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Abstract

Electrodeposited wurtzite ZnO thin films exhibit shifts in their optical absorption

edges with changes in thickness (0.2 – 2 µm), deposition potential (-0.80 V to -1.50

V), and aging time (days to months under ambient conditions). Increases in absorp-

tion edge energy are consistent with H+ incorporation as a shallow donor (Burstein-

Moss effect) due to deposition in the presence of electrochemically evolved hydro-

gen. Diffuse reflectance spectroscopic data and Raman spectroscopic data show both

potential- and thickness-dependent changes in defect levels and absorption edges,

which suggests that H+ can be trapped in secondary defects. Such defects also in-

crease the diffusion time for H+ and lead to the observed decay in absorption edge

energy with aging.
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1 Introduction

Tailored optical responses of semiconductor materials lie at the heart of multi-

billion dollar industries, including thin film transistor-based devices and pho-

tovoltaic cells [1]. As an economical alternative to ultrahigh vacuum-based

deposition methods, electrodeposition is showing promise for preparing thin

film materials and devices for photovoltaic applications [2,3]. A key to imple-

menting electrodeposition in these technologies is the ability to control the

defects and dopants that affect a material’s optical response.

Defect levels in materials are typically adjusted by balancing kinetic and ther-

modynamic growth. In electrodeposited materials, indirect evidence suggests

that defect concentrations can be influenced by control of temperature[4,5] as

well as applied deposition potential [6,7]. Doping can be controlled by using

ultrapure solutions and reagents, and purging the electrolyte with an inert

gas such as argon before and during deposition, thus limiting the types and

amounts of foreign ions present in the electrolyte during deposition [3,8].

While many dopants can be detected even in relatively small amounts, hydro-

gen incorporants are more elusive, but still very important to consider in ZnO

prepared by any method. In the vast majority of semiconducting materials,

hydrogen species are amphoteric inclusions and neither contribute to electron

conduction nor affect a material’s optical band gap [9]. However, both theo-

retical studies [10] and experiments on thin films prepared by other methods

[11,12] have shown that hydrogen incorporation into ZnO leads to n-type dop-

ing. These hydrogen donors occupy levels within the conduction band, thereby

increasing the magnitude of the band gap energy (Burstein-Moss effect) [13].
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Since hydrogen is present in many different methods of ZnO synthesis, includ-

ing vapour-phase transport, hydrothermal growth, and metal-organic chemical

vapour deposition, even samples which have not been intentionally doped will

be affected by hydrogen inclusions.

Electrodeposition is not immune to issues of hydrogen incorporation. The two

most common approaches to ZnO electrodeposition use reduction of ambient

oxygen or nitrate ions in the presence of Zn2+ to trigger an electroprecipitation

reaction [14]. Since water is not stable at the potentials at which appreciable

ZnO deposition occurs, hydrogen gas is evolved directly at the working elec-

trode (substrate) surface. Despite the relatively large amount of hydrogen

evolved during ZnO electrodeposition (30% – 70% of the total current) [15], it

would appear that unusually large amounts of hydrogen are not incorporated

in ZnO electrodeposits, since there are many reports of optical band gaps in

such films that agree well with bulk values [6,7,16,17].

A move toward tuning optical band gaps of electrodeposited ZnO thin films

has been initiated by several groups over the past decade. Differences have

been observed in the absorption edge of native electrodeposited ZnO (no in-

tentional dopants) with parameters such as deposit thickness, crystallite size,

deposition potential, electrolyte composition, and in situ or ex situ heat treat-

ments [4–7,17]. However, there has been surprisingly little attention paid to

understanding why these parameters influence the optical absorption edge.

One recent study attributes shifts in the absorption edge of electrodeposited

ZnO films prepared at different temperatures to quantum confinement effects

resulting from a large dispersion in crystallite sizes [5]. The data that we

present in this work suggest that factors other than quantum confinement are

responsible for absorption edge shifts in our electrodeposited films.
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The present study was designed to investigate factors that occur during the

normal course of ZnO electrodeposition which affect the optical absorption

edge. While confirming earlier reports of changes in optical band gap with

thickness [7], we also observe variations with deposition potential which do not

result from changes in lattice parameters, unlike earlier reports [6,7]. These

absorption edge changes are discussed in the context of deposition in the

presence of electrochemically evolved hydrogen, average crystallite sizes, and

hydrogen diffusion with sample aging.

2 Experimental Details

2.1 Synthesis

We synthesized ZnO using an aqueous electrodeposition method first reported

by Izaki and Omi [16] and whose mechanism was investigated more recently

[15,18]. ZnO formation requires basic pH conditions, and this is achieved dur-

ing electrodeposition by reduction of nitrate or oxygen at the working elec-

trode surface to form a highly localized source of OH−. In this study, a 0.01 M

Zn(NO3)2 electrolyte served as the source of nitrate and zinc ions. This con-

centration is one order of magnitude lower than that used in earlier studies of

relevance [5,7], in order to minimize the risk of forming secondary phases [14].

Electrolytes were thoroughly purged with argon before and during deposition

to reduce the possibility of parallel OH− production from oxygen reduction

[14]. All electrolytes were prepared from ACS reagent grade salts (EM Sci-

entific) and ultrapure water (Barnstead Nanopure, 18.2 MΩ·cm), with pH =

5.
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Potentiostatic depositions (–0.70 V to –1.50 V) were carried out in a conven-

tional three-electrode cell, with a gold wire counter electrode and an Ag/AgCl

reference electrode. All potentials are reported with respect to Ag/AgCl. De-

positions were carried out at 70◦C to reduce the thermodynamic favorability

of Zn(OH)2 formation [14]. Polycrystalline stainless steel working electrodes

were pretreated by sanding with 1500 grit sand paper followed by five min-

utes of sonication in ultrapure water. Potential control during the experiments

was maintained with a potentiostat (Hokuto Denko HA-501) and the charge

passed during depositions was recorded with a coulombmeter (Hokuto Denko

HF-201). Deposition currents and potentials were recorded and analyzed using

LabVIEW (National Instruments) virtual instruments of our own design and

modified from others [19]. Film thicknesses ranged from 0.2–2 µm, depending

on deposition time and potential.

2.2 Characterization

Phase identification of the electrodeposits was possible through a combination

of X-ray diffractometry (XRD), using a Rigaku RAC-C with Cu Kα radia-

tion, and Raman spectroscopy (LabRAM, Jobin Yvon Horiba, 532 nm). The

former method provided unit cell parameters, crystallite size, and film tex-

ture information, while the latter yielded vibrational information specific to

crystal structure and local chemical composition. Lattice constant refinements

from XRD data, including refinement of zero shift offsets, were facilitated by

the LATCON software package [20]. Average crystallite sizes were determined

from XRD peak broadening data [4], using peaks widths from a silicon stan-

dard to correct for instrumental broadening effects. Deposit morphologies and
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cross-sectional thicknesses were assessed with a scanning electron microscope

(SEM) from Hitachi (S570, 20 keV). Thickness measurements were also con-

firmed with atomic force microscopy (Asylum Research MFP-3D).

Due to the opaque stainless steel substrates, optical transmission measure-

ments were not feasible. Thus, UV-Vis diffuse reflectance spectroscopy, using

an OceanOptics DT 1000 CE spectrophotometer in a 45 degree collection ori-

entation, provided optical absorption edge data. From these data, the optical

band gap can be assessed in two ways. First, the absorption edge corresponds

approximately to the wavelength at which the reflectance increases above its

minimum value. Second, the band gap corresponds to the peak of the first

derivative of the reflectance versus wavelength plot. The former method ap-

plies rigorously only to transmission data, while the latter method applied

rigorously only to samples with grain sizes of 10 µm or larger [21]. While both

methods show consistent qualitative trends, these two approaches yield optical

transitions which differ by as much as 10 nm (0.1 eV). Earlier reports have

demonstrated that the derivative analysis yields band gap values which are

closer to the true values obtained from transmission measurements [7]. There-

fore, we use results from the derivative method for quantitative comparisons.

3 Results

XRD data show that electrodeposits prepared at a constant potential between

–0.80 V and –1.40 V are strongly textured, phase-pure wurtzite ZnO (Figure

1a). All observed Bragg reflections are consistent with wurtzite’s P63mc space

group, with the (002) reflection dominant in all deposits. Lattice constant re-

finements for electrodeposits of all thicknesses, prepared over the entire po-
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tential range, yield an hexagonal unit cell which compares favorably with the

accepted bulk unit cell parameters of a = 3.250 Å and c = 5.207 Å (JCPDS

36-1451) [22], as shown in Figure 1b. Within uncertainty estimates, the c/a

ratios show little change with deposition potential or film thickness (Figure

1c). Others have reported lattice constant changes of up to 0.02 Å with film

thickness [7], as well c/a ratios that increase with increasing deposit thickness

[7] or more negative deposition potentials [6]. These changes were attributed

to dopant incorporation or stress. Energy dispersive X-ray analyses on our

electrodeposits show no sign of impurities with masses heavier than sodium.

SEM images of crystallite morphologies in the electrodeposits are consistent

with the preferred orientation trends observed in the XRD data. Figure 2

shows hexagonal rod-like growth habits for deposits prepared at potentials

more positive than –1.20 V. This rod-like growth continues over time, with

rod height increasing first, followed by a period of slightly preferential radial

growth (Figure 2a-c). This trend is confirmed by comparing deposit thickness

with charge passed during deposition, as presented in Figure 3. The slope of the

thickness vs. charge trend is shallower for more positive deposition potentials,

while deposits prepared at potentials ≤ –1.10 V show a steeper slope.

An explanation for the potential-dependent transition in the thickness ver-

sus charge trend involves changes in crystallite growth morphologies. At more

negative potentials, the hexagonal rod growth is accompanied by “twin-rice”

(0001̄)-(0001̄) bicrystallite growth on top of a dense, textured underlayer (Fig-

ure 2d-f). The elongated bicrystallite growth mode, based on inversion bound-

aries, has been observed in ZnO prepared by other methods [23].

While thickness and morphological differences do not appear to influence the
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average lattice parameters of the ZnO electrodeposits, both of these factors

affect their optical absorption edges. At a given deposition potential, the en-

ergy of the absorption edge decreases with increasing film thickness, as shown

in Figure 4 and Figure 5, consistent with earlier reports in thicker (1–30 µm)

electrodeposited films [7]. The shape of the transitions are very similar among

deposits prepared at the same potential, even for different thicknesses. How-

ever, there is a tendency towards broader peak widths for samples prepared

at more negative potentials. This suggests that similar types of defects are

likely present in samples prepared at the same potential, regardless of thick-

ness. Wider transitions are generally indicative of more dispersion in crystallite

sizes and/or defect levels [24].

The maximum diffuse reflectance intensity depends largely on deposit rough-

ness, rather than deposit thickness. This is directly related to the differences

in growth morphologies for deposits prepared at different potentials. For films

with the columnar morphology (Eapplied ≥ –1.10 V), roughness tends to de-

crease with deposition time as radial growth fills in voids in the film, leading

to more specular reflection and less diffuse reflection (Figure 4a). For films

comprised of the dense underlayer and biaxial crystallites (Eapplied < –1.10

V), the films grow rougher with time, leading to less specular reflection and

more diffuse reflection (Figure 4b).

Figure 5 shows that both thickness and deposition potential affect the optical

absorption edge of ZnO electrodeposits. The typical bulk value is 3.33 eV, as

indicated by the dotted line [1]. While it is clear that the energy of the optical

absorption edge decreases with increasing film thickness, its dependence on

deposition potential is more complicated. For example, films with thicknesses

in the range of 0.5 to 1.0 µm exhibit an absorption edge energy that increases
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as the deposition potential is changed from –0.90 to –1.10 V. However, for

deposition potentials more negative than –1.10 V, the absorption edge energy

is significant lower. Thicker films (1.5-2.5 µm) do not show a clear trend in

absorption energy with deposition potential, according to the data in Figure

5 and those from other films we have prepared (not shown). As a result, we

focused subsequent comparisons among films of comparable thickness, in the

range of 0.5 – 1.0 µm, in order to better understand the role of deposition po-

tential on optical absorption edge. Our investigations are described in detail

in the Discussion section below. The importance of thickness and deposition

potential in tuning the optical responses of thin film ZnO has also been rec-

ognized by others [7,25].

We also observe that optical absorption edges of our ZnO electrodeposits tend

to move to lower energy upon aging. The absorption edge decreases by ∼0.05

eV within the first 48 hours, and can shift by ∼0.1 eV over a span of weeks,

as shown in Figure 6. The decay time of the absorption edge energy does not

vary significantly with deposit thickness or deposition potential. Changes in

electronic and spectroscopic properties with sample aging on the scale of days

to weeks have been observed in ZnO prepared by other methods [26–28], but

have not been reported for electrodeposited ZnO films.

4 Discussion

Changes in the absorption edge of thin film materials have been attributed

to a range of factors, including quantum confinement [5,29], stress/strain [7],

doping [1], and defects [30].
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Electronic quantum confinement effects appear in crystallites whose sizes ap-

proach the exciton radius (∼2 nm for ZnO) [1]. Optical confinement effects

have been observed recently in quantum dots which are an order of magnitude

larger [29]. In our ZnO electrodeposits, the absorption edge energies display

no obvious dependence on average crystallite size. Data in Table 1 show that

there is very little variation in average crystallite size with thickness or de-

position potential, despite the spread in band gap energies. Marotti et al.

[5] reported that electrodeposited ZnO band gap energies vary inversely with

average crystal size, and that crystal size dispersion is also important. They

report that 90% crystal size dispersion induces ∼ 0.005 eV band gap energy

increase in ZnO crystallites with averages sizes of 45 – 50 nm. However, the

band gap energy differences we observe in our films show much larger changes

(0.25 eV) for a similar range of average crystallite sizes. This suggests that

the crystal size dispersion effect does not affect the band gap energy as much

as the film thickness and the applied potential do. Therefore, quantum con-

finement effects are not the dominant reason for the absorption edge changes

in our electrodeposited ZnO films.

Stress and strain effects are unlikely to be large contributors either, as the

lattice constant refinements show no appreciable change with different deposi-

tion potentials or sample thicknesses, in contrast to what others have observed

[6,7]. Similarly, Raman spectroscopic data (discussed below) do not show peak

shifts, a signature of stress or strain [31,32]. We conclude that the absorption

edge changes in our electrodeposits result from electronic effects – rather than

stress/strain effects – of doping and/or defects.

Unintentional native defects such as Zn and O vacancies or interstitials are

most certainly present in our electrodeposits. However, recent theoretical stud-
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ies of native point defects in ZnO have shown that those which are shallow

donors (Zn interstitials or antisites) have high formation energies and are thus

unlikely to contribute to the band gap shifts that we observe [33]. Other types

of more probable native defects, including O vacancies, Zn vacancies, and

O interstitials, are deep donors or acceptors and would not shift the optical

absorption edge on their own accord.

Our data suggest that dopants are likely the principle contributors to the band

gap variations we observe. More specifically, hydrogen is a plausible dopant

in our films based on the mechanism behind our electrodeposition method.

ZnO formation in our experiments relies on nitrate reduction, as proposed

and investigated by others [15,16].

NO3
− + H2O + 2e− → NO2

− + 2OH− E0 = −0.20 V vs. Ag/AgCl

Zinc ions and hydroxyl ions combine to form ZnO

Zn2+ + 2OH− → ZnO + H2O

to make the overall cathodic reaction

Zn2+ + NO3
− + 2e− → ZnO + NO2

− E0 = +0.29 V vs. Ag/AgCl

Previous studies have shown that ZnO growth via this mechanism is limited by

kinetics, not mass transport, with the rate of ZnO formation increasing with

more negative applied potentials [15]. Thus, even though the Nernst reversible

potential for this reaction is +0.289 V, a large overpotential is required before

appreciable ZnO electrodeposition occurs. We find very little deposit (0.1 µm

thick or less) after 2 hours of deposition at potentials more positive than –0.80
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V, consistent with earlier reports [15]. Therefore, we focused our studies on

ZnO films prepared at potentials more negative than –0.80 V.

Since our window of interest is in a region of potential where water is not

stable, hydrogen is also evolved during ZnO deposition.

2H2O + 2e− → H2 + 2OH− E0 = −0.63 V vs. Ag/AgCl

The hydrogen evolution rate depends on pH and increases exponentially with

a linear increase in applied overpotential. In our experiments, pH was held

constant, so more negative deposition potentials led to more evolved hydrogen.

To quantify the relative importances of nitrate reduction, ZnO formation, and

hydrogen evolution over our range of deposition potentials, we compared the

charge produced in our working electrolyte with two reference electrolytes: a

nitrate-containing electrolyte with no Zn (0.02 M KNO3), and an electrolyte

with neither Zn nor nitrate (0.02 M KCl). The concentrations of the reference

electrolytes were chosen to match the anion concentration in the working elec-

trolyte (0.02 M). Figure 7 shows the total amount of charge passed, during 10

minutes, in the three different electrolytes. In all electrolytes, the total amount

of charge passed increases with more negative applied potentials. At more pos-

itive potentials (≥ –0.80 V), the charge passed in the two Zn-free electrolytes

are similar and lower than in the Zn-containing electrolyte. This is consistent

with the interpretations of Yoshida et al. who have indicated that zinc serves

as a catalyst for nitrate reduction [15]. However, at more negative potentials,

the two nitrate-containing electrolytes have similar current densities, both of

which are higher than that for the chloride electrolyte. At potentials more

negative than –1.30 V, hydrogen evolution is so vigorous that bubbles block
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portions of the working electrode surface, making charge counting experiments

unreliable.

If we make the simplistic assumption that the charge passed in the chloride

electrolyte is due entirely to hydrogen evolution, and that the charge passed in

the Zn(NO3)2 electrolyte is the sum of a potential-dependent hydrogen evolu-

tion current and nitrate reduction current, then the overall current efficiency

for the ZnO formation is quite low (∼30%) relative to that reported earlier

for ZnO production at a stationary electrode (∼70%) [15]. In terms of the

absolute quantity of hydrogen evolved, if all evolved hydrogen were included

into the ZnO electrodeposits, the stoichiometry would be 1:1 ZnO:H. However,

we can safely assume that only a small portion of this hydrogen is actually

incorporated, based on other studies that have related band gap shifts to car-

rier densities (∼1019cm−3) in ZnO [34,35]. Thus, hydrogen is present in excess

during the ZnO electrodeposition process.

The hydrogen dopants that would cause a Moss-Burstein band gap shift are

difficult to detect by bulk methods. Indeed, we see no signficant change in

lattice parameters as a function of film thickness or deposition potential, even

though we do observe absorption edge shifts. The majority of studies that track

hydrogen incorporation do so with spectroscopic methods [11,12,26,30,35] or

gas effusion studies [12], and do not report lattice parameter data as a function

of hydrogen incorporation levels. Therefore, we used Raman spectroscopy as

a probe of local coordination environments to complement our bulk structural

investigations.

Based on ZnO’s wurzite-type structure, group theory predicts that Raman-

active vibrational modes should include one A1 mode, two E2 modes, and
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one E1 mode. In this case, the A1 and E1 modes are each polar, leading to

a split into transverse optical (TO) and longitudinal optical (LO) modes.[36]

The lower-frequency E2 mode is associated with the Zn sublattice, while the

higher frequency E2 mode corresponds to the oxygen sublattice [29].

For our electrodeposited thin films, strong Raman transitions (Figure 8) were

observed near 100 cm−1 (not shown) and 437 cm−1, which can be assigned

to E2(low) and E2(high), respectively [36]. The positions of these peaks did

not shift with differences in deposition potential or deposit thickness, which

suggests that there is neither significant stress nor signficant changes in stress

during film growth.

Other weaker Raman active modes were also observed. The A1(TO) mode is

visible near 380 cm−1. The broad peak near 580 cm−1 is consistent with recent

reports of a LO quasimode, with mixed A1 and E1 symmetry, observed in

poorly-oriented ZnO crystallite ensemble [37]. The broad peak visible near 330

cm−1 is attributed to a multiple phonon effect. At much higher wavenumbers

(2800-3000 cm−1, data not shown) where N-H, C-H, and O-H stretching modes

would be visible [12], we see broad overlapping peaks which cannot be clearly

resolved.

Relative decreases in the LO quasimode peak intensities occur with increasing

film thickness (Figure 8a). The intensities of the A1(LO) and E1(LO) modes

that contribute to this quasimode are reported to be enhanced by the presence

of defects, in bulk crystals [30,38]. One possible explanation for the propor-

tionally larger defect levels in thinner films is that the initial stages of ZnO film

growth includes a higher defect level. Other work has shown the importance of

a metallic Zn prelayer in the nucleation and growth of electrodeposited ZnO
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[17], and our own studies of deposit morphologies during early stages of growth

are consistent with this. Since the Zn prelayer is eventually converted to ZnO,

this is a different growth mechanism than the Zn(OH)2 precursor that has

been reported for steady-state ZnO growth [15], and could result in a higher

concentration of defects.

Relative decreases in the LO quasimode peak intensities also occur with more

positive deposition potentials (Figure 8b). With more rapid deposition at more

negative applied potentials, it is reasonable to expect higher defect concentra-

tions.

The intensity enhancement in the LO quasimode with decreasing film thick-

ness and more negative deposition potentials correlates with the blueshift of

the optical absorption edge (Figure 4c). This suggests that higher defect con-

centrations contribute to higher energy absorption edges. However, unlike the

diffuse reflectance data which show changes in the band gap with sample

aging, there was no appreciable change in the relative intensities of the LO

quasimode, or other Raman-active modes, with sample aging. This suggests

that the absorption edge redshift with aging is not determined by the relative

concentration of defects that contribute to the LO quasimode enhancement.

5 Conclusions

We propose that the potential-dependent absorption edge shifts observed in

electrodeposited ZnO are due to a hydrogen-induced Burstein-Moss effect, and

that the defects which lead to the LO quasimode enhancement are trapping

sites for hydrogen to slow its diffusion. As shown earlier in Figure 5, the optical
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absorption edges of all but the thickest of our electrodeposits were larger than

those reported for bulk ZnO, consistent with hydrogen donors occupying levels

within the conduction band to increase the magnitude of the band gap energy.

Other studies have found monotonic increases in band gap with increasing

H+ levels in ZnO [35]. Carrier concentrations on the order of 1019 cm−3 are

common for native ZnO, and increases in the carrier concentration by one

order of magnitude can increase the optical band gap by 0.1 to 0.3 eV [34,35].

Recent theoretical studies have shown that hydrogen can diffuse readily in ZnO

at ambient temperatures, but the presence of trapping sites provide a barrier

to diffusion, even at temperatures well above room temperature [39]. Further-

more, hydrogen would need to be held at an electrically inactive trapping site

for it to function as a donor. Applying these findings to the trends observed in

our electrodeposited ZnO, we can arrive at several conclusions. First, hydro-

gen gas is present in excess during the electrodeposition process (as assessed

from studies of charge passed during deposition, in Figure 7). Second, film

thickness and deposition potential affect the overall defect concentration (as

inferred from relative intensity changes in the Raman LO quasimode, in Figure

8). At least a portion of these defects function as electrically inactive trapping

sites for hydrogen (as surmised from the absorption edge shifts with potential

and thickness, in Figures 4 and 5). Some of these trapping sites slow, but

do not completely suppress, hydrogen diffusion at ambient temperatures (as

inferred from absorption edge shifts over days to weeks, in Figure 6). Other

trapping sites likely present a higher barrier to hydrogen diffusion, so this

portion of the incorporated hydrogen remains trapped for longer periods of

time (as deduced from the leveling of the absorption edge shift after several

weeks, and the different leveling values of Eg with different applied poten-
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tials). Finally, trapping sites would remain as defects even after the hydrogen

diffuses out of the sample (as supported by the constant relative intensity of

the Raman LO quasimode with aging).

Quantitative assessments of defect concentrations, as well as studies to deter-

mine more precisely the nature of the hydrogen-related complexes that lead

to donor behavior in ZnO electrodeposits, will be the focus of future investi-

gations.
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List of Table and Figure Captions

Table 1. Representative listing of average crystallite sizes (d) and correspond-

ing band gap energies (Eg, ± 0.01 eV) for ZnO films with different thicknesses

prepared at different deposition potentials. Average crystallite sizes were de-

termined from broadening measurements of the (101) XRD Bragg reflections.

Fig. 1. XRD data for electrodeposits prepared at different applied potentials (a)

indicate phase pure ZnO (JCPDS 36-1451)[22]. Peaks due to the stainless steel

substrate are marked with an asterisk (*). Refined lattice constants are plotted as

functions of thickness and deposition potential in (b). Refined values agree well with

standard ZnO lattice constants (dotted lines). The resulting c/a ratios are compared

with the standard value (dotted lines) in (c).

Fig. 2. SEM images of ZnO electrodeposits. In the early stages of growth (a-c, all at

–0.90 V), crystallites are well separated, and their diameters grow with increasing

charge passed: (a) 0.14 C and 350 nm thick, (b) 0.30 C and 400 nm thick, (c) 0.50

C and 500 nm. Potential also affects film growth: (d) –1.00 V, (e) –1.10 V, and (f)

–1.20 V, each with a thickness of 0.9 ± 0.1 µm.

Fig. 3. Sample thickness increases monotonically with charge collected during de-

position. The regions of shallower slope for more positive deposition potentials cor-

relate with dominant radial, rather than vertical, growth of the ZnO crystallites.

Deposits prepared at potentials ≤ –1.10 V involve mixed crystallite morphologies

and show a steeper slope.

Fig. 4. Diffuse reflectance spectra (a,b) and their derivatives (c,d) show that the

energy of the optical absorption edge decreases with increasing deposit thickness.

Deposits prepared at more negative potentials exhibit wider reflectance transitions.
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Fig. 5. Optical band gap energies, plotted as a function of film thickness, for films

prepared at different deposition potentials. The typical bulk value is 3.33 eV, as

indicated by the dotted line. Lines connecting data are provided merely as guides

to the eye.

Fig. 6. Representative data showing that optical band gap energies decrease with

sample aging time. The decay time of the absorption edge energy does not vary

significantly with deposition potential. The lines connecting data points a provided

merely as guides to the eye.

Fig. 7. Charge passed, during 10 minutes, in three different electrolytes over a range

of potentials. All measurements were performed at 70◦C.

Fig. 8. Representative Raman spectra of ZnO electrodeposits with (a) the same de-

position potential (-1.00 V) but different thicknesses, and (b) comparable thickness

(1 µm) prepared at different deposition potentials.
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Deposition Film d Eg

potential thickness

(V) (µm) (nm) (eV)

–0.90 0.35 43 ± 2 3.37

0.40 59 ± 6 3.35

0.50 54 ± 5 3.33

–1.00 0.60 39 ± 2 3.38

0.75 43 ± 2 3.37

0.90 46 ± 3 3.35

–1.10 1.0 44 ± 3 3.37

1.1 38 ± 2 3.36

1.8 44 ± 3 3.20

–1.20 0.80 38 ± 2 3.28

1.7 39 ± 2 3.24

2.1 42 ± 2 3.15

Table 1
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