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Could the Semantic Web work for computations of biological interest in the way
it’s intended to work for movie reviews and commercial transactions? It would be
wonderful if it could, so it’s worth looking to see if its infrastructure is adequate to
the job. The technologies of the Semantic Web make several crucial assumptions.
I examine those assumptions; argue that they create significant problems; and
suggest some alternative ways of achieving the Semantic Web’s goals for biology.

1. Introduction

Imagine you are interested in purine salvage. You go to KEGG’s maps [1]
and see that the reactions

deoxyadenosine ! adenine (1)
deoxyinosine ! hypoxanthine (2)

are both catalyzed by EC 2.4.2.4. When you click on the link for that EC
number, you discover the name of the enzyme is thymidine phosphorylase,
and its reaction is

thymidine + phosphate ! thymine + 2-deoxy-α-D-ribose 1-phosphate
(3)

Thymidine isn’t a purine nucleoside, so how can it catalyze the cleavage of
deoxyadenosine and deoxyinosine? Maybe KEGG’s chart is mixed up, so
you go to to the web site of the Joint Committee on Biochemical Nomen-
clature, which is the international body in charge of classifying enzymes [2].
Same result — EC 2.4.2.4 is thymidine phosphorylase — but now you no-
tice a comment saying the enzyme can catalyze reactions like those of EC
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2.4.2.6, nucleoside deoxyribosyltransferase,

2-deoxy-D-ribosyl-base1 + base2 ! 2-deoxy-D-ribosyl-base2 + base1 (4)

under some circumstances. That’s a fundamentally different reaction than
that shown for EC 2.4.2.4; one cannot logically substitute a nucleotide base
for a phosphate or the ribosyl moiety of nucleosides. If one rewrote the
KEGG reactions to fit that of nucleoside deoxyribosyltransferase, e. g.,

deoxyadenosine + thymine ! thymidine + adenine, (5)

the result is still not the reaction shown either for EC 2.4.2.4 or on KEGG’s
map. Adding to the confusion, you notice that two synonyms for the en-
zyme’s name are “blood platelet-derived endothelial cell growth factor” and
“gliostatins”. Statins stop things and growth factors stimulate growth; en-
dothelial cells are not the same as glial cells; so how can the same enzyme
stimulate the growth of one cell and inhibit the growth of another? And
why would an enzyme of nucleotide salvage (you’re still not sure it’s the
right enzyme) be involved in cell growth anyway?

Your ability to check, understand, and reconcile apparently contradic-
tory information depends on understanding the semantics of terms such as
thymidine, purine, statin, growth factor, glia, and endothelial cell; questioning
the apparent contradictions; and synthesizing information from multiple
sources. The hope for the Semantic Web is that it would do just these
things automatically, accurately, and transparently on the Internet. Sim-
ple questions, usually the hardest, would be simply, rapidly, and at least
plausibly answered. The net would become a connected engine of knowl-
edge and inference [3].

This powerful and alluring vision has stimulated great excitement. But
the utility of the Semantic Web to address biological questions depends as
much on the adequacy of its infrastructure as it does on the passion of its
advocates. Computations that return biologically incorrect or misleading
answers are not helpful, especially if automation returns more “results”. To
ensure the scientific validity of the Semantic Web’s computations, it must
sufficiently capture and use the semantics of the domain’s data and compu-
tations: for example, it mustn’t confuse reactions of enzymes with reactions
to drugs (unpleasant side-effects). Accurate semantics are even more im-
portant if the goal of the computation is to return plausible answers, since
plausibility depends on persuading someone that the implicit relationships
among rather disparate facts are strong enough to form a reasonable hy-
pothesis (e. g., reactions 1 and 3 are the same). Since the Semantic Web’s
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fundamental technologies will be the foundation for any domain-specific
extensions, it’s important to ask how well their structure fits the semantics
of biology [4].

One can think of the Semantic Web and the scientific databases and
algorithms it would call as a collection of languages that denote information.
To translate among them, their semantics must be adequately specified.
Two of the most important requirements for a system to scale are that its
operations are automatic and that its methodologies are distributed. Here
I examine several of the fundamental assumptions of the Semantic Web’s
infrastructure to estimate their limits in the context of computations of
biological interest. With respect to semantics, I consider the structure of
RDF and its denotational semantics; and for scalability, the topology and
automation of semantic translation. While the only solutions I can suggest
are as partial in their ways as the current approaches (see Section 6), I
hope to stimulate broader consideration of the technical foundations of the
Semantic Web’s application to scientific computing. Thus, this paper is in
the spirit of BioMOBY’s goals of figuring out what’s needed for the scalable
big picture [5].

2. What are the Assumptions?

• A simple syntax is sufficient. The non-logical relationships
among concepts are ultimately captured in the RDF specification
of the terms, usually called an RDF Schema. The assumption is
that the <subject> <predicate> <object> syntax is sufficient [6];
I argue in Section 3 that it is not.

• An implicit semantics is effective. The semantics of a term
are given in a natural language comment and in the applications
that use the term. Neither of these forms can be computationally
inspected to determine the semantics of the term; the Semantic
Web relies on humans reading the comments and code to determine
the semantics. I argue in Section 4 that this implicit semantics is
less effective than an explicit, by which I mean computationally
determinable, semantics.

• Bilateral mappings, manual translation, and automated
inference are just right. Because the tasks of definition and im-
plementation are distributed to the community, and DAML+OIL-
powered inference engines would translate among different defini-
tions using manually constructed bilateral mappings, the claim is
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Figure 1. Structural inadequacy of RDF’s syntax. The sentences are read from left
to right. Each column is a part of speech (labelled s, subject; v, verb; d, direct ob-
ject; i, indirect object). (left) Successive transformations of a complex sentence to fit
RDF’s syntax by nesting the subject, direct object, and indirect object of the original
sentence together. Introduction of terms implied in the original sentence enables the
nesting. Unique terms are denoted by numbered closed circles; open circles denote terms
unchanged by syntactic transformation; the square denotes the nested, complex object
in the final transformation. Solid lines indicate a term’s syntactic transformations and
the direction of transformation is from the top down. (right) Differences in term se-
mantics can be concealed by the syntax. The enzyme denoted by term 4 has bound
the substrates denoted by term 1, but the syntactic transformations needed to fit the
original sentence to RDF give no clues about this change in the semantics of term 4 to
another application. The ovals denote terms whose properties are not uniformly inher-
ited. The dashed lines indicate the inheritance relationships and inheritance is from the
top down. The terms are: 1, “thymidine and phosphate”; 2, “*convert*”; 3, “*thymine
and 2-deoxy-α-D-ribose 1-phosphate”; 4, “*thymidine phosphorylase”; 5, “*reaction”;
6, “catalyzes”.

that the Semantic Web will scale. I argue in Section 5 that scala-
bility and precision will be very poor.

3. Is the Structure Sufficient?

RDF captures information in <subject> <predicate> <object> phrases.
Thus, “<A> <is an element of> <B>” and “<A> <parses> <B>” fit
into this syntax. When the syntax one would naturally use is more complex
— say, “thymidine and phosphate are converted into thymine and 2-deoxy-
α-D-ribose 1-phosphate by the enzyme thymidine phosphorylase” — one
approach is to group the terms through nesting, then use that in a second
phrase. This is illustrated in the left panel of Figure 1. Thus, thymidine,
phosphate, thymine, and 2-deoxy-α-D-ribose 1-phosphate are ultimately
compressed into a phrase that serves as a direct object: “<thymidine
phosphorylase> <catalyzes> <*reaction *convert* thymidine and phos-
phate *thymine and 2-deoxy-α-D-ribose 1-phosphate>” (*s are the omitted
prepositions, articles, and auxiliary verbs).

However, the reaction equations and our model sentence have a much
richer set of connotations, and these connotations don’t readily fit into
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the syntax. For example, enzymes bind their substrates before catalyz-
ing the reaction, and this binding partitions the populations of molecules
into rapidly exchanging, random subpopulations of enzyme-substrate com-
plexes. This information is expressible in natural language. But when com-
pressed into RDF’s syntax, the phrasal transformation has separated the
interacting molecules (thymidine phosphorylase, thymidine, phosphate),
concealing that the semantics of “thymidine phosphorylase” in the reac-
tion are different from the semantics of the unbound enzyme (Figure 1,
right panel). So another application may be able to unify its “thymidine
phosphorylase” with this one, but the semantics of the two instances can
differ and the rest of the phrase will not necessarily provide any clues as
to the difference. Building a tree of phrases to emulate binding (e. g.,
“thymidine phosphorylase binds thymidine or phosphate”, “the complex
of thymidine phosphorylase and thymidine or phosphate binds phosphate
or thymidine”, etc.) forces one to say explicitly something one may not
know (e. g., whether the binding is random or sequential, what the order of
any sequential binding is, how many substrates are bound per enzyme). By
expanding the detail to accommodate the phrasal structure, essential and
useful ambiguities have been lost; the task of deciding where to unify an
instance of “thymidine phosphorylase” from another application has been
complicated; and the ease of description has vanished.

4. Are an Implicit Semantics Effective?

Like other languages, the semantics of the Semantic Web depend on those
of its grammar and terms, their “context”, and the applications that use
them [7]. The terms are named either directly in an RDF document or in
a referenced ontology. By “context” of a term, the Semantic Web workers
generally mean the URI at which the term is found; if the same term is
used in different URIs, its semantics are assumed to be different unless
explicitly stated otherwise. But the more common meaning of context is
especially important to the Semantic Web, because the way a term is used
helps bound its semantics. In the Semantic Web, this usage is intended
to be by programs. The only way a program can “know” that it is doing
something biologically meaningful to the data retrieved by a term from
another application is if it can check that the application’s definition of the
term and its definition of the term are identical and unambiguous.

Terms used in an RDF may be defined, in English, in the comments
(more often these are partial descriptions of the denoted concepts rather
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than definitions) [4, 8, 9]. In this situation, the semantics of the language
are implicit in three important senses. First, any definitions are in natural
language, which remains notoriously difficult for machines to understand.
Second, much of the semantics of a construct are carried in the applications
— easy for machines to process, but less accessible to humans trying to un-
derstand exactly what a program means by a “gene” or “reaction”. Third,
some of the semantics are intensional, relying on automated reasoning sys-
tems such as DAML+OIL, the logical features of OWL, or the predicate
calculus to draw (so far relatively simple) inferences.

An implicit, non-machine computable, semantics raises three problems.
The first is that people must do the job of reading, understanding, and
reifying the connotations of a term or a program before they can imple-
ment any resource (e. g., see references 3, 8). How many people are really
willing or able to do this, especially when the domain is as specialized as
biology? Reactions 3 and 4 are stated to be related, but it requires much
more semantics than just knowing that thymidine is a member of the set
of 2-deoxy-D-ribosyl-bases to determine how to map these, and there are
probably more biologists and chemists who know that information than de-
velopers. The second problem is the fact that humans interpret constructs
differently; we don’t all know what the words mean because we vary so
much in the way we use natural languages (for some biological examples,
see reference 10; broader cultural examples are found in references 11, 12).
Terms, whether natural language words or RDF properties, merely point to
a variable set of connotations [13]. Are reactions 1 and 3 the “same”? The
answer depends on whether you think KEGG’s map has omitted other re-
actants and your willingness to believe thymidine phosphorylase is broadly
specific.

The third problem is that most of the semantics are pushed onto the
applications. While reading other people’s code can be frustrating, the fun-
damental problem is that the semantics are far less transparent than they
could be. Suppose one wants to test whether thymidine phosphorylase
could catalyze reaction 1, and there’s a resource that retrieves “related” re-
actions. One’s interpretation of the output will be determined by how that
resource defines “related”, which will be determined by its code and any
underlying databases. Just seeing the result won’t divulge the resource’s
notion of “related”, and returning the expected result doesn’t test the hy-
pothesis of relationship unless one knows how the test was made. Lack of
semantic transparency limits reuse, since each developer must inspect the
code of possible components for him or herself.
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5. Will It Scale?

Scaling the current model of the Semantic Web requires enough pairs of
resources that translate between them, and robust enough inference engines,
so that local subnets can be automatically connected. The assumption is
that enough translating pairs would spontaneously arise so that a suitably
equipped inference engine could compute a directed path between any two
resources. The path is directed because one can assume only that the
translations will be asymmetric; symmetric systems would be multigraphs,
and very welcome too.

Obviously this scaling by n(n − 1) is more labor-intensive than if ap-
plications refer to a common semantic middle layer, and there have been
enough pleas to keep URIs stable and to reuse ontologies to warn the näıve
that the machinery could break for trivial reasons. Similarly, people read-
ing and reconciling the system’s semantics from ontologies and code is slow.
A more fundamental problem is that automatically drawn inferences can
explode all too easily. The “signal” – useful or novel inferences — is often
lost in the “noise” of the huge collection of trivial inferences (for example,
see reference 14). Why wouldn’t this happen in the Semantic Web? The
usual answer is that declarations that site A “trusts” only site B for cer-
tain kinds of information will sufficiently bound the inferences. Perhaps;
but then for the Semantic Web to be a web, site C must decide to trust A,
rather than site D; and once site E trusts B and D, forming a web, E will
have to decide what to do with contradictions, incomplete information, and
semantic inconsistencies. (Here I push the Semantic Web beyond its stated
plan of not worrying about the accuracy of inferences [3], because automat-
ing incorrect scientific inference, e. g., thymidine phosphorylase is not an
enzyme of purine salvage because thymidine is not a purine nucleoside, is
not a step forward.) As the topology of the Semantic Web changes from
disconnected small graphs to larger connected components, the number of
paths among the possibly relevant URIs in a component will also increase
explosively [15]. One might even run into resource issues, in the sense of
available cycles to compute all those inferences and paths.

6. Towards Solutions

This list is not exhaustive, and none of these suggestions will solve all
aspects of the problems raised. Indeed, some could interfere with the results
of others. But each offers at least one alternative to the problems of the
present infrastructure.
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Enrich the Allowed Syntax If RDF’s syntax isn’t robust enough,
why not enrich it? Adding more parts of speech, such as adjectives and
indirect objects, and permitting its trees to become networks, might well
solve the problems of Section 3. Rather than efforts to map more com-
plex relations onto RDF, why not let RDF accommodate these constructs
directly, for example by semantic networks [16, 17]? One might begin by
watching biologists diagram and explain the relationships among concepts
in research papers, which will often be among sentences.

Let Biologists Build Since biologists know the semantics — even if
they disagree — one way to develop applications is to let them define the
semantics in a structured way. Exploiting biological expertise is the fun-
damental power of the UMLS, the GO, nomenclature committees, and
similar efforts, and spreading the effort is central to the Semantic Web’s
philosophy [17–19]. One possible advantage of a richer syntax is that it
might enable faster definition by biologists. But to prevent cacophony, we
must either all agree on the semantics of the terms or find a way to trans-
late among them. Agreement is slow, socially difficult, and scientifically
inflexible; translation is hard.

Make the Semantics Finely Grained One reason agreement is hard
is because we tend to focus on relatively “big” ideas rather than on their
component notions. As a crude example, rather than arguing over whether
reactions 1 and 4 are similar, one could define different types of similarities,
and then allow each person or application to mix and match those types to
suit their needs. (The example is crude because in practice there are many
much more finely grained notions underneath, such as the tautomerism of
the bases.) In an ideal world, the most finely grained ideas would be so
axiomatic as to be uncontroversial; and for mixing and matching to be
unambiguous, the semantics of the axioms and the symbols denoting them
would have to be unique. Two problems would likely arise: ensuring that
the axioms, their denotations, and semantics were unique; and deciding how
to scope the axioms so that they were truly elementary for the scientific
domain in question. For example, whether one maps a molecule’s name to
SMILES string or a Hamilitonian depends strongly on one’s domain.

Very fine granularity exacerbates a problem ontology developers have al-
ready experienced: keeping track of the terms so that relevant ones are eas-
ily found and all their semantics are disjoint. Solving this tracking problem
would let us to avoid meetings and arguments and help suppress synonymy
among the terms.

Make the Semantics Computable The obvious solution to implicit
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<owl:AnnotationProperty rdf:about="&foo;purine"/>

<owl:Class rdf:about="#nucleoside">
<rdfs:label>nucleoside</rdfs:label>
<foo:purine>deoxyadenosime</foo:purine>

</owl:Class>

Figure 2. A mythical nucleoside ontology foo.

semantics is to make them computationally explicit. At its most basic,
this would mean a set of signs — not terms in a natural language, but
computational data structures — such that each one’s semantics can be
algorithmically determined. Then every application, database, and query
are self-describing by referring to the signs; and the semantics of the de-
scriptions can be computed by any other application.

In the Semantic Web, the computations are either ontological on the
term (this term has some relationship to another term) or applications
acting on the data denoted by the term. For example, some of the key rela-
tions in OWL are those of set theory (e. g., subClassOf, sameAs, cardinality,
disjointWith) and annotation tags (e. g., AnnotationProperty, OntologyProp-
erty, isDefinedBy, subPropertyOf ) [9,20]. The best candidate for describing
the semantics of biology is likely to be the AnnotationProperty [21]. For
example, one might have a reference ontology foo that described nucleo-
sides (see Figure 2). One could compute that deoxyadenosine is a member
of the nucleosides using this ontology. But if the ontology’s relations were
incomplete — for example, that some nucleosides have the structure of 2-
deoxy-D-ribosyl-base — then one would need other code to compare the
structures of thymidine and adenosine to decide if thymidine is a 2-deoxy-
D-ribosyl-base. The semantics of the biology are given by the structural
relationships of the molecules, not the words used to denote particular
molecules or classes of molecules. Conversely, the semantics of OWL’s lit-
erals are given by natural language definitions — that is, they are implicit.

In contrast, I’m suggesting one determine the definition of a compu-
tational structure denoting a biological idea from that structure and rules
governing its formation from very finely-grained axioms. Semantically, this
is what compilers do. Several years ago I developed a formal language to
do that for biology, called Glossa, and we demonstrated this idea works for
the semantically most demanding queries we found in a relational database
of maize genetics [22,23]. Glossa’s capabilities haven’t yet been thoroughly
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tested for significant areas of biology; it suffers from the tracking problem
even more acutely than the ontologies do; and it’s even less user-friendly
than ontologies. So it’s premature to believe Glossa will be the solution.
Description Logics may offer still another route if they can capture the
biology sufficiently and escape the limitations of OWL and Glossa [24].

Constrain Inferences to Improve Scaling Making semantics com-
putably explicit might decrease scaling by facilitating automatic inferences.
Schemes that scoped inferences by semantics (“thymidine phosphorylase ac-
celerates an enzyme reaction, not a drug reaction”) obviously depend on
being able to compute something about semantics. Or one might permit
inferences over the entire web, testing (perhaps at each inferential step) by
some set of quality metrics. For example, one might prefer rarer inferences
built over longer chains of reasoning; inferences whose components had the
fewest number of direct contradictions (or for contrarians, the maximum
number); or the most frequent inferences that appear within N reasoning
steps. Or perhaps a more explicitly theorem-proving approach is desirable:
if a proposition can be proved it is of interest. One can imagine a smor-
gasbord of such metrics, and it would be fun to compare them. Sequential
inference over structured resources is hard enough, but often the most im-
portant answers come from unstructured context. For example, it is very
easy to find web pages about EC 2.4.2.4, but much harder to see why being
both a growth factor and a statin is very provocative, let alone how this
occurs. Right now, determining that means reading a large number of re-
trieved documents. Once again, we’re back in the realm of natural language
processing.

7. Prospects

So is the Semantic Web the wrong vision for biology? Perhaps not; but there
are some fundamental gaps between the infrastructure of the Semantic Web
and the needs of distributed computations for biology.

Whatever infrastructure is developed, one problem I’ve ignored so far
— usage — will affect how well the Semantic Web ultimately facilitates
scientific computation. At present, only manual inspection can tell if a
term retrieves or produces semantically identical types of data within, let
alone among, resources. Even when people read the directions (in this case,
definitions), consistently implementing them is extremely hard, especially
as the volume of data increases. One’s view of the meaning of the defi-
nitions changes as more instances are worked through; usually more than
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one person builds a resource, such as a database, and they all have slightly
different ideas; and people make mistakes. Ideally, a device would use the
definitions to check the usage of terms in each contextual instance, mak-
ing the Semantic Web self validating. Since many clues to inappropriate
usage come from the connotations stored in a wide knowledge of the field,
the device would have to somehow compare usage with the definitions and
that knowledge — bringing us full circle to why the Semantic Web is an
important idea worthy of effort.
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