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1. Introduction

In the last years, promising attempts to extend the AdS/CFT correspondence to other areas

of physics have attracted much attention. Within the context of non-relativistic physics,

holographic techniques were recently considered with remarkable success. Pioneer work on

this matter, where gravity duals to non-relativistic systems were proposed, has been done

in Refs. [1] and [2]. Of particular importance is also the construction of Ref. [3], where

the authors proposed new gravitational duals to scale invariant Lifshitz fixed points with no

Galilean invariance. These gravity backgrounds have the form

ds2 = −r2z

l2z
dt2 +

l2

r2
dr2 +

r2

l2
d~x2, (1.1)

where ~x is a (D − 2)-dimensional vector. These geometries are usually called Lifshitz space-

times, and admit the following anisotropic scaling symmetry

t 7→ λzt, r 7→ λ−1r, ~x 7→ λ~x, (1.2)

as part of their isometry group. This is the geometric realization of the scale invariance

exhibited by their non-relativistic dual systems, which are thought to be formulated on the

(D− 1)-dimensional space located at infinite r. In this sense, this picture completely mimics

the prescription of the standard AdS/CFT correspondence.
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The natural extension of the construction of [3] is to look for black hole configurations

that asymptote the Lifshitz spacetimes (1.1). Holographically, they should describe the finite

temperature behavior of the non-relativistic theories. Black hole solutions of this type are

known with the name of “Lifshitz black holes”, and the quest for such solutions has received

much attention recently. Analytic Lifshitz black hole solutions are scarce and they are actually

hard to be found. In spite of the fact their metrics are not of a particularly abstruse form,

these are reluctant to appear as exact solutions of theories of gravity with physically sensible

matter sources. The main obstacle for these spacetimes to exist are the Birkhoff theorems,

which happen to hold for generic models and restrict the subspace of static solutions in a

strong way. Nevertheless, some few examples of black hole solutions that are asymptotically

Lifshitz spaces were recently found in the literature. One of the first analytic examples

was reported in Ref. [4] for a sort of higher-dimensional dilaton gravity without restricting

the value of the dynamical exponent z. In Ref. [5], a topological black hole solution which

happens to be asymptotically Lifshitz with z = 2 was found. An example with z = 4 and

with spherical topology was given in Ref. [6]. Numerical solutions for more general values of z

were explored in Refs. [7, 5, 6, 8]. More examples of analytic Lifshitz black holes were studied

in Refs. [9, 10, 11], and the solution found in [10] is particularly interesting as it corresponds

to a remarkably simple analytic example with z = 2 in D = 4 dimensions. The difficulty

of embedding Lifshitz black holes in string theory was also investigated in Refs. [12, 13, 14].

The holographic description of asymptotically Lifshitz spacetimes was studied in [15]. More

recent investigations related to Lifshitz black holes can be found in Refs. [16, 17, 18, 19, 20].

In [21] a remarkably simple solution with z = 3 in absence of matter fields was found for

the New Massive Gravity theory [22], which consists of special square-curvature corrections

to three-dimensional gravity. Previously, in Ref. [23], it was shown that square-curvature

corrections to gravity generically can support the Lifshitz spacetimes (1.1). The example of

Ref. [21] is the first to show that these theories also allows the existence of Lifshitz black

holes. Another example with z = 3/2 was subsequently found for a four-dimensional theory

with R2–corrections in Ref. [24].

Inspired in the results of [21] and [24], we will investigate in this paper how the intro-

duction of higher-curvature corrections to the Einstein-Hilbert action leads to find a large

zoo of analytic Lifshitz black hole solutions in D dimensions. We will begin our search of

Lifshitz black holes by considering the simplest example of quadratic corrections. Already in

the simplest case we will find interesting solutions, provided a suitable parameterization of

the coupling constants, and which hold for generic z in D dimensions. Interestingly enough,

we will also exhibit an extremal Lifshitz black hole and an asymptotically Lifshitz black hole

with logarithmic decay at infinity. Motivated by the richness of examples we find in the

simplest case, we will then consider the most general square-curvature corrections, and we

will present several classes of analytic Lifshitz black hole families of solutions in D ≥ 5 di-

mensions. Curiously, one of these higher-dimensional families leads, through some particular

limiting procedure, to the three-dimensional z = 3 Lifshitz black hole of [21] as well as to a

new solution in D = 4 with critical exponent z = 6.
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2. R
2–corrected Lifshitz black holes for any dimension

We first consider a gravity theory with R2–corrections

S[gµν ] =

∫

dDx
√−g

(

R− 2λ+ β1R
2
)

, (2.1)

giving the following field equations

Gµν + λgµν + 2β1gµν�R− 2β1∇µ∇νR+ 2β1RRµν −
1

2
β1R

2gµν = 0. (2.2)

These equations allow Lifshitz spacetimes (1.1) as solutions for a generic value of the dy-

namical exponent z in any dimension, provided a suitable choice of the cosmological constant

λ and the coupling constant β1 that is given by

λ = −2z2 + (D − 2)(2z +D − 1)

4l2
, (2.3a)

β1 = − 1

8λ
. (2.3b)

It is well known that this kind of theory (2.1) can be generically mapped into scalar-tensor

theories through a conformal transformation of the metric with conformal factor Ω2 = 1 +

2β1R. However, for the particular choice of the coupling constant (2.3), this trick does not

work since R = 4λ for Lifshitz spacetimes. In this sense, the model corresponds to a genuine

pure gravity theory. The black hole solutions we will derive below present the same degeneracy

for the conformal transformation, and thus have no scalar-tensor counterpart.

Our purpose is to explore whether there exist some black hole solutions which asymptote

the Lifshitz spacetimes (1.1). This analysis is motivated by the existence of a four-dimensional

Lifshitz black hole solution for these theories with a specific value of the dynamical exponent

z = 3/2 found in Ref. [24]. In fact, we can show that for any dimension D, there exists a

two-parametric family of solutions given by

ds2 = −r2z

l2z

(

1− M−lα−

rα−

+
M+lα+

rα+

)

dt2 +
l2

r2

(

1− M−lα−

rα−

+
M+lα+

rα+

)−1

dr2

+
r2

l2
d~x2, (2.4a)

α± =
3z + 2(D − 2)±

√

z2 + 4(D − 2)(z − 1)

2
, (2.4b)

for which the coupling constants are the same as in the purely Lifshitz case (2.3). It is

important to mention that this family of geometries has the same constant scalar curvature

of the Lifshitz spacetimes.

First, it is clear from the expression of α±, given by (2.4b), that the dynamical exponent

may take the values z ∈ (−∞, z−] ∪ [z+,∞) where

z± = 4− 2D ± 2
√

(D − 1)(D − 2). (2.5)
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On the other hand, the solution (2.4) represents an asymptotically Lifshitz black hole for

α± > 0, and this occurs for z ≥ z+. It is easy to see that the four-dimensional solution of

reference [24] corresponds to the particular case M+ = 0 with z = 3/2, that is λ = −33/8l2

and α− = 3.

For a specific relation between the constants M± given by

M+ = α−(α+ − α−)
α+−α

−

α
−

(

M−

α+

)

α+
α
−

, (2.6)

the solution (2.4) has zero temperature, i.e. it is an extremal black hole

ds2 = −r2z

l2z

[

1− α+

α+ − α−

(re
r

)α
−

+
α−

α+ − α−

(re
r

)α+

]

dt2

+
l2

r2

[

1− α+

α+ − α−

(re
r

)α
−

+
α−

α+ − α−

(re
r

)α+

]−1

dr2 +
r2

l2
d~x2, (2.7)

where the extremal radius re is expressed as

re = l

(

α+ − α−

α+
M−

)1/α
−

. (2.8)

The interest on solution (2.4) increases once one notices that when the dynamical expo-

nent approach the value z = z+, defined in (2.5), there exists an additional solution which

asymptotes the Lifshitz spacetime in a much slower way

ds2 = −r2z+

l2z+

{

1− lα0

rα0

[

M1 +M2 ln
(r

l

)]

}

dt2 +
l2

r2

{

1− lα0

rα0

[

M1 +M2 ln
(r

l

)]

}−1

dr2

+
r2

l2
d~x2, (2.9)

where the parameter α0 is given by

α0 = 3
√

(D − 1)(D − 2)− 2(D − 2). (2.10)

The fact of having a weakened (logarithmic) fall-off as a next-to-leading contribution in the

asymptotic behavior is well known in the standard AdS/CFT correspondence. In particular,

this was one of the key points in recent discussions on three-dimensional massive gravity (see

[25] and reference therein).

The extremal version of the logarithmic black hole (2.9) is found for

M1 =
M2

α0

[

1− ln

(

M2

α0

)]

,

and then the corresponding spacetime geometry reads

ds2 = −r2z+

l2z+

{

1− re
α0

rα0

[

1 + α0 ln

(

r

re

)]}

dt2 +
l2

r2

{

1− re
α0

rα0

[

1 + α0 ln

(

r

re

)]}−1

dr2

+
r2

l2
d~x2, (2.11)
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where the extremal radius is defined by

re = l

(

M2

α0

)
1
α0

.

Let us stress that spacetimes (2.7) and (2.11) are the first examples of asymptotically Lifshitz

black hole solutions with an extremal horizon. Remarkably, the solution (2.9) is additionally

the first solution with a logarithmic decay.

In the list of curiosities, we can also mention that the family of solutions (2.4) contains

an asymptotically conformal limit at z = 1; namely

ds2 = −
(

r2

l2
− M−lD−2

rD−2
+

M+lD−3

rD−3

)

dt2 +

(

r2

l2
− M−lD−2

rD−2
+

M+lD−3

rD−3

)−1

dr2 +
r2

l2
d~x2.

(2.12)

For M− = 0 (M+ < 0), the resulting spacetime is nothing but the Schwarzschild-Tangherlini-

AdS topological black hole with toroidal horizon (k = 0 in standard notation) for λ =

−D(D − 1)/(4l2). For M+ = 0, the solution corresponds to a different asymptotically AdS

toroidal black hole with a faster decay. As an appealing remark, for D = 4, the solution

(2.12) is precisely the Reissner-Nordstrom-AdS topological black hole with k = 0.

As a final comment, we would like to point out that the Lagrangian of the gravity action

(2.1) for the coupling constant given by (2.3b) can be written as a perfect square,

R− 2λ− 1

8λ
R2 = − 1

8λ
(R− 4λ)2 . (2.13)

Therefore, for this choice of the coupling constant, the gravity action is definite positive and

reaches its minimal (vanishing) value for R = 4λ, which is precisely the case of the solutions

(2.4). Then, this solution (or its Euclidean continuation) can be seen as a sort of gravitational

instanton. This has to do with the degeneracy of the field equations (2.2) in the following

sense: for the case of constant scalar curvature solutions, equations (2.2) become

f ′(R)Rµν −
1

2
f(R)gµν = 0,

where f(R) is the Lagrangian expressed in terms of the scalar curvature. Apart from consid-

ering f ′(R) 6= 0, which yields Einstein equations with an effective cosmological constant and

hence no Lifshitz configurations, the only option for constant scalar curvature solutions to

exist is that the value of the scalar curvature be a double root of the Lagrangian f(R). Then,

it is clear that the family of black holes obtained in (2.4) will be solutions of any gravity

theory with Lagrangian f(R) = (R− 4λ)2H(R) where H is a function regular at R = 4λ.

3. More general quadratic corrections

Due to the new and interesting results of the R2–corrected theory (2.1) presented above, it is

natural to extend the analysis and explore the existence of asymptotically Lifshitz black hole
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configurations with the most general quadratic corrections. We will proceed in the same way

as before, by first establishing the purely Lifshitz configurations and then by presenting three

different classes of asymptotically Lifshitz black hole solutions which correspond to different

ranges of the dynamical exponent z. As shown below, for any value of the dynamical exponent

z at least one family of black hole solutions exists.

We consider now the gravity action that includes the most general quadratic-curvature

corrections in D-dimensions; namely

S[gµν ] =

∫

dDx
√−g

(

R− 2λ+ β1R
2 + β2RαβR

αβ + β3RαβµνR
αβµν

)

. (3.1)

It follows from the Gauss-Bonnet theorem in four dimensions and the vanishing of the Gauss-

Bonnet term in three dimensions that in the case D < 5, it is sufficient to consider only two of

the three quadratic invariants in the Lagrangian. This makes necessary to split the analysis

in two parts by first considering the higher-dimensional cases and then to analyze separately

the lower dimensional ones, D = 3 and D = 4.

The action (3.1) gives rise to the following field equations

Gµν + λgµν + (β2 + 4β3)�Rµν +
1

2
(4β1 + β2) gµν�R− (2β1 + β2 + 2β3)∇µ∇νR

+ 2β3RµγαβR
γαβ
ν + 2 (β2 + 2β3)RµανβR

αβ − 4β3RµαR
α
ν + 2β1RRµν

− 1

2

(

β1R
2 + β2RαβR

αβ + β3RαβγδR
αβγδ

)

gµν = 0. (3.2)

As in the purely R2−case, Lifshitz spacetimes (1.1) are solutions of these field equations for

a generic value of the dynamical exponent z in any dimension, provided that

λ = − 1

4l2

(

2z2 + (D − 2)(2z +D − 1)− 4(D − 3)(D − 4)z(z +D − 2)β3
l2

)

, (3.3a)

β2 =
l2 − 2

[

2z2 + (D − 2)(2z +D − 1)
]

β1 − 4
[

z2 − (D − 2)z + 1
]

β3

2(z2 +D − 2)
. (3.3b)

Notice that the above parameterizations coincide with the values previously found for the

New Massive Gravity in D = 3 [21], where β3 = 0 and β2 = −(8/3)β1 = −1/m2. In turn, this

generalizes the previous authors’ result. We shall now proceed to present three more different

Lifshitz black hole families in D ≥ 5 dimensions.

3.1 An asymptotically Lifshitz black hole family for z > 2−D

The first family of solutions we present here is described by the following line element

ds2 = −r2z

l2z

(

1− Ml(z+D−2)/2

r(z+D−2)/2

)

dt2 +
l2

r2

(

1− Ml(z+D−2)/2

r(z+D−2)/2

)−1

dr2 +
r2

l2
d~x2, (3.4a)
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and represents an asymptotically Lifshitz black hole solution of the field equations (3.2) for

the dynamical exponent z > 2 − D. The coupling constants allowing the existence of the

solution (3.4a) are parameterized in term of the dynamical exponent z by

λ =
(D − 2)

4l2

{

(197D − 389)z4 + 4(19D2 − 200D + 325)z3 + (D − 2)
[

2(5D2 − 73D + 356)z2

+ 4(D3 − 2D2 + 15D − 62)z + (D + 2)(D − 1)(D − 2)2
]

}

/

P4(z), (3.4b)

β1 = l2
{

27z6 − 18(3D − 4)z5 + 3(19D2 − 168D + 356)z4 − 12(11D3 − 84D2 + 196D − 120)z3

− (D − 2)
[

(19D3 − 330D2 + 2052D − 3640)z2 + 2(3D4 − 30D3 + 124D2 − 536D + 1024)z

+ (D + 2)(D − 2)2(D2 − 4D + 36)
]

}

/

(

2(D − 3)(D − 4)(z +D − 2)2P4(z)
)

, (3.4c)

β2 = −2l2
[

3z2 + (D + 2)(D − 2)
]

{

9z4 − 6(3D − 4)z3 − 8(D2 − 10)z2 + 2(D3 − 4D2 + 32D − 80)z

− (D − 2)
[

D3 + 2D2 − 12(D − 2)
]

}

/

(

(D − 3)(D − 4)(z +D − 2)2P4(z)
)

, (3.4d)

β3 = l2
[

3z2 + (D + 2)(D − 2)
]

{

9z3 − 3(9D − 14)z2 − (D − 2)
[

(5D − 62)z +D2 − 4D + 36
]

}

/

(

2(D − 3)(D − 4)(z +D − 2)P4(z)
)

, (3.4e)

where P4 is a polynomial of degree four in the dynamical exponent z given by

P4(z) = 27z4−4(27D−45)z3− (D−2)
[

2(5D−116)z2+4(D2−D+30)z+(D+2)(D−2)2
]

.

It is clear from the expressions of the βi that the solution is defined only for higher dimensions

D ≥ 5. The analysis of the lower dimensional cases will be done in the next section. As in

the purely R2–case, there exists a conformal limit z = 1 of the family (3.4) which is given by

the following asymptotically AdS black hole

ds2 = −
(

r2

l2
− Ml(D−5)/2

r(D−5)/2

)

dt2 +

(

r2

l2
− Ml(D−5)/2

r(D−5)/2

)−1

dr2 +
r2

l2
d~x2. (3.5)

More precisely, this spacetime (3.5) is a solution of the Einstein-Gauss-Bonnet gravity with

a fine-tuned coupling constant, since for z = 1 the parameterizations (3.4b)-(3.4e) become

λ = −(D − 1)(D − 2)

4l2
, (3.6a)

β1 = −1

4
β2 = β3 =

l2

2(D − 3)(D − 4)
, (3.6b)
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yielding to the Lagrangian

R− 2λ− (D − 1)(D − 2)

8(D − 3)(D − 4)λ
LGB, (3.7)

where LGB = R2 − 4RαβR
αβ +RαβµνR

αβµν is the Gauss-Bonnet term. Note that for D = 5,

the above black hole becomes diffeomorphic to a warped product having as base AdS3 with a

2-plane fiber. Moreover this case precisely corresponds to the Chern-Simons gravity in D = 5.

3.2 An asymptotically Lifshitz black hole family for z > 1

The second family of asymptotically Lifshitz black holes we find is valid for z > 1,

ds2 = −r2z

l2z

(

1− Ml2(z−1)

r2(z−1)

)

dt2 +
l2

r2

(

1− Ml2(z−1)

r2(z−1)

)−1

dr2 +
r2

l2
d~x2, (3.8a)

and it exists for the following choice of coupling constants

λ = −(z − 1)
[

z2 −Dz − (D − 1)(D − 2)
]

2l2(z −D)
, (3.8b)

β1 = l2
[

3(D − 1)(D − 2)z3 − (2D3 − 2D2 − 11D + 20)z2 + (3D3 − 14D2 + 19D + 10)z

+ (D + 2)(D − 4)
]/[

2(D − 2)(D − 3)(D − 4)z(z − 1)(z −D)(3z +D − 4)
]

, (3.8c)

β2 = −l2(D − 1)(2z −D − 2)
[

6(D − 2)z2 − (D2 − 3D + 8)z − 2(D − 4)
]

/[

2(D − 2)(D − 3)(D − 4)z(z − 1)(z −D)(3z +D − 4)
]

, (3.8d)

β3 =
l2(D − 1)(2z −D − 2)

4(D − 3)(D − 4)z(z −D)
. (3.8e)

As for the z > 2−D family, the lower dimensions D = 3 and D = 4 are also forbidden here.

Clearly, there is no conformal limit z = 1 for this family.

3.3 An asymptotically Lifshitz black hole family for z < 0

The last family of Lifshitz black holes we describe is characterized by a negative dynamical

critical exponent z = −|z|, whose metric reads

ds2 = − l2|z|

r2|z|

(

1− Ml|z|

r|z|

)

dt2 +
l2

r2

(

1− Ml|z|

r|z|

)−1

dr2 +
r2

l2
d~x2, (3.9a)
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while the corresponding coupling constants are parameterized as

λ =
|z|
[

2|z|2 − 4(D − 2)|z|+ (D − 2)(D − 3)
]

4l2(2|z| −D + 2)
, (3.9b)

β1 =
l2
[

3|z|2 − 2(D − 2)|z| + 2D − 5
]

2(D − 3)(D − 4)|z|(2|z| −D + 2)
, (3.9c)

β2 = −4β3, (3.9d)

β3 =
l2
[

6|z|2 − 4(D − 2)|z| + (D − 1)(D − 2)
]

4(D − 3)(D − 4)|z|(2|z| −D + 2)
. (3.9e)

The associated Lagrangian describes a fine-tuned R2–corrected Einstein-Gauss-Bonnet theory

R− 2λ− β3LGB − l2R2

4|z|(2|z| −D + 2)
. (3.10)

This family of black holes is again defined only in higher dimensions D ≥ 5. Being defined

only for negative dynamical critical exponents, it has no conformal analog z = 1.

In the next section, we analyze the lower-dimensional cases D = 3 and D = 4.

4. Critical lower dimensional Lifshitz black holes

The families of Lifshitz black holes given by (3.4), (3.8) and (3.9) are generically forbidden

in dimensions lower than 5. This is due to the fact that the use of a nontrivial value for

the coupling constant β3 is artificial in these dimensions. Concretely, if one consider theories

with β3 6= 0, and due to the fact that the Gauss-Bonnet combination LGB vanishes in D = 3

and is a total derivative in D = 4, it turns out that it is always possible to shift the coupling

constants and to end with β3 = 0. This shifting reads

(β1, β2, β3) 7→ (β1 − β3, β2 + 4β3, 0). (4.1)

Despite families (3.4), (3.8) and (3.9) are formally defined for higher-dimensions, the

possibility that new critical solutions exist in lower dimensions for some particular values

of the dynamical exponent z is not excluded. A natural way to explore this possibility is

to consider a dimensional continuation of the D-dimensional expressions and study whether

some potential cancellation of the divergences of the coupling constants appears when one

expands around D = 3 and D = 4. That is what we will do in this section. Using the results

of this analysis as an indication, we will explicitly confirm the existence of critical solutions

that, indeed, represent Lifshitz black holes in D = 3 and in D = 4.
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4.1 The z = 3 three-dimensional asymptotically Lifshitz black hole

Let us start with the dimensional continuation and expansion of the coupling constants of

the family (3.4) around D = 3. The cosmological constant is regular, λ = O
(

(D − 3)0
)

, but

the coupling constants exhibit the following singular behavior

β1 = −1

4
β2 = β3 = − (z − 3)(3z2 + 5)(9z2 − 12z + 11)l2

2(z + 1)(27z4 − 144z3 + 202z2 − 144z − 5)
× 1

D − 3

+O
(

(D − 3)0
)

. (4.2)

This indicates that the only possibility for having a potentially regular behavior for this family

at D = 3 appears for z = 3. Considering that there is in fact no continuity in the number

of dimensions, one can chose the element z = 3 of the family (3.4). Evaluating after that for

D = 3, the resulting Lifshitz black hole is

ds2 = −r6

l6

(

1− Ml2

r2

)

dt2 +
l2

r2

(

1− Ml2

r2

)−1

dr2 +
r2

l2
dx2, (4.3a)

with λ = −13/(2l2), and surprisingly the meaningful coupling constants (i.e. after the shifting

(4.1)) are those of New Massive Gravity [22]

β2 = −(8/3)β1 = 2l2, (4.3b)

which gives rise to the three-dimensional Lifshitz black hole previously found by the authors

in [21]. A similar analysis can be done for the family (3.8); the potential regular behavior

occurs in this case for z = 5/2. However, the resulting solution is not new but corresponds

to the case z = 5/2, M+ = 0 (α− = 3) of the family (2.4) valid in generic dimension D. The

family (3.9) has no regular limit in D = 3.

4.2 The z = 6 four-dimensional asymptotically Lifshitz black hole

In four dimensions, we proceed in a similar way, by doing a dimensional continuation and

expanding the coupling constants of the family (3.4) around D = 4. Again, the cosmological

constant is regular, λ = O
(

(D − 4)0
)

, and the coupling constants exhibit singular behavior

β1 = −1

4
β2 = β3 =

3(z − 6)(z2 + 4)(3z2 − 4z + 4)l2

2(z + 2)(9z4 − 84z3 + 128z2 − 112z − 16)
× 1

D − 4

+O
(

(D − 4)0
)

. (4.4)

The indication here is that the only possibility potentially occurs for z = 6. The z = 6

element of the family (3.4), when is evaluated in D = 4, indeed gives rise to a new Lifshitz

black hole

ds2 = −r12

l12

(

1− Ml4

r4

)

dt2 +
l2

r2

(

1− Ml4

r4

)−1

dr2 +
r2

l2
(dx2 + dy2), (4.5a)
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with λ = −51/(2l2) and meaningful coupling constants given by

β2 = −(25/9)β1 = 25l2/64. (4.5b)

The corresponding analysis for the family (3.8) in D = 4 singles out the value z = 3. Again,

the resulting solution is not new but corresponds to the case z = 3, M+ = 0 (α− = 4) of the

family (2.4), which is valid in four dimensions. As before, family (3.9) has no regular limit in

D = 4.

5. Conclusions and open problems

In this paper we have found analytic Lifshitz black hole solutions for gravity with square-

curvature corrections in arbitrary dimension. Some open questions remain:

• The computation of conserved charges of the asymptotically Lifshitz black holes of

higher-curvature gravity would be needed to fully understand the thermodynamical

properties of both the gravitational backgrounds and the dual systems. Some important

advances in this direction have been done recently in [26].

• Stability of Lifshitz black hole solutions is another question it would be interesting to

address.

• Among the family of black holes we exhibited here there are extremal solutions, see

(2.7) and (2.11). An interesting question is that of studying the causal structure of

these spacetimes.

• Last, the condensed matter interpretation of these backgrounds within the holographic

proposal of [3] deserves to be matter for further study.
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Dimensions, Phys. Rev. D80 (2009) 104029, [arXiv:0909.1347].

[22] E. A. Bergshoeff, O. Hohm and P. K. Townsend, Massive Gravity in Three Dimensions, Phys.

Rev. Lett. 102 (2009) 201301, [arXiv:0901.1766].

[23] A. Adams, A. Maloney, A. Sinha and S. E. Vázquez, 1/N Effects in Non-Relativistic

Gauge-Gravity Duality, JHEP 0903 (2009) 097, [arXiv:0812.0166].

– 12 –



[24] R. G. Cai, Y. Liu and Y. W. Sun, A Lifshitz Black Hole in Four Dimensional R2 Gravity,

JHEP 0910 (2009) 080, [arXiv:0909.2807].

[25] A. Maloney, W. Song and A. Strominger, Chiral Gravity, Log Gravity and Extremal CFT,

[arXiv:0903.4573].

[26] O. Hohm and E. Tonni, A boundary stress tensor for higher-derivative gravity in AdS and

Lifshitz backgrounds, to appear.

– 13 –


