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Summary 

We present a systematic derivation and discussion of the practical formulae needed to 

design and interpret direct searches for nuclear recoil events caused by hypothetical weakly 

interacting dark matter particles. Modifications to the differential energy spectrum arise 

from the Earth's motion, recoil detection efficiency, instrumental resolution and threshold, 

multiple target elements, spin-dependent and coherent factors, and nuclear form factor. We 

discuss the normalization and presentation of results to allow comparison between different 

target elements and with theoretical predictions. Equations relating to future directional 

detectors are also included. 
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1 Introduction 

A number of experiments are underway or planned to investigate the hypothesis that the 
unidentified non-luminous component of our Galaxy might consist of new heavy weakly 
interacting particles. The experiments aim to detect, or set limits on, nuclear recoils arising 
from collisions between the new heavy particles and target nu.clei. 

The majority of experiments are based on ionization, scintillation, low temperature 
phonon techniques, or some combination of these. They have in common the same basic 
theoretical interpretation. The differential energy spectrum of such nuclear recoils is expected 
to be featureless and smoothly decreasing, with (for the simplest case of a detector stationary 
in the Galaxy) the typical form: 

(1.1) 

where ER is the recoil energy, Eo is the mean incident energy of a dark matter particle of mass 
MD, r is a kinematic factor 4MDMT/(MD + MT)2 for a target nucleus of mass MT , R is the 
event rate per unit mass, and Ro the total event rate. Since Galactic velocities are of order 
1O-3c, values of MD in the 10-1000 GeVc-2 range would give typical recoil energies in the 
range 1-100 keY. 

All the experimental efforts lie on the left hand side of (1.1) the aim being to 
progressively reduce or reject background events to allow a spectrum of rare nuclear recoil 
events to be observed. In particular, underground operation is preferred, to eliminate nuclear 
recoils from neutrons produced by cosmic ray muons; and methods of discriminating between 
nuclear and electron recoils are being developed, to reject gamma and beta-decay background 
in the target and detector components. 

When an experiment has set an upper limit to the differential rate at any particular 
value of ER , the right hand side of (1.1) allows a corresponding limit for Ro, the dark matter 
signal, to be calculated for each assumed value of particle mass MD. Since the Galactic dark 
matter density and flux are approximately known, the limit on Ro can be converted to a limit 
on the particle interaction strength or cross-section. Alternatively, an experiment may 
determine a limit to the event rate above a specified energy El or in an energy span El to E21 
in which case the integral of (1.1) above or between these energies again determines a limit to 
Ro as a function of MD. The typical shape of these limits, and their variation with target mass 
MT and instrumental energy threshold Et is illustrated in Figure 1. 

In practice, the right hand side of (1.1) is considerably more complicated, owing to the 
following corrections: 

(a) 	The detector is located on the Earth, in orbit around the Sun; with the sol~r system 

moving through the Galaxy. 


(b) 	The detection efficiency for nuclear recoils will in general be different from that for the 
background electron recoils. Thus the 'true recoil energy' will differ from the 'observed 
recoil energy' by that relative efficiency factor. 

(c) 	 The target may consist of more than one element, with separate limits resulting from 

each. 


(d) There may be instrumental resolution and threshold effects, for example when 

photomultipliers are used to observe events yielding small numbers of photoelectrons. 
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(e) 	 The limits set will in general be different for spin-dependent and spin-independent 
(scalar) interactions, the latter being, in addition, coherently enhanced in amplitude at 
low energies by the number of interacting target nucleons. 

(f) There is a form factor correction < 1 which is due to the finite size of the nucleus and 
dependent principally on nuclear radius and recoil energy. This also differs for 
spin-dependent and spin-independent interactions. 

10 4 

103 

A ) 

10 0 

10-1 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\. 
' ­

M 

Figure 1: Typical shape of limit curves 
---- small A 

- large A 
each for three values of Et increasing from left to right. 

To take account of these we rewrite (1.1) as 

:~I =RoS(E)p2(E)J 	 (1.2) 
observed 

3 



where S is the modified spectral function taking into account the factors (a-d), F is the form 
factor correction (f), and I is an interaction function for (e) involving spin-dependent and/or 
spin-independent factors. 

This review concerns the elaboration of (1.1) to include these corrections and to provide 
convenient practiCal forms for Sand Fin (1.2). The quantity Ro, which remains defined as the 
unmodified rate for a stationary Earth, can then be estimated from the observed differential 
spectrum. 

These corrections have been discussed in various dark matter papers and reviews [1-12], 
but not fully covered in anyone place; and varying definitions and presentations still give rise 
to some confusion. As experimental programmes begin to yield new limits, there is now a need 
to collect the various formulae together in a consistent notation and in a way which facilitates 
evaluation of proposed new experiments. We also discuss the preferred methods of normalizing 
results to allow comparison of different experiments and target elements. For future 
experiments which may incorporate sensitivity to the nuclear recoil direction, we append 
directional versions of the recoil spectra. 

We find it convenient to use an abbreviated notation for the units for event and 
background rates. It has become conventional to express the unit differential rate as 1 event 
keV-1kg-ld-t, and we refer to this simply as the 'differential rate unit' (dru). Integrated 
over energy, the unit for total rate Ro is 1 event kg-1d- 1 , which we refer to as a 'total rate 
unit' (tru). In some experiments it is necessary to utilize the partial integral of the differential 
spectrum between two selected values of ER • This is also in events kg-1d- 1 but we refer to it 
as an 'integrated rate unit' (iru) to distinguish it from the total integral Ro (tru). 
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2 Particle density and velocity distribution 

Differential particle density is given by: 

no ( ) 3dn = k f Q'!2.E d Q; 

where k is a normalization constant such that 

fvese 
10 dn == no, 

~.e. 

1+1 lv.se 
k = 

211" 
dcjJ d(cosO) f(Qd2.E)v 2dv.1o -1 a 

Here no is the mean dark matter particle number density (= PDfMD for dark matter particle 
mass MDI density PD), Q is velocity onto the (Earth-borne) target, is Earth (target) velocity 
relative to the dark matter distribution, and Vesc is the local Galactic escape velocity; dn is 
then the particle density of dark matter particles with relative velocities within d3v about Q. 

We assume a Maxwellian dark matter velocity distribution: 

then, for Vesc = 00, 

whereas the same distribution truncated l at IQ + Vesc would give 

(2.2) 


so k1 -+ ko as Vesc -+ 00. Derivations of these and subsequent results are given in Appendix 1. 
For Va = 230 km s-I, Vesc = 600 km (see. Appendix 2), we obtain ko/k1 = 0.9965. 

2 3Estimates for PD for a spherical halo have been in the range 0.2 GeV c- cm- s: PD s: 0.4 
GeVc- 2 cm-3

, leading to the adoption of PD 0.3 GeVc- 2 cm-3 as the central value. However, 
it has always been recognized that some flattening of the halo is likely, which would increase 
PDin the vicinity of the Galactic plane. The most recent estimate is that of Gates et al. [13] 
who obtain 0.3 GeVc-2 cm-3 s: PD s: 0.7 GeVc- 2 cm-3 for the total (local) dark matter density 
in the flattened halos which best model observations, together with an estimated (1995) 
observational limit of 5-30% for dark matter in the form of non-luminous stars ('MACHOs'). 
This suggests a value of PD= 0.4 GeV c- 2 cm-3 for the non-baryonic component at the position 
of the solar system, subject to any further changes in the estimated MACHO fraction. 

1 Strictly, the Maxwellian distribution should be modified by a gravitational potential appropriate to Vese j 

however, since kl above differs from ko by less than 0.5%, the errors are not likely to be significant. 
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3 Basic event rates and energy spectra 

The event rate per unit mass on a target of atomic mass A AMU, with cross-section per 
nucleus u is 

No
dR A uvdn, 

where No is the Avogadro number (6.021026 kg- 1
). In this section, we give the total event 

rates and energy spectra in the absence of the practical corrections discussed in §5 and of the 
form factor corrections discussed in §4 i.e., rates for the 'zero momentum transfer' 
cross-section u = constant = uo. Then: 

J NoNoR= --::;tuo vdn A Uo no <v> . 

We define Ro as the event rate per unit mass for VE 0 and Vese = 00; i.e.: 

(3.1) 

(substituting for no); so that 

1 2
7r / < V >

R=Ro--­
2 Vo

J ( ) 3ko 1 = ROT 27rV6 vI QdlE d v. 

We shall use this result later in differential form: 

ko 1 ( ) 3dR = R O- -24 vI Q,QE d V. (3.2)
k 7rVo 

Then: 

(3.3) 

R(VE'OO) 1 [ 1/2 (VE 1 vo) f (VE) _v2 /v2 
] •- 7r - + -- er - + e E 0 (3.4)

Ro 2 ~ 2~ ~ , 

R(VE' vese ) _ ko [R(VE' OO) (Vese 
2 

1 VE 
2 

) -vesc2/v2]
---'-=:----'- - - - -2- + - -2 + 1 eO. (3.5)

Ro k1 Ro· Vo 3 Vo 

Again taking Vo 230 km S-1, Vese =600 km S-1, we obtain: R(O, vesel!Ro =0.9948. The Earth 
velocity VE Vo, but varies during the year as the Earth moves round the Sun (Appendix 2). I"V 

For practical purposes, 

(3.6) 

where y is the elapsed time from (approximately) March 2nd, in years. 

Note that, while the mean level is uncertain by I"V 20 km S-1 (from galactic motion 
uncertainty), the modulation amplitude has negligible uncertainty; however, use of the above 
expression gives rise to small errors since the modulation is not exactly sinusoidal. The I"V 6% 
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velocity modulation in (3.6) gives rise to a'" 3% modulation in rate (this can be seen by 
differentiating (3.4), yielding 

2v~ (.!!:..) = 1 [.!!:.. _rrl/ o erf (VE) 1' 
dVE Ro VE Ro 2VE Vo 

1 R 
2VE Ro 

Physically, mean velocity onto target, ex: R, is both larger than the mean of VE and varies less 
than VE)' However, because the modulation in dR/dER changes sign with energy (see 
Figure 2), modulation of the sum of the absolute differences in binned data is significantly 
larger (dependent on energy threshold) see also Table 1. The effect would be further 
enhanced by a statistical analysis with respect to energy. 

I..i.J 0.6 
~ 
0::: 
-0 

............ 

Cl 

~ .... 
Cl 
I..i.J 

............ 0.4 0.84 


0.2 

0.8 

2 4 6 8 

E/(EO r) 

Figure 2: Seasonal variation of rate spectrum 
---- annual average 

- - June 
. - December. 

Inset: enlargement of cross-over region, annual average subtracted 
. . . . . .. .. monthly averages. 
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Ro is conventionally expressed in units kg-1d-1, or 'tru' (see §1). Normalized to 
PD OAGeVc-2cm-3 and Vo = 230kms-1, (3.1) becomes: 

truRo = ::D Ca;b) (OAGe~:-2cm-3) (230::s-1) 
(3.7) 

tru=~O~T Ca;b) (oAGe~:-2cm-3) (230::s-1) 

with MD,MT in GeVc-2 (MT ,= 0.932 A, is the mass of the target nucleus). 

The recoil energy of a nucleus struck by a dark matter particle of kinetic energy 
E, = ~MDV2 = ~MDC2(V/C)2, scattered at angle 0 (in centre-of-mass) is: 

ER = Er(l - cos 0)/2 

where 

(3.8) 

We assume the scattering is isotropic, i.e. uniform in cosO, so that recoils are uniformly 
distributed in ER, over the range 0 S ER S Er; hence 

dR = [Emax ~ dR( E) 
dER lEm,n Er 

2
1 111m"", v

-E -idR(v), 
or 1Im ' n V 

where Emit), = ER/r, the smallest particle energy which can give a recoil energy of ER; 
Eo '= ~MDV~ = (vUv 2)E; and Vmin is the dark matter particle velocity corresponding to Emin , 

i.e., 

So, using (3.2), we have: 

dR 
dE 

R 

Ro = E 
or 

ko 1 111ma'" 
-k -22 

1rVo 1Im'n 

1 3 
- f(Y.., Y..E)d v,
V 

(3.9) 

from which we obtain: 

dR(O, oo) 
dER 

_ 
-

Ro -EIt/Eor
e ,

Eor 
(3.10) 

which is the basic unmodified nuclear recoil spectrum for VE = 0 already referred to in §1. 

With non-zero VE and finite Vese , (3.9) gives: 

dR(O, vesc) = ko Ro (e-EIt/Eor _ e-1Je.c2/1J~) 
dER kl Eor 

(3.11)
=ko [dR(O,oo) _ Ro e-1Je.c2/1I~] . 

kl dER Eor ' 

(3.12) 

(3.13) 

8 




June, December, and annual averages of (3.13) are shown in Figure 2 for 
Va = 230kms-1, Vesc = 600kms-1, with VE from (3.6). The inset is an enlargement of the 
cross-over region - ER rv 0.78 Ear for these velocities, showing differences between mean 
monthly rates and the annual average. 

For practical purposes, dR(VE' oo)/dER is well approximated by: 

dR(VE,' 00) Ra -C2 ERIEor (3.14)dER = Cl Ear e , 

where Cll C2 are fitting constants, of order unity. Values of Cl, C2 for different months and energy 
thresholds are discussed in Appendix 3. Note that ClJ C2 are not independent: by integration, 

For most purposes it is sufficient to take fixed average values Cl = 0.751, C2 =0.561. 

dR/dER is conventionally expressed in units keV- lkg- ld-l, or 'dru' (see §1). 

For some types of experiment, the data may yield a limit on the total number of events 
in a finite energy range, or the total above some minimum energy. For these cases we need the 
integrated form of (3.14): 

(3.15) 


giving the integrated rate over a recoil energy range ER El to ER =E2. In practice, (3.14) 
and (3.15) are modified to take account of a form factor, as discussed in the next section. 

As observed in §1, it is helpful to refer to the units of (3.15) (kg-ld- 1) as 'integrated 
rate units' (iru), reserving 'tru' specifically for the total integral El = 0, E2 = 00. Note that 
the total rate from (3.15) is (CI/C2) X Ro rv 1.3 X ROJ varying with time of year as discussed 
above. Ro remains defined as the time-independent rate corresponding to zero Galactic 
velocity (VE = 0). 

Spergel [14] has derived the differential angular spectrum (vesc = 00) with respect to 
laboratory recoil angle 1/;; in our notation: 

(3.16) 


In Appendix 1 we show that integration of this with respect to cos 1/; correctly yields our result 
for dR(VE, 00) / dER; carrying out the integration seperately over the forward (0 ::; cos 1/; ::; 1) 
and backward hemispheres yields: 

_ Ro 1fl/2 Vo [ f (Vmin) f (Vmin - VE)] .- -- -- - er -- - er J 

Eor 4 VE Vo Vo 

Ro 1fl/2 Vo [erf (Vmin +VE) _ erf (Vmin)] . 
Eor 4 VE Vo Vo 

backward 

Clearly, these sum to (3.12). Rates in the energy bin El ::; ER ::; E21 R(Eb E2)1rorward, backward' 

can be obtained by numerical integration. 

Table 1 illustrates both seasonal and directional variation in binned rates, all obtained 
by numerical integration of the exact differential formulae. 
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Some 'directional' detection ideas would only give directional information modulo 1r ­

i.e. would give the angle between recoil path and target trajectory but not the direction of 
recoil along that path. In such cases, it may only be possible to look for the smaller 
asymmetry between rates resolved parallel and perpendicular to the target trajectory: 

II 


Though the integral for the parallel component can be evaluated analytically, it will usually be 
more appropriate to integrate (3.16) with respect to ER over an energy bin, obtaining: 

(3.17) 

with Vl,2 = (El.2/Eor)1/2vo. 

R(El' E2)U, R(El' E2h are then obtained by numerical integration of (3.17); Table 2 
gives values for the same binnings as in Table 1. 
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directional components of R/Ro 
December 

ratio forward back ratio 

1.46 0.043 0.030 1.42 

0.044 0.022 2.02 0.046 0.024 1.92 

0.045 0.018 2.48 0.046 0.020 2.33 

0.122 -0.0037 0.0037 0.090 0.028 3.16 0.091 0.031 2.91 

0.110 -0.0016 0.0016 0.087 0.021 4.12 0.086 0.023 3.71 

0.7-1.0 0.144 0.144 0.0007 0.0007 0.122 0.022 5.41 0.119 0.025 4.77 

1-2 0.352 0.335 0.0166 0.0166 0.317 9.09 0.297 0 7.67 

2-3 0.206 0.184 0.0220 0.0220 0.195 18.5 0.173 0.012 14.6 

3-5 0.179 0.148 0.174 38.5 0.144 0.005 28.5 

5-7 0.051 0.038 0.050 0.0005 99.0 0.038 0.0006 66.7 

7-10 0.016 0.011 0050 0.016 0.00007 237. 0.011 0.00007 146. 

total 11.374 1 1.302 0.0727 0.1046 1.183 0.191 6.20 1.094 1 0.209 5.23 

energy 
range 

ER/Eor 

resolved components of R/Ro 
June December Annual average 

parallel .1 ratio parallel .1 ratio parallel .1 ratio 

0.0-0.1 0.028 0.058 0.49 0.031 0.061 0.51 0.030 0.060 0.50 

0.1-0.2 0.028 0.055 0.51 0.031 0.057 0.54 0.030 0.056 0.52 

0.2-0.3 0.028 0.052 0.54 0.030 0.054 0.56 0.029 0.053 0.55 

0.3-0.5 0.055 0.096 0.57 0.058 0.098 0.59 0.056 0.097 0.58 

0.5-0.7 0.053 0.086 0.62 0.054 0.087 0.63 0.054 0.086 0.62 

0.7-1.0 0.075 0.112 0.67 0.075 0.111 0.67 0.075 0.112 0.67 

1-2 0.201 0.258 0.78 0.191 0.246 0.77 0.196 0.252 0.78 

2-3 0.131 0.140 ~0.116 0.126 0.92 0.124 0.133 0.93 

3-5 0.124 0.112 0.102 0.095 1.08 0.113 0.103 1.10 

Q3d 0.038 

I 0.777 

0.029 

0.0082 

1.32 

1.50 

I 0.77 

0.028 

0.0084 

0.022 1.26 

0.0058 1.43 

I 0.965 I 0.75 

0.033 

0.010 

0.026 1.29 

0.0070 1.47 

I 0.987 

Table 1: Energy dependence of annual modulation and forward/back ratios 

total 11.007 1 0.725 1 0.751 0.76 

Table 2: Energy dependence of parallel/perpendicular ratios 
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4 Nuclear form factor correction 

When the momentum transfer q, = (2MTER)1/2, is such that the wavelength h/q is no longer 
large compared to the nuclear radius, the effective cross-section begins to fall with increasing q, 
even in the case of spin-dependent scattering which effectively involves a single nucleon (for a 
particularly clear statement, see [15]). It is convenient, and usually adequate, to represent this 
by a 'form factor" F, which is a function of the dimensionless quantity qrn/Ii where rn is an 
effective nuclear radius. In the following we use units in which Ii 1, so that 'qrn' is this 
dimensionless quantity. 

With rn approximated by rn = anAl/3 +bn, and with 

we have, since Ii = 197.3 MeV fm: 

(4.1) 

with ER in keV and a, bin fm. 

Cross-sections then behave as: 

where (To is the cross-section at zero momentum transfer. Separation into one term (To) 
containing all dependence on the specific interaction and a second (F(qrn)) dependent only on 
momentum transfer is convenient in allowing results to be presented in an almost 
model-independent fashion. It must be noted, however, that, in the case of spin-dependent 
interactions, this corresponds to considering contributions from only the unpaired nucleon (the 
'single-particle' model) or nucleons of the same type as the unpaired nucleon (the 'odd-group' 
model), and is likely to be substantially in error for large mass nuclei [11]. 

In the first Born (plane wave) approximation, the form factor is the Fourier transform of 
p(r), the density distribution of the 'scattering centres': 

F(q) = Jp{r)eiIJ..·!.d3 r 

1 1+1 

= 211". d4> r2p{r) eiqrcos(J d(cosO)dr1o r -1 
00 

411" 1= - rsin qr p(r)dr. 
q 0 

A useful starting point is to consider the form factors obtained by Fourier transform of 
(a) a thin shell, approximating a single outer shell nucleon for the case of spin-dependent 
interactions2

, and (b) a solid sphere, approximating spin-independent interaction with the 
whole nucleus. The results are: 
(a) thin shell: 

(4.2) 

(b) solid sphere: 

(4.3) 

2But note that this may be a poor approximation if the odd nucleon is not in an s-state [16]. 
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A commonly used approximation is: 

F2(qrn) = e-a (qrn)2; (4.4) 

with a = 1/3, this is the exact form factor for a Gaussian scatterer of rrms = rn (see [11,24]); 
for small qrn, this is an adequate approximation to (4.2). a = 1/5 gives a comparable fit to 
(4.3) (see Figures 3 and 4), but clearly poor fits result for qrn much beyond 3-4. 

In the spin-dependent case, the more exact computations of Engel et al. [11] show that, 
when coupling to all 'odd-group' nucleons is taken into account, the (early) zeros of the Bessel 
function (4.2) are at least partially filled (see Figure 3). For the experimentally useful range 
o< qrn ~ 6, these results are adequately approximated by (4.2) with F2 replaced across the 
first dip by its value at the second maximum: 

F2(qrn) = j~(qrn) (qrn < 2.55, qrn > 4:5); 

F2(qrn) = constant:::: 0.047 (2.55 ~ qrn ~ 4.5); (4.5) 

rn :::: 1.0A1
/

3 fm. 

10· _::::-----,..----,------,-----.-------" 

10-' 

Figure 3: Form factor, thin shell approximation 
......... exp[-(qrn)2/3/3] 

- - [sin(qrn)/qrnP (thin shell) 
--- approximate fit 
o 0 0 0 0 l3lXe (Engel et al., single-particle model) 
* * * * * Nb (Engel etal., single-particle model) 

For the spin-independent case the distribution of WIMP scatterers is assumed to be the 
same as the charge distribution derived from experimental data for electron [17] and muon 
scattering (the latter is comprehensively reviewed in [18]). The essential change from the 
uniform distribution yielding (4.3) is the appearance of a 'soft edge' - charge density falling 
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to zero over a finite skin thickness, resulting in an effective damping of the form factor. In 
electron and muon scattering, the Bessel function zeros are again partially filled (increasingly 
so as A increases); but, as this is essentially due to multiple photon exchange in the nucleus, it 
is not expected in the WIMP case [19]. 

10· 

10-' 

10-;' 

2 4 

r 
8 10 

qr
n 

Figure 4: Form factor, solid sphere approximation 
......... exp[-(qrn)2/3/5] 
--- {3[sin(qrn) - qrn cos(qrn)]/(qrn)3p (solid sphere) 

Numerous multi-parameter fits to charge density have been proposed [17,20]; form 
factors are not particularly sensitive to the details of the fit, but the most realistic is generally 
considered to be the Fermi distribution: 

r ­ C)]-lp(r) =Po [ 1 +exp ( -a- (4.6) 

The distribution proposed by Helm [21], however, has the advantage of yielding an analytic 
form factor expression: 

(4.7) 


where s is a measure of the nuclear skin thickness. Numerical integration of the Fermi 
distribution yields very similar results. 

The parameters in (4.6), (4.7) are determined from experimental estimates of rrms in 
conjunction with the observation that skin thickness is essentially constant. For a uniform 
sphere of radius rn , 

3r2 - r 2. rms -:- 5" n , 
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for (4.6) [22], 

(4.8) 


and for (4.7), 

2 3 2 2rrms = Srn + 38 . (4.9) 

For thickness parameter, Engel [15] takes 8 rv 1 fm in (4.7) while Fricke et al. [18] use a 
10%-90% thickness of 2.30 fm (a ~ 0.52 fm) in fitting muon scattering data to (4.6); and, for 

A1 3 rrms, commonly used approximations are rrms rv / fm or, with rather greater precision, 
rrms ~ O.89Al/3 +0.30 fm [23]. Such approximations have the slight disadvantage of resulting 
in significant errors at small A; we prefer to use a two parameter least-squares fit to the Fricke 
et at. compilation of c in (4.6): 

c ~ 1.23A1
/ 

3 
- 0.60 fm; (4.10) 

then, from (4.8) and (4.9), rn for (4.7) is obtained from: 

7r 
n 

2 c2 + _1l' 2a2 _ 582 (4.11)3 . 

Data from [18], and the various fits to rrms are shown in Figure 5. 

r 
RIAS 

°O~-----750~-----1~OO~----~15~O------~20-0----~250 

A 

Figure 5: Nuclear rms charge radii 
o 0 0 0 0 muon data [18] 

--- least-squares fit to c 

......... Engel [15] fit 

- - - - - Eder [23] fit 
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Key: 	 --- Fermi density, data from [18] 

......... Helm density: rn from (4.10), (4.11)j B = 0.9 fm 

- - - - - Helm density, Engel [15] fit: rrm. = 0.93Al/3 j B = 1.0 fm 
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We find s ~ 0.9 fm improves the match between Helm and numerically integrated Fermi 
distributions (see Figures 6, 7); and, for most A, (4.11) is well fitted by rn ~ 1.14Al/3. 
Figures 8 and 9 show the Na and I form factor dependence on ER , illustrating the limitation of 
large A materials. Moreover, as discussed in §5.1 below, in detectors based on scintillation or 
ionization the observed apparent energy Ev is less than ER by an A-dependent 'relative 
efficiency' In; the range of ER shown corresponds to Ev ~ 0-310 keV for Na, but only 
~ 0-90 ke V for I. 

More precise calculations have been carried out in the spin-dependent case for a small 
number of nuclei [11,12]. In these calculations, which include contributions from all the 
nucleons, the form factor has three parts, which can be represented as due to proton, neutron, 
and interference terms or to isoscalar (p + n), isovector (p n), and interference terms. In the 
latter representation, P2(qrn ) S(q)jS(O), where: 

S(q) = a~Soo(q) + aiSu(q) + aOa1SOi(q)i 

the Sf.j are computed using the shell model of the specific nucleus; and the isoscalar (ao) and 
isovector (al) coefficients are related to the WIMP-nucleon spin factors discussed in §6 bel()w: 
ao ex: Cwp + CWnj al ex: Cwp - CWn. 

Such calculations, where available, should be used to set limits on specific WIMPs. 
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5 Detector response corrections 

The form factor corrected spectra (4.5)' (4. 7) apply to an ideal detector consisting of a single 
element, with 100% detection efficiency. In this section we discuss additional corrections which 
are intrinsic to the detection process and independent of the precise nature of the dark matter 
interaction. 

5.1 Energy detection efficiency 

For scintillation and ionization detectors calibrated with, sources, the apparent observed 
nuclear recoil energy is less than the true value; the ratio, the 'relative efficiency' in, is 
determined by neutron scattering measurements. While this additional calibration factor 
could, of course, be incorporated to yield observed spectra directly in terms of ER , 

experimenters prefer to work with the ,-calibrated energies for easy identification of 
background ,so Consequently, ER in the above rates and spectra should be replaced by the 
'visible' energy E", using ER = E,,/ in - and, allowing for possible variation of in with E R, 

dR (ER din) dR (5.1)dE = in 1 + -1, dE dE· 
R n R " 

For ionization detectors, Lindhard et al. [25] represent in by 

(5.2) 

where, for a nucleus of atomic no. Z, 

(; = 11.5ER {keV)Z-7/3, 

k = 0.133 Z2/3A 1/ 2, 

and g{ (;) is well fitted by: 

g{ (;) = 3 (;0.15 + 0.7 (;0.6 + L 

While in for scintillation detectors might be expected to behave in a similar fashion, 
measurements so far show no evidence of significant energy dependence. Neutron scattering 
measurements give in rv 0.3,0.09 respectively for Na and I in NaI{TI) [26] and 0.08, 0.12 
respectively for Ca and F in CaF2 {Eu) [27], over substantial energy ranges. 

One expects a rapid drop in ionization or scintillation efficiency when nuclear recoil 
energies fall below a threshold value at which the maximum energy transfer to target electrons 
is less than the necessary excitation energy Eg [28]. This threshold region is expected 
kinematically at an energy of order 

E - MT [{E +E )1/2 -E 1/2]2 (5.3)c - 4me e 9 e 

for electrons (mass me) of characteristic kinetic energy Ee{typically rv 10 eV). For Eg ~ Ee 
this approximates to Ec{keV) rv 0.lAEg2 

/ Ee (Eg, Ee in eV). The threshold region can be 
parameterized by multiplying the relative efficiency by [1- exp{-ER/Et )]. E t is expected to 
be rv 0.3 keY for Ge and Si, but above 1 keY for other crystalline targets. However, it should 
be emphasized that as yet the only evidence confirming low energy threshold effects comes 
from plastic scintillator [29], and it may become important to investigate this as practical 
energy thresholds are improved. Examples of predicted threshold curves are shown in an 
earlier review [3]. 
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5.2 Energy resolution and threshold cut-off 

Finite detector energy resolution means that N recoils at a single energy E' would be observed 
as a spectrum distributed in approximately Gaussian fashion: 

dN{E) N -(E _ E')2/2D.Ez 

dE {211'")1/2~E e , 

resulting in the transformation: 

dR = 1 J_1_ dR -(Ev - E~)2/2D.E2dE' . (5.4)
dEv (211'")1/2 ~E dE~ e v 

~E is energy dependent: for detectors with linear response, statistical fluctuations alone 
would give ~E(E') (X (E')1/2; additional terms occur in practical detectors [30]. 

Energy resolution is conventionally expressed as the ratio of peak full width at half 
maximum to mean energy, ~EFWHMjE', where ~EFWHM = (SIn 2)1/2~E, = 2.35 x ~E. 

In general the detector signal may consist of a discrete number of counts n = E' j c (e.g. 
from a photomultiplier) and at low energy this number may be sufficiently small that the 
Gaussian in (5.4) would lead to erroneous loss of counts to unphysical negative energy. The 
statistical component of the resolution can be correctly represented by use of Poisson instead 
of Gaussian statistics: 

dR 
dEv (5.5) 


In such detectors the need to set a threshold to reduce intrinsic rates, often in 
conjunction with coincidence counting, results in reduced detection efficiency at low energies, 
dropping to zero at the set threshold. 

We illustrate this effect by considering the case of two PMTs run in coincidence, each 
with the same threshold. If the two PMTs are balanced so that an event produces the same 
mean number of photoelectrons in each, then, for an event producing n photoelectrons in total, 
the best estimate of the probability that m(~ n) arrive at one PMT (and hence n - m at the 
other) is 

where K is a normalization factor such that L
n 

Pn,2(m) == 1; thus: 
m=O 

Pn,2(m) = ~nj2)m jm! 

L (nj2)kjk! 
k:O 

Then, for coincidence counting with a threshold of 2': nt photoelectrons in each PMT, only 
those events for which nt ~ m ~ n - nt (in each PMT) are accepted. Hence the counting 
efficiency is 

n (5.6)
L (nj2)mjm! 

m=O 
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An approximate analytic fit to this is: 

(5.7) 


Depending on particular experimental circumstances, one of two possible approaches 
may be adopted in compensating for these effects: 

(a) 	 The intrinsic dark matter spectrum (3.13) is transformed using (5.4) or (5.5) and the 
result multiplied by (5.6), to give (together with the other corrections discussed in §4 and 
§6) a corresponding observable spectrum. Standard statistical procedures can then be 
used to determine limits on Ro consistent with the actual observed spectrum [32,31]. 

(b) An approximation to the original spectrum is obtained by an iterative search for a 
spectrum which, when subject to the transformation (5.4) or (5.5), yields a good fit to 
the observed spectrum (divided by (5.6)). Since low data rates mean that it is normally 
both necessary and desirable to work with fairly coarsely binned data, it is reasonable to 
represent the original spectrum by a suitable smooth function with 2-3 variable 
parameters which are adjusted for best fit [33]. 

5.3 Target mass fractions 

For compound targets, it is usual to extract a limit on Ro separately for each element. The 
differential rate in equations of the form (1.2) is defined per kg of the whole target. If the 
counts are attributed to element A which contributes a fraction fAof the target mass, then Ro 
per kg of A is obtained by rewriting (1.2) as 

1 dRI _ S 2fA dE - Ro AFAIA, 
observed 

z.e. 

~~I = fARoSAFlIA. 	 (5.8) 
observed 

If the elemental dependence of the interaction is understood theoretically, then the more 
accurate procedure can be adopted of retaining Ro as the total rate and writing (1.2) as the 
sum of n terms for the n constituent elements: 

dR 
(5.9)

dE 
observed 

allowing the total Ro to be calculated from the observed spectrum. The A-dependence of the 
form factor F (via the nuclear radius) been discussed in §4. The A-dependence of the spectral 
function S arises through the kinematic factor r (§3) and also through the nuclear recoil 
efficiency fn(§5.1). The final factor, I, representing the spin-dependence and/or coherence of 
the interaction, is discussed in the next section, and used to convert Ro to a basic 
'WIMP-nucleon' cross-section aWN. Note that if such a cross-section limit is determined 
separately from (5.8) for each element, an improved combined limit can be obtained using 
(5.9) together with I: fA == 1: 

(5.10) 
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6 Interaction factor - coherence and spin-dependence 

6.1 Coherence. 

For the simplest case of interactions which are independent of spin and the same for neutrons 
and protons, there will be A scattering amplitudes which, for sufficiently low momentum 
transfer (qrn. ~ 1), would add in phase to give a coherent cross-section ex: A2. 

In this situation we can define Ro as the rate corresponding to a single nucleon, 
multiplied by a coherent interaction factor Ie == A2 in (1.2). Rates or cross-sections for 
different target elements should thus be divided by the corresponding A2 to normalize each to 
the case A = 1. 

In practice the situation can be more complicated, as illustrated by the known example 
of heavy (non-relativistic) Dirac neutrinos, for which the coherent cross-section is [2] 

(6.1)O'IID 811'n4 f.L2 Ie 

i.e., with nc= 0.197 GeV fm and Gp /(nc)3= 1.166 GeV- 2 
, 

O'IID(pb) = 2.111O-3f.L2Ie 

where f.L(GeVc- 2) is the reduced mass of neutrino + target nucleus and Ie Nf, 
Nl = (A Z) +£Z, £ = (1 - 4 sin2 Ow) '" 0.08. Thus the Weinberg-Salam factor results in a 
proportionality to approximately the square of the number of neutrons, Ie (A - Z)2, ratherrv 

than Ie A2. Nevertheless, normalization of rates by either (A - Z)2 or A2 will always provide 
a reasonable method of comparing results from different targets. This is of particular 
importance in the planning of new experiments, to give a realistic assessment of the lighter 
elements for spin-independent interactions. 

Note that the coherence is lost as the momentum transfer increases (qrn. ~ 1) since the 
scattering amplitudes no longer add in phase. This is taken account of by the form factor 
correction F in (1.2), already discussed in §4. 

The hypothetical neutrino superpartner (sneutrino) would have a cross-section four 
times that of (6.1). 

6.2 Spin dependence 

For spin-dependent interactions the scattering amplitude changes sign with spin direction so 
that, although the interaction with a nucleus is still 'coherent" in the sense that the scattering 
amplitudes are summed, paired nucleons contribute zero scattering amplitude and only the 
residual unpaired nucleons contribute. Thus only nuclei with an odd number of protons and/or 
an odd number of neutrons can detect spin-dependent interactions. 

The form of the spin dependence is typified by the cross-section for a hypothetical 
Majorana neutrino given by [2] 

- 2G~ 21 (6.2)
0'11M - 11'n4 f.L s 

where Is is conventionally written in the form 13 =C 2),2J(J +1). C is a factor related to the 
quark spin content of the nucleon: 

(q=u,d,s) 
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where ~q is the fraction of the nucleon spin contributed by quark species q and 
T;;,d,., =~, ~, ~,is the third component of isotopic spin for the respective quarks. In the 
single unpaired nucleon approximation, 

).."J(J )= [J(J+1)+s(s+1)-£(£+1)]2. 
+ 1 - 4J(J + 1) , 

but a more realistic value is obtained by assuming all nucleons of the same type as the 
unpaired nucleon contribute, with the net spin of these 'odd-group' nucleons estimated from 
the nuclear magnetic moment (JLmag) [11]: 

2 ( ) S2 J + 1).. J J + 1 = odd -J-' 

where 

- JLmag - g~JSodd - s l
gN-gN 

with g; = 1, g~ = 0, g; 5.586, g~ = -3.826. 

In addition to the spin-independent cross-section (6.1), a Dirac neutrino has a 
spin-dependent contribution one-quarter that given by (6.2). 

Interaction with the photino of supersymmetry theories [34] takes a similar form to (6.2): 

where Qu,d,s = ~,-~, -~ is the charge value for the respective quarks and mij is the mass of an 
exchanged squark3 

j in the case of squark mass degeneracy, this reduces to: 

(6.3) 


with C now given by C = Lq Q;~q. 

The 'e' in (6.3) arises from the substitution 

e2 
, = 41ranc (O! = 1/137)' 

= 4V2 iGFM~ sin" Ow, 

which is correct apart from radiative correction terms of a few percent. Alternatively, (6.3) 
could be written: 

_= 2G} (v'8MwsinOw)4 2[ = 2G} (109GeVc-,,)4 "] 
(J'-y t,4 JL s t,4 JL •• 

1rn mg 1r1b mg 

In general the lightest (and hence most stable) supersymmetric particle (LSP) will be a 
mixture (a 'neutralino') of photino, Higgsino, Bino, and its cross-section for elastic scattering 
off nuclei will contain both spin-dependent and spin-independent terms [5,7,8,35]. In the 
approximation used above, the spin-independent term vanishes for pure gaugino or pure 

assumes mij > m ' MT, where mx is the neutralino mass. More generally, mij should be replacedx 
throughout by [(mg + MT)2 - (mx +MT?]1/2 [35]. 

22 



Higgsino states; the more general case is discussed in [6] and [9] typically, the 
spin-independant term increases relative to the spin-dependant with increasing A, becoming 
dominant for A.2: 30 [12]. 

In the 'full' treatment of Engel et al. [11], I, has contributions from both proton and 
neutron couplings: 

]2J +1
I, = [CWp <Sp> +CWn <Sn> -J-' 

where <Sp(n) > is the expectation value of the nuclear spin content due to the proton 
(neutron) group, calculated from the shell modeL 

6.3 Normalization of results 

The need to normalize rate or cross-section when comparing results from different targets is 
seen by writing the generic low energy elastic cross-section as [2] 

2 2 
9D 9N ) p,2 (6.4)0'0 ex: 4( MB 

where gD, gN are the dimensionless coupling strengths to WIMP and nucleus, respectively, of a 
heavy exchanged particle of mass MB • From (6.3) and (3.7), remembering that 
p,2 MD MT r/4, 

2
~o == 126 (lO';b) (1 Ge;C- ) 2 (0.4Ge~:-2cm-3) (230 ::S-1) tru 

(6.5)
gD2gN2 

ex: 	 MB 4 

Thus the quantities proportional to the fundamental interaction are either Ro/r or 0'0/p,2, and 
it is the limits on these4 (versus M D ) which should be shown, to remove the additional 
A-dependence in p, and r. Note that Ro and 0'0 are defined as the values for zero momentum 
transfer, so the nuclear form factor has already been included in converting from observed rate 
to Ro and 0'0' 

The coupling gN to the target nucleus also contains an A-dependent coherent or spin 
factor, as discussed in §§6.1, 6.2, and where this is known theoretically it should also be 
included in the normalization: 

(a) In the case of nuclear coherence it is sufficient to divide by A2 or alternatively normalize 
to a specific nucleus, such as Ge. The plotted quantity is then 

( Ro 0'0) [( 1)2 (AGe )2]- or - X --- or -- . 
r p,2 Atarget Atarget' 

in normalizations for interactions such as that with a Dirac neutrino, A should be 
replaced by N b ", A Z (to give the 'WIMP-neutron' cross-section O'Wn). 

(b) 	 For the spin-dependent case, it is convenient to normalize from element A to the 

'WIMP-proton' cross-section by the conversion 


(6.6) 

that limits on Ro/r and (Toft.!? are not 'alternative presentations' - they are, from (6.5), identical 
curves, differing only in the labelling of the vertical axis. . 
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Values of the spin factor )..2J(J + 1) for some typical target elements are given in Table 3, for 
both the single particle and the odd group models. 

)..2J(J + 1)

Isotope J 

single particle odd group 

1H 
Hip ~* 

0.75 

0.75 

0.75 

0.647 
23Na 3/2 0.15 0.041 
27AI 5/2 0.35 0.087 
43Ca 7/2 0.321 0.152 
73Ge 9/2 0.306 0.065 
93Nb 9/2 i 

0.306 0.162 
1271 5/2 0.35 0.007 
129Xe 1/2 0.75 0.124 
131Xe 3/2 0.15 0.055 

Table 3: Values of )..2J(J + 1) for various isotopes 

Values of the WIMP-nucleon spin factor C~N depend on the values assumed for the 
quark spin fractions ~u, ~d, ~Sj and, while the nonrelativistic/narve quark model (NQM) 
yields no strange quark content, European Muon Collaboration (EMC) measurements indicate 
that strange quarks make a significant contribution to nucleon spin [4,10]. 

WN lTWN ISPin 

NQM EMC [36] EMC [4] 

.yp 
.yn 
fIp 

0.14 ± 0.01 

0.002 ± 0.001 

0.40 ± 0.02 

0.096 ± 0.009 

0.012 ± 0.003 

0.46 ± 0.04 

0.06 ± 0.02 

0.03 ± 0.01 

0.55 ± 0.10 
4 cos22/3

fin 0.40 ± 0.02 0.34 ± 0.03 0.26 ± 0.07 

Bp 0.16 ± 0.01 0.10 ± 0.01 0.06 0.02 

Bn (7 ± 5) X 10-4 0.010 ± 0.003 0.03 ± 0.01 

1.9 ± 0.1 0.9 ± 0.1 0.3 ± 0.2 
4 e 4 

( ) 

4 

- - ­ tan Ow 
11" mqc 

Mp 4 

( ) 

4 

mq tan OwZn 0.21 ± 0.04 0.002 ± 0.006 0.1 ± 0.1 

2Table 4: Values of WIMP-nucleon spin factorsj Mp = vis Mw sin Ow c::: 109 Ge V c-

Ellis and Karliner [36] estimate ~u = 0.83 ± 0.03, ~d = -0.43 ± 0.03, ~s -0.10 ± 0.03 for 
EMC; comparable estimates for NQM are ~u = 0.93 ± 0.02, ~d = -0.33 ± 0.02 (and ~s == 0). 
Both these estimates are for protonsj for neutrons, the numerical values of ~u, ~d are 
exchanged). C~N resulting from these ~q are tabulated in Table 4 for various WIMP 
interactionsj values for a Majorana neutrino are the same as those for a Higgsino. 

A number of experimental papers use C~N values from the earlier [4], based on 

24 



~u = 0.74 ± 0.08, ~d -0.51 ± 0.08, ~s = -0.23 ± 0.08; since the photino values in 
particular are quite different, these earlier values are also shown in Table 4. From the 
experimentalist's point of view, the important thing is the relative sensitivity of odd-N (Ge, 
Xe, Ca) and odd-Z (Na, I, F) targets - i.e. the ratio (J'wp/(J'wni the 'old' values [4] conveniently 
gave rv 2 for this ratio whatever the neutralino, whereas the revised values [36] yield a ratio 
which is close to unity for if but?: 10 otherwise. Within the estimated errors, similar 
conclusions result from the ~q values derived in [37] for both the 'standard' treatment and a 
'valence' treatment in which ~s == 0 is possible. 

The final column of Table 4 compares cross-sections with that for a Majorana neutrino, 
from (6.1); Mp V8MwsinOw ~ 109 GeVc- 2• 

6.4 Combining results 

Following application of the various factors discussed above, experimental results are typically 
in the form of estimates of rate (or cross-section) and its standard deviation, derived for each 
of a number of energy bins. In the absence of systematic errors and of any correlation effects 
such results, and comparable results from other detectors, can be combined using the standard 
expressions: 

(6.7) 
g l/VW, 

N 

where Wi = l/Sl, W = LW., for N independent rate estimates ROj with corresponding 
.=1 

estimated standard deviation S•. 
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Appendix 1 Derivation of results in §§2-3 


The results quoted in §2 can be derived as follows: for Vesc = 00 we have, for a 'stationary' 
Earth (VE = 0), 

=ko• 

The value of k cannot depend on VE; this offers a check on formulae for a 'moving' Earth, for 
which 

k [21'1 d4>]+l d(cosO) [00 e-(:Y.+:Y.B)2/v5 v2dv 
Jo -1 Jo 

= 211'" 	 [00 e-(v2+VE2)/v5 v2 ]+1 e-2vVECOsB/v5 d(cosO) dv 
Jo -1::5100 

v [e-(V-VE)2/V5 _ e-(V+VE)2/v5 ] dv 

= 1I'" 
V5 []OO (x + VE)e-;1;2/tI~ dx -100 

(x _ VE)e-;1;2/tI~ dX] 
VE -vE vE 

1I'" 
V5 riVE xe-;1;2/tI~ dx + 2VE [00 e-;1;2/tI~ dX] 

VE -vE Jo 

1I'" 
V5 [0 + 2VE 11'"1/2 vol 

VE 2 

= ko• 

For Vesc =/; 00, VE = 0, 

then, since 
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For a 'moving' Earth, for which we have the constraint (1: +1:E)2 S Vesc 2 , we have: 

where 

Cma.:l' = +1 (Vma:z: S Vesc - VE), 

2 
(Vesc - VE < Vma:z: S Vesc + VE);= (Vesc 

z.e. 

With the substitutions w v - VE in the first term and w = v +VE in the second, and the 
trivial evaluation of the third, the above becomes: 

= 21rv~ [lvesc e-w2/"~ dw _ Vesc e-ve.c2/v5] 

=k1 . 

The differential and total rates (§3) require evaluation of similar integrals, differing only 
by factors v2/v~ and Eor in the integrand, and in the lower limit of integration ( Vmin for the 
former, 0 for the latter). Thus 

1 

Ro ko 21ve•c _,,2/,,2 d°v---- e v 
Eor kl V5 vmin 

R k ivesc2/V5o 0 -.:I'd 
= Eor kl ER/Eor e x 

Ro ko (e-ER/Eor -v 2/v2)e esc 0 ; 

Eor kl 

while 
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For VE =f. 0, evaluations are similar to that of k above: 

which leads to (3.12) or (3.13) according to the value of Vesco 

Similarly, 

[fVesc es

ka 1 2 2 lv " 
= -k -2- (W2+ 2VEW + VE2)e- W /110 dw - (W2 


2VaVE -vE +vE 


-2VE (Vesc 
2 + VE 2 /3) e-Ve.c2/V~1 


-(V / +VE 2/3)e-Ve.c2/V~1
es

1 2 

= ko -.!.. [rc / erf (VE) _ ~v2e-VE2/v~ + v2 (e-VE2/v~ e-ve.c2/v~)

k v6 4 VE Va 2 0 0 

+rc~2 VOVE erf (::) - 2 +VE 2/3)e-ve.c2/v~1
(Vesc 

2 2 

_ 1 ko [ 1/2 (VE 1 vo) f (VE) -VE 2 /v2 2 (Vesc 1 VE 1) -v 2/v2]- - rc - + - er - + e 0 - -- + + e esc 0 

- 2 k Vo 2 VE Va V5 3 ' 

giving (3.4) and (3.5). 

Finally, integration of the angular distribution (3.16) is achieved by making the 
substitution W (Vmin VECOS'lj;)/vo: . 

dR(VE, (0) 1 Ro f+1 -(VECOS A1• - v . )2/v2d( .1,)
-~=..:..-~= --- e 'f' mm 0 cos,!" 

dER 2 Ear -1 
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Appendix 2 Velocities 


Drukier et al. [38] argue that Vo = Ur (the galactic rotation velocity) for a galaxy with a Hat 
rotation curve. Reported values for Ur are: 243 ± 20 km S-l [39]; 222 ± 20 km S-1 [40]; and 
228 ± 19 km S-l [41]. We use Vo = U r = 230 kms- I . 

According to Drukier et al. [38], 580 km S-l < Vesc ::; 625 km S-1; we take 
Vesc = 600 km S-l. However, Cudworth [42] finds an appreciably smaller lower limit: 
Vesc > 475 km 

The target velocity relative to the dark matter halo, Y.E, is the sum of three motions: 

Y.E = 1!r +Y.s + 'JkE; 

in galactic co-ordinates, these are: 

the galactic rotation, 


'!kr = (0,230,0) km 


the Sun's 'proper motion', i.e. its mean motion relative to nearby starsl'i [43], 

Y.s = (9,12,7) km S-1; 

and the Earth's orbital velocity relative to the Sun: 

UE" = UE(.).) cos{:J., sin(A - A.,) 

UE" UE(A) cos{:Jysin(A - Ay) 

UE. UE(A) cos{:Jz sin(A - Az) 

10where A is the ecliptic longitude, 0 at the vernal equinox and increasing by I"V per day; I"V 

are the ecliptic latitudes ({:J) and longitudes (A) of the x, y, z axes in galactic coordinates; and 

UE(A) =<uE > [1- esin(A - Ao)], 

where 

<UE>, 29.79kms-t, is the Earth's mean orbital velocity, 

e, =0.016722, is the ellipticity of the Earth's orbit, 

and 

Ao, = 130 ± 10 
, is the longitude of the orbit's minor axis. 

A is estimated from the formula [44] 

A L+1°.915sing+0°.020sin2g, 

"~aJ[laaJra deviations appeaJr to be '" O.3kms-l. 
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where 

L = 280° .460 + 0° .9856474 n, 

and 

9 = 35r .528 + 0° .9856003 n, 

(both modulo 360°), where n is the (fractional) day number relative to noon (UT) on 31 
December 1999 (referred to in [44] as 'J2000.0'). 

Errors in A from this formula in the 4-year period 1987-90 reached a minimum of -45/1 
in June 1987 and a maximum of 3/1 in April 1989 (i.e. a time error between -18 and +1 
minutes), with a mean of 18/1 ± 11//('" 7 ± 4 minutes). 
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Appendix 3 Annual modulation of coefficients Cl, C2 

Rate dependence on VE is given in Table 5, as mean annual and monthly values. Maxima 
occur on June 1st or 2nd: 

[R{VE' 00)/Ro]max = 1.374, 

and minima on December 3rd or 4th: 

[R(VE' 00)/RO]min = 1.302, 

Values determined by a one parameter least squares fit to (3.14) over the energy range6 

0::; ER ::; 20 x Eor are also given in Table 5. The dependence of cIon vE is strongly linear, 
with Cl = 1.077 - 0.001336 x VE accurate to better than 0.1% over the range of Table 5. 

Period year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

11E(kms-1) 244.0 233.4 240.0 247.4 253.7 257.2 257.4 254.3 248.5 241.4 234.6 230.0 229.5 

R(11E'OO) 
1.339 1.313 1.329 1.347 1.364 1.373 1.373 1.365 1.350 1.332 1.315 1.304 1.303 

Ro 
R(11E ,Uese ) 

1.334 1.308 1.324 1.343 1.359 1.368 1.369 1.361 1.346 1.328 1.311 1.300 1.299
Ro 
C1 0.751 0.766 0.757 0.747 0.738 0.734 0.734 0.738 0.745 0.755 0.764 0.770 0.771 

C:2 0.561 0.583 0.569 0.554 0.542 0.535 0.534 0.540 0.552 0.567 0.581 0.590 0.592 

Table 5: Seasonal variation of velocity, rates, and parameters Cll C2 

In practical situations, noise and background result in a minimum effective detectable 
energy. Consequently, the energy range used in determining Cl, C2 should be the usable energy 
range; the dependence of Eor on MD , MT and the dependence of detection efficiency on MT 
then mean that ClJ C2 vary with M D , MT • Expressed in terms of the dimensionless variable 
x,= ER/Eor, 

for the energy range given by Xl ::; X ::; X21 with C2 determined from: 

R(VE'oo) 
-

Ro 

Dependence on X2 is slight; values of a, b for various Xl are given in Table 6 (with X2 rv 14, the 
limiting value when Vesc = 600 km S-l). 

Xl < 10-3 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10.0 

a 1.077 1.077 1.077 1.077 1.076 1.075 1.073 1.069 1.053 1.015 1.064 1.055 1.005 

103 X b 
(km-1s) 

1.333 1.332 1.331 1.329 1.325 1.312 1.292 1.251 1.125 0.965 1.220 0.952 0.480 

Table 6: Energy threshold dependence of Cl coefficients a, b 
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