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ABSTRACT
Recently we have developed a new algorithm, PROVEAN
(Protein Variation Effect Analyzer), for predicting the func-
tional effect of protein sequence variations, including single
amino acid substitutions and small insertions and deletions
[2]. The prediction is based on the change, caused by a
given variation, in the similarity of the query sequence to
a set of its related protein sequences. For this prediction,
the algorithm is required to compute a semi-global pairwise
sequence alignment score between the query sequence and
each of the related sequences. Using dynamic programming,
it takes O(n ·m) time to compute alignment score between
the query sequence Q of length n and a related sequence
S of length m. Thus given ℓ different variations in Q, in
a naive way it would take O(ℓ · n · m) time to compute
the alignment scores between each of the variant query se-
quences and S. In this paper, we present a new approach
to efficiently compute the pairwise alignment scores for ℓ

variations, which takes O((n + ℓ) ·m) time when the length
of variations is bounded by a constant. In this approach,
we further utilize the solutions of overlapping subproblems,
which are already used by dynamic programming approach.
Our algorithm has been used to build a new database for
precomputed prediction scores for all possible single amino
acid substitutions, single amino acid insertions, and up to 10
amino acids deletions in about 91K human proteins (includ-
ing isoforms), where ℓ becomes very large, that is, ℓ = O(n).
The PROVEAN source code and web server are available at
http://provean.jcvi.org.
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1. INTRODUCTION
As many large-scale genome sequencing projects gener-

ate a massive amount of sequencing data, a large number
of sequence variation data also become available. This ne-
cessitates computational tools to predict the functional ef-
fect of amino acid variations and narrow down the list of
causal variants for disease phenotypes. More than a dozen
of algorithms have been developed to solve this problem [3,
7]. However, to the best of our knowledge, existing ap-
proaches are limited to work only for single amino acid sub-
stitutions. Thus, recently we have developed a prediction
algorithm, PROVEAN (Protein Variation Effect Analyzer),
which works not only for single amino acid substitutions
but also for any other types of protein sequence variations
including amino acid indels (insertions and deletions) and
multiple amino acid substitutions [2].

In this approach, we introduced an alignment-based score
as a new metric to measure the damaging effect of varia-
tions, which can be naturally applied to any type of protein
sequence variations. More specifically, given a query protein
sequence Q, PROVEAN first collects a supporting sequence
set from related protein sequences, which are initially col-
lected by the homology search tool BLAST [1]. Then, for a
given sequence variation v, delta alignment scores (defined
below) are computed with respect to each sequence S in the
supporting sequence set. Finally, the PROVEAN score is
computed from these delta alignment scores by averaging
them with weights based on their sequence similarity.

The delta alignment score of v in Q with respect to S is
defined as

A(Qv, S)− A(Q,S),

where Qv is a variant protein sequence of Q caused by v

and A(P1, P2) is the semi-global pairwise alignment score
between two protein sequences P1 and P2. The delta align-
ment score can be obtained by computing two alignment
scores, which can be solved by classical dynamic program-
ming approach.

However, the problem arises when there are a large num-
ber of variations in Q, and for each of the variations the
delta alignment score has to be computed with respect to
a protein sequence S. Let us assume that there are ℓ vari-
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ations, v1, v2, · · · , vℓ in Q, whose lengths are bounded by
a constant. To analyze the time complexity, let n and m

be the lengths of Q and S, respectively. Then a naive ap-
proach would take O(ℓ ·n ·m) time since it needs to compute
ℓ+1 alignment scores, A(Qv1

, S), A(Qv2
, S), · · · , A(Qvℓ

, S),
and A(Q,S), each of which takes O(n ·m) time by dynamic
programming approach.

In this paper, we present a fast algorithm, which takes
O((n + ℓ) ·m) time to solve the same problem. The main
idea of our approach is to further utilize the solutions of
overlapping subproblems, which are already utilized by the
dynamic programming approach. Specifically in our prob-
lem we make use of the fact that the two sequences Q and
Qvi

differ only in a small contiguous region. Thus many sub-
problems for computing A(Q,S) are overlapped with ones
for computing A(Qvi

, S).
In Section 2, we provide the preliminaries on pairwise

alignments and formally define the problem. The main al-
gorithmic and experimental results will be presented in Sec-
tion 3. In Section 4, we will discuss how this idea can be
generally used in other problems that exhibit overlapping
subproblems and can be solved by dynamic programming.

2. BACKGROUND
In this section, we define some notations, review basic ap-

proaches on computing pairwise sequence alignment scores,
and provide a formal definition of our problem.

Let X be a sequence (or protein sequence) of length n.
Then Xi denotes the i-th letter (or amino acid) of X, and
X

j
i denotes the substring of X, XiXi+1 · · ·Xj (if i > j, then

X
j
i represents the empty string).
In aligning two protein sequences, a score is assigned to a

matched or mismatched pair of amino acids, and a penalty
is given to a gap, caused by an insertion or deletion in one
of the sequences. The scores are given based on a scoring
matrix such as the BLOSUM and PAM matrices [4, 5]. The
alignment score is computed by summing all scores and gap
penalties, and an optimal (highest scoring) alignment can
be obtained efficiently using dynamic programming.

Sequence alignments generally fall into two categories,
global alignment and local alignment. Global alignment
finds an optimal alignment between the entire length of the
two sequences [6]. By contrast, local alignment finds a region
of strong similarity [8]. That is, it finds a highest scoring
alignment between substrings of the two sequences.

2.1 Semi-global Pairwise Sequence Alignment
A semi-global alignment is a variant of global alignment

where gaps at the beginning and end of the two sequences
are not penalized. This is used by PROVEAN since it best
suits the idea of the delta alignment score. In this paper, for
simplicity we assume linear gap penalty, where each gap gets
the same penalty, but the algorithm can be easily extended
to affine gap penalty, where gap opening and gap extension
penalties are different, without increasing the time and space
complexities.

Algorithm 1 shows how an optimal (highest) semi-global
pairwise alignment score between two protein sequences X

of length n and Y of length m can be computed efficiently in
O(n ·m) time by dynamic programming. Here D(i, j) stores
the highest alignment score between Xi

1 and Y
j
1 with no

penalties on the gaps at the beginning of the sequences. Note
that we do penalize the gaps at the end of the sequences for

scores in D(i, j). S(a, b) denotes the similarity score between
amino acids a and b on the scoring matrix used, and g < 0 is
the penalty for a gap. The optimal score is found by taking
the maximum among all elements in the last row and the
last column of D. This is because the penalties on the gaps
at the end of the sequences were imposed for the scores in
D(i, j)’s and thus for the semi-global alignment score, we
need to find a maximum score between any prefix of X and
the whole sequence Y or between the whole sequence X and
any prefix of Y .

Algorithm 1 Computing semi-global pairwise alignment
score between X of length n and Y of length m

// initialization
for i = 0 to n do

D(i, 0)← 0
end for
for j = 1 to m do

D(0, j)← 0
end for
for i = 1 to n do

for j = 1 to m do
// recursion steps
Match← D(i− 1, j − 1) + S(Xi, Yj)
Delete← D(i− 1, j) + g

Insert← D(i, j − 1) + g

D(i, j)← max{Match, Delete, Insert}
end for

end for
// find an optimal score
Max1 ← maxj=0,··· ,m D(n, j)
Max2 ← maxi=0,··· ,n−1 D(i, m)
return max{Max1, Max2}

2.2 Delta Alignment Score and Problem
Given a query protein sequence Q of length n, its support-

ing protein sequence S of length m, and ℓ variations v1, v2,
· · · , vℓ in Q, we want to compute the delta alignment scores
for each of ℓ variations with respect to S, that is, we want
to compute

A(Qvi
, S)− A(Q,S) for i = 1, 2, · · · , ℓ.

Here a variation v can be a single or multiple amino acid
substitution, insertion, or deletion whose length is bounded
by a constant c (e.g. c = 10). Thus, generally any variation
v is described by “k1 amino acids starting at position p in Q

are replaced by X1X2 · · ·Xk2
” (k1 = 1 and k2 = 1 for single

amino acid substitutions, k1 = 0 for insertions, and k2 = 0
for deletions.) In Figure 1, for example, the variation v is a
replacement of amino acids MALR starting at position 83
with amino acids IS, and thus p = 83, k1 = 4, and k2 = 2.

To compute the delta alignment scores for ℓ variations, we
need to compute ℓ+1 pairwise alignment scores, A(Qv1

, S),
A(Qv2

, S), · · · , A(Qvℓ
, S), and A(Q, S). This would take

O(ℓ · m · n) time in a naive way by running Algorithm 1
ℓ + 1 times.

3. RESULTS
In this section, we present our algorithm and its applica-

tion, and we provide our experimental results.
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MSL· · · EPI MALR TVI· · ·AWV

MSL· · · EPI IS TVI· · ·AWV

✄✄✎ v

1 82 83 86 87 225

1 82 85 223

Q

Qv

Figure 1: Example of variation v that replaces amino
acids MALR with IS.

3.1 Algorithm
Given a variation v in Q, our algorithm uses the fact that

Qv and Q differ only in a small contiguous region, as seen
in Figure 1. Thus when we compute the alignment score be-
tween Qv and S, we will reuse the results stored in the array
D for Q and S as many time as we can, that is, for all the
regions that are shared by Qv and Q. Given the variation,
“QpQp+1 · · ·Qp+k1−1 is replaced by X1X2 · · ·Xk2

,” as seen
in Figure 1 we can easily observe that there are two long
substrings that are shared by Q and Qv, that is,

Q
p−1

1 = Qv
p−1

1 (1)

and

Q
n
p+k1

= Qv
n+k2−k1

p+k2
. (2)

To utilize the second equality above, we need another two-
dimensional array DB whose values for the region do not
depend on the amino acids Qp+k1−1

p in the variant region.
Thus, DB is defined slightly differently from D as follows.
Given two sequences X and Y , DB(i, j) is defined as the
highest alignment score between Xn

i and Y m
j with no penal-

ties on the gaps at the end of the sequences. By definition,
this array needs to be filled backwardly as described in Al-
gorithm 2. From now on, the array D described in Section 2
will be called DF since it is filled in a forward direction.

Algorithm 2 Computing backwardly semi-global pairwise
alignment score between X of length n and Y of length m

for i = 1 to n + 1 do
DB(i, m + 1)← 0

end for
for j = 1 to m do

DB(n + 1, j)← 0
end for
for i = n to 1 do

for j = m to 1 do
Match← DB(i + 1, j + 1) + S(Xi, Yj)
Delete← DB(i + 1, j) + g

Insert← DB(i, j + 1) + g

DB(i, j)← max{Match, Delete, Insert}
end for

end for
Max1 ← maxj=1,··· ,m+1 DB(1, j)
Max2 ← maxi=2,··· ,n+1 DB(i, 1)
return max{Max1, Max2}

In our algorithm, given two sequences Q and S, we first
build the two arrays, DF and DB . Then we keep both ar-
rays to look up the values whenever we can reuse them to
compute the alignment scores A(Qvi

, S) for i = 1, 2, · · · , ℓ.

Now assume that we have a variation v in Q, which is a
replacement of QpQp+1 · · ·Qp+k1−1 with X1X2 · · ·Xk2

, and
we want to compute A(Qv, S).

By (1), the values DF (p − 1, i) (i = 0, 1, · · · , m) for Q

and S would be the same as ones for Qv and S. That is,
DF (p−1, i) stores the highest alignment score between Q

p−1

1

and Si
1 with no penalties on the gaps at the beginning, which

is the same as the score between Qv
p−1

1 and Si
1. Similarly,

by (2) the values DB(p+k1, i) (i = 1, · · · , m+1) for Q and S

would store the highest alignment score between Qv
n+k2−k1

p+k2

and Sm
i with no penalties on the gaps at the end.

Thus, starting from DF (p − 1, i) values we build a tem-
porary two-dimensional array DT . DT (i, j) is defined as the
optimal score between Q

p−1

1 Xi
1 and S

j
1 with no penalties on

the gaps at the beginning of the sequences. After filling DT ,
one can find the optimal score by looking at the k2-th row
in DT and (p + k1)-th row in DB for Q and S since the two

rows store the scores between Qv
p−1

1 · Xk2

1 and any prefix

of S and the scores between Qv
n+k2−k1

p+k2
and any suffix of S,

respectively.
To find the maximum score more efficiently, we also keep

two one-dimensional arrays MF and MB of size n + 1 as
defined below. For i = 0, 1, · · · , n,

MF (i) = max
k=0,1,··· ,i

DF (k, m),

and similarly, for j = 1, 2, · · · , n + 1,

MB(j) = max
k=j,j+1,··· ,n+1

DB(k, 1).

All elements in MF and MB can be easily computed while
filling the arrays DF and DB .

The overall procedure to compute the alignment score be-
tween Qv and S, given DF and DB for computing A(Q,S),
is described in Algorithm 3.

Algorithm 3 Computing semi-global pairwise alignment
score between Qv and S, given DF and DB for Q and S

// v: Qp+k1−1
p is replaced by X1X2 · · ·Xk2

for i = 1 to k2 do
DT (i, 0)← 0

end for
for i = 1 to k2 do

for j = 1 to m do
if i == 1 then

Match← DF (p− 1, j − 1) + S(Xi, Sj)
Delete← DF (p− 1, j) + g

else
Match← DT (i− 1, j − 1) + S(Xi, Sj)
Delete← DT (i− 1, j) + g

end if
Insert← DT (i, j − 1) + g

DT (i, j)← max{Match, Delete, Insert}
end for

end for
Max1 ← maxj=0,··· ,m DT (k2, j) + DB(p + k1, j + 1)
Max2 ← maxk=1,··· ,k2

DT (k, m)
return max{Max1, Max2, MF (p− 1), MB(p + k1)}

Now let us analyze the time complexity to compute align-
ment scores for ℓ variant sequences. It takes O(n ·m) time
to fill the arrays DF and DB . Then, for each variation vi,
it takes O(m) time to compute the delta alignment score
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Table 1: Running time for computing delta align-
ment scores for ℓ variations (in seconds)

protein algorithm ℓ=100 ℓ=1K ℓ=10K

Human TP53
naive 219 2141 21177

ours 6 13 92

Ecoli LacI
naive 87 875 8574

ours 2 6 40

A(Qvi
, S) using Algorithm 3 since k2 is bounded by a con-

stant. Thus the overall time complexity becomes O((n+ ℓ) ·
m).

3.2 Application and Experiment
Our algorithm made it feasible to build a large database

of precomputed prediction scores. For academic and clinical
researchers, we have built a database that stores precom-
puted PROVEAN prediction scores for all possible single
amino acid substitutions, single amino acid insertions, and
up to 10 amino acid deletions for each of about 91 thousand
human protein sequences (including isoforms). In this case,
the number of variations is O(n). Thus our algorithm is
faster than the naive approach by a factor of n. It would
have been impossible to build such a large database if we
had taken the naive approach.

For our test, we selected two well-studied proteins, Human
TP53 and Ecoli LacI. For each protein, among the all possi-
ble simple variations described above, we randomly selected
three subsets of size 100, 1K, and 10K, respectively. We
measured the running time for computing delta alignment
scores for each set. For TP53, 503 supporting sequences,
whose length ranges from 21 to 788, were collected and used
for the delta alignment score computation. For LacI, 218
supporting sequences whose length ranges from 56 to 741
were used. As shown in Table 1, our approach was much
faster than the naive approach (more than 200 times faster
for ℓ=10K). We used a linux machine with 64-bit Intel Xeon
2.27GHz CPU and 4GB memory.

4. DISCUSSION
In our algorithm, we used the idea of further utilizing

precomputed results of overlapping subproblems. The same
idea can be applied to similar problems that have the prop-
erty of overlapping subproblems and are solvable by dynamic
programming.

For example, a longest common subsequence (LCS) be-
tween two DNA sequences can be used to measure the sim-
ilarity between the two sequences. The LCS problem can
be solved by dynamic programming. Thus exactly the same
idea can be applied in cases where longest common subse-
quences are needed for a set of variant sequences with respect
to a fixed sequence.

The idea can also be applied to the classical 0-1 knap-
sack problem, which can be solved using dynamic program-
ming. For example, let us consider two 0-1 knapsack prob-
lems where two item sets have many common items. In this
case, by ordering the items so that the common items come
first, we can reuse a part of the two-dimensional array used
for the first problem when we solve the second problem.

5. CONCLUSION

We presented a fast algorithm to compute semi-global
pairwise alignment scores between a protein sequence and
each sequence in a set of variant sequences of another pro-
tein. Our approach proved to be fast and useful for building
a database of precomputed prediction scores for a large num-
ber of human protein variations. We believe that a similar
idea can be extended and applied to many other problems
that are solvable by dynamic programming approach.
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