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Neutron Compton scattering by proton and deuteron systems with
entangled spatial and spin degrees of freedom

E. B. Karlsson
Department of Physics, Uppsala University,
P.O. Box 530, S-75121 Uppsala, Sweden.

and

S. W. Lovesey,
Rutherford Appleton Laboratory,
Oxfordshire, 0X11 0QX, England, U.K.

Abstract

Several recent experiments on liquid and solid samples containing protons or
deuterons have shown an interesting anomaly, which is apparently absent when the
hydrogen isotopes are replaced by heavier particles. The anomaly is a shortfall in the
intensity of energetic neutrons scattered by the samples; specifically, the intensity per
hydrogen isotope in bulk samples is smaller than the intensity for total scattering by

an isolated hydrogen isotope.

Short-lived correlations in the spatial and spin degrees of freedom of the
hydrogen isotopes have been proposed as an explanation of the anomaly. The
correlations involve entanglements of the degrees of freedom created by the
requirements of quantum mechanics applied to identical particles. By using energetic
neutrons to perform Compton scattering experiments on the hydrogen isotopes the
time-scale of the experimental probe covers the region of 107® — 107" s where

entangled states might still be expected to survive.

The proposed explanation is pursued here by reporting the cross-section for
Compton scattering, also known as deep inelastic-scattering, by two identical nuclei
occupying non-equivalent states. The model reproduces the observed dependence of
the cross-section on energy fransfer, in which intensity accumulates at the recoil
energy of a single nucleus. Several features of the model demand that the intensity at
the recoil energy is indeed less than the intensity for total scattering by an isolated
nucleus. Although the pair approximation used here is unquestionably a first
approximation to real many-body entanglements it is a compelling explanation of all
the observations, including the restoration of the normal cross-section at longer

observation-times achieved by moving to longer scattering-times.
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1. Introduction

Several very carefully controlled neutron scattering experiments [1, 2, 3, 4]
have shown a shortfall in the intensity recorded for scattering by hydrogen isotopes.
In the experiments, primary neutrons with energies of a few eV are utilized to perform
Compton scattering (also known as deep inelastic-scattering) which is described by
the impulse approximation, to a good approximation [5]. The shortfall in intensity is
as much as 40% of the normally expected cross-sections. In two [2,3] of the recent
papers it has been demonstrated that the shortfall exists only during the first 107°s for

protons loaded in metals, whereas in other H-containing materials [1,4] the shortfall is

similar in size but has a longer lifetime.

No complete theoretical explanation of the anomalous findings has yet been
given. It has been proposed [1] that the findings in question, and similar results
obtained from Raman scattering by mixtures of protons and deuterons in water [6],
might be caused by entanglement of the spatial degrees of freedom of the hydrogen
isotopes probed in scattering. For identical particles, with spin 7, entanglement of the
spatial and spin degrees of freedom is created by the requirement of quantum
mechanics that on interchange of two particles the complete wave function acquires a
phase factor (— 1)*. Such an entanglement of atoms is known from quantum optics
experiments, where it may exist for times up to 107s in very well shielded
environments [7], but it has never been directly observed in condensed matter where,
if it exists, it would have a very much shorter lifetime. However, some unexplained
proton correlations in metal hydrides, e.g. strongly isotope-dependent diffusion of
hydrogen isotopes on a metal surface [8] and diffusion anomalies of protons in the
presence of positive muons [9a], can be viewed as indirect evidence for short-lived
quantum correlations in the isotopically pure systems, enhancing the diffusion.
Similarly, non-linearities in the ion conductivity of water as functions of the
deuterium/hydrogen content [10] has been taken as evidence for quantum correlations
that are broken in the mixed H-D systems. (The possibility of “coherent dissipative
systems”, including short-lived and spatially strongly restricted entanglement between

atoms in condensed matter has been discussed in several papers [11 — 13].)

Following a preamble in the next section, on the interpretation of

entanglement in quantum systems and known limitations of our model, based on
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scattering by a unit consisting of two identical particles, sections 3 and 4 describe the
calculation we have done. Section 5 contains the application of our theoretical

findings to the interpretation of the experiments in question. Conclusions are gathered

in section 6.
2. Preamble

As concerns neufron scattering, it is tempting to try td trace the shortfall in
intensity back to a mixing of scattening amplitudes for total spin /- % and { + % since
these amplitudes are strongly different, in particular for scattering by protons. The
assumption is then that the eV neutrons, which have such short wavelengths that each
of them can “see” only particles at one of the hydrogen sites involved, scatter on a
quantum state which is a superposition of components with different spin projections.
Such superpositions are a characteristic of quantum entanglement of the spin degrees
of freedom of two or more particles. Spin entanglement is necessarily coupled to a
spatial entanglement (and vice versa) for identical particles. This means that the
complete wave function for the system is also a superposition of components where
particle labels have changed places between the hydrogen sites involved. For the
moment, we leave the question open about how such entanglement can possibly be
created and carry out a calculation of the consequences for the neutron Compton

scattering should entanglement indeed exist at the encounter of the neutron with the

proton (or deuteron) system.

A starting point is the case of two protons, labelled o and B. Such a pure system
(which nobody has so far been able to study experimentally) was recently considered
theoretically [14]. If the two protons are produced by separating them from each
other (and from the bound electrons) in a hydrogen molecule they would exhibit a

quantum entanglement expressed (for a spin singlet state, J = 0, for the pair) through

the wave function,
W(J = 0) e [PROQR) + PROOR )| [T (5.0 ¥ (50) = T (sp) ¥ ()], 2.1

where P (right-hand channel, say) and Q (left-hand channel, say) are distinct one-
particle orbitals. The spin part is, similarly, expressed through a superposition of
spin-up, T(ss), and spin-down \L(SB), functions for the protons a and p. Evidently,
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this wave function would lead to an equal probability for finding the two particles in
the (separated) product states,

PR T () QR (sp), PRIV (s.) QR T (sp),

(2.2)
PROT () ORIV (s, PRV () QR T (s,).

One of these four states would also be the result if all entanglement (in spin and
coordinate space) were broken by a measurement process. Equation (2.1) represents a
so-called maximally entangled state, enforced by the Pauli rules for fermions. Similar
expressions are well known from the photon-photon pairs studied extensively in
Einstein-Podolski-Rosen-type experiments (where, however, the spatial part of the
two-particle wave function is usually not written out). At the right-hand side (and
similarly for measuring at the left-hand side) it is therefore not known, a priori,

whether the particle observed will be o or B, nor whether this particle will have spin-

up or spin-down.

Of course, the real situation for protons (or deuterons) in a condensed matter
system is strongly different from that of isolated, entangled proton pairs assumed so
far. First of all, the particles are strongly interacting with their environment which
limits the survival of spatial entanglement drastically (decoherence times in a metallic
hydride are estimated to be of the order of 107®s for correlated objects of a few A
extension [2]). Secondly, protons or deuterons are normally not in paired states but
each of them interacts with more than one neighbour at a time. If entanglement exists,
it is therefore likely to be shared by several particles and the pair model used here can
only be seen as a model to illustrate principles for treating scattering on entangled
systems (although it should be noted that the coherent dissipative systems [11] are
expressed in terms of "geminals", i.e. two-particle wave functions). A further
consequence of going beyond the two-particle entanglement in a system of identical
particles would be that particles v,8,-- in the labelling series o,f,y,6,-- are now also
allowed as partners for the particle to be expelled in a Compton process. The strength
of entanglement between, say, particles o — B and particles [ - 7 is also expected to
vary with time, with possibility for entanglement swapping [16] so that suddenly, y
would turn out to be the appropriate partner of o, rather than §. This would bring

about a fast decrease of entanglement for particles situated at two neighbouring sites.



3.  The neutron scattering cross-section and its Compton limit

In this section we derive the cross-section for scattering by a system consisting
of only two identical particles. Arising from the principle of indistinguishability of
identical particles is a correlation in the quantum numbers which define the states of
the system, also described as an entanglement of the system’s spatial and spin degrees
of freedom. The explicit form of the correlation in the quantum numbers found here
is correct for two particles with arbitrary spin. There are two spatial centres, labelled 1

and 2, and the distance between them is similar to the distance between neighbouring

ions in the crystal. A particle has spin /, and [/ =% (1) for a proton (deuteron). The

complete wave function acquires a phase (-1)* when the particles are interchanged.

The one-particle spatial orbitals discussed in the previous section are taken to be

non-equivalent and purely real and they are denoted by ¢1(R) and ¢2(R), with,
[dR ¢} (R) = [dR @3 (R) =1. (3.1)

The particles are at positions R = R, and R = Rp. Suitably normalized, the spatial
wave function of the initial state of the two particles is,

Ra+¢ s o R0, (Ry) + 50, (Ry)e, R} (3.2)

Here, ¢ = (—1)’ where the total spin of the particles, J, is an integer and ¢? = 1. The
overlap integral for ¢, and ¢, denoted in (3.2) by S)2 is assumed to be small on
account of the large distance between the two centres and, henceforth, it will be
neglected. The orbitals ¢; and ¢,, and the energy to which (3.2) corresponds, might

depend on the magnitude of J or whether J is an even or an odd integer. The spinor

for the two particles is,

T (@,B) =D (U mlynlJM) |Im ) In). (3.3)
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The Clebsch-Gordan coefficient in (3.3) is defined in accord with Edmonds [16] and
e B,o0) = (=% & xi, (e,B). In keeping with the non-relativistic limit of quantum
mechanics, the complete wave function of the two particles is the product of (3.2) and
(3.3), and on interchanging the particles the complete wave function does acquire a
phase (-1)*. (In the case of a system with three or more identical particles, the spatial
wave function need not necessarily be either symmetrical or antisymmetrical with

respect to the interchange of any pair of particles, as the complete wave function must
be.)

The wave function which describes the particles after the scattering event
should also acquire a phase (—1)* when the two particles are interchanged. As we
shall see, in order for our model to reproduce the observed distribution of intensity, as
a function of neutron energy transfer, one of the two particles is found in a state
described by a plane wave, to a good approximation, with a wavevector almost equal

to the wavevector transfer, k. The magnitude of k in the experiment is purposely

made very large.

Let the plane wave be proportional to exp(ip’-R} and denote the second one-
particle orbital by y(R). The plane wave can be normalized in a box, and W(R) is
normalized to unity like @; and ¢». The normalization box has a volume Q and the
normalization factor attached to the plane wave will be absorbed in a momentum

wave-function (3.8). For the moment, y(R) is not specified and a complex function is
allowed.

The neutron-nuclear interaction operator is,
V =b,exp(ik-R,)+b; exp(ik-R,), 34

where a scattering-length operator, b, is independent of the position variable. A
matrix element of ¥ taken between the initial orbital (3.2) and the proposed final-state

orbital, namely,

= fexpp’ ROWR,)+C explip’- Ry )w(R,)}, 35)



contains eight terms, four of the form,

[dR, exp{iR, -(k-p)} o1 (R,) [dRyy*(Ry) 9, (R,), (3.6)

and four of the form,
[dR, exp(R,, ‘KW *(R,) ¢,(R,) [dR; exp(—ip’- R;) ¢, (Ry). 3.7)

Consider the first integral in (3.7). Because the magnitude of k is very large the phase
factor exp (iRy-K) contains very many oscillations, between +1 and —1, as R,, varies in
the volume of space in which ¢(R,) is appreciably different from zero; a volume
which is the order of a unit cell in the crystal. In consequence, the integral in question
is close to zero. The corresponding integral in (3.6) can be significantly different
from zero when p’ is chosen close to k, so exp{iRs(k — p’)} has relatively few
oscillations in a unit cell. From the conservation of momentum it follows that
k — p' = p is the initial wavevector of the struck particle. With p’ ~ k the second
integral in (3.7) is close to zero and the product of integrals in the expression can be

safely neglected in comparison to (3.6). For the lafter we write, K;(p)7T%. Here, the

momentum wave-function,
K @) =Q™"" [dR exp(iR -p) ¢, (R), (3.8)

satisfies,

§ K@) = [dp |K @) =1,
and the overlap integral,

T, = [dR y*(R) ¢, (R). (3.9)

The four terms which survive the Compton limit are,



1. [k, T, + ¢k, 0T 1+ 5, [K, (o), + LK, @)T

where p=k — p’, and X; and T are defined in accord with the foregoing definitions,
(3.8) and (3.9).

In writing down the result for the matrix element of V' we will assume the
momentum wave-functions constructed from ¢; and @, are almost the same and

denote the common value by K(p). One finds,

(ﬁna1|V|initial> = K(p)F(J",J), (3.10)
where,

FW, D =L{ () +C6(Tfb ) 1@, +ETy), (3.11)
and,

(T1e7) = e (. B)Y Bt (0 B). (3.12)

To achieve a simple notation, in ' and the matrix element of 4 we do not display M
and M’.

The explicit form of the scattering-length operator is,
b=A+Bs-1. (3.13)

In this result, s is the operator for the spin of the neutron and 4 and B are linear

combinations of the scattering lengths for the two possible states of the total spin

=] i%. One sees that the matrix element (3.12) is purely real. The single-atom

cross-section is 4mb> where b® is obtained by averaging b* over random

orientations of I, or, equivalently, random orientations of s and the result is,



bt =42+ LB 11 +1). (3.14)

Let us now consider the change in energy of the particles between the initial and
final states. Because the duration of the scattering event is by design very small, we
anticipate the position of the struck particle is almost unchanged, and its potential
energy is essentially the same in the initial and final states of the scattering event. On

the other hand, the kinetic energy of the struck particle changes from (Ap)2/2M to
h2|k -—plz /2M . Assuming the potential energy is the same in the initial and final

states it cancels out in the conservation of energy of the struck particle which then

reads,

2 n2k —pl|*
5 @0 _ o, Wik—p)
2M 2M

2>

where E and E' are the initial and final energies of the neutron. Moreover, measured
on the scale of energy for the change in kinetic energy of the struck particle, the
energy of the other particle is unchanged in the scattering event. Writing o = E — F'

the cross-section for scattering is proportional to,

2
L

2
> 8(ho - Ey + % k- p)|K(p)|2|F(J',J) (3.15)

where the recoil energy Ex = (7ik)/2M. Regarded as a function of energy transfer the
cross-section (3.15) peaks at the recoil energy, in accord with the observations we aim

to interpret. The width in energy of the recoil peak is related to the momentum
density |K (p)|2 in the ground state. These features of the energy dependence of (3.15)

are signatures of the Compton limit of scattering, which has been extensively studied

[5].

Having established the correct energy dependence of the cross-section we turn

attention to the intensity that accumulates around Er. From (3.11),

1F, I =L, + 68 | N |T +6T[7 (3.16)
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This expression depends on the total spin of the initial and final states through the
matrix elements of the scattering-length operator and the phases £ and {'. In the

following text we evaluate expression (3.16) for the intensity, or structure factor,

associated with the Compton scattering by a pair of correlated particles.

The initial and final wave functions belong to states of the two particles with

different energies and the wave functions are orthogonal. Using,

ot 0B} 2l (0sB) =8, 18,00

one finds,
(final | initial) =13, 8, ,, (1 +4") {K\ (-p"T, +CK, (-p)T; }. (3.17)

The required orthogonality is achieved with J # J, for all p’ and w(R). Hence, not all
values of J”are accepted in the evaluation of the structure factor. In the latter, non-
zero values of the matrix element of the scattering length operator obey the selection

rule J'=|J—1

,J and J +1, since b contains I which is a tensor of rank one, cf. (4.3).

The outcome of the selection rule and the orthogonality condition is to restrict J'to

the values |J —1| and J +1, whence L' =-1.

4.  The intensity of scattered neutrons

Aftention in this section is on the intensity at the recoil energy appropriate to
unpolarized neutrons. The intensity is calculated from (3.16), and its dependence on
the total spin of the initial and final states, J and J, arises both from the matrix
elements of b, and b, and the phases £ = (1) and &' =(~1)’. The dependence of the

structure factor, [F(J',J)

2, on J is solely in the matrix element of the scattering

length for,

(1B} = €6 (T ulr) == (TBal), @.1)
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a result which follows directly from (3.3) and (3.12) and J + J’= odd integer. Using
(4.1)in (3.16),

P =(T oY I +¢ ) 4.2)

To obtain the observed intensity we average (J 1B | )2 over the projections of

the initial total spin and sum over the values of the projection of the final total spin.

Starting from (3.13) a straightforward calculation yields,

E i Wi

'
mymy

(4.3)

2
=8, , A2 +1BX S + DI +1)2I +1) I ,
o 4 JIJ

where the last quantity on the right-hand side is the square of a 6j-symbol [16]. The
results (4.2) and (4.3) completely determine the intensity of the Compton scattering of

unpolarized neutrons by a pair of correlated nuclei.

In considering the application of expression (4.3), thought must be given to the
dependence of the energy of the particles on their total spin, arising ultimately from
the principle of indistinguishability of identical particles. For I = !, to each energy
level there corresponds one definite value of the total spin, 0 or 1. There is not
necessarily a one-to-one correspondence between the spin values and the energy
levels for particles with spin / > ', and energy levels to which there correspond
symmetrical (antisymmetrical) spatial wave functions can occur for any even (odd)
value of the total spin. The magnitude of the energy dependence, known as the
exchange splitting, is related to the overlap of one-particle orbitals at different centres.
For the moment, we will assume the energy dependence is very small, and
unimportant in addressing the questions at hand. Rather, all values of J and J” are
now regarded as equally likely, subject to the tenets of quantum mechanics. In

consequence, we will sum the intensity over the allowed values of J”and average it

with respect to J.
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In executing the sum on J’we recall the condition J’=# J which stems from the

orthogonality of the initial and final states of the particles. From (4.3),

(B SN 5m,)

>4 G o

J'=S o my

g _JU+D)
_(csim/4n){l 41(1+1)}’ 4.4)

where Giy =l + l)B2 is the single-atom incoherent cross-section.

The result (4.4) is central in subsequent developments so it is fitting to record an

alternative derivation of it. From the first equality in (4.1) we find

(J[pol) = (J]by|} and the sum,

(b, — by )]JM)r = (e, ~ )2},

5. foue
JM!
contains no contribution from the term J=J. For unpolarized neutrons,
(b, -b,)* =+ B (I, -1,)* =1 B*(2I + 213 -K?),

where K = (Io+ I). Using I2 =12 = I(1 +1) we find,

(oM

A 2 _J(T+D)
(b, —by) |JM>—B I(I+l){1 —41(“1)}.

Now, previously we have established £&' = — 1 so the quantity considered here is
precisely the quantity needed for the structure factor (3.16) when it is summed over all
J'. Note that the algebraic factor is positive, since it is the diagonal matrix element of
the square of an operator, and it reduces the matrix element below the value

appropriate to simple incoherent scattering by an isolated particle.

The value of the structure factor corresponding to (4.4), namely,

12



- 2 J(J+1
Zﬂ [F I = (6, / 4T, + €| {pﬁ}, “5)

depends on whether J is an even or an odd integer, the two possibilities giving
opposite signs for & = (-1). Hence, the average of (4.5) with respect to J is to be

made separately for Jeven and J odd.

The integer J=0, 1, 2, ..., 2/, and the total number of initial spin states is,

i QJ +)=RI+1)*.

J=0

Also,

U _JU+D] g 2
; (2J+1){1 —41(1+1)}'2(2I+D ,

and the sum with .J restricted to odd integers is found to be one half this value. Thus,
averages of the structure factor over J even and J odd states generate the same
numerical factor = Y. Assembling the results, the intensity per particle at the recoil

energy, summed over J' and averaged with respect to J, is,

! ' C'ine
sareiy & CIZ R f =%[g]%{lﬂ L[ 4|1+ T}

(4.6)

S +imr)

This result is seen as our central finding. In arriving at the final expression we

assume the single-particle orbitals in 77 and T, are the same for all values of J.

For the combination of overlap integrals in (4.6) we submit the inequality,
(Inf +Inf )<t 7)
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The inequality follows by expressing y(R) as an expansion in terms of complete sets
of single-particle orbitals for the two sites. Equality in (4.7) is achieved when
coefficients in the expansion are zero for all orbitals except those describing the

ground state, denoted in (3.2) by ¢1(R) and @2(R).

The results (4.6) is smaller than the result corresponding to total scattering by an

isolated particle B2 = (c/4m), where B? is given in (3.14) and o is the total single-
atom cross-section. In part, the shortfall in intensity in Compton scattering is due to
the absence of the initial wave function (3.2) in the final state; the Compton scattering
process is inelastic and incoherent, and in the cross-section Gi,; appears instead of o >
Gine. In our model result there also is a factor % in the intensity that has its ongin in
the same physical process, which manifests itself in the calculation by the appearance

in (3.16) of the difference in scattering-length operators for the two particles and no

contribution to the scattering event from states with the same total nuclear spin, J.

To conclude this section, let us return to a fact aiready mentioned that the
energy of the particles depends on their total spin. For a system consisting of only
two identical particles, the solution of Schrédinger’s equation for the spatial wave
function which corresponds to the lowest eigenvalue has an even value of the total
spin, since the wave function for this eigenvalue is not antisymmetrical. In the case of

I = the structure factor per particle for this state is,

IS R0 = Lo, /4m)|T + T

J'eJ

Taking T; = T5, on the grounds that the two spatial centres have the same local
structure, use of (4.7) brings us to the result (/ = %),

I3 |F0) < (o, /4m). (4.8)

Jrd

Consider next 7 = 1. The state of lowest energy corresponds to J = (¢ or 2. The

structure factor per particle satisfies,

14



I3 P 0) < (o, /4m), (4.9)

St

and

13 |FU 2 <10, /4m), (4.10)

S
while their average satisfies < %(0 inc 1 470N

5. Comparison with experiments

The intensity per particle in Compton scattering from two identical nuclei has

been shown to be less than the single-atom incoherent cross-section.

There are various reasons why our favoured expression for the intensity per
particle is the result (4.6). For one thing, the result can be interpreted as the
incoherent addition of intensity for each centre, and this structure in the result is
consistent with the incoherent nature of Compton scattering as a probe of matter. The
result (4.6) is arrived at by including all the initial states with the appropriate quantum
statistical weights. We expect this to be applicable because of the energy scales in the
experiment. The separation in energy of the initial states is small, as we have
previously mentioned, and surely the separation is very small relative to the

temperature of the sample and, also, the spread in energy sampled in the experiments.
We will evaluate (4.6) with 7 = T,, which is an assumption consistent with our

earlier use of a common value for the momentum wave-function of the one-particle

orbitals in the initial state. In this case, the intensity per particle, oy, relative to the

single-atom cross-section is,
f=61</5=%(°'inc/c)T]2= G.1

and we submit the inequality 7;*> <1 One finds,

15



and,

d)

f=049T7 : proton

(5.2)

F£=013T% : deuteron.

The main features of the experimental results [1, 2, 3] are:

A big shortfall in the cross-section for protons in metallic hydrides; about 30%
in Nb-H and about 50% in Pd-H, when the neutron scattering-time (observation
time) is less than 5.107"%s [1,2].

A cross-section of normal size for protons for time larger than 10™"s in the Nb
and Pd hydrides [1, 2].

A small (about 10%) but time independent shortfall in the cross-section for
deuterons in Nb-D [2].

A big shortfall in the H/D cross-section ratio for mixtures of D,O/H,0 [1]. This
ratio is = 30% below the conventionally expected one for admixtures

Xp=[D]/[H+D]< 0.4, but approaches the conventional value for Xp = 0.9.

The values of fin (5.2) at once admit the entanglement of spatial and spin

degrees of freedom in pairs of identical particles as a candidate for the explanation of

the shortfall in the observed intensity for scattering by protons or deuterons. Taking

T? =1/2, a fraction = 0.4 of pairs of correlated protons yields a shortfall of 30% in

the intensity relative to 6, and a fraction = 0.7 of pairs gives a 50% shortfall [1, 2].

With a purely quantumn mechanical effect as the explanation of the anomalies

one expects progressively smaller anomalies with increasing mass of the particles. It

is encouraging to find our proposal fits this trend. A fraction of only 0.1 of pairs of

deuterons gives a 10% shortfall in the intensity, in line with the experimental result

[2]. With more massive particles even fewer pairs of correlated particles should be

formed, thus the attendant shortfall in intensity will be very small and, we propose,

too small to be measured.
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It can be shown that, if quantum correlations are deleted in the final state, by
setting £’ = 0, the conventional cross-section is recovered. The gradual transition from
anomalous to normal cross-sections as the scattering times are increased [1, 2] can be
seen as due to the destruction of entanglement in the states of the unit of two particles.
Such decoherence is most likely associated with the interaction of the particles with
the environment. Certainly, we expect the Compton event to destroy an entangled

state enjoyed by the struck particle.
6. Conclusion

We report a theoretical discussion of scattering of energetic neutrons by
particles in a solid, with a view to interpreting recent experiments on samples loaded
with protons or deuterons. A prime objective is a complete and transparent account of
the influence in scattering of entanglement of the spatial and spin degrees of freedom
of the particles. This is realized by recourse to a simple model built from elementary
units of two particles (nuclei), which might capture essential features expected of a
many-body quantum system. The initial and final states of the two particles in a unit
are represented by non-relativistic wave functions; a wave function is the product of a
spin and an orbital wave function, and each of these is a linear combination of
products of non-equivalent one-particle orbitals. An interchange of the two particles
in the initial or final wave functions creates a phase factor (— 1)¥ where 7 is the

magnitude of the spin of a particle.

The initial state in the scattering event is a state of equilibrium, and use of one
product wave-function to describe the initial state is expected to be an acceptable
approximation to the true ground-state wave function. For the final state we use a
wave function in which a particle is represented by a plane wave, and the second one-
particle orbital is unspecified but assumed to be spatially localized. This excited state
of a two-particle unit is orthogonal to the initial state. We demonstrate that, the
specified final state of the two particles produces in the cross-section the observed
dependence on the energy transferred to the sample, which is a typical Compton

profile centred at the recoil energy of one particle.

With regard to the interpretation of experiments, our key finding is a reduction

of the cross-section per particle below the cross-section for a single isolated particle.
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The reduction is caused by entanglement of the spatial and spin degrees of freedom of

the two particles in a unit.

In the favoured model, two factors contribute to the calculated reduction in the
cross-section. First, orthogonality of the imitial and final states means these states
have different total spins, so in the expression for the cross-section the sum over all
allowed values of the final fotal spin excludes the value of the initial total spin.
Secondly, scattering involves only the (incoherent) spin-dependent part of the nuclear
scattering-length operator. Absence of the spin-independent part of the scattering-
length, which is equal to the coherent scattering-length, means the cross-section
calculated for a unit of two particles is a fraction of the incoherent single-atom cross-

section.

The model is shown to fit key experimental results. In so doing, it is found that
there are fewer correlated pairs in the system of deuterons than in the system of
protons. This finding is quite consistent with an explanation based on a purely
quantum mechanical effect. Another relevant example is the isotope effect observed

in the localization of 1" and protons in metal hydrides [9b].

Persuasive as our argument appears it might be casuistic. After all, in the
properties of quantum many-particle systems there is abundant evidence of great

subtleties.
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