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Fluctuation-induced tunneling conduction in disordered materials

Ping Sheng~
RCA Laboratories, Princeton, New Jersey 08540

(Received 30 April 1979)

In disordered materials generally characterized by large conducting regions (or long conducting pathways)
separated by small insulating barriers, it is shown that the electrical conduction can be ascribed to a novel

mechanism, fluctuation-induced tunneling, in which the thermally activated voltage fluctuations across
insulating gaps play an important role in determining the temperature and field dependences of the
conductivity. By considering the modulating effects induced by voltage fluctuations on either an image-force
corrected rectangular potential barrier or a parabolic barrier, a theoretical expression for the tunneling

conductivity is derived which displays thermally activated characteristics at high temperatures but becomes
identical to the temperature-independent simple elastic tunneling at low temperatures. Between the two
limiting behaviors the temperature dependence of the conductivity is controlled by the shape of the
tunneling barrier. An expression for the high-field tunneling current is similarly obtained. It is found that,
while the tunneling current increases as a nonlinear function of the field, the degree of nonlinearity
decreases as the temperature increases, indicating an effective lowering and narrowing of the barrier by
voltage fluctuations. The theory is also generalized from the consideration of a single tunnel junction to a
random network of tunnel junctions by the application of the effective-medium theory. The theoretical
predictions are compared with the experimental results for three disordered systems: (1) carbon-
polyvinylchloride composites, (2) heavily doped, closely compensated GaAs, and (3) doped polyacetylene

(CH)„ in the metallic regime. In each case excellent agreement is obtained. It is shown in particular that the
nonmetallic temperature dependence of the resistivity in doped metallic (CH)„samples can be understood in

terms of the present theory.

I. INTRODUCTION

Hopping transport of electrons between localized
sites has received considerable attention in recent
years as the mechanism responsible for the char-
acteristic exp(-const/T ) form of temperature de-
pendence of conductivity observed in amorphous
semiconductors' (a= —,') and sputtered granular
metal films' (a= —,'). However, there are a variety
of disordered materials, such as some conductor-
insulator composites, ' disordered semiconduc-
tors, ' and doped organic semiconductors, "' in
which most of the conduction electrons are de-
localized and free to move over distances very
large as compared to the atomic dimension. For
these random systems the electrical conduction
is dominated by electron transfer between large
conducting segments rather than by hopping be-
tween localized sites. It is the purpose of this
paper to present a new conduction mechanism,
fluctuation-induced tunneling, which character-
izes such electron transfers across the insulating
gaps in the conducting pathways. The essential
physics of the new mechanism is contained in the
observation that, since the electrons tend to tunnel
between conducting regions at points of their
closest approach, the relevant tunnel junctions
are usually small in size and are therefore subject
to large (thermally activated) voltage fluctuations
across the junction. By modulating the potential
barrier, the voltage fluctuations directly influence

the tunneling probability and introduce a charac-
teristic temperature variation to the normally
temperature-independent tunneling conductivity.

The voltage fluctuations and their probability of
occurrence are considered in Sec. II. The calcu-
lation of fluctuation-induced tunneling character-
istics for a single tunnel junction, and the gen-
eralization of the theory to a random network of
tunnel junctions, are presented in Sec. III and IV,
respectively. In Sec. V the theory developed is
applied to three disordered systems: (1) carbon-
polyvinylchloride (C-PVC) composites, (2) heavily
doped, closely compensated GaAs, and (3}doped
polyacetylene (CH),. In all three cases the pre-
dictions of the theory are found to be in excellent
accord with the experimental results.

II. VOLTAGE FLUCTUATIONS

Consider a region of close approach between two
large conducting segments in a disordered ma-
terial as shown in Fig. 1(a}. Since the electron
tunneling probability depends exponentially on the
insulating barrier thickness, it is expected that
practically all the tunneling occurs within the
small surface areas delineated schematically by
heavy lines in Fig. 1(a). We can approximate such
a tunnel junction by a parallel-plate capacitor with
area A, separation co, and capacitance C= A/4wgv,
as shown in Fig. 1(b), where A/2 denotes the re-
sistance connecting the junction capa. citor to the
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small frequency interval df, ( ) denotes thermal
averaging, and k is Boltzmann's constant. The
averaged square of the thermal fluctuation voltage
across the tunnel junction, (Vr), can now be simply
calculated' as

4kTR df
(2vf CR)2+ (1+C/Co)2

(la)

Since C «C„ the C/C, term in the integrand can
be neglected, resulting in

(Vr}=kT/C. (1b)
(b)

FIG. 1. A region of close approach between two con-
ducting segments. Shaded area denotes conductors. In
(a), the heavy lines delineate the surface areas within
which most of the tunneling occurs. This tunnel junction
is schematically depicted as a parallel-plate capacitor
in (b). R and C are defined in the text.

rest of the conducting segment. Of course, C is
only a small part of the total capacitance Co be-
tween the two large conducting segments. A di-
rect consequence of the large size of the conducting
regions is that C, is large and therefore the
charging energy, e'l2C„required to transfer an
electron of charge e from one neutral conducting
region to its neighbor, is completely negligible.
This is in sharp distinction to conduction in gran-
ular metals, ' where charging energy plays the
dominant role in determining the electrical trans-
port properties.

Owing to the random thermal motion of electrons
in the conducting region, there can be transient
excess or deficit of charges on the tunnel junction
surfaces, resulting in voltage fluctuations across
the junction. In order to calculate the magnitude
of these fluctuations, let us represent the two
conducting segments and the tunnel junction shown
in Fig. 1(b) by the equivalent circuit of Fig. 2,
where the noise source is identified as the Johnson
noise voltage generator with' (V&)=4kTRdf, where

Vz is the fluctuation voltage of a resistor in a

Equation (1b} states the familiar result that (V~r)
is inversely proportional to the capacitance of the
junction. Since the internal tunnel junctions in
disordered materials are usually small in area as
noted before, the resulting large voltage fluctua-
tions across the junctions are expected to play an
important role in modifying the electron tunneling
probability.

Equation (1b) can be alternatively derived by
considering the capacitor as a system with one
degree of freedom and applying the equipartition
theorem'

~ C( Vr) = 3 kT. (2)

4E= g C(V„+Vr) —~CV„+CVrV„, (Sa)

where the first two terms represent the change in
the electrostatic energy of the capacitor and the
last term gives the work done by the external po-
tential. The net result of b,E= &CV2~ means that
the fluctuation probability function" is given by

P(Vr) = (2C/vkT}'~'exp( &CVr/kT) . -(Sb)

Since the equipartition theorem is a direct conse-
quence of the Boitzmann distribution, Eq. (2) sug-
gests that the probability of fluctuations is propor-
tional to exp(-4ElkT), 4E being the energy nec-
essary to move the system away from equilibrium.
For the general case of a capacitor with an exter-
nally applied potential V» a deviation of a V~
away from V„' requires

V

R
WA

Olf P=4kTRdf

Co

Here the pre-exponential factor normalizes the
integral of P(Vr) for 0 ~ Vr&~. It is sometimes
convenient for subsequent calculation to express
the fluctuation probability function in terms of a
fluctuating electric field. By changing the variable
from Vr to 4 —= Vr/cv, Eq. (3b) is easily rewritten
as

FIG. 2. The equivalent circuit from which the fluctua-
tion voltage across C is calculated [see Eq. (1a)]. Since
C is a part of the total capacitance between the two con-
ducting segments, C and Co are in parallel to each
other.

4 )1/2
P(hr) =

~
exp(-a82r/kT), 0 ~ br&~,~kT )

(2c}

where a =wA/Sv is a measure of the junction vol-
ume. From P(Vr) [or P(hr)] one can calculate the
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thermal average for any function of Vr (or Sr}.
In particular, we note that the value of ( V2r),

evaluated by

(v*,&= f v'p(v)dv =kT/c,
0

is consistent with the result obtained earlier.

III. SINGLE- JUNCTION CHARACTERISTICS

From the discussion of Sec. II we have seen that
at any tunnel junction between conducting pathways
there are two possible sources of the electric
field: the thermal fluctuating field S~ and the ap-
plied field 8„. The field 8„, however, has to be
distinguished from the macroscopic average of
the applied field. Owing to the exclusion of elec-
tric field from conducting regions and the resulting
concentration of voltage drops at the junctions, it
is expected that b„would be (1) a factor M larger
than the macroscopic average field, where M is
roughly the ratio between the average size of the
conducting segments and the average junction
width, and (2) parallel to the tunneling direction
(and the thermal fluctuating field Sr) regardless
of the junction orientation relative to the macro-
scopic average field direction. Since it is equally
probable for the thermal fluctuating field to be in
the same direction of h„as opposite to it, a junc-
tion can experience two values of the total field,
S„+Sr and S„—Sr, for any given value of

j Sr ~.

If b„& ~Sr ~, the two resulting tunneling current
densities, —,

' j(S„+Sr) and —,
' j(S„—Sr), are in oppo-

site directions (the factor —,
' is present because

each ha.s equal probability of occurrence), and the
net tunneling current along the direction of the ap-
plied field is given by

nj= l M Sr+ S~}-j«r —S~}1.
From Eq. (4) a partial conductivity Z(Sr) can be
defined as

to the applied field and thermal averaging the for-
ward current. Since the current along the applied-
field direction consists of ~ j(S„—Sr) (for Sr& S„)
and ~ j(S„+Sr), it follows that

1j„=— j(S„+hr)P(Sr)dSr+ j(S„—Sr)

x P(Sr)dSr

where jH stands for the current density at high
field.

In addition to modifying the tunneling probabili-
ties, voltage fluctuations also have a direct effect
on the parallel conduction mechanism of thex. mal
activation over the potential barrier. However, as
shown in Appendix A, thermal activation is neg-
ligible at low temperatures and gives behavior in-
distinguishable from that of fluctuation-induced
tunneling at high temperatures. Therefore, the
consideration of fluctuation-induced tunneling alone
is sufficient to account for the conduction charac-
teristics of the junction.

In order to further explore the temperature and
the field dependences of the tunneling conductivity,
it is clear that an explicit expression for the field-
dependent tunneling current is necessary. The
following subsections are devoted to the calculation
of j(S}and the evaluation of integrals appearing in
Eqs. (6) and (7).

A. Field-dependent tunneling current

The starting point of our tunneling current cal-
culation is the image-force corrected rectangular
barrier" '4 as illustrated in Fig. 3. The image-
force correction removes the unphysical infinite
fields implicitly implied by the rectangular barrier
and makes the potential smoothly varying. Furth-

4j dj(S,)
g(Sr) = lim

T'

The fluctuation-induced tunneling conductivity z
of the junction is then obtained by thermal averag-
Ing Z(Sr):

P 8)z $)d8,
0

I
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At large applied field, the conductivity of the
junction is expected to become non-ohmic. The
behavior of the current density as a function of ap-
plied field in the high-field regime can be obtained
by neglecting the small flow of electrons counter

FIG. 3. The image-force corrected rectm~ular bar-
rier in the absence or presence of an electric field 8.
The dashed lines denote the rectangular barrier without
the image potential. The solid lines are calculated from
Eq. {8)with X= 0.05.
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ermore, the one additional parameter provided by
the image-force correction enables us to consider
a wide variety of barrier shapes, varying from
nearly rectangular to nearly parabolic, upon which
the effects of voltage fluctuations can be examined.
As shown by Simmons, "the shape of the potential
in the presence of an electric field can be accu-
rately expressed as

V(u, h ) = V, [1- ]]./u(1 -u) —Ssc], (8)

where u=»/u) is the reduced spatial variable, »
the distance from the left surface of the junction,
V, is height of the rectangular potential barrier
in the absence of image-force correction, 8 = Sew/
V, is the electric field expressed in units of 4 „
= V,/eu),

~)~ 1,
The tunneling current density j(e) for a junction

can be written as"

d(e)= n~ f dE!XE, e) J 1, [f(E E) T(E ~ E„-

+ cab,u))] . (10)

Here 5 is the Planck's constant, E is the energy of
the electron in the direction of tunneling (» direc-
tion), k„ is the wave vector of the electron parallel
to the junction surface, E„=I'k,', /2m, m being the
effective mass of the electron, 8,= $,8~, and

f(E)= 1/[1+ exp(E/kT)] is the Fermi function. In
the WKB approximation, the barrier transmission
factor D(E, c) is given" '

by
]].= 0.'l95e /4u)EVE (9)

D(E, &}= (I+ exp[F(E, e}])', E ~ V

is a dimensionless parameter governing the
amount of image-force correction and the resultant
barrier shape, e is the electronic charge, and E
is the dielectric constant of the insulating barrier.
In Eq. (8) the zero of the potential is defined by
the Fermi level of the conducting region. The po-
tential V(u, 8) is a peaked function of u. Its max-
imum, denoted by V = V(u», b), where u» satis-
fies the condition (8 V/su) „»= 0, is a decreasing
function of g. For a given X, there is a value
8 = 8, at which V = 0. In Fig. 4, 8, is plotted as
a function of A,. It should be noted that at A. =-,',
V = 0, with 4= 0. Since the concept of a tunneling
barrier becomes suspect when V & 0 even in the
absence of any electric field, it is reasonable to
signify —,

' as the maximum allowed value of A,. In
terms of g„a new dimensionless field parameter
can be defined as (.= (g/([), . The advantage of using
& to characterize the field is that g= 1 marks the
point below which V & 0 and above which V & 0.
As will be shown below, tunneling characteristics
for & ~ 1 are drastically different from those for

where

Vo )
(12)

exp[-F(E, e)], E ~ V
D(E' (T)

1 E) Vm &

(13)

introduces very little error. Since Eq. (13) is
mathematically much simpler tlmn the exact WKB
expression, in the following this approximate
form for D(E, (.}will be used.

The integral over k„ in Eq. (10}can be simply
performed, yielding

X= (2m V,/)I')'~' is the tunneling constant, and u„
u, (~u, ) are the zeros of the integrand. When E
~ V, the WKB approximation also provides a
transmission factor" "which connects smoothly
to D(E, e) given by Eq. (11) and which asymptotical-
ly approaches the value 1 at large E. However,
it was shown" that writing D(E, e} in the form

me 1+ exp(-E/kT)le SE' d E(, nlkTln1 ~ [( E )/ ) (14)

The temperature dependence of the function
kT in[1+ exp( E/kT)] arises-from the smearing of
the Fermi level at finite temperatures. Since
D(E, c) is an exponentially increasing function of

E, for those electrons thermally activated from
E& 0 to E) 0 the tunneling probability would be
greatly enhanced. However, this increase in the
tunneling probability has to be weighed against the
decreased occupation probabiiity for E& 0. In Ap-
pendix B it is shown that as long as tunneling is
the dominant conduction mechanism (as opposed to

0, E)0,
1 Tin[1 ~ enn( ElkT)] =(-(15)

thermal activation over the barrier} tunneling by
electrons in the exponential tail above the Fermi
level (thermally activated tunneling} is always
negligible as compared to tunneling at the Fermi
level. That is, the effect of Fermi level smearing
can be ignored. Therefore, for the present calcu-
lation the low-temperature approximation of sharp
Fermi level is adopted~:
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that the terms containing the derivatives of u, and
u, with respect to E vanish, because the integrand
of Eq. (12) is zero when evaluated at I, and ug.
Substitution of Eqs. (17) and (13) into Eq. (16)
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j(e) = 8, , exp[-2XwF(e)]

l,6- x dE e(E) exp g},(e)E, «1.2xw

0
(18)
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FIG. 4. Variation of go as a f'unction of X.

In Eq. (18) the presence of the factor
exp[2Xwg}p(e)E/Vp] makes the value of the integral
only sensitive to the form of e(E}at E=0. There-
fore, we can let e(E) = —E for -~&E&0 without
incurring much error. The resulting integral
gives

me V0j(e)=, ' exp[-2}(wg(e}], e& 1. (19)
8gg ff 2xwgip c

A similar approximation for the factor
kT In{1+exp[- (E+ eeS pw)/AT�]) results in

J(E)=, ~, f dED(Zd'((((d),

0, E&0

e(E)= -E, -eeg, w & E& 0

e C80w, E& —e gg0w.

(16a)

(16b)

For V &0 (&& 1), Eq. (16) can be written as

((c)=(( d, f ddddd[ (M, d(]e(N-

0

+ dEe(E) .
~m

(20)

By expanding F(E, e) in a power series about V
we obtain

For V & 0 (&&1), it is observed that the barrier
transmission probability decreases rapidly below
E= 0. Therefore, most of the tunneling occurs in
the vicinity of E= 0, and we can approximate
F(E, z) by the first two terms of the power series
expansion about E= 0:

2XSOF(E, e) = 2Xwg(E) — gl (c)Ep,
V 0

((d(= J( (( —
(

—dg, )
Sg du

g}P(~)=
2 1/ dg

1 —
( }

—elpgg

(17a)

(17b)

(17c)

Here gg» u4(& gg, }denotes the two zeros of V(u, a),
and g}p(e} is obtained from SF(E, e)ISE ~s p by noting

I

F(E, e) =- — ""
q, (~)(E —V.),

0

where

( )
Vp sF(E, e)

2Xw

(21a)

ggd'(1-ggg')(1 —2M'} '/'

g )g/g 1 3 y(i g) ' (21b}
0

and u~, denoting the location of V, satisfies the
equation

(22)
s V(M, q) 1 —2gg* qgp

sgg „~ (u~)'(I —u~) g

Since the relation
~

V
~

& e&bpw always holds for
V &0 [see Eq. (24) below], we can effectively re-
place e(E) in Eq. (20) by its value in the interval
-e&$0w & E& 0. That is,

~m

j(e)=8 ~, + dEexp g},(e)(E —V ) (-E)
0

~4

me V2 Vo
' 2'

gffg 2
+

2 ( )
1 — 'gg(e) V, e& 1. (23)

From numerical calculations it is found that the variation of V (for V &0} as a function of e can be ap-
proximated as

V -=2.aXVpgp(1 —e).
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Substituting Eq. (24} into Eq. (23}and combining the results of j(«) for «& 1 and «& 1, we get

j,(«) exp[-2Xzvf, («)], «~1
j(«)= . (,) (25a)

j.(«)= ~'),

j,(«)= joo +9.68(XXwS,)'(1 —«)'-4.4(XXs)$,), «& 1,
gx )7x

mme V0
00 4X2 2h

(25b)

(25c)

(25d)

Here h= 2vk, and the value of j(«} is noted to be continuous at «= 1, since from the definitions of )7, and
)7, the relation r),(l) =)7,(l) holds. From j(«) we can also obtain an expression for Z(«):

z(«}=—1 dj(«)
S0 d~

Z,(«) exp[-2Xn)g(«)],

z,(«), (26a)

where

1 1 dq, ( «) df, («}
Zo(«}= —Zoo

q ) ( ) d
+Xu) d, «- 1,

( )
2XXzolSO lfgg(«) X 0 gg( ) 9 68(X g )2 ((1 ) & 1Zpo ( } s( )

+
2( } XXCO Q

(26b)

(26c)

z„=2j„/h, . (26d)

Explicit numerical evaluations of Z,(«) and Z, («)
in Appendix C show them to be slowly varying
functions of «. Therefore, Eq. (26a) states the in-
tuitive result that the differential conductivity of
the junction increases as an exponential function
of the field for z & 1 but only varies slowly when
«& 1. Since Z,(1)w Z,(1) (see Appendix C}, Z(«)
has a sudden change of value at z= 1. This discon-
tinuity is an artifact of using the form of D(E, «}
given by Eq. (13), which approximates the varia-
tion of D(E, «) at E= V„by an abrupt slope change.

B. Fluctuation-induced tunneling conductivity

The calculation of the junction conductivity o in-
volves thermal averaging Z(«} as expressed by Eq.
(6}:

4T I/2 I
I

0'= df Z (c ) exp —~ c —~ ('(E ))a 0 0

40 TI 2+ d«rz, («r}exp ——'
«r . (27a}

I

The new parameters T, and T, are defined as

T,= T,/2Xw((0}, (27c)

«r= br/S„and the function S)(«) is given by

y(«) = 4(«)/4(0). (27d)

o=o, exp ——(«) -T q(«),T1 g 2 TI

0

y(«) has the property that p(0) = 1 and p(1) = 0.
The functions T,y(«r)/T, -and T, «2r/T are-
plotted in Fig. 5. It is seen that at small values
of g~, the turneling probability increases faster
with increasing field than the fluctuation proba-
bility decreases. However, at larger values of
z~ the reverse becomes the case. As a result,
the sum of the two factors, denoted by the dashed
line, goes through a maximum at some value &~

Since the existence of a maximum in the ex-
ponent implies that the integrand of the first inte-
gral in Eq. (27a) is sharply peaked, it is expected
that the temperature dependence of g would be
dominated by the variation of &*. In anticipation
of this fact, we write

T, = a8,'/it, (27b) where o0 is defined as
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= 8„/8o is comparable to or larger than &», it is
expected that the junction conductivity would devi-
ate drastically from that given by Eq. (29) due to
the additional tunneling induced by gA. In such a
high-field regime the behavior of the heeling
current density j„is obtained by substituting Eq.
(25) into Eq. (7),

T / ( )

H df TJO E'A+ fT

Tl 2 Tl 1
xexp ——e'- —y(e + er)T T T A T

Tl 2+ dgrj, (e~+ cr) exP —
T er

&(6A)

A T1
+ der j(e —ar) exP ——erT A T T T

(30a)

y(g) —= (1 —e)/(I+ ay+ Pe') . (32a)

The coefficients e and P are determined by the
requirement that the derivatives of p and its ra-
tional approximation agree at &= 0 and &= 1. Since
these derivatives are functions of X, it is found
tha, t to good accuracy,

a=4.283V x10 4 ——4

+4.8728 x10 ' —-4 (32b)

tion of cr and j~, the numerical integration required
for its evaluation [see Eqs. (1Vb} and (27d)] poses
a rather serious inconvenience. In order to over-
come this problem, we show in Appendix D that,
to good accuracy, p(z} can be approximated by a
rational function

Here the integration limit r(e„) is defined as

1 —fA y fA 1
y

(30b)

P= coth
'

~
-(1+ a}.2.6X 't

1-4X&

C. Parabolic-barrier approximation

(32c)

Of the three integrals in Eq. (30a), the integrand
of the first integral is sharply peaked. Similar
to the case shown in Fig. 5, the exponent -(T,er'/T)
—T,y(e„+ er)/To also has a maximum at some
value of &T, denoted by d. By again repeating the
arguments leading to the expression for o, Eq.
(28), we get

»exp ——(e ) ——y(z„+ e')~ ~ .0 Tl 2 Tl

0
(Sla)

where'~ is taken to be a constant and 4' is the
location of the maximum value of -T,e'/T
—T,p( „we+}/To in the interval 0 & e ~ r(e„). For
definitiveness, we will set j~ equal to the value of
j„at e„=1 when T-0. From Eq. (30a} this is
easily evaluated as

i» = choo/Ro(I) ~ (31b)

The accuracy of the approximation expressed by

Eqs. (Sla) and (Slb) is examined in Appendix C.
Through comparison ef j~ values evaluated from
both Eq. (30) (by direct numerical integration) and

Eq. (31), it is shown that at low temperatures Eq.
(31) is (to within a multiplicative constant) de-
scriptive of the actual j~ field dependence for gA

&0.5. However, at high temperatures or gA& 0.75
the approximation becomes less exact. There-
fore, Eq. (31) should only be regarded as a low-
temperature approximation for jH. Its use in fitting
the data is expected to yield slightly distorted val-
ues for the parameters A Tl and TO At high
temperatures the full Eq. (30) has to be used.

Before leaving this section, it is observed that
since the function p(e) is central to the calcula-

The parabolic barrier, defined as

V»(u, e) = Vo[u(1-u) —egou), (33)

has sometimes been used as an approximation to
the image-forced corrected rectangular bar-
rier.""Such approximation is particularly ac-
curate for ) =—0.07 and results in simple, closed
expressions for p and j~ as seen below.

In Eqs. (28} and (Sla) the effect of barrier shape
is noted to enter the picture only through the func-
tion q&(e). For the parabolic barrier, y(e) = $(e}/
((0) is given by

f', ' [u(1-u) —cu]'~'du
q(e) = ', = (1 —e)', (34)

f', [u(1-u)]'~'du

where we have used the fact that 80= 1 and the
roots of the integrand in the numerator occur at
0 and (1 z). This explicit form of y(z) directly
yields

e» = T/(T+ T,), (35a)

(35b)e' = (1 —e„)T/(T + T,) .
Substituting Eqs. (34) and (35} into Eqs. (28) and

(Sla} gives

Tlg= gOexp- T+ To
»'

j„=j» exp — (1 —e„}T1 2

T+ TO

(36a)

(36b)

The behavior of p (= I/o) expressed by Eq. (36a)
is plotted in Fig. 6 with T, =50 K and T,=5 K.

The physical meaning of T, and the effect of
voltage fluctuations on the tunnel barrier are made
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more transparent by the closed form of Eg. (36).
Since T, always appears as an additive constant to
T, it can be viewed as the temperature above
which the fluctuation effects become significant.
At T «T, (or T,-~), Egs. (36a) and (36b) are es-
sentially temperature independent and reduce to o
= o, exp(-vxzo/4), j» =—j» exp[-wxs)(1 —z„)'/4 j, ex-
actly the expressions expected for simple tunnel-
ing. Therefore, it can be said that simple elastic
tunneling is just a special case pf fluctuation-in-
duced tunneling. When the temperature is in-
creased from T «Tp to T = Tp, the absolute mag-
nitude of the exponents in the v and j~ expressions
are seen to decrease from their T= 0 limiting val-
ues, implying that the tunnel barrier seen by the
electrons is effectively reduced in height by the
fluctuating voltages. Furthermore, the form of
the exponents suggests that the most rapid change
in the effective barrier height occurs when T is on
the same order as T,. As will be seen in Sec. V,
these theoretical predictions are verified with re-
markable accuracy by experimental results.

IV. RANDOM NETWORK OF TUNNEL JUNCTIONS

A disordered material necessarily contains a
large number of tunnel junctions with diverse
junction. parameter values. As a result, the ef-
fects of voltage fluctuations are expected to vary
from one junction to another. For example, there
could be junctions with very small values of sy

which imply, on the one hand, the quenching of
voltage fluctuations by the associated large capaci-
tances and, on the other hand, a greatly enhanced
probability for simple elastic tunneling. How-
ever, no matter what the values of the junction
parameters might be, the discussion of the last
section shows that the behavior of each junction
is expressible in terms of the single junction
characteristics with appropriate values of T, and

T, (simple elastic tunneling being just a special
case of fluctuation-induced tunneling). Therefore,
as far as conductivity is concerned, the disordered
material in question may be regarded as random
resistor network in which the resistors are identi-
fied as the tunnel junctions with distributions in
the values of T, and T„and the nodes are identi-
fied as the conducting pathways connecting the dif-
ferent junctions.

The conductivity of a random resistor network
can be calculated by the self-consistent effective-
medium theory as developed by Kirkpatrick" and
Bernasconi. ~ In this method the average effect of
random conductances a, is treated by replacing all
conductances by a single value g which is then re-
lated to the network conductivity by a proportion-
ality factor. o is determined by the equation

I D( ) (37)
o+(—'z —1}a zo

Here o = g/c„o = o /cr„ap is treated as a multi-
plicative constant, D(o) is the distribution function
of the conductances, z is the average number of
resistors emanating from a node, and the integral
is over all possible values of the conductances.
Since, at fixed T, the variation in o is directly
linked to distributions in the values of T, and T„
we can write

D(o)do= dT~D(T, )D(TO(a, T,)) ' da,To

1 0

0 o o+ (2z —1)a zo

For the purpose of explicit calculation in this pa-
per, the functions D(T,) and D(T,) are taken to be
log-normal distributions"

(39)

1 1 (lny)' 1
2v 1np 2(lnp)' y

' (40)

where y= T,/Tp or T,/T, , 1, and T,"are, respec-
tively, the median values of the distributions
D(T,) and D(T,), and p is the parameter which
controls the width of the distribution. As shown
in Fig. 7, D(y) is a peaked function of y which van-
ishes aty=0 and y=~. When p, -1, the function
D(y) becomes the delta function, and in that case

OAO-

030-

0(y)
020-

ajO—

00 0.5 l.0 I.5

FIG. 7. The log-normal distribution calculated from
Eq. (40).

(38}

where D(T,), D(T,) are the distributions of T, and

Tp and w e have regarded T, as a dependent vari-
able determined by a and T, From. Eq. (38} it is
easy to see that a, change of variable from o to To
makes

r )-.)))II a);~r-. )))r, ))))).),
0 0

which means Eg. (37) can be rewritten as
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it is easily verified that E(I. (39) yields

o =v(T, , r;},
that is, the conductivity of the network is given by

the single junction behavior. When }I&1, E(I. (39)
has to be solved numerically. Bu substituting Eq.
(28) into E(I. (39), we get an integral relation in

which T Pj To p and z are the inputs and o

is the unknown. In Sec. V the solution of E(I. (39)
will be directly compared with the experimental
results.

In the high-field regime, we can define a high-
field conductivity, o„=js/h„, for each junction.
By replacing (r with o„ in E(I. (39), the network
conductance at any applied (macroscopic average)
field (assumed to be related to b„by a constant
factor M as discussed before) can be obtained in

exactly the same fashion as for the low-field case.
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V. APPLICATION TO DISORDERED SYSTEMS

A. Carbon-polyvinylchloride {C-PVC) composites

C-PVC is a conductor-insulator composite'"
consisting of carbon particles embedded in the in-
sulating PVC matrix. Three types of carbon were
used~: (1) KetjenblaclP is a pigment composed of
hollow spheres approximately 350 P in diameter
with 10-15 g-thick walls; (2) Columbia carbon
SA40-220 is similar to Ketjenblack but has a
sphere diameter of 140 A; (3) Mogul-Lcarbon is
a pigment containing carbon in the form of solid
spheres with a diameter of about 200 g Electron
micrograph studies show the carbons to possess
a high degree of connectivity, "that is, a carbon
network is usually observed which is composed of
touching or nearly touching micron-sized aggre-
gates of graphitic spheres. Of the three types of
carbon mentioned above, Mogul-L showed some
difference from the other two in exhibiting less
of the tendency to form clumps and chains. As a
result, samples with Mogul-L carbon generally
show much higher resistivity than those with Ket-
jenblack or SA40-220.

Electrical conductivity of C-PVC composites
results from percolation of electrons in the car-
bon networks. When the concentration of the car-
bon is large, the material exhibits graphitic con-
ductivity, "indicating that the conduction network
is continuous. As the concentration is decreased,
conduction is dominated by electron tunneling
across small barriers separating the conducting
pathways. In Fig. 8 the temperature dependence
of resistivity is shown for four samples. The
solid lines are the theoretical fits to the data using
E(ls. (28} and (39) with }I=0.07, s=6, and p=1,
i.e. , single-junction behavior. The values of T,
and T, are labeled beside each curve. The dashed

FIG. 8. Temperature dependence of the resistivity in
carbon-PVC composites. Solid circles, Mogul-L, 45-
wt. %; pluses, SA40-220, 15-wt. %; triangles, SA40-220,
20-wt. %; open circles, Ketjenblack, 16-wt. %. Solid
curves are calculated from Eqs. {28) and {39)with @=1
and values of T& and Tp given in the figure. Dashed lines
are calculated from the same equations with p, = 1.6 and
values of T&~ and T~~ labeled beside each curve.

lines are the theoretical fits using the same equa-
tions but now with p = 1.6, i.e. , a distribution of
junction parameters. The values of p in this case
are obtained numerically from E(I. (39) by using
the Gaussian integration routines to evaluate the
double integral and the Newton-Ralphson's method
to locate the value of o (~1/p) for each T. The
median values of the distributions used in the cal-
culation, T, and T, . are also given in the figure.
It is seen that equally good agreements between
the theory and the experimental data can be
achieved by using either the single-junction char-
acteristic (p= 1) or a distribution of junction pa-
rameters (p& 1). However, the median values of
Ty and Tp obtained from the fits are dependent on
the width of the junction parameter distributions.
Since at present there are no data on the T, and

T, distributions, in the following the experimental
results will be directly compared with the single-
junction characteristics for simplicity. Of course,
the values of T, and T, which result from such
fitting of the experimental data should be inter-
preted as indicative of the median values for T,
and T, rather than as the parameters for a single
junction.

It should be remarked here that the same data
shown in Fig. 8 have been treated in Ref. 3 using
the parabolic barrier approximation. Due to the
fact that the parabolic barrier very well approxi-
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mates those potential shapes with A, =—O.OV, al-
most identical curves, with similar values for Ty

and T„were obtained. In the same reference it
has also been shown that the field and the temper-
ature dependences of j~ are in good agreement
with the theoretical predictions. Furthermore,
the values of T, and T, derived from the high-field
behaviors are consistent with those generated by
fitting the low-field p(T) data, indicating that the
characteristics of p(T} and j„indeed originate
from a common mechanism. It may be asked
whether some other effects, such as Frenkel-
Poole or Fowler-Nordheim tunneling, can gen-
erate the same observed characteristics. To an-
swer this question, we note that the high- and the
low-field behaviors of the C-PVC conductivity are
easily distinguished from the lnp- h'~'/T depen-
dence of the Frenkel-Poole effect and the lnj„- 1/
8 dependence for the Fowler-Nordheim tunneling.

Hopping mechanisms"' can also be excluded, be-
cause no law of the form exp(b/T') (for a single
value of n} describes the resistivity of all the car-
bon samples. Hopping conduction in granular met-
als further differs from the fluctuation-induced
tunneling in that the two conduction processes yield
different field dependences for jH.

8. Disordered semiconductors

It is generally agreed that the nature of elec-
tronic states in the energy band tails plays a dom-
inant role in the electrical properties of disor-
dered semiconductors. In this section we focus
our attention on a particular class of disordered
semiconductor, heavily doped, closely compen-
sated, crystalline semiconductor, in which the en-
ergy band tails are the result of random potential
fluctuations associated with heavy doping. To de-
scribe the conduction process in these materials,
it is helpful to picture the random potential fluc-
tuations as the surface contour of a rugged lake
bed. ' In this analog the Fermi level corresponds
directly to the water level of the lake. Depending
on the position of the Fermi (water) level, which
can be controlled by adjusting the level of com-
pensation, three conduction regimes are distin-
guished. When the Fermi (water} level is low (in
the energy band tail), electrons occupy isolated,
localized regions (analogous to water puddles in
an almost dry lake bed), and the conduction is by
hopping from one localized site to another. As the
Fermi (water) level is raised in energy, localized
regions merge together to form continuous con-
ducting pathways which are broken by only a few
potential barriers. Electrical conduction in this
case is expected to be dominated by fluctuation-
induced tunneling. When the Fermi (water) level

is raised further, the continuous conducting paths
eventually span the whole material, and metallic
conduction ensues.

For the case of heavily doped, closely compen-
sated GaAs, various data show the conduction to
be among localized states. ' However, the ob-
served strong field dependence of the conductivity
suggests that the localized regions are large in
size so that the field is magnified by confining all
the applied potential to the small regions separat-
ing the conducting pathways. Therefore, out of
the three conduction mechanisms described above,
fluctuation-induced tunneling seems to be the
most appropriate for the present material. "

Figure 9 shows p vs 1/T for a sample' of disor-
dered GaAs. As pointed out by Redfield, "the
data do not follow the lnp-1/T' dependence of
the variable range hopping. However, by using
Eq. (28) with X=0.02, T, = 280 K, T,= 16.5 K, good
agreement is obtained. From the values of X, Ty,
and T„one can calculate the median values of the
tunnel junction parameters. By taking t/', =—0.05
eV estimated from density-of-states considera-
tions' and using the free electron mass in the cal-
culation of X, we getup—-VO pandA=—1VOO A'.

The high-field behavior of jH for the same sam-
ple is shown in Fig. 10. The solid lines are cal-
culated using Eq. (30a) with the values of X, T„
and T, obtained from the temperature dependence
of resistivity. We have also assumed that &= 1
(i.e. , 8 = Sf occurs at 8 = 250 V/cm and that j«
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FIG. 9. Hesistivity of heavily doped, closely com-
pensated GaAs as a function of 1/T. The solid line is
calculated from Eq. (28) with the parameter values given
in the figure.
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FIG. 10. The field dependence of the current density
for the same sample of GaAs whose resistivity data are
shown in Fig. 9. The solid lines are calculated from Eq.
(30a) with the same parameter values as those given in
Fig. 9. The curve for T= 3 K, which lies between those
for 2.25 and 4.2 K, is not plotted in order to avoid clut-
teriag.

= 0.14 A/cm'. The relatively small field strength
at which the non-ohmic behavior appears is an in-
dication of the long length of the conducting path-
ways as stated earlier. It is seen that the experi-
mental values of the current density at different
temperatures tend to merge together at high fields
as predicted by the theory, and the general agree-
ment between theory and experiment is excellent,
especially in view of the fact that the parameters
X, T„and T, are all fixed by the low-field tem-
perature dependence of the resistivity.

C. Doped polyacetylene

Polyacetylene, (CH}„ is an organic semiconduc-
tor which exists in the form of linear polymeric
chains. When doped with controlled amounts of
halogens, such as chlorine, bromine, iodine, or
with AsF„ films of this semiconducting polymer
show large increase in the electrical conductivity.
At the dopant concentration of -1 at.$, a semi-
conductor-metal transition occurs. "' Far-inf ra-
red measurements and thermoelectric power stud-
ies reveal that above this critical dopant concen-
tration the (CH), exhibits metallic behaviors such
as free carrier absorption and positive, linear
Seebeck coefficient as a function of temperature.
However, the resistivity of the doped (CH), in the
metallic regime has been observed to decrease as
T increases, which is distinctly a nonmetallic

FIG. 11. Normalized resistivity of doped polyacety-
lene in the metallic regime plotted as a function of 1/T.
p(RT} denotes the value of resistivity at room tempera-
ture. The solid line is calculated from Eq. (28) with the
parameter values given in the figure.

characteristic. In order to understand this ap-
parent contradiction, it is essential to take into
consideration that the (CH), films consist of tan-
gled, randomly oriented fibrils. Therefore,
whereas the fibrils themselves are metallic, the
electrical conductivity may be dominated by elec-
tron tunneling between the conducting segments.
It follows that the theory of fluctuation-induced
tunneling should be descriptive of the tempera-
tureMependence of resistivity in doped (CH)»

In Fig. 11 the normalized resistivity data of
Chiang et sL' for (CHI, »), are plotted as a func-
tion of j/T. The solid line is the theoretical fit
using Eg. (28} with" X=0.05, T, =150 K, and T,
= 13.6 K. The good agreement between the theory
and the experimental results demonstrates that
the nonmetallic behavior of the resistivity can in-
deed be reconciled with the intrinsic metallic na-
ture of the doped (CH), polymer chains. More-
over, since the intrinsic metallic resistivity of
the (CH)„should increase as a function of temper-
ature, the present model predicts a resistivity
minimum near the temperature where the tunnel-
ing resistance equals the intrinsic metallic resis-
tance (treating the two as in series). It is sug-
gested that this could be the explanation for the
(CH), resistivity minimum observed by Seeger et
al.

SUMMARY

By considering the effects induced by thermally
activated voltage fluctuations as an integral part
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of the tunneling process, it is shown in this paper
that the fluctuation-induced tunneling conductivity
is thermally activated at high temperatures but
becomes identical to simple (temperature-inde-
pendent) elastic tunneling at low temperatures.
Between the two limiting behaviors the tempera-
ture dependence of the conductivity is controlled
by the shape of the tunneling barrier. The tunnel-
ing current is also found to be a nonlinear in-
creasing function of the electric field. However,
the degree of nonlinearity decreases as the tem-
perature increases, which indicates that the tunnel
barrier is effectively lowered and narrowed by the
fluctuating voltages. The generalization of the
theory from the consideration of a single tunnel
junction to a random network of tunnel junctions
is achieved through the application of ihe effec-
tive-medium theory. For peaked distributions of
the junction parameters Tg and Tp it is demon-
strated that the resulting network conductivity can
be well represented by single-junction character-
istics. The theory is applied to three distinct dis-
ordered systems where the conductivity is be-
lieved to be dominated by electron tunneling across
small gape separating long (large) conducting
pathways (regions). In each case excellent agree-
ment is obtained with the experimental results.
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FIG. 12. The function h{~), which describes the vari-
ation of the normalized barrier height, plotted for three
different values of X.

0'th t dE Q g P
0

(AS}

(A4a)

where

where P(e)=(4T, /vT}'~'exp(-T, e'/T) is the prob-
ability of occurrence of & by voltage fluctuations.
By writing kT„= V,(1 —4h), Eq. (AS) becomes

4T, ' " TH & +T&z'
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APPENDIX A

In this appendix we investigate the effect of volt-
age fluctuations on the parallel conduction mechan-
ism of thermal activation over the potential bar-
rier. For the image-force corrected barrier, V
= V, [I-k/M(1-I) —S,es], the maximum height of
the barrier V is a function of the electric field,

h(e}, (&1
H(g) =

0,
(A4b)

T„H(t~)+ Tge~
+th. act. (A5)

The slope of h(&) is a monotonically increasing
function of &. Therefore, if 2T, ~ ~Tp'(1) ~, the
maximum value of -[T+(e)+ T, e'] would always
occur at q = 1, which implies

The integrand of Eq. (A4a) is sharply peaked a,t
g= z, where q denotes the location of the maxi-
mum value for -[TQ(&}+T,e']. As a result the
dominant temperature dependence of crth t can
be obtained by expanding the exponent around its
maximum and performing the integration

V (e}=V,(1 —4h)h(z), (A1) g« „,~exp(-T, /T). (A6)

exp(-V /kT) if &&1
Q=

if q&1,
(A2)

the conductivity by thermal activation can be ex-
pressed as

where the function h(e) is shown in Fig. 12 for sev-
eral values of X. Since for a given value of q the
probability Q of thermal activation over the bar-
rier is given by

Since for the materials considered in this paper
we have

~

TP'(1}
~

& 2T„ it is expected that con-
duction by thermal activation should have the same
temperature dependence, exp(-T„/T), as fluctua-
tion-induced tunneling at high temperatures but
becomes negligible at low temperatures as stated
in Sec. III.

In order to get some idea about the temperature
and the field dependences of a«, for arbitrary
values of T, and T„, it would be convenient to use
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the parabolic barrier approximation [see Eq. (33)).
In that case V is given by

E/'~m

p 0.2 04 O.B P )p

V (q) = (V,/4)(l —e)'. (A'I } 0.2

Defining kT„= V,/4, we can rewrite Eq. (44a) as

~th. act.

4T, '~' " T„[l—(g+ g„}]' +T, g'
d& exp—

0

(A8}

F(F)
~ &.4

X

&.6

-0.8

where the applied field q„ is included as a part in

the total field. By expanding the exponent and per-
forming the integral, we get

, ~ exp —— " ' (1- e„)' . (A9)
1 T,T,

APPENDIX B

This appendix examines the probability of ther-
mally activated tunneling for electrons with en-
ergy E (&V ) above the Fermi leveL By combining
the occupation probability of the electron, which
is essentially exp(-E/kT} for E& 0, and the bar-
rier transmission factor exp[-F(E}], where F(E)
is given by Eq. (12) with e= 0, we obtain the prob-
ability of thermally activated tunneling as

P(E) = mp[G(E)],

G(E) = E/k T —F(E) . -
(Bla)

(Blb)

Comparing this expression with Eq. (36b) shows
that there is a temperature T, = T,T„/T, above
which crt~ t dominates over fluctuation-induced
tunneling conductivity (treating the two conduction
mechanisms as parallel}. However, if T„»T„
then T, » T„T„T,/(T„+ T,) =—T„which means

0 th t is indistinguishable from the fluctuation-
induced tunneling conductivity above T,. There-
fore, in this case the consideration of fluctuation-
induced tunneling alone is sufficient to account for
the conduction characteristics of the junction at
all temperatures. For T„ST„ the activation en-
ergy of &r, h „, , kT„T,/(T„+ TP, is smaller than

both kT, and kT,. This is the regime where the

size of the junction is just small enough to effect
a significant reduction in barrier height by volt-
age fluctuations. When the junction is macro-
scopic in size, T, »T„, T„T,/(T, + T,}—= T„, and

0« t reduces to the usual form in the absence of
voltage fluctuations. We should also note that
since T,/T, =BXzu [see Eq. (27c)], 8 being some
numerical constant, T,=T„/R(cu in this case is
exactly the temperature above which the thermally
activated conduction [given by exp(-T„/T)] domi-
nates over simple tunneling [given by exp{-BXw)]
for a macroscopic junction.

- I.G

FIG. 13. The function —I'(E)/2xw plotted as a function
of E/V for five different values of X.

For the image-force corrected barrier, -F(E) is
plotted in Fig. 13 for several values of X. It is
noted that the slope of -F(E) is positive and is a
monotonically increasing function of E (this fact
is not changed when ce0). Therefore, if 1/kT is
smaller than -F'(0), then G'(E) & 0 for 0& E& V
and the maximum value of G(E) occurs at E= V,
implying that thermal activation over the barrier
is the dominant conduction process. When 1/kT
& F'(0), the function G(E) develops a minimum at
0& E& V„. However, the maximum value of G(E)
occurs either at E= 0 or E= V, which means
that, depending on the temperature, either tunnel-

ing at the Fermi level or thermal activation over
the barrier may be dominant, but in no tempera-
ture range does the thermally activated tunneling
ever become dominant. These considerations lead
directly to the conclusion that as long as tunneling
is the dominant mechanism, it is permissible to
treat the Fermi level as being sharp (by neglecting
the contributions of those electrons in the expo-
nential tail above E= 0), since the probability of
thermally activated tunneling decreases exponen-
tially away from E= 0.

APPENDIX C

The validity of treating g, as a constant and the
accuracy of the approximation expressed by Eq.
(31a) are investigated in this appendix.

To evaluate o, from Eq. (29), it is first neces-
sary to calculate the quantities Z,(c}and Z, (e)
from their definitions, Eqs. (26b) and (26c). This
can be done numerically by programming the ex-
pressions for $(e} [Eq. (1'lb)], q,(e} [Eq. (1Ic}],
and q, (e) [Eq. (2lb)] on computer. As an explicit
illustration, the case for X= 0.1, Xsp= 10 is calcu-
lated. In this case 6,=1.89659 (see Fig. 4),
Z,(e)/Z«decreases monotonically from 11.5 at
&=0 to 9.4 at &=1, and Z,(e)/Z«—= 10.76+45.64

(e —1). By using the calculated values of Z,(e),
Z, (a), and T, = 12.096 T, [g(0}=0.6408 for A, = 0.1),
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FIG. 14. The temperature dependence of o'p/Zpp for
A. =0.1.
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the integrals of Eq. (27a) can be numerically
evaluated as a function of T/T, . The results are
plotted in Fig. 14. It is seen that compared to the
exponential term, 0, is indeed a slowly varying
function of temperature as expected. Since simi-
lar results hold for other values of X as well, it
can be concluded that treating g, as a constant in
Eq. (28) is an excellent approximation.

The expressions for jz, Eq. (30a), can be nu-
merically calculated in the same fashion as above.
For X= 0.1, the comparison between Eq. (30a) and
its approximation, Eq. (31), is shown in Fig. 15.
At T/T, ~ 2, the j„field dependences of Eqs. (30a)
and (31}are similar for &„-0.5, indicating that
in this regime the field dependence is dominated
by the variation in P. However, when p„~ 0.5,
or T/T, & 2, the second integral in Eq. (30a) be-
comes important, and significant deviations from
the actual value of j~ are observed. Instead of
merging together at c„=1 and j~=g~ as approxi-
mated by Eq. (31), curves of j„(e)at different
temperatures tend to come together at some point
with g„=1.5 and j~ ~ j~. This comparison demon-
strates that while Eq. (31) catches the essential
qualitative features of j~, quantitatively the errors
resulting from the approximation could be non-
negligible. Therefore, it is expected that the use
of Eq. (31) to fit the j„data would yield slightly
distorted values for the parameters A. , T„and T,.

APPENDIX D

In this appendix we formulate an approximation
for the function p(z). Since the function y(&) is
def ined for 0 & e & 1 with y(0) = 1, y(1) = 0, a

——APPROX IMATION 8Y EQS. (3I )

IO
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I

0.5
&a

I

I.O I.5

FIG. 15. Comparison of E'q. (30a) with its approxima
tion, Eqs. (31).

rational approximation in the form

p( c}—= (1 —E)/(1+ at+ Pe ) (Dl)

is seen to satisfy the boundary requirements. To
determine a and P, we note that

q '(0) = -(1+a),
y'(1) =-(1+a+P} '.

(D2a)

(D2b)

Equations (D2) can be solved for a and P, yielding

a= -[y'(0)+ 1],
1

P= —,+y' 0

(D3a)

(D3b}

Values of y'(0) and y'(1) are numerically eval-
uated as a function of X. It is found that

a=4.2837 x10 4 —-4
i

+4.8728 x10 2 ——4
]

P=coth
1 i-(1+ a),2.6X 't

give excellent account of the variation of 0. and P
with respect to X. Therefore, by using the above
formulas for a and P in conjunction with Eq. (Bl),
the function p(&) can be evaluated accurately with-
out resorting to numerical integration.
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