=0

(
n

k

)3

=

n∑

k=0

(
n

k

)2(
2k

n

)
,

Sequence B: un =

[n/3]∑

k=0

(−1)k 3n−3k

(
n

3k

)(
3k

k

)(
2k

k

)
,

Sequence C: un =

n∑

k=0

(
n

k

)2(
2k

k

)
,

Sequence D: un =
n∑

k=0

(
n

k

)2(
n + k

k

)
=

n∑

k=0

(−1)n−k

(
n

k

)(
n + k

k

)2

,

Sequence E: un =

[n/2]∑

k=0

4n−2k

(
n

2k

)(
2k

k

)2

.

The formulas for the sequences B and E say that the corresponding generating functions
∑

untn

have hypergeometric representations:

FB(t) =
1

1 − 3t
F

(1

3
,
2

3
; 1;

( −3t

1 − 3t

)3)
, FE(t) =

1

1 − 4t
F

(1

2
,
1

2
; 1;

( 4t

1 − 4t

)2)
.

We have listed here only expressions for the un as simple sums of products of binomial coefficients.
One can always expressions as multiple sums, e.g. by the method described at the end of §7, a simple

example (courtesy of the referee) being the formula un =
∑

0≤j≤i≤n(−1)i8n−i
(
n
i

)(
i
j

)3
in case F.

5. Modular properties. Thanks to Beukers [3], one knows that the Apéry sequence has a
modular interpretation, i.e., that for this sequence there is a modular function t(z) such that the
function F (t(z)) =

∑
unt(z)n is a modular form of weight 1. We can therefore ask whether a similar

property holds for the other solutions in our list. The case when {un} terminates or is a polynomial
in n is uninteresting since then F (t(z)) is a rational function of t(z) and hence is a modular function
for any choice of t(z). However, all the other examples (hypergeometric, Legendrian or sporadic)
are interesting, since it is not a priori evident when they can be parametrized by modular forms. It
turns out that there is an algorithm to investigate this question. We explain this below. Applying
it to each of the 20 non-trivial sequences in the table, we find that all of the sporadic solutions
are modular, and that there are also four hypergeometric and two Legendrian sequences which give
modular forms. (The specific parametrizations are given below.) This suggests the following

Conjecture. Any integral solution of the differential equation (1), where P (t) is a non-degenerate
quadratic polynomial, has a modular parametrization.
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Whether or not this is true, the natural question arises whether it is possible to give a complete
classification of the modular solutions of the differential equation (1). This probably can be done,
since the restricted nature of the singularities of the differential equation should put such strong
restrictions on the modular side of the picture (e.g., the corresponding modular curve should have
genus 0 and a small number of cusps and elliptic fixed points) as to make a complete listing possible.
The most optimistic guess would be that the 12 modular solutions already found are a complete list.
(This is supported by the case that they are contained in the domain 0 ≤ A ≤ 54, 0 ≤ u1 ≤ 21,
0 < u2 ≤ 500, which is less than 0,5% of the domain of our search.) If this and the above conjecture
are true, then our list of 6 sporadic solutions is indeed complete.

How to recognize modularity. A general fact about modular forms is the following: if f(z) is
an arbitrary modular form of positive weight k and t(z) a modular function (i.e., a meromorphic
modular form of weight 0), then the power series F (t) obtained by expressing f(z) locally as a power
series in t(z) always satisfies a linear differential equation of order k + 1 with algebraic (or, if t(z)
is a Hauptmodul, even polynomial) coefficients. A discussion of this phenomenon in the general
case, and an algorithm to find the corresponding modular parametrization, if one exists, of a given
linear differential equation, is explained in §5 of [11]. Here we are interested only in k = 1, since
the differential equation (1) has second order (the case k = 0 is uninteresting, corresponding to the
“terminating” and “polynomial” cases above when (1) is not the differential equation of lowest order
satisfied by f), and the easiest is simply to write down the differential equation. Suppose that t(z) is
a modular function and f(z) a modular form of weight 1. Then the function t′ := (2πi)−1 dt/dz is a

(meromorphic) modular form of weight 2 and the function 2f ′2 − ff ′′ is a modular form of weight 6,
so we can write

t′(z)

f(z)2
= α(t(z)) ,

2f ′(z)2 − f(z)f ′′(z)

t′(z)f(z)4
= β(t(z)) (7)

where α(t) and β(t) are algebraic (or even, if t(z) is a Hauptmodul, rational) functions of t. From
the calculation

1

t′(z)

d

dz

(
α(t(z))

t′(z)

dF (t(z))

dz

)
+ β(t(z))F (t(z)) =

1

t′
( 1

f2
f ′)′ +

2f ′2 − ff ′′

t′f4
f = 0

we then see that F (t) is a solution of the linear second order differential equation with algebraic
coefficients (αF ′)′ + βF = 0. Comparing this with (1), we find that in our case the function α(t),
up to a constant factor which we can normalize to be 1, is equal to tP (t) = t(1−At + Bt2). We can
then integrate the equation t′(z) = α(t(z))f(z)2 = α(t(z))F (t(z))2 to get z =

∫
dt/α(t)F (t)2 or, in

terms of the standard expansion parameter q = e2πiz of modular functions and forms at infinity,

q = t exp

(∫ t

0

(
1

α(s)F (s)2
− 1

s

)
ds

)
= t exp

(∫ t

0

(
F (s)−2

1 − As + Bs2
− 1

)
ds

s

)
. (8)

This is a power series with leading term t (recall that F (t) = u0 + u1t + · · · has leading coefficient 1
by our choice of normalization) and hence can be inverted to compute t = t(z) as a power series
in q, after which the function f(z) = F (t(z)) can also be computed. We then only have to look
at these power series to see whether they are in fact the q-expansions of a modular function and a
weight 1 modular form, respectively. This can often be done by inspection (in many of the cases
below, t(z) is a simple product of eta-functions and f(z) an Eisenstein series of weight 1, which
are easily recognized from their q-expansions); when this fails, one can test numerically whether the
function t(z) is related algebraically on the classical j-invariant j(z). Once one has found a relation by
looking at the first few Fourier coefficients of the candidate modular forms, the validity of the asserted
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differential equation can be checked algorithmically, since any equality between modular forms can
be verified by verifying the equality of a specific number of terms of their q-expansions. In this way,
the modular parametrizations given below were found. That the other solutions (excluding the trivial
ones where the sequence {un} is either polynomial or terminating and F (t) is a rational function) are
not modular is harder to verify algorithmically, but in each case the numerical calculation indicates
that their q-expansions have very large denominators involving infinitely many prime numbers, and
this is not a possible behavior for modular forms.

Description of all known modular solutions of (1). As already mentioned, we found altogether
12 cases in our table which had modular parametrizations—the six sporadic ones, four hypergeometric
ones, and two Legendrian ones. We now discuss each of these individually.

Sporadic cases. In four of the six sporadic cases, those with labels A, C, E and F, the quadratic
polynomial x2 − Ax + B splits over Z as (x − α)(x − β). In each of these cases, the modular
functions t(z), 1−αt(z) and 1−βt(z) and the modular form f(z) have representations as products of
Dedekind eta-functions, and the modular form f(z) can also be represented as an Eisenstein series of
weight 1. These representations are given in the following table, in which a notation like 132−33−969

is a shorthand for the eta-product η(z)3η(2z)−3η(3z)−9η(6z)9 and the functions θ3 and θ4 are the
Eisenstein or theta series

θ3(z) = 1 + 6

∞∑

n=1

(∑

d|n

(−3

d

))
qn =

∑

m,n∈Z

qm2+mn+n2

,

θ4(z) = 1 + 4
∞∑

n=1

(∑

d|n

(−4

d

))
qn =

∑

m,n∈Z

qm2+n2

,

i.e., the modular forms of weight 1 whose Mellin transforms are the Dedekind zeta-functions of the
two imaginary quadratic fields Q(

√
−3) and Q(i) possessing non-trivial units.

Case α β t(z) 1 − αt(z) 1 − βt(z) f(z) f(z)

A −1 8 1369

2339

2561

1135

1864

2438

2136

1263

1
3θ3(z) + 2

3θ3(2z)

C 1 9 1468

2834

1135

2561

1963

2933

2631

1362

1
2θ3(z) + 1

2θ3(2z)

E 4 8 144284

210

14414

21484

1844

212

210

1444 θ4(z)

F 8 9 15314562121

214

1848620

22038128

194966

21833123

21532122

164665 θ3(z) + 2θ3(2z) − 2θ3(4z)

Case B is fairly similar: here the polynomial x2 − Ax + B = x2 − 9x + 27 does not split over Z, but
we still have the eta-product representations

Case B: t =
1343189

2993363
, 1 − 9t + 27t2 =

194963693363

2273121212189
, f =

2931121

134363

and the Eisenstein series representation

f(z) =
1

2
θ3(z) − 3

2
θ3(3z) − θ3(4z) + 3 θ3(12z) .

Finally, in the last case D (corresponding to the Apéry numbers), the function t still has a product
representation, but no longer as a product of eta-functions, and similarly for 1 − At + Bt2 and f :

Case D: t = q

∞∏

n=1

(
1 − qn

)5( n
5
)
, 1 − 11t − t2 = t · 16

56
, f2 = t−1 · 55

11
.
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The Eisenstein series representation of f in this case is also more complicated:

f(z) = 1 +

∞∑

n=1

∑

d|n

(
3 − i

2
χ(d) +

3 + i

2
χ̄(d)

)
qn ,

where χ is the Dirichlet character of conductor 5 with χ(2) = i, χ2 =
( ·

5

)
.

Hypergeometric cases. Here two cases, the exceptional case #2 when A = λ = 0 and the sequence
#11 with (A,B, λ) = (16, 0, 4), behave like the first four sporadic cases:

Case α β t(z) 1 − αt(z) 1 − βt(z) f(z) f(z)

#2 −4 4 2488

412

21484

14414

142284

410

410

2484 θ4(2z)

#11 0 16 18416

224 — 11648

224

210

1444 θ4(z)

(Note that, amusingly enough, f(z) for case #11 is the same as for the sporadic case E = #10,
although of course the parameter t(z) and hence also the power series F (t) are different.) Another
case, corresponding to sequence #14 with (A,B, λ) = (27, 0, 6), is more similar to the sporadic case
D, since we do not have product expansions for t, 1 − At and f separately, but only for certain
multiplicative combinations, while f has an ordinary (indeed, a particularly simple) Eisenstein series
representation:

Case #14:
t

1 − 27t
=

312

112
, f3 · t =

39

13
, f(z) = θ3(z) .

Finally, for the sequence #20 with (A,B, λ) = (64, 0, 12), we again find eta-product representations
only for certain multiplicative combinations of t, 1−At and f , but this time f is not a modular form
at all, but only the square-root of a modular form:

Case #20:
t

1 − 64t
=

224

124
, f4 · t =

216

18
, f(z)2 = −E2(z) + 2E2(2z) ,

where E2(z) = 1 − 24
∑

σ1(n) qn is the usual not-quite-modular Eisenstein series of weight 2 on the
full modular group.

Legendrian cases. The last two cases which turned out to be modular are again slightly different,
since now f is no longer a holomorphic modular form, or even the square-root of one, but rather is
a meromorphic modular form of weight one:

Case #19: t =
18416

224
, 1 − 16t =

11648

224
, f =

222

11248
, f(z) =

−θ4(z) + 2θ4(2z)

1 − 16t(z)
.

Case #25: t =
112412636

2363121212
, (1 − 27t)2f3 =

22733123

194969
, f(z) =

−θ3(z) + 2θ3(4z)

1 − 27t(z)
.

Discussion. We make a few remarks about the modular parametrizations just given. We consider
only the non-degenerate case when B 6= 0 and A2 6= 4B, so that x2 −Ax + B = (x− α)(x − β) with
α and β distinct and non-zero. We further assume that t is a Hauptmodul, i.e., that t and f are
modular forms on some group Γ ⊂ SL(2, R) of genus 0 and that z 7→ t(z) gives an isomorphism of
H/Γ ∪ {cusps} to P1(C). From equation (7) we see that the modular forms f(z), t(z) and t′(z) are
related by f 2 = t′/t(1 − αt)(1 − βt), so that the Γ-invariant differential form f(z)2dz is (or pushes
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forward to) the differential form dt/t(1 − αt)(1 − βt) on P1. This form has three simple poles, at
t = 0, t = 1/α and t = 1/β, and one simple zero at t = ∞. In terms of the “modular” variable z,
the point t = 0 corresponds to the cusp at infinity (since we have constructed t in such a way that
it has an expansion q + · · · ). None of the functions t(z), 1 − αt(z) or 1 − βt(z) had a pole or zero
in the upper half-plane, since then the function f 2 would have a (simple) pole at that point, which
is impossible. This explains why these three modular functions always had product expansions in
the cases looked at above. (This actually remains formally true even in the two sporadic cases B
and D when α and β are not in Z, but must be interpreted as the statement that the logarithmic
derivatives of 1 − αt and 1 − βt are weight 2 Eisenstein series.) Also, the fact that the genus is zero
means that there are no cusp forms of weight 1 or 2, so that f (and, for that matter, also f 2) must
be an Eisenstein series, as indeed we found in all the examples. It seems plausible that by continuing
this analysis one could get enough information about the necessary forms of f and t to classify at
least all those cases when t is a Hauptmodul and f a true modular form of weight 1, but I have not
tried to do this.

6. The periods associated to the six sporadic solutions. The most famous property of the
original Apéry recursion (n + 1)2un+1 − (11n2 + 11n + 3)un − n2un−1 = 0 is, of course, that if we
start with the two linearly independent solutions {un} = {1, 3, 19, . . . } and {vn} = {0, 1, 25

4 , . . . },
then the ratio vn/un tends to the limit L = 1

5
ζ(2) and this convergence is rapid enough to prove the

irrationality of L. In this section we look at the corresponding questions for each of the six sporadic
sequences A–F. We will see that the limit exists and can be computed in five of the six cases, but
that the convergence, though always exponential, is only rapid enough to imply the irrationality of
the limit in the case of the Apéry equation.

We denote by {un}, as up to now, the solution of equation (3) with u0 = 1 (and hence u1 = λ,
un ∈ Z for all n by the fundamental property of our sequences), and by {vn} the sequence defined
by the initial values v0 = 0, v1 = 1 and the requirement that (3) holds for all n ≥ 1. We want to
determine whether the sequence vn/un tends to a limit L and, if so, to evaluate this limit and specify
the speed of the convergence.

Let α and β as in §5 denote the roots of x2 − Ax + B = 0, chosen (except in case B where

α, β = (9 ± 3i
√

3)/2) so that |β| > |α|. Then the sequence {un} has the asymptotic behavior

un = C
βn

n

(
1 − c1

n
+ O

( 1

n2

))
(n → ∞) , (9)

where c1 =
λ − α

β − α
, while every other element of the 2-dimensional vector space of real-valued solutions

of the recursion (3) (for n ≥ n0 ≥ 1) has asymptotics given either by the same formula (with a possibly

different value of C) or else by (const.)
αn

n

(
1 − c2

n
+ O(

1

n2

))
, where c2 =

λ − β

α − β
, with the space of

solutions of the latter type being 1-dimensional. (To obtain these asymptotic formulas, consider a
general solution {un} of (3) and make the Ansatz un = (const.)nεxn(1 − cn−1 + O(n−2)); then the
ratio ρn := un+1/un equals x

(
1 + εn−1 +

((
ε
2

)
+ c

)
n−2 + . . .

)
, and rewriting equation (3) in the form

(1+n−1)2ρn−A(1+n−1)−λn−2+Bρ−1
n−1 = 0 we find x ∈ {α, β}, ε = −1 and c = (λ−A+x)/(2x−A).)

It follows that there are real constants C ′ and L such that vn − Lun = C ′ αn

n (1 − c2
n + O( 1

n2

))
and

that the quotient vn/un tends to L exponentially quickly:

vn

un
= L + C ′′ (α

β

)n (
1 +

c1 − c2

n
+ O

( 1

n2

))
(n → ∞) . (10)
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The values of the constants β, α, C, c1, c2 and L occurring in equations (9) and (10) are given for
each of the five cases A, C, D, E and F in the table below, in which φ in the third row denotes the
golden ratio (1 +

√
5)/2 and the numbers ζ(2), L−3(2) and L−4(2) are the values at s = 2 of the

Riemann zeta function and of the Dirichlet L-series L(s, χ) associated to the quadratic characters
χ(n) =

(−3
n

)
and χ(n) =

(−4
n

)
, each of which is a famous number: ζ(2) equals π2/6, L−4(2) is

“Catalan’s constant,” which occurs in the evaluation of many classical definite integrals, and L−3(2)
is, up to a factor 33/2/4, the maximum volume of a tetrahedron in hyperbolic 3-space. The constant
C in (9) can be evaluated using either the explicit binomial coefficient expressions given (except for
case F) in §4 or else from the modular form expressions of §5. The evaluation of the limiting ratio L
will be discussed at the end of this section.

Case β α C c1 c2 L

A 8 −1 2
π
√

3
1
3

2
3

1
4
ζ(2) = 0.4112335 · · ·

C 9 1 3
√

3
4π

1
4

3
4

1
2L−3(2) = 0.3906512 · · ·

D φ5 −φ−5 φ5/2

2π 4
√

5
1

φ
√

5

φ√
5

1
5
ζ(2) = 0.3289868 · · ·

E 8 4 2
π

0 1 1
2
L−4(2) = 0.4579827 · · ·

F 9 8 3
√

3
π −2 3 5

8L−3(2) = 0.4883140 · · ·

In each of these five cases, formula (10) gives an interesting series of rational approximations for
one of the numbers ζ(2), L−3(2) or L−4(2), but, as already mentioned, except in case D these do
not converge quickly enough to yield the irrationality of the limit. Indeed, from the table we see
that in cases E and F the quantity vn −Lun blows up exponentially like 4n/n or 8n/n, respectively,
and even in cases A and C, where |α| = 1 and hence vn −Lun tends to zero like O(1/n), this is not
enough to give the irrationality of L because vn itself has a denominator which blows up like e2n.
The speed of convergence is best in these two cases, with vn/un − L being of the order of (1/8)n

and (1/9)n, respectively, while the convergence in cases E (Catalan’s constant) and F is only like
(1/2)n and (8/9)n, respectively. The approximations lead in each of the five cases to a simple infinite
continued fraction expansion of the number L, the formulas in cases C and E being

L−3(2) =
2

P (0) − 9 · 14

P (1) − 9 · 24

P (2) − 9 · 34

. . .

, L−4(2) =
1/2

Q(0) − 2 · 14

Q(1) − 2 · 24

Q(2) − 2 · 34

. . .

with P (n) = 10n2 + 10n + 3, Q(n) = 3n2 + 3n + 1. Continued fraction expansions of a similar type,
though with more complicated rational functions, have been given recently by Zudilin [12].

To find the value of L listed in the above table, we follow the method devised by Beukers [3] in
1987 to obtain modular interpretations of Apéry’s irrationality proofs for ζ(2) and ζ(3), using the
modular descriptions of the differential equations associated to the recursion (3) which were given
in §5. Consider for instance case C. We saw that the integer solution {un} of (3) in this case is given
by the generating function expansion f(z) =

∑
unt(z)n, where t(z) = η(z)4η(6z)8/η(2z)8η(3z)4 is

the “Hauptmodul” for Γ0(6) and f(z) is the theta series (or Eisenstein series) of weight 1 for Γ0(6)
given in §5. The generating function h(z) =

∑
vnt(z)n for the second solution of the recurrence (3)

has a more complicated modular interpretation as f(z)g̃(z), where g̃(z) = q − 5
4q2 + q3 − 11

16q4 + · · ·
11



(q = e2πiz) is the “Eichler integral”
∑

b(n)qn/n2 associated to the weight 3 Eisenstein series g(z) =∑
b(n)qn = q − 5q2 + 9q3 − 11q4 + · · · with b(n) =

∑
d|n(−1)d−1

( −3
n/d

)
d2. (To prove this, one simply

verifies that the differential equation satisfied by fg̃ as a function of t(z) coincides with the one
corresponding to the recursion defining the vn.) The group Γ0(6) has four cusps, at z = 0, 1

2 , 1
3

and ∞, the corresponding values of the modular function t(z) being 1
9 , ∞, 1 and 0, respectively. In

particular, the asymptotics of the un and the vn are determined by the singularities of the functions
f(z) and h(z) as z → 0 (this explains once again why both of these sequences grow roughly like 9n),
and hence the limiting value L of vn/un is the limiting value as z → 0 of the ratio h(z)/f(z) = g̃(z).
(Note that, since

∑(
vn−Lun)tn has a larger radius of convergence than

∑
vntn or

∑
untn separately,

the value of L is automatically equal to the limit of the ratio of the two latter series as t approaches

the smallest singularity.) Writing the formula defining g̃(z) as
∑

m≥1

(−3
m )

m2

qm

1 + qm
, one sees that its

limit for z → 0 or q → 1 equals 1
2
L−3(2), as claimed. The proof in all the other cases is similar,

the function g̃(z) in case E, for instance, being the Eichler integral
∑

m≥1

(−4
m )

m2

qm

1 + qm
of a weight 3

Eisenstein series on Γ0(8).

Finally, we say a few words about case B, which has been omitted up to now. Here the two roots
α = (9 + 3

√
−3)/2 and β = ᾱ of x2 − Ax + B = 0 have the same absolute value, so all solutions

of (3) have the same growth O(27n/2/n), and the numbers vn/un do not tend to a limit as n → ∞.
Instead, the asymptotic expansions of {un} and {vn} as n → ∞ are given by

un =
U

n
αn

(
1 − γ1

n
+ · · ·

)
+

Ū

n
ᾱn

(
1 − γ̄1

n
+ · · ·

)
,

vn =
V

n
αn

(
1 − γ1

n
+ · · ·

)
+

V̄

n
ᾱn

(
1 − γ̄1

n
+ · · ·

)
,

where U =
9
√

3

2πα
, γ1 =

α

9
and

V

U
=

1

2
L−3(2)−

4i

9
√

3
ζ(2). (The ratio V/U , which is the analogue of the

limit L in the previous examples, is obtained just as before: the numbers 1/α and 1/ᾱ are the values
of the Hauptmodul t(z) given in §5 at the cusps z = ±1/6 and the function g̃(z) = h(z)/f(z) has
the form g̃(z) = −∑∞

n=1

(−3
n

)
n−2(−q)n/(1 − (−q)n), which for z = 1/6, −q = e−2πi/3 has the value

given.) Since α/
√

27 = eπi/6, the quotients vn/un do tend to a limit 1
2L−3(2) + 4

9
√

3
ζ(2) tan π(j−1)

6

as n tends to infinity in any fixed residue class n ≡ j 6≡ 4 (mod 6), but the convergence is very slow,
with error term of the order of 1/n instead of exponentially small as before, so that from the point
of view of rational approximation this case is of less interest than the other five.

7. The modular cases as Picard-Fuchs differential equations. The fact that the non-
degenerate solutions of our problem have parametrizations by modular forms means that they have
an algebraic-geometric interpretation as the Picard-Fuchs differential equations of certain families of
elliptic curves. In fact, we can be much more precise. In 1982, Beauville [2] classified completely the
stable families of elliptic curves over P1 having exactly four singular fibres (a stable family of elliptic
curves over P1 is a family in which the singular fibres have only double points; the minimal number
of singular fibres is then 4) and found that there were exactly 6. For each family he gave a defining
equation, a description of the singular fibres, and the subgroup of SL2(Z) describing the family. We
reproduce the table from [2] here.
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Case Equation of the family Group

I X3 + Y 3 + Z3 + tXY Z = 0 Γ(3)

II X(X2 + Z2 + 2ZY ) + tZ(X2 − Y 2) = 0 Γ1(4) ∩ Γ(2)

III X(X − Z)(Y − Z) + tZY (X − Y ) = 0 Γ1(5)

IV (X + Y )(Y + Z)(Z + X) + tXY Z = 0 Γ1(6)

V (X + Y )(XY − Z2) + tXY Z = 0 Γ0(8) ∩ Γ1(4)

VI X2Y + Y 2Z + Z2X + tXY Z = 0 Γ0(9) ∩ Γ1(3)

Comparing the number six of cases found by Beauville with the number six of sporadic cases
A–F in §5 makes it tempting to suppose that there is a 1:1 correspondence between these, with the
Picard-Fuchs equations of Beauville’s six families of elliptic curves being precisely the equations (1)
corresponding to A–F in some order. But this is not the case, for three reasons. First of all, two
of Beauville’s families (V and VI) are isogenous to two of the others (II and I, respectively) and
give the same Picard-Fuchs equations. This reduces the first “six” above to “four.” Secondly, our
hypergeometric (and hence by definition non-sporadic) solutions #2, #11 and #14, whose modularity
was noted in §5, are also Picard-Fuchs equations of families on Beauville’s list. This increases the
second “six” above to “nine.” And thirdly, each of Beauville’s surfaces can give rise to several different
Picard-Fuchs equations, depending on how one chooses the Hauptmodul t(z). To get a differential
equation of the form (1), we must require that the singular fibres correspond to the four values 0, t1,
t2 and ∞, where t1 and t2 are the roots of P (t), since these are the singular points of the differential
equation (1). So we must put one fibre at t = 0 and one at ∞, giving 12 choices (the remaining
freedom of interchanging or rescaling t1 and t2 has no effect on the parameters A, B, λ of this paper).
Of course, these do not necessarily all give rise to equations of the form (1) with rational coefficients,
nor (since the elliptic surfaces have non-trivial automorphisms) need they all be different. The actual
correspondence turns out to be as follows:

Beauville Family: IV I, VI III II, V

Picard-Fuchs equation: A, C, F B, #14 D E, G, #11

One way to see this is to compute the j-invariant of each of Beauville’s family as a rational function
of t, invert this equation to compute t as an explicit modular function, and compare with the list of
t’s which we found before. The j-invariant in turn is most conveniently found by rewriting Beauville’s
equations in Weierstrass form y2 = f(x) (f a polynomial of degree 3) . For the reader’s convenience,
we give the transformation needed in each of the 6 cases do this, and the resulting formula for the
j-invariant:

Transformation to Weierstrass form j-invariant

I X, Y = t(x ± y), Z = 2(1 + 3x) −t3(t3 − 216)3/(t3 + 27)3

II X = xt, Y = x + y, Z = t 28(t4 − t2 + 1)3/t4(t2 − 1)2

III X = 1 + (y + tx)/(1 − x), Y = 2x, Z = 2 (t4 − 12t3 + 14t2 + 12t + 1)3/t5(t2 − 11t − 1)

IV X, Y = 1 + tx ± y, Z = 2x(1 + tx) (t + 2)3(t3 + 6t2 − 12t + 8)3/t3(t − 1)2(t + 8)

V X, Y = 1 + tx ± y, Z = 2x(1 + tx) (t4 + 16t2 + 16)3/t2(t2 + 16)

VI X = 2x, Y = y − xt − 1, Z = 2x2 −t3(t3 + 24)3/(t3 + 27)
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The necessary calculations are explained and carried out in detail in the recent paper [9] by Helena
Verrill, in which the reader can also find a lot of other information about these elliptic surfaces and
their corresponding Picard-Fuchs equations. A further discussion of some of the above differential
equations and their relation to Beauville’s classification and to the earlier classification by Schmickler-
Hirzebruch [6] of elliptic pencils with exactly three singular fibers is given in [8], to which the reader
is referred for further details. I mention briefly a few further aspects which were pointed out to
me by Jan Stienstra. First of all, when different differential equations are associated to the same
family of elliptic curves, then the corresponding modular functions have to be the same (possibly
after a Möbius transformation z 7→ M(z), M ∈ GL2(Z), of the z-variable) up to a fractional linear
transformation. For instance, from the above table one sees that A and C correspond to the same
fibration, and from the eta-product expansions given in §5 one finds that tC(z) = tA(z)/(1 + tA(z)).
Secondly, just as one has isogenies between different families of elliptic curves in Beauville’s list,
in certain cases one has further transformations induced by pull-backs under t 7→ tN . Since these
transformations change the nature and number of the singularities, one can get examples of Apéry-
like differential equations coming from the pencils with three exceptional fibers classified in [6] as well
as from the ones with four exceptional fibers classified in [2]. This is discussed in detail in [8]. Finally,
and most interesting, in the modular cases one can always get explicit formulas for the coefficients
un as sums of multinomial coefficients (although these will in general be multiple sums rather than
simple sums like the ones listed in §4) from the equation of the corresponding pencil: if the equation
of this pencil is written as t = F (X,Y,Z), where F (X,Y,Z) is a Laurent polynomial in X, Y and Z
of degree 0 (as is the case for all of the families in Beauville’s list as reproduced above, after making
a linear change of variables in cases II and III), then the coefficient un of tn in the corresponding
power series is equal simply to the constant term of F (X,Y,Z)n. For instance, the constant term in
the nth power of −(X3 + Y 3 + Z3)/XY Z, corresponding to the “t” in Beauville’s family I, is equal
(up to sign) to n!/(n/3)!3 if 3|n and to 0 otherwise, and we recover the hypergeometric solution #14,
and similarly the constant terms of the powers of (X + Y )(Y + Z)(Z + X)/XY Z, corresponding to
the family IV, are the numbers 1, 2, 10, 56, . . . of sequence #5 in our list.

8. Final remarks. The numerical experiments described in the first sections of this paper were
carried out in 1997–98, inspired by the beautiful lecture given by Beukers on his work [4] at the
conference in honor of Schinzel in Zakopane in 1997. A first version of the paper was written in 2000
and has been circulating as an informal preprint ever since, with few changes except for the addition
of §6 on the periods associated to Apéry-like recursions (which was written in answer to a question
posed by A. Connes during my course at the Collège de France in 2001) and some additions to the
discussion of the connection with Beauville’s classification in §7. The main reason for not publishing
it earlier was that I thought that more explanations of the connections to geometry should be added,
but did not understand these well enough. In the meantime, several other related papers, both on
the geometric and on the purely differential equations/modular forms side have appeared (in some
cases quoting the informal preprint version of this paper), and part of what is presented here is
perhaps obsolete. I have nevertheless kept the entire text since this paper in any case contains no
real theorems but is to be seen more as an informal discussion of various experimental and theoretical
aspects of the three-way connection between algebraic geometry, linear differential equations, and the
theory of modular forms. For further material on this subject, the reader is referred in particular to
the three papers [1], [8] and [9], all of whose authors—Gert Almkvist, Wadim Zudilin, Jan Stienstra
and Helena Verrill, I would also like to thank here for many useful discussions and for their patience.

I should perhaps also mention explicitly that (of course) not all of the examples occurring in this
paper are new. In particular, the equations D, A and C (= #9, #5 and #8) are discussed in the paper
[7] by Stienstra and Beukers, where two of them are ascribed to Apéry and Cusick but in at least one
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case had already been found in the 19th century (J. Franel), as I have been informed by Zudilin. I
have made no attempt at all to find the earliest reference for each differential equation. In a different
direction, it should also be mentioned that the list of modular cases given in §5 is not complete. No
further sporadic Apéry-like equations have been discovered, and the conjecture formulated in §3 still
stands, but the infinite families of equations which we called “hypergeometric” and “Legendrian” both
contain further modular cases which I overlooked because their parameters were beyond the bounds
of my numerical search. Specifically, the hypergeometric case (A,B, λ) = (−1, 0, d(d + 1)) (d ∈ Q,
d ≥ −1/2) gives a modular function for the parameter value d = −1/6 as well as for the three values
d = −1/2, −1/3 and −1/4 (= #11, #14 and #20, respectively) which we discussed, the corresponding
coefficients un being up to a scaling factor the multinomial coefficients (6n)!/n!(2n)!(3n)!, and the
Legendre case (A,B, λ) = (2, 1, d(d+1)+1) (d ∈ Q, d ≥ −1/2) is modular not only for the two cases
d = −1/2 and d = −1/3 (= #19 and #25) which we gave, but also for d = −1/4 and d = −1/6,
found by van Enckevort and van Straten. All of these examples, of course, are contained in the much
more extensive tables found in the paper [1], which also gives relevant references and a discussion
of how equations of the type discussed here can be used to construct (fourth order) Calabi-Yau
differential euquations by means of Hadamard products. Finally, I mention two recent preprints on
closely related subjects. In [10], Y. Yang gives an analysis of the periods associated to Apéry-like
differential equations similar to the one given in §6 here. And in [5], Vasily Golyshev describes a class
of interesting higher order generalizations of the differential equations (1), which he calls equations
of type DN. Here N is the order of the differential equation, so that our equation (1) is an example of
his D2. For D2 equations he finds a connection with the quantum cohomology of Del Pezzo surfaces,
and for D3 equations he gives both a connection with the quantum cohomology of certain Fano
threefolds and a relation to modular forms similar to our Section 5.
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