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Abstract

We propose two new generalization error
bounds for multiple kernel learning (MKL).
First, using the bound of Srebro and Ben-
David (2006) as a starting point, we derive
a new version which uses a simple counting
argument for the choice of kernels in order to
generate a tighter bound when 1-norm reg-
ularization (sparsity) is imposed in the ker-
nel learning problem. The second bound is a
Rademacher complexity bound which is ad-
ditive in the (logarithmic) kernel complexity
and margin term. This dependence is supe-
rior to all previously published Rademacher
bounds for learning a convex combination of
kernels, including the recent bound of Cortes
et al. (2010), which exhibits a multiplicative
interaction. We illustrate the tightness of our
bounds with simulations.

1 INTRODUCTION

Bounds for multiple kernel learning (MKL) have
proved a popular research direction since the intro-
duction of MKL algorithms (Lanckriet et al., 2004;
Bach et al., 2004; Argyriou et al., 2005). The first
bound was in the seminal MKL paper of Lanck-
riet et al. (2004), and was a Rademacher complex-
ity bound (Koltchinskii and Panchenko, 2002; Bartlett
and Mendelson, 2002). Bounds for MKL were also pro-
posed by Micchelli et al. (2005) and Ying and Zhou
(2007). Later, Srebro and Ben-David (2006) improved
on these bounds, and showed the bound of Lanckriet
et al. (2004) to be vacuous in the case of a linear or con-
vex combination of kernels (not including the 1-norm
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case). The bound of Srebro and Ben-David (2006) was
important due to the fact that it scaled additively in
the kernel complexity term p and the margin term ~.
It is believed that this scaling factor should be the de-
facto standard for MKL algorithms, as any multiplica-
tive interaction between these two terms would blow
up considerably, requiring a multiplicative increase in
the sample size and resulting in a loose bound. Re-
cently, Cortes et al. (2010) have proposed an MKL
bound for a family of convex combination of base ker-
nels using Rademacher complexity, which scales mul-
tiplicatively between these two terms. However, the
dependence on the kernel complexity term is only log-
arithmic. Hence, when learning a convex combina-
tion of kernels, their bound can be considerably tighter
than the Srebro and Ben-David (2006) result.

In this paper we present two new results. The first
result shows that we can obtain a logarithmic depen-
dency of the kernel complexity p for the Srebro and
Ben-David (2006) bound in the case of a (sparse) lin-
ear/convex combination of kernels. However, at the
cost of an additional integer d < p corresponding
to the number of chosen kernels in the final solution.
However, d is typically much smaller than p and so our
bound can be tighter than the bound of Srebro and
Ben-David (2006) when an MKL algorithm chooses
a sparse number of kernels from a large finite family
of kernels i.e., 1 block-norm regularization of MKL.
Our second result is a Rademacher complexity bound
which improves on the bound of Cortes et al. (2010),
in that we now have an additive dependency between
the logarithmic kernel complexity term Inp and the
margin term 7. To our knowledge, when choosing a
convex combination of kernels using MKL, this result
is tighter than any previously published bounds.

The rest of the paper is structured as follows. In
the following section we formalize our contributions.
After discussing preliminary definitions in Section 3,
we move onto the main proofs of the paper given in
Section 4 and Section 5, discussing the sparsity and
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Rademacher bounds respectively. We conclude in Sec-
tion 6.

2 OUR CONTRIBUTION

Let p € N denote the complexity of a family of ker-
nels, v € [0,1] the margin and m € N the size of
a sample. Srebro and Ben-David (2006) have pro-
posed a multiple kernel learning bound whose esti-
mation error can be upper bounded by a term of the

order @( (p+ 1/72)/m), where O hides logarith-

mic factors (see Section 4 for the exact form of the
bound). Typically in MKL (Lanckriet et al., 2004),
we find a convex/linear combination of d < p ker-
nels in the final solution (sparsity using ¢; norm reg-
ularization). Therefore, taking the result of Srebro
and Ben-David (2006) as a starting point we apply
a counting argument over the choice of kernels plus
a union bound in order to construct a bound of the
order O (\/(logp +1/92+ 2d)/m). This gives us a

logarithmic dependency in the kernel complexity term
p and is tighter when logp + 2d < p.

Cortes et al. (2010) have recently proposed a
bound using Rademacher complexity of the order

((lnp)l/’yQ)/m), showing it to be tighter than

the bound of Srebro and Ben-David (2006), when
learning a 1-norm regularized convex combination of
kernels. We propose a Rademacher complexity bound
(with a simpler proof than that of Cortes et al. (2010))

which is of the order O (\/(lnp + 1/72)/771). As far as
we are aware this is the first Rademacher complexity
bound for MKL which is additive in the kernel com-
plexity term p and margin term . This is tighter
than the bounds of Srebro and Ben-David (2006) and
Cortes et al. (2010) for learning kernels of convex com-
binations, both of which are considered the current
state-of-the-art.

3 PRELIMINARIES

Let z = {(x;,y:)}/*, be an m-sample where z; € X C
R™ and y; € Y = {—1,+1}, with Z = X x Y. Let
x = {x1,...,%,  contain the input vectors.
Definition 1 (Aizerman et al., 1964). A kernel is a
function k that for all x,2’ € X satisfies

K (2,2) = (¢(x), (")),

where ¢ is a mapping from X to an (inner product)
Hilbert space H
¢ X — H.

Kernel learning algorithms (Scholkopf and Smola,
2002; Shawe-Taylor and Cristianini, 2004) make use of
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the m x m kernel matrix K = [r(z;, ;)] _, defined
using the training inputs x. When using the kernel
representation it is not always possible to represent
the weight vector w explicitly and so we can use the
function f directly as the predictor:

f(z) = Z a;ik(Z4, ),
i=1

where o = (aq,...,qm) is the dual weight vector.
Given a kernel k, learning can be described as find-
ing a function from the class of functions (Srebro and
Ben-David, 2006):

F=A{z = (w,¢@)) | w2 <1,5(x,2") = (¢(x), p(2"))}

minimizing the hinge loss
=13 e
mis

where & = max(y — y; f(x;),0). We call v € [0,1] the
margin.

For the generalization error bounds we assume that
the data are generated iid from a fixed but unknown
probability distribution D over the joint space X x ).
Given the true error of a function f:

err(f) = B ~p(yf(x) <0),

the empirical margin error of f with margin v > 0:

% Zﬂ(yif(ﬂfi) <7)

et (f) =
where I is the indicator function, and the estimation
error est”(f)

est?(f) = lerr(f) — etr” (f)],

we would like to find an upper bound for est?(f). In
the sequel we will state the bounds in standard form,
where the true error err(f) of a function f is upper
bounded by the empirical margin error efr”(f) plus
the estimation error est”(f):

exr(f) < i (f) + est"(f). (1)

Let K = {k1, ..., Kp} denote a family of kernels, where
each kernel k; is called the ith base kernel. The follow-

ing kernel families are formed using a linear or convex
combination of base kernels:

p p
Kiin (K1, ..., kp) = {n” = me | K" = O,Zm = 1}
i=1 i=1
p p
Keon(k1, .-, kip) = {m = miki|mi =0,y mi= 1}.
i=1 =1
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These two kernel families are considered finite dimen-
sional — hence p is the complexity of the kernel family
(i.e., cardinality of the set). The MKL problem can
be described as finding a function f from the class:

Fic = Uk exFi,

that minimizes A7 (f), where j € {1,...,p}.

4 IMPROVED MARGIN BOUND
FOR SPARSE MKL

In this section we use covering number bounds for
learning the kernel with support vector machines
(SVM) (Srebro and Ben-David, 2006). We derive an
upper bound for the above finite dimensional kernel
families (that use ¢; norm regularization i.e., sparsity)
using covering numbers, potentially resulting in tighter
bounds than Srebro and Ben-David (2006), when a
sparse number of kernels is present in the final com-
bination (i.e., Lanckriet et al. (2004); Bach (2009)).
Before presenting our first result we define covering
numbers for kernels and the bound of Srebro and Ben-
David (2006).

Definition 2 (covering number). A subset A C A is
an e-cover of A under the metric d(-,-) if for anya € A
there exists a € A with d(a,a) < e. The covering
number Ny(A, €) is the size of the smallest e-cover of
A.

Given a sample of m inputs x we can define the fol-
lowing {., metric:

dx(f1, f2) = max. |f1(zs) — fali)|.

The uniform £, covering number N, (F, €) of a predic-
tor class F is given by considering all possible inputs
x of size m:

Nin(F,€) = sup Ngx (F,e).

|x|=m

In the kernel learning scenario we have:

DX (k,k) = max |k(z;, ;) — Kz, xj)|

1<i,j<m
Theorem 1 (Srebro and Ben-David, 2006). Fiz vy >
0 and 6 € (0,1). For any kernel family K, bounded
by R? > k(x,r) and with pseudo-dimension p, with
probability at least 1 — § over the choice of a random
training set z = {z;}™, of size m we have, for any
f € Fx:
err(f) < eir?(f) + est?(f),

where
est’(f) =

$ 82 + plog 7128:'2”51%2 + 256‘3—; log 55 log 7128’:’51%2 —logé

m
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We can apply a counting argument to this bound if our
algorithm chooses d < p kernels from a family of finite
kernels L = {k1, ..., Kp}, together with a union bound
over all choices of kernels. Therefore, the following
result is applicable to the kernel families KCy;, and Keop,
described in Section 3.

Theorem 2. Fizy > 0 and § € (0,1). Let d < p be
the number of kernels involved in the final MKL solu-
tion. For any finite kernel family KK = {k1,...,Kkp},
bounded by R2, with probability at least 1 — § over the
choice of a random training set z = {z;}*, of size m
we have, for any f € Fi:

err(f) < eir(f) + est?(f),

where

est(f) =

ep 128em3 R2 R2 yem 128mR2 s
\}82+dlog i + dlog 24 -‘,—256"{2 log SR log 2 —logp

m

Proof. From Anthony and Bartlett (1999) (Theorem
10.1) we have:

\/81 + log Nop (F,7v/2) — log §

sup est” (f) <
m

fer

which is found by solving the following equation for
e>0:

2
2N (F7/2) exp (—8’”> =4,

where we substitute est”(f )déte. From Theorem 1 and
Lemma 3 of Srebro and Ben-David (2006) we have the
following upper bound of the covering number for a
family K = {k1,...,£,} of kernels bounded by R? >

k(z,z) and any a < 1:

4em®*R*\" [ 16mR? SiR; los(57*)
) ()

(2)

o?

N (Fie, @) §2<

Hence using ¢; norm regularization for MKL the al-
gorithm will choose a small number of kernels from a
set of p base kernels. Therefore, fix d < p. Hence,
making use of the fact that we have (g) different ways
of choosing a combination of d kernels (counting argu-
ment), and making a further application of p (union
bound) we get:

2
p em é

2Nom (Fic,v/2 —— | =-.

(5)2enFe e (-5) =
Applying (2) to upper bound the covering number and
solving for € yields the result. O

The estimation error of Theorem 1 is of the order:

(2
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where O hides logarithmic factors.! Our bound of

1
Theorem 2 is:

[/ )

with only a logarithmic dependency on p, but an extra
additive term of twice the number of kernels chosen d.
Typically d < p.

logp + R%/v2% +2d
m

O

This bound can be smaller than the bound of Sre-
bro and Ben-David (2006) if there are a large num-
ber of kernels in the kernel family (possibly exponen-
tially large) but only a sparse (small) number of ker-
nels chosen in the final combination. A recent algo-
rithm has this property, where a small number of ker-
nels are chosen from an exponentially large set of base
kernels (Bach, 2009). The number of kernels used in
the experiments of Bach (2009) were of the order of
more than p > 103°, but the algorithm chose a much
smaller number of kernels d ~ 300 in the final solution.
Clearly, in this case we can expect Theorem 2 to give
a significantly tighter bound than Theorem 1.

Figure 1 displays bound plots for Theorem 1 and The-
orem 2. We plot the estimation error of these bounds
(i.e., est?(f) in both Theorems) as a function of m and
p, and choose d = 300 for our proposed bound (The-
orem 2). The other parameters of the bound were set
to v/R = 0.2 and ¢ = 0.01 (using the setup of Cortes
et al. (2010)). Our bound is depicted with solid lines
and is clearly tighter than Theorem 1 and not effected
so much with varying values of p — this is because
we only have a logarithmic dependency on p. Hence,
all three plots of our bound (for varying values of p)
have similar values, with the curves being very close
together. Also, when p = m the bound of Theorem 1
becomes uninformative as very early on it starts to
increase with an increase in the number of examples
m, whereas our bound decreases with the number of
training examples m. Hence, our bound is still be in-
formative in this case.

5 ADDITIVE RADEMACHER
COMPLEXITY BOUND FOR
MKL

In this section we derive a novel Rademacher complex-
ity bound for MKL (Ying and Campbell, 2009; Cortes
et al., 2010) which does not have a multiplicative in-
teraction between the margin complexity term and the
dimensionality of the kernel family. In Srebro and Ben-
David (2006) they state that it may not be possible

!The exact form of the bound with all logarithmic fac-
tors and constants can be found in est”(f) of Theorem 1.
Similarly for Theorem 2.
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Figure 1: Bound plot comparing the bound of Sre-
bro and Ben-David (2006) and our sample-compressed
bound for a normalized margin v/R = 0.2 and § =
0.01. Theorem 1 is given by the dashed lines, and
Theorem 2 by the solid lines. Our bound is plotted for
d = 300 kernels chosen from p base kernels.

to have additive behavior for Rademacher bounds for
MKL. However, we show that it is possible for the case
of convex combinations of base kernels by using a re-
sult for Rademacher complexities of convex hulls. We
begin by stating the following well-known concentra-
tion inequality, followed by a definition of Rademacher
complexity.

Theorem 3 (McDiarmid, 1989). Let Xq,..., Xy, be
independent random variables taking values in a set A,
and assume that f : A™ — R satisfies

sup ‘f(xlv "7mm)_f(mlv"'7‘%i7xi+17"'axm)‘
T1yeny T, Bi EA
S Ci,]. S ) S m.
Then for all e > 0
Pr{f(X1,....,Xm) —Ef(X1,...,Xm) > €}

—2¢2
m 9
Y ie1 €

<ow (s )-

Definition 3 (Rademacher complexity). For a sample
x ={z1,...,2m} generated by a distribution Dy on a
set X and a real-valued function class F with domain
X, the empirical Rademacher complexity of F is the
random variable

. 2 &
R (F)=E, |sup — oif(x)|x1, s m | -
where ¢ = (01,...,0m) are independent uniform

{£1}-valued (Rademacher) random wvariables. The
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(true) Rademacher complexity is:

m

sup 3 Z oif(xi)

ferm i

EXU

The standard margin-based Rademacher bound for
learning theory is given in the following theorem.

Theorem 4 (Bartlett and Mendelson, 2002). Fiz
v>0 and 6 € (0,1), and let F be a class of functions
mapping from Z = X x Y to [0,1]. Let z = {z;}*,
be drawn independently according to a probability dis-
tribution D. Then with probability 1 — 6 over random
draws of samples of size m, every f € F satisfies

In(2/9)

- 14

en(f) < en(f) + ~RulF) + 3y L
This bound is quite general and applicable to various
learning algorithms if an empirical Rademacher com-
plexity Ry, (F) of the function class F can be found
efficiently. For kernel method algorithms a well-known
result uses the trace of the kernel matrix to bound the
empirical Rademacher complexity.

Theorem 5 (Bartlett and Mendelson, 2002). If & :
XXX — Ris akernel, andx = {x1,...,xm} is a sam-
ple of points from X, then the empirical Rademacher
complezity of the class F(B) with bounded mnorm
|lwl|le < B satisfies

Furthermore, if R? > k(x,x) for allz € X and K is a
normalized kernel such that Y., k(zi, x;) = m then
we have:

R2
m

[\

B

— i» %) < 2B
— K(24,x;)

The problem of learning kernels from a convex combi-
nation of base kernels can be viewed as a convex hull:

convp(F) = {Zaifi s fieF,a; € R> O,Zai < B} 3)

We are interested in the empirical Rademacher com-
plexity of a convex hull as given by Equation (3), given
in the following result.

Theorem 6 (Ambroladze and Shawe-Taylor, 2004).
The empirical Rademacher complexity of the convex
hull convg(F) of function class F satisfies

R (convg(F)) < BR,,(F).
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Given all of the results from above, we are now in a po-
sition to state the following theorem, which proves an
upper bound for the empirical Rademacher complexity
of the joint function class Fi.

Theorem 7. Let x = {x1,...,2mn} be an m-sample of
points from X, then the empirical Rademacher com-
plezity R,, of the class Fx = Ur,exFj, 7 €141,...,p},
satisfies:

In((p +1)/6)

R (Fi) < max .ém(fj) +38 o .

C1<<p

Proof. Let o* be a realization of a Rademacher se-
quence and recall that for a family of kernels K =
{k1,..., Kp} we have the following function class Fi =
U, exFy, forall j € {1,...,p}. Then with probability
at least 1 — ¢ over the generation of this sequence we
2 m
sup — Z oif(zi)

know that:
Es
fere M54

[sup 250t fa)
2y /PEE D75

m
ferre iz
max ‘|

1<j<p l

Rm(]:K)

IN

m

sup 2307 ()

. m
feF; i—1

IN

IN

max R, (F;) +8
1<j<p

where the second line follows from an application of
Theorem 3, the third line by observing that the supre-
mum of a joint function class (i.e., UF;) will always
be upper bounded by the maximum function in one
of the function classes, the next line by taking the ex-
pectation over ¢ to get the final line in terms of the

empirical Rademacher complexity of a single function
class Fj. O

Therefore we have the following generalization error
bound for MKL in the case of a convex combination
of kernels.

Theorem 8. Fiz v > 0 and § € (0,1). Let K =
{K1,...,Kp} be a family of kernels containing p base
kernels and let z = {2}, be a randomly generated
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sample from distribution D. Then with probability 1—9
over random draws of samples of size m, every f €
Fi... satisfies

con

2

m
etr” (f) + — ma ki (T4, x4
(N + - max ; (@i, @)

err(f)

<

In(p + 3)

In(1/4)

y

Also, if each kernel r; is normalized and bounded by

2m 2m

R? > kj(z,z) for allx € X and j € {1,...,p}, we
have:
2 /2
err(f) < efr?(f) +2 Rﬂ/j
+11\/m(p+3)+1n(1/5)_
2m 2m

Proof. We view each feature space F; as the space for
a new kernel. Hence, we have:

. 1 In(2/8
() £ et () + L hnlFe,) + 3y
. B . In(2/6
< ot (f) + i (Fi) +3 néﬂ{b)
1 .
Y -
< eft"(f)+ 5 11;1;%0 R, (Fj)
< e1"1r“7(f)—|—i max
- ym 1<j<p
2 /2
< etr?(f)+2 1/
m
+11\/1n(p+3) ln(l/é).
2m 2m

Where the first line is given by Theorem 4, the sec-
ond line comes from applying Theorem 6, the third
by applying Theorem 7 and considering that the MKL
formulation is a convex hull (see Equation (3)) such
that B < 1. The fourth line is obtained by apply-
ing the first inequality in Theorem 5. The final line is
obtained by applying the second inequality in Theo-
rem 5 for the case when each kernel x; is normalized
and bounded by R2. O

Recently, Cortes et al. (2010) have proposed the fol-
lowing Rademacher bound for MKL:
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Theorem 9 (Cortes et al., 2010). Fiz vy >0 and 0 €
(0,1). Then, for any p > 0 base kernels and R? >
kj(z,x) for all x € X and all j € {1,...,p}, for any
f € Fr... with probability 1 — & we have:

err(f) < efﬂ(f)ng\/’?@“OgPW+3\/h1(2/6)
m 2m
where 1 = 23.

The estimation error of Theorem 9 (Cortes et al., 2010)
is (ignoring constants):

o < (logp)R?/~?
which contains a multiplicative dependence between
logp and ~. Our bound is:

o B

This is additive in Inp and the margin (complexity)
term «y. Therefore, we have an additive expression sim-
ilar to Srebro and Ben-David (2006) and a logarithmic
dependence for the kernel complexity term, similar to
Cortes et al. (2010).

Figure 2 shows bound plots of the estimation error
(i.e., est?) for our bound of Theorem 8 and the bound
of Theorem 9. Figure 2 shows the plots using the same
setup as that given in Cortes et al. (2010), namely a
normalized margin v/R = 0.2 and § = 0.01. The
bounds are plotted as a function of m and different
values of p. It is clear from the plots on the right that
our bound of Theorem 8 is tighter than that of Theo-
rem 9. Furthermore, we carried out some experiments
using standard SVM software and benchmark datasets
to gauge the size of the margins typically encountered
after training. The normalized margins we found were
closer to 0.02 than 0.2, so Figure 3 shows the same
bound plots but for normalized margin v/R = 0.02. It
is clear that our bound is still tighter than the bound
of Cortes et al. (2010). Furthermore, we can see from
both plots that the change in the number of base ker-
nels does not alter the value of our bounds as much
as the change encountered for Theorem 9. This is be-
cause we only have an additive dependency between
In p and the margin ~.

6 CONCLUSION

We proposed two novel bounds for MKL. The first
applies a simple counting analysis plus union bound
over a previously published MKL bound. The idea
is to count the number of ways of choosing the ker-
nels included in the final combination and to compute
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0.25

p=m

0.2

bound

p=m

0.1

0.08

——p=10

Figure 2: Bound plot comparing the bound of Cortes et al. (2010) and our bound for a normalized margin
v/R = 0.2 and 6 = 0.01. The bound of Theorem 9 Cortes et al. (2010) is given by the dashed lines, and our
bound of Theorem 8 by solid lines. The plot on the right is a zoomed in version of the plot on the left.

bound

T
p=m
—— p=m
—— p=m®5
— p=m®® ||
1/3

—— p=m
——p=10

Figure 3: Bound plot comparing the bound of Cortes et al. (2010) and our bound for a normalized margin
v/R = 0.02 and § = 0.01. The bound of Theorem 9 is given by the dashed lines, and our bound of Theorem 8
by solid lines. The plot on the right is a zoomed in version of the plot on the left.

a union bound over all of these choices. Hence, we
can apply this technique over the bound of Srebro and
Ben-David (2006) for the choice of kernels. We show
empirically that this bound is tighter than the Srebro
and Ben-David (2006) result when a small number of
base kernels is chosen from a large kernel family; al-
gorithms such as that proposed by Bach (2009) have
this desirable property. Hence, our bound corrobo-
rates the impressive empirical results obtained by Bach
(2009), and suggests that we will have good general-
ization whenever a sparse set of kernels can be found
from a very large family of kernels.

The second bound is, to our knowledge, the first MKL
bound using Rademacher complexity which is addi-
tive in the kernel complexity and margin term. It
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uses Rademacher theory results from the boosting lit-
erature, and is tighter than all previously published
MKL bounds for learning a convex combination of ker-
nels, including the recent bound of Cortes et al. (2010)
— which is also a Rademacher complexity bound but
with a multiplicative interaction between the kernel
complexity and margin terms.

The Rademacher bound motivates an LPBoost (Demi-
riz et al., 2002) framework for multiple kernel learning.
We may view the set of norm bounded linear func-
tions in each kernel’s feature space as weak learners
and hence apply the LPBoost algorithm in this case.
This would correspond to a 1-norm regularization of
the choice of kernels and result in a different algorithm
for SimpleMKL (Rakotomamonjy et al., 2008). The
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details of this algorithm will be presented in a longer
format of the current paper.

Finally it should be noted that although the bounds
of this paper and the bound of Cortes et al. (2010) are
tighter than the Srebro and Ben-David (2006) bound,
they are in fact less general. The bound of Srebro and
Ben-David (2006) can be applied in the case of a non-
linear combination of kernels, or a parameterized class
of kernels. However, the bounds we presented (and
also Cortes et al. (2010)) are for the regime of MKL
that is considered the most popular in the literature
— where we have a finite family of kernels to choose
a linear or convex combination from. Therefore, it
would be an interesting research direction to apply the
bounds of this paper to a more general class of kernel
families.
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