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ABSTRACT 17 

Cu (II) - exchanged montmorillonite (Cu2+MMt) was prepared, characterized and 18 

introduced into a bovine gelatin (Ge) matrix via a dissolution-intercalation method to 19 

get antibacterial nanocomposite films. The maximum amount of exchanged cation did 20 

not exceed the cation exchange capacity of the pristine montmorillonite (Na+MMt), as 21 

assessed by energy dispersive X-ray (EDX) spectroscopy. Cu2+MMt showed 22 

antibacterial activity in vitro against Escherichia coli O157:H7 (Gram-negative) and 23 

Listeria monocytogenes (Gram-positive) as revealed by the agar disc-diffusion assay. 24 

The dispersion of clays in Ge films was monitored by X-ray diffraction (XRD) and 25 

Scanning Electron Microscopy (SEM). Blending gelatin with 5 % w/w of clay increased 26 

the tensile strength of the nanocomposite films in around 280 % while the elongation at 27 

break and the water vapor permeability decreased in about 42 and 30 %, respectively, 28 

regardless of the cation in clay. The Ge/Cu2+MMt film exhibited antibacterial 29 

effectiveness against both pathogens tested under the same conditions, demonstrating a 30 

stronger effect on L. monocytogenes than on E. coli O157:H7, since the cell wall of the 31 

latter differs significantly and such difference could influence their vulnerability and 32 

response to the active films. Therefore, the incorporation of low clay levels as a vehicle 33 

for copper ions into gelatin matrix has demonstrated to be a good method for 34 

developing functional materials that can be potentially applied to the design of food 35 

contact items. 36 

 37 

Keywords: Bovine gelatin; Cupric ions; Montmorillonite; Nanocomposite; Active film; 38 

Antimicrobial activity. 39 

40 
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1. Introduction 41 

The inclusion of long-lasting biocide agents in natural polymer matrices is acting as a 42 

driving force for the development of new environmentally sound packaging concepts 43 

that extend shelf-life, while maintaining the food safety and quality of packed food 44 

(Rhim et al. 2013).  45 

Certain naturally occurring metal ions such as copper, silver, zinc, palladium, and 46 

titanium, which, in some cases, are essential minerals, are active antimicrobials against 47 

a very broad spectrum of bacteria, yeasts and fungi with no adverse effects on 48 

eukaryotic cells (Llorens et al. 2012). CuSO4 and Cu(OH)2 have been widely applied to 49 

animal production as traditional inorganic antibacterial materials (Hu et al. 2005). 50 

However, the direct inclusion of Cu2+ in polymer formulations has been limited by 51 

uncontrolled leaching. One way to prevent early burst is by immobilizing Cu2+ ions onto 52 

inorganic carriers, including zeolites (Drelich et al. 2011) and clay minerals (Mosser et 53 

al. 1997; He et al. 2001; Zhou et al. 2004; Tong et al. 2005; Hu et al. 2005; Hu & Xia 54 

2006). Montmorillonite (MMt) is a hydrophilic and highly water dispersible 2:1 layered 55 

aluminium phyllosilicate with good adsorption ability, high cation - exchange capacity, 56 

and drug-carrying capability (Xia et al. 2010) combined with other favorable features 57 

such as high surface area and chemical inertness (Drelich et al. 2011). The negatively 58 

charged interlayer regions of MMt are mainly filled with exchangeable positively 59 

charged ions, such as Na+, K+, Ca2+, etc., thus, active Cu2+ ions can be accommodated in 60 

the interlayer space, providing materials with a long-lasting action period (He et al. 61 

2001; Hu et al. 2005; Hu & Xia 2006). The immobilization of Cu2+ onto MMt, together 62 

with its antimicrobial action, has been extensively documented (Mosser et al. 1997; He 63 

et al. 2001; Zhou et al. 2004; Tong et al. 2005; Kloprogge et al. 2006; Hu et al. 2005; 64 

Hu and Xia 2006; Malachovà et al. 2009, 2011; Pereira et al. 2013). Even so, scant 65 
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literature explores the antimicrobial activity of Cu2+MMt-polymer nanocomposites. 66 

Bruna and others (2012) developed low density polyethylene (LDPE)/Cu2+MMt films 67 

and reported a reduction of 94 % of Escherichia coli O157:H7 colonies at 4 % w/w 68 

nano-clay loading. Similarly, cellulose acetate (CA)/Cu2+MMt (3 % w/w clay) films 69 

yielded high levels (>98 %) of inhibitory action against Escherichia coli ATCC 25922 70 

(Bruna et al. 2014), whereas poly(lactic acid) (PLA)/Cu2+MMt films (Bruna et al. 2015) 71 

were effective at reducing up to 99 % of Escherichia coli ATCC 25922 and Listeria 72 

innocua ATCC 33090, when 5 % w/w Cu2+MMt was added to each matrix. 73 

To the best of the author´s knowledge, there are no studies dealing with the potential of 74 

protein/Cu2+MMt nanocomposites used as active food contact materials. Amongst 75 

proteins, gelatin (Ge) is a water-soluble animal protein, obtained from the hydrolysis of 76 

bone-collagen or connective tissues. It can be found as abundant waste/by product in 77 

slaughter houses, and poultry and fish industries at reasonable cost (Hernandez-Muñoz 78 

et al. 2004). Gelatin can be taken as a biogenic alternative to active films for being 79 

classified as a “Generally Recognized as Safe” (GRAS) substance in the food additive 80 

list by the U.S. Food and Drug Administration (FDA); also due to its biodegradability, 81 

excellent film-forming ability, high oxygen barrier and satisfactory mechanical 82 

properties at low or intermediate relative humidity (Hernandez-Muñoz et al. 2004; 83 

Martucci et al. 2012). Nonetheless, the limited water resistance and mechanical strength 84 

of gelatin films in moist environments still pose a problem to their wide application. In 85 

earlier studies, the authors successfully demonstrated that blending gelatin with sodium 86 

montmorillonite (Na+MMt) could enhance barrier, mechanical and moisture resistance 87 

properties of films (Martucci et al. 2007; Martucci & Ruseckaite 2010), while 88 

preserving their eco-friendliness (Martucci & Ruseckaite 2009). The best results were 89 

obtained from films amended with 5 % w/w of Na+MMt, presenting the highest tensile 90 
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strength and Young's modulus, and the lowest WVP and hydrophilic surface (Martucci 91 

& Ruseckaite 2010). This work presents the synthesis and characterization of Cu2+MMt 92 

by acid-activated MMt through ion-exchange procedure, and the effect of incorporating 93 

5 % w/w of modified clay on the physical properties and antimicrobial potential of 94 

nanocomposite gelatin films against E. coli and L. monocytogenes, as a model of the 95 

pathogens commonly found in foodstuffs.  96 

 97 

2. EXPERIMENTAL SECTION 98 

2.1. Chemicals and source of bacteria 99 

Bovine hide gelatin (Ge) type B (Bloom strength 150, isoionic point (Ip) 5.3) was 100 

kindly supplied by Rousselot (Buenos Aires, Argentina) and used with no further 101 

treatment. Sodium montmorillonite (named as Na+MMt) was obtained from Southern 102 

Clay Products Inc. (Texas, USA) under the trade name Cloisite Na+. The cation-103 

exchange capacity (CEC) was 92.6 meq/100 g of clay and the interlayer distance was 104 

1.17 nm (as it was determined by X-ray diffraction on dry powder). Glycerol (Gly, 98 105 

% reagent grade) and cupric sulphate pentahydrated (CuSO4.5H2O, 99.99 % purity) 106 

were purchased from DEM (Mar del Plata, Argentina) and Anedra (Buenos Aires, 107 

Argentina), respectively. All the other chemicals used were of analytical grade and 108 

brought from Aldrich (St. Louis, MO, USA). Food-borne pathogens were selected to 109 

assess the antibacterial properties: Escherichia coli O157:H7 ATCC 32158 (ATCC, 110 

American Type Culture Collection) and Listeria monocytogenes ATCC 25923. Both 111 

strains were plated onto eosin-methylene blue agar (EMB) and Baird Parker agar, 112 

respectively (Martucci et al. 2015). The vegetative cells of each microorganism were 113 

streaked on Mueller Hinton agar and incubated at 37 ± 0.5 °C for 24 h. Microbial broth 114 

was then suspended in double distilled sterile water. The density of bacteria suspension 115 
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was adjusted until the visible turbidity was equal to 0.5 Mc Farland standards before 116 

testing. 117 

2.2. Preparation of modified MMt 118 

Cu2+MMt was obtained from acid-activated MMt (H+MMt) by ion exchange according 119 

to the procedure described by Hu & Xia (2006) with minor modifications. H+MMt was 120 

produced by suspending 10 g of Na+MMt in 75 mL of 0.05 M HCl solution. This 121 

dispersion was kept for 24 h under constant stirring (400 rpm) at room temperature in a 122 

hot plate (Cole Palmer, USA) and then centrifuged (Sartorius type4-15, Germany) at 123 

5000 rpm for 5 min. The recovered sediment was washed with bi-distilled water until no 124 

acid in the supernatant was detected, and then dried at 80 °C overnight in an air-125 

circulating oven (Memmert UFE550, Germany). The dry product was pulverized to an 126 

average size of less than 300 mesh sieve. Cu2+MMt was produced by dispersing 5 g of 127 

dry H+MMt in 100 mL of a 0.05 M CuSO4.5H2O solution under gentle stirring (400 128 

rpm) at 60 ºC for 6 h. Afterwards the sample was submitted to the same purification 129 

protocol than its acid-activated counterpart.  130 

2.3. Film forming process 131 

Gelatin films added with clay (i.e., Na+MMt, H+MMt and Cu2+MMt; 5 % w/w dry 132 

gelatin basis) and plasticized with glycerol (30 % w/w dry gelatin basis) were prepared 133 

by the solution–intercalation method based on early works by the group (Martucci et al. 134 

2007; Martucci & Ruseckaite 2009, 2010). Plasticizer and clay contents were fixed on 135 

the basis of previous studies (Martucci & Ruseckaite 2008, 2010). Formulations with 136 

glycerol content lower than 30 % w/w resulted in films behaving similarly to their un-137 

plasticized counterparts, while the incorporation of a glycerol level higher than 30 % 138 

w/w induced plasticizer segregation and migration (Martucci & Ruseckaite 2008). In the 139 

case of clay, gelatin nanocomposites containing 5 % w/w of Na+MMt displayed the best 140 
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set of thermal, mechanical, barrier and optical properties (Martucci & Ruseckaite 2008, 141 

2010), so this percentage was selected for synthesis of the antibacterial nanocomposite 142 

films. All films were preconditioned at 25 ± 2 ºC and 65 ± 2 % RH for 48 h in an 143 

environmental chamber before further experimental analysis. Films were designated as 144 

Ge/Na+MMt, Ge/H+MMt and Ge/Cu2+MMt, respectively, depending on the clay used. 145 

2.4. Characterization 146 

2.4.1. X-ray diffraction (XRD). XRD patterns were recorded at room temperature on a 147 

PANalytical X’Pert Pro diffractometer (Almelo, The Netherlands) equipped with a Cu 148 

Kα radiation source (λ= 0.1546 nm) at a generator voltage of 45 kV and 30 mA as the 149 

applied current. The incidence angle ranged from 5º to 50º at a scanning rate of 1 º/min. 150 

The interlayer spaces were calculated by the Bragg equation. 151 

2.4.2. Fourier Transform Infrared Spectroscopy (FTIR). FTIR analyses were 152 

performed on a Mattson Genesis II spectrophotometer in transmission mode. The 153 

measurements were recorded between 4000–400 cm-1 at 32 scans. Pulverized specimens 154 

were pressed into pellets with KBr. The background noise was corrected with pure KBr 155 

data. 156 

2.4.3. Energy dispersive X-ray spectroscopy (EDX). EDX was used to assess the 157 

presence of copper in MMt samples by using an spectrometer EMAX (Horiba Co. Ltd., 158 

Wycombe, U.K.) operated at Vacc ¼ 15 kV. 159 

2.4.4. Thickness. Film thickness was measured by a hand-held micrometer (Dial 160 

Thickness gauge 7301, Mitutoyo Corporation, Kanagawa, Japan) with an accuracy of 161 

0.01 mm. Measurements were taken at ten random locations from three films of each 162 

formulation, and the mean thickness values were used to calculate the physical 163 

properties.  164 
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2.4.5. Visible light–barrier properties. The light absorption of nanocomposite films 165 

was measured in a wavelength ranging from 400 to 800 nm, using a UV-visible 166 

spectrophotometer Shimadzu 1601 PC (Tokyo, Japan) according to a method described 167 

elsewhere (Irissin-Mangata et al. 2001). Each film specimen was cut in rectangular 168 

strips and placed directly in the spectrophotometer test cell. Air was used as reference. 169 

Film opacity was expressed as the area under the absorption curve (arbitrary units/nm) 170 

per thickness unit (mm). Reported values are the average of five measurements.  171 

2.4.6. Equilibrium moisture content (MC). The squared-shape strips of each film 172 

sample (dimensions 4 cm2) were weighed in an analytical balance (±0.0001 g; Ohaus, 173 

USA) to determine the initial mass. Then samples were dried in an air circulating oven 174 

(Memmert, Germany) at 105 ºC for 24 h according to the procedure reported in the 175 

ASTM D644-94, 1994. The equilibrium moisture content (MC) was expressed as the 176 

percentage of initial film weight lost during drying. Reported values are the average of 177 

three replicates. 178 

2.4.7. Water vapor permeability (WVP). Water vapor permeability (WVP) was 179 

performed gravimetrically at 25 °C, following the ASTM E96-95 desiccant method. All 180 

specimens were equilibrated at 65 ± 2 % RH at 25 ± 2 °C for 48 h. Afterwards, test 181 

films were fixed onto opening cells containing silica gel (0 % RH), and the cells were 182 

placed in a controlled humidity chamber at 65 ± 2 % RH and 25 ± 2 °C. The air gap 183 

inside the cell was ∼1.2 cm and the film area exposed for water vapor transmission was 184 

13.8 cm2. The cells were weighed on an hourly basis over a 10 h period. WVP was 185 

calculated from the following equation: 186 

 e
PAt

w
mPasmKgWVP

∆
=⋅⋅⋅⋅ −−− )( 211       (1) 187 
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where w is the weight gain of the cup (Kg) at time t (s); e is the film thickness (m); A is 188 

the film exposed area (m2); ∆P is the vapor pressure difference across the film (Pa). All 189 

measurements were taken in quadruplicate. 190 

2.4.8. Tensile properties. The tensile strength (TS) and percentage of elongation at 191 

break (ε%) were measured according to the ASTM 638 94 D standard using an Instron 192 

4467 Universal Testing Machine (Buckinghamshire, England) with a 5 kN load cell at a 193 

crosshead speed of 10 mm/min. Reported results were obtained from at least 10 samples 194 

for each type of film 195 

2.4.9. Testing of antimicrobial activity. The in vitro antibacterial activity of films and 196 

clays was assessed following our previous work (Martucci et al. 2015) using agar disc-197 

diffusion assay. Test bacteria (100 µL of inoculums containing approximately 105 - 106 198 

CFU/mL of each bacterium) were plated onto Mueller Hinton (Merck, Darmstadt, 199 

Germany) agar medium. Discs (10 mm in diameter) were cut from the films with a 200 

circular knife and placed onto the inoculated plates. The antimicrobial activity of clay 201 

specimens was assessed in a similar way. Each clay (3 mg), was dispersed in 1 mL of 202 

bi-distilled water and submitted to an ultrasonic bath (Testlab, 160 W, 40 KHz) for 20 203 

min. Then 30µL of the obtained suspension was poured into agar wells (5 mm 204 

diameter). All plates were incubated at 37 ºC for 24 h. The diameter of the inhibition 205 

zone surrounding the film discs or wells (in the case of clays) was measured with a 206 

manual caliper (Mitutoyo, Japan) from the center of the film. The antimicrobial activity 207 

of clay specimens was assessed in a similar way. The result was determined as the mean 208 

of three separate experimental runs. 209 

2.4.10. Cu2+ ion desorption studies. Cu2+MMt (0.1 g) was extensively washed with bi-210 

distilled water under stirring for 24 h. The resulting dispersion was centrifuged at 8000 211 

rpm (Sartorius type4-15, Germany) for 10 min. The concentration of the cupric cation 212 
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left in the washed Cu2+MMt was determined by EDX. The in vitro antibacterial activity 213 

of the washed clay was qualitatively measured with the agar disc-diffusion method, as 214 

previously described for clays. 215 

2.5. Statistical analysis 216 

Experimental data were statistically analyzed by the one-way analysis of variance 217 

(ANOVA) using the Origin Pro 8 software and Turkey’s test for comparison of means at 218 

a 5 % significance level. All the results are expressed as the mean ± standard deviation. 219 

 220 

3. RESULTS AND DISCUSSION 221 

3.1. Modified clay characterization 222 

X-ray diffraction patterns of pristine and modified clay were used to determine the 223 

variations in the basal d001-spacing due to cation switching (Figure 1). Na+MMt 224 

exhibited a diffraction peak at 2θ = 7.3º (1.21 nm, according to Bragg eq.) 225 

corresponding to the basal interlayer d001-spacing (Mosser et al. 1997). Upon acid 226 

activation, this reflection slightly shifted to lower angles corresponding to an interlayer 227 

distance of 1.25 nm (Figure 1), in line with the exchange of Na+ for H+ with larger ionic 228 

radius (ca. H+ hydrated: 0.900 nm vs. Na+ hydrated: 0.450 nm). The slight difference in 229 

the basal reflection of montmorillonite caused by switching Na+ for H+ (Figure 1), 230 

suggests that acid activation had a minor effect on the layered structure (Zhao et al. 231 

2013). After treating H+MMt with CuSO4,
 the d001-spacing increased up to 1.30 nm 232 

(corresponding to 2θ = 6.8º) confirming the intercalation of Cu2+. The small increment 233 

can be ascribed to the disparity between the ionic radius of the hydrated forms of Cu2+ 234 

(i.e., hexaaqua) and Na+ cations (He et al. 2001; Tanaka et al. 2007). A small new 235 

reflection also appeared at around 2θ = 13º in the diffraction patterns of Cu2+MMt, 236 

probably attributed to an amorphous cupric hydroxide such as Cu(OH)2·H2O, as already 237 
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accounted for by others (Zhou et al. 2004). The increment in d-spacing of MMt due to 238 

Cu2+ ion exchange was previously observed, but values might vary due to differences in 239 

the composition of the raw clay and the treatment preformed on it (Zhou et al. 2004; Hu 240 

& Xia 2006; Tanaka et al. 2007; Bruna et al. 2012, 2014, 2015).  241 

EDX data further supported the presence of Cu2+ ions in the clay (Figure 2 c). Na+MMT 242 

was distinguished by the presence of a peak at 0.05 evK in EDX spectrum assigned to 243 

Na+ which was absent in H+MMt and Cu2+MMt spectra (Figures 2 a, b and c, 244 

respectively). The occurrence of a new peak at 8 evK in Cu2+MMt spectrum (Figure 2 c) 245 

is a strong experimental evidence of copper exchange (Bagchi et al. 2013; Das et al. 246 

2013). Since the intensity of such peak is proportional to the element concentration, the 247 

loading of Cu2+ cation onto MMt was estimated in about 3 % (on element basis) (Figure 248 

2 c). 249 

The effect of the cation exchange on the clay structure was analyzed by FTIR (Figure 250 

3). All the spectra exhibited relevant absorption bands at 3631 cm−1 (stretching vibration 251 

of structural OH group (Al-OH)), 3432 and 1631 cm−1 (stretching and bending 252 

vibrations of interlayer H2O, respectively), 1045 cm−1 (stretching vibration of Si-O), and 253 

915-18 cm-1 (Al-Al-OH bending vibration) characteristic of clay structure (Zhou et al. 254 

2004; Zhao et al. 2013; Pereira et al. 2013). The absorption feature of Na+MMt 255 

remained unchanged after acid activation, thereby suggesting that the aluminum cations 256 

of montmorillonite seemed not to be leached by the acid treatment, as postulated by 257 

others (Tong et al. 2005). The peak situated at 3631 cm−1 was slightly shifted 258 

downwards upon Cu2+ exchange, which is explained by the presence of interactions 259 

between cupric ions and clay, primarily in the inter-lamellar space, through 260 

complexation of copper ions as previously indicated by other authors (Bagchi et al. 261 

2013; Pereira et al. 2013). The intensity of the hydration band barely changed due to 262 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

differences in the water coordination capacity of Na+ and Cu2+ ions. Finally other 263 

characteristic vibrations of the tetrahedral sheets, namely Si-O-Si stretching (993 cm−1) 264 

and Si-O-Al bending (521 cm−1), reached higher wave length values and decreased 265 

intensity indicating a somewhat disordered MMt structure (Xia et al. 2010).  266 

The inhibitory activity of pristine and modified clay against Gram-negative and Gram-267 

positive bacteria was investigated with the agar disc diffusion method, and results are 268 

summarized in Table 1. Both pathogens revealed sensitivity to all clay suspensions, 269 

indicating certain Na+MMt antibacterial activity. The ability of Na+MMt, Ca2+MMt and 270 

H+MMt to reduce the bacterial plate counts of E. coli was previously observed by Hu & 271 

Xia (2006), though no reports on the inhibitory effect on Gram-positive bacteria have 272 

come to light. Cu2+MMt, on the other hand, exerted a powerful antibacterial action 273 

against both bacteria tested (p<0.05), related to the higher adsorption capacity of this 274 

clay (Guo et al. 2011) and the intrinsic antibacterial activity of Cu+2 (He et al. 2001; Hu 275 

and Xia 2006; Malachová et al. 2011). The presence of Cu2+ cations leads to a surplus 276 

of positive charge onto the mineral surface. They serve as potential attachment sites for 277 

negatively charged cell surface (Stotzky 1980), and result in the appearance of defects 278 

in the bacterial outer membrane responsible for the cell permeability, so that cell 279 

contents are lost. The higher susceptibility of L. monocytogenes to Cu2+MMt (Table 1) 280 

could be related to differences in the composition and thickness of the outer membrane 281 

of Gram-positive and Gram-negative bacteria (Hu et al. 2005; Malachovà et al. 2009). 282 

The cell wall of Gram-positive bacteria is thicker than that of Gram-negative bacteria 283 

due to the presence of a thick peptidoglycan layer (20-80 nm) containing phosphate and 284 

carboxylic groups. This layer provides a negatively charged site onto the cell wall of 285 

Gram-positive bacteria where cations bind. Gram-negative bacteria have a thinner 286 

monolayer of peptidoglycan, lipopolysccharide and phospholipids, phospholipids being 287 
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the only main binding site for cations (Vaara 1992). Such differences in the cell wall 288 

structures of Gram-positive and Gram-negative bacteria turned L. monocytogenes more 289 

vulnerable to Cu2+MMt. 290 

Cu2+MMt slightly reduced its antibacterial activity (about 10 % of the original, Table 1) 291 

after extensive washing for 24 h, evidencing that copper is retained onto the clay surface 292 

(Hu et al. 2005; Hu & Xia 2006). EDX results also confirmed the high retention rate of 293 

copper after washing, copper desorption being below 8 % (data not shown). 294 

3.2. Characterization and comparison of the functional properties of control 295 

and Ge/Cu2+MMt films 296 

3.2.1. Structural analysis 297 

The diffractogram of the unfilled gelatin film (control) displayed a broad and low 298 

intensity peak at 2θ = 6.2-9.5 º representing the typical amorphous state of gelatin films 299 

produced at a temperature higher than the helix-coil transition (Thelix-coil ∼ 35 ºC) (Figure 300 

4) (Martucci et al. 2007). The XRD of the nancomposite films was characterized by the 301 

presence of shoulders at 2θ < 7° denoting a certain degree of matrix component 302 

intercalation, i.e., gelatin and/or glycerol, into the clay galleries causing widening of the 303 

d-space relative to that of the pristine MMt (Figure 4). (Martucci et al. 2007; Rao et al. 304 

2007; Martucci & Ruseckaite 2010; Farahnaky et al. 2014; Nagarajan et al. 2014). 305 

The FTIR spectra of un-filled Na+MMt and Cu2+MMt- incorporated gelatin films 306 

(Figure 5) presented characteristic peaks in the amide region at 1631 cm-1 (amide I, 307 

C=O stretching), 1551 cm-1 (amide II, N-H bending,), and 1237 cm-1 (amide III, C-N 308 

and N-H) (Sionkowska et al. 2004; Martucci & Ruseckaite 2010). The addition of clay 309 

shifted amide-I, amide-II and amide-III to higher frequency c.a. 1646, 1553, and 1245 310 

cm-1, respectively, confirming the occurrence of hydrogen bonding interactions between 311 

gelatin and acceptor atoms such as oxygen from free-OH and Si–O–Si groups in MMt, 312 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

as documented for other protein-MMt composites (Kumar et al. 2010; Martucci & 313 

Ruseckaite 2010).  314 

3.2.2. Optical properties 315 

The neat gelatin film was transparent without any color tint, while nanocomposites were 316 

less transparent and colored as Ge/Cu2+MMt. The light transmission capacity of gelatin 317 

films was reduced by clay addition (Table 2, p<0.05), indicating a strong light scattering 318 

effect due to clay particles with sizes higher than the wave-length of the visible light 319 

(Martucci & Ruseckaite 2010; Shotornivit et al. 2010; Rhim 2013). The sharp decrease 320 

in transparency experienced by the Ge/Cu2+MMt film should be attributed not only to 321 

the scattering explained by some clay structures but also to coloration increase due to 322 

the transformation of some cupric ions to cupric oxides during the drying stage of the 323 

film manufacturing process, as previously described by Bruna and co-workers (Bruna et 324 

al. 2012). The significant differences noticed in the parameter analyzed were not 325 

detected when the films´ visual appearance was qualitatively observed, since all 326 

specimens remained transparent.  327 

3.2.3. Moisture content, water vapor permeability and tensile properties 328 

The average moisture content (MC) of all films remained around 13.8 ± 1.6 g of 329 

water/100 g of film (Table 2). The constancy of MC at any cation in MMt suggests that 330 

the hydration capacity of cations did not affect the moisture uptake capacity of the 331 

nanocomposite films.  332 

The water vapor barrier property of gelatin films was substantially improved (p<0.05, 333 

Table 2) by adding 5 % w/w MMt regardless of the cation intercalated, suggesting that 334 

switching the cation marginally alters the hydrophilic/hydrophobic balance of the filler. 335 

The strong interactions between gelatin and nano-clays (Martucci & Ruseckaite 2010) 336 

consume some hydrophilic groups, reducing the water uptake by capillarity at the 337 
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interface. The presence of water vapor impermeable silicate platelets or other structures 338 

with large aspect ratios dispersed in the polymer matrix also contribute to obstructing 339 

and delaying the transmission of water vapor through the matrix, as postulated for other 340 

protein nanocomposite films (Farahnaky et al. 2014; Kanmani & Rhim 2014; Nagarajan 341 

et al. 2014).  342 

The incorporation of 5 % w/w MMt noticeably improved (p<0.05) TS values as 343 

compared to control. The great affinity of biopolymer and nano-clay limiting the 344 

molecular mobility of protein chains, together with the uniform dispersion of the nano- 345 

reinforcements might lead to an increase in TS (Martucci & Ruseckaite 2010; 346 

Farahnaky et al. 2014; Nagarajan et al. 2014). The differences in tensile strength 347 

between our nanocomposites and other reported in the literature could be attributed to 348 

differences in clay type, matrix source, processing technologies, or a combination 349 

thereof. The extensibility decreased significantly (p<0.05) in about 42 % when adding 5 350 

% w/w clay, and no major effects (p>0.05) were detected with cation exchange in MMt 351 

(Table 2). The reduction in ε% was previously reported in gelatin-based 352 

nanocomposites (Rao et al. 2007; Martucci & Ruseckaite 2010; Kanmani & Rhim 2014; 353 

Farahnaky et al. 2014), and has been attributed to the restricted motion of gelatin 354 

molecules due to interfacial interactions between gelatin and nano-clay.  355 

3.2.4. Antimicrobial activity 356 

Antibacterial assays (Table 3) indicate that free-MMt gelatin films have shown little 357 

antimicrobial activity against both Gram-negative and Gram-positive pathogenic 358 

bacteria, probably due to the presence of short chain polypeptides (Minervini et al 2003; 359 

Di Bernardini et al. 2010). Clay addition enlarged the diameter of the clearing zone 360 

(Table 3) and the activity visibly varied with the cation in MMt and the pathogen tested. 361 

The Ge/Cu2+MMt film exhibited the highest inhibitory activity, in agreement with the 362 
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antimicrobial performance of clays (Table 1). Overall, Ge/Cu2+MMt film greatly 363 

inhibited the growth of Gram-positive (L. monocytogenes) as compared to Gram-364 

negative (E. coli) pathogens (Table 3). The inhibitory action of Ge/Cu2+MMt against 365 

both microorganisms was assumed to be similar to that described above for Cu2+MMt: 366 

attachment to clay surface, followed by cell wall damage, loss of cell content and, 367 

eventually microbial death (Hu et al. 2005; Guo et al. 2011). These results are consistent 368 

with the reduction of 98 % of E. coli colonies exposed to cellulose acetate films 369 

incorporated with 5 % w/w of Cu2+MMt (Bruna et al. 2014) and 99 % of Escherichia 370 

coli ATCC 25922 and Listeria innocua ATCC 33090 colonies in contact with PLA/5 % 371 

w/w Cu2+MMt (Bruna et al. 2015). 372 

 373 

4. CONCLUSION 374 

This manuscript shows the feasibility of preparing antibacterial Ge/Cu2+MMt films with 375 

extended time of action by immobilizing Cu2+ through complexation with hydroxyl 376 

groups in montmorillonite. Cu2+MMt demonstrated low leaching level in the tested 377 

conditions and retained about 90 % of its inhibitory activity against E. coli and L. 378 

monocytogenes. Yet its sensitivity varied with the ability of the tested bacteria to attach 379 

to the positively charged clay surface. The addition of Cu2+MMt as inorganic 380 

antibacterial into the gelatin matrix enhanced several key properties for packaging 381 

applications (tensile strength increased 280 %, and water vapor permeability declined 382 

43 %) and sufficed to inhibit Gram negative and Gram positive bacteria at relatively low 383 

loading growth (c.a. 5 % w/w Cu2+MMt). Studies on the evaluation of copper ions 384 

release from nanocomposite films exposed to food simulants are being conducted in 385 

order gain insight into the potential risk assessment of their use as food contact 386 

materials.  387 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 388 

5. REFERENCES 389 

Bagchi, B., Kar, S., Dey, S., Bhandary, S., Roy, D., Mukhopadhyay, T., Das, S., & 390 

Nandy, P. (2013). In situ synthesis and antibacterial activity of copper nanoparticle 391 

loaded natural montmorillonite clay based on contact inhibition and ion release. 392 

Colloids and Surfaces B: Biointerfaces 108, 358–365 393 

Bruna, J. E., Galotto, M. J., Guarda, A., & Rodriguez, F. (2014). A novel polymer based 394 

on MtCu2+/cellulose acetate with antimicrobial activity. Carbohydrate Polymers 102, 395 

317-323 396 

Bruna, J. E., Peñaloza, A., Guarda, A., Rodríguez, F., & Galotto, M. J. (2012). 397 

Development of MtCu2+/LDPE nanocomposites with antimicrobial activity for 398 

potential use in food packaging. Applied Clay Science 58, 79–87 399 

Bruna, J. E., Quilodrán, H., Guarda, A., Rodríguez, F., Galotto, M. J., & Figueroa, P. 400 

(2015). Development of antibacterial MtCu/PLA nanocomposites by casting method for 401 

potential use in food packaging Journal of the Chilean Chemical Society 60, 2868-2873 402 

Das, D., Nath, B. C., Phukon, P., & Dolui, S. K. (2013). Synthesis and evaluation of 403 

antioxidant and antibacterial behavior of CuO nanoparticles. Colloids and Surfaces B: 404 

Biointerfaces 101, 430-433 405 

Di Bernardini, R., Harnedy, P., Bolton, D., Kerry, J., O’Neill, E., Mullen, A. M. (2011) 406 

Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and 407 

by-products. Food Chemistry 124, 1296-1307 408 

Drelich, J., Li, B., Bowen, P., Hwang, J-Y, Mills, O., & Hoffman, D. (2011). 409 

Vermiculite decorated with copper nanoparticles: novel antibacterial hybrid material. 410 

Applied Surface Science 257, 9435–9443 411 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Farahnaky, M., Dadfar, S. M. M., & Shahbazi, M. (2014). Physical and mechanical 412 

properties of gelatin–clay nanocomposite. Journal of Food Engineering 122, 78–83 413 

Guo, Z., Li, Y., Zhang, S., Niu, H., Chen, Z., & Xu, J. (2011). Enhanced sorption of 414 

radiocobalt from water by Bi (III) modified montmorillonite: a novel adsorbent. Journal 415 

of Hazardous Materials 192, 168–175 416 

He, H. P., Guo, J. G., Xie, X. D., & Peng, J. L. (2001). Location and migration of 417 

cations in Cu2+−adsorbed montmorillonite. Environment International 26 (5–6), 347–418 

352 419 

Hernandez-Muñoz, P., Villalobos, R., & Chiralt, A. (2004). Effect of cross-linking 420 

using aldehydes on properties of glutenin rich films. Food Hydrocolloid 18, 403-411 421 

Hu, C-H., & Xia, M-S. (2006). Adsorption and antibacterial effect of copper-exchanged 422 

montmorillonite on Escherichia coli K88. Applied Clay Science 31 (2006) 180–184 423 

Hu, C-H., Xu, Z-R., & Xia, M-S. (2005). Antibacterial effect of Cu2+-exchanged 424 

montmorillonite on Aeromonas hydrophila and discussion on its mechanism Veterinary 425 

Microbiology 109, 83–88 426 

Irissin-Mangata, J., Bauduin, G., Boutevin, B., & Gontard, N. (2001). New plasticizers 427 

for wheat gluten films. European Polymer Journal 37, 1533-1541 428 

Kanmani, P., & Rhim, J-W. (2014). Physical Mechanical and Antimicrobial Properties 429 

of Gelatin Based Active Nanocomposite Films Containing AgNPs and Nanoclay. Food 430 

Hydrocolloids 35, 644–652 431 

Kloprogge, J. T., Mahmutagic, E., & Frost, R. L. (2006). Mid Infrared and Infrared 432 

Emission Spectroscopy of Cu-Exchanged Montmorillonite. Journal of Colloid and 433 

Interface Science 296(2), 640-646 434 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Kumar, P., Sandeep, K. P., Alavi, S., Truong, V. D., & Gorga, R. E. (2010). Preparation 435 

and characterization of bio-nanocomposite films based on soy protein isolate and 436 

montmorillonite using melt extrusion. Journal of Food Engineering 100(3), 480-489 437 

Llorens, A., Lloret, E., Picouet, P. A., Trbojevich, R., & Fernandez, A. (2012). Metallic-438 

based micro and nanocomposites in food contact materials and active food packaging 439 

Trends in Food Science & Technology 24, 19-29 440 

Malachová, K., Praus, P., Pavlíčková, Z., & Turicová, M. (2009). Activity of 441 

antibacterial compounds immobilised on montmorillonite. Applied Clay Science 43, 442 

364–368 443 

Malachová, K., Praus, P., Rybková, Z., & Kozák, O. (2011). Antibacterial and 444 

antifungal activities of silver, copper and zinc montmorillonites. Applied Clay Science 445 

53, 642–645 446 

Martucci, J. F., & Ruseckaite, R. A. (2010). Biodegradable Bovine Gelatin/Na+-447 

Montmorillonite Nanocomposite Films. Structure, Barrier and Dynamic Mechanical 448 

Properties. Polymer-Plastics Technology and Engineering 49(6), 581-588 449 

Martucci, J. F., & Ruseckaite, R. A. (2009). Biodegradation of three-layer laminate 450 

films based on gelatin under indoor soil conditions. Polymer Degradation and Stability 451 

94, 1307–1313 452 

Martucci, J.F., & Ruseckaite, R.A. (2008). Structure and properties of 453 

gelatine/montomorillonite nanocomposite films, in Recent Advances in Research on 454 

Biodegradable Polymers and Sustainable Polymers. Volume 1, A. Jimenez, G.E. Zaikov 455 

(Eds), Nova Publishers, Huntington, NY, pp. 27-36. ISBN 978-1-60692-095-4 456 

Martucci, J.F., Accareddu, A.M.E., & Ruseckaite, R.A. (2012). Preparation and 457 

Characterization of Plasticized Gelatin Films Cross-Linked With Low Concentrations of 458 

Glutaraldehyde. Journal of Material Science 47(7), 3282-3292  459 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Martucci, J. F., Gende, L. B., Neira, L. M., & Ruseckaite, R. A. (2015). Oregano and 460 

lavender essential oils as antioxidant and antimicrobialadditives of biogenic gelatin 461 

films. Industrial Crops and Products 71, 205–213 462 

Martucci, J. F., Vázquez, A., & Ruseckaite, R. A. (2007). Nanocomposites based on 463 

gelatin and montmorillonite. Morphological and thermal studies. Journal of Thermal 464 

Analysis and Calorimetry 89(1), 117-122 465 

Minervini, F., Algaron, F., Rizzello, C. G., Fox, P. F., Monnet, V., & Gobbetti, M. 466 

(2003). Angiotensin I-converting-enzyme-inhibitory and antibacterial peptides from 467 

Lactobacillus helveticus PR4 proteinase-hydrolysec casein of milk from six species. 468 

Applied and Environmental Microbiology 69, 5297-5305 469 

Mosser, C., Michot, L. J., Villierns, F., & Romeo, M. (1997). Migration of cations in 470 

Cu(II)-exchanged montmorillonite and laponite upon heating. Clays and Clay Minerals 471 

45, 789–802 472 

Nagarajan, M., Benjakul, S., Prodpran, T., & Songtipya, P. (2014). Characteristics of 473 

bio-nanocomposite films from tilapia skin gelatin incorporated with hydrophilic and 474 

hydrophobic nanoclays Journal of Food Engineering 143, 195-204 475 

Pereira, F. A. R., Sousa, K. S., Cavalcanti, G. R. S., Fonseca, M. G., de Souza, A. G., & 476 

Alves, A. P. M. (2013). Chitosan-montmorillonite biocomposite as an adsorbent for 477 

copper (II) cations from aqueous solutions. International Journal of Biological 478 

Macromolecules 61, 471–478 479 

Rao, Y. (2007). Gelatin-clay nanocomposites of improved properties. Polymer 58(18), 480 

5369-5375 481 

Rhim, J-W., Park, H-M., & Ha, C-S. (2013). Bio-nanocomposites for food packaging 482 

applications. Progress in Polymer Science 38(10-11), 1629–1652 483 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Sionkowska, A., Wisniewski, M., Skopinska, J., Kennedy, C. J., & Wess, T. J. (2004). 484 

Molecular interactions in collagen and chitosan blends. Biomaterials 25, 795–801 485 

Stotzky, G. (1980) Surface interactions between clay minerals and microbes, viruses, 486 

and soluble organics, and the probable importance of these interactions to the ecology 487 

ofmicrobes in soil. In Microbial Adhesion to Surfaces (eds. R. C. BERKELEY et al.), 488 

pp. 233-247. Soc. Chem. Industry, London. 489 

Tanaka, M., Itadani, A., Abe, T., Taguchi, H., & Nagao, M. (2007). Observation of 490 

characteristic IR band assignable to dimerized copper ions in montmorillonite. Journal 491 

of Colloid and Interface Science 308, 285–288 492 

Tong, G., Yulongo, M., Peng, G., & Zirong, X. (2005). Antibacterial effects of the 493 

Cu(II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella 494 

choleraesuis. Veterinary Microbiology 105(2), 113–122 495 

Vaara M. (1992). Agents that increase the permeability of the outer membrane. 496 

Microbiology and Molecular Biology Reviews 56, 3395-3411. 497 

Xia, M., Jiang, Y., Zhao, L., Li, F., Xue, B., Sun, M., Liu, D., & Zhang, X. (2010). Wet 498 

grinding of montmorillonite and its effect on the properties of mesoporous 499 

montmorillonite Colloids and Surfaces A: Physicochemical and Engineering Aspects 500 

356, 1–9 501 

Zhao, H., Zhou, C. H., Wu, L. M., Lou, J. Y., Li, N., Yang, H. M., Tong, D. S., & Yu, 502 

W. H. (2013). Catalytic dehydration of glycerol to acrolein over sulfuric acid-activated 503 

montmorillonite catalysts. Applied Clay Science 74, 154–162 504 

Zhou, Y. H., Xia, M. S., Ye, Y., & Hu, C. H. (2004). Antimicrobial ability of Cu2+-505 

montmorillonite. Applied Clay Science 27 (3–4), 215–218. 506 

 507 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 1. Antimicrobial activity against E. coli and L. monocytogenes of clays measured as 

inhibition zone. 

 Inhibition zones (mm) 

d0: 5mm Na+MMt H+MMt Cu2+MMt Cu2+MMt 

(after release) 

E. coli 12.0±2.8 a 

 

12.5±2.1 a 

 

15.5±0.7 b 

 

14.0±1.0 b 

 

L. 

monocytogenes 

11.0±1.4 a 

 

15.5±0.8 bc 

 

16.5±0.7 b 

 

14.5±0.5 c 

 

 

Any two means in the same row followed by the same letter are not significantly (P>0.05) 
different according to Turkey test. 
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Table 2. Thickness, opacity, Water vapor permeability (WVP), moisture content (MC), 

tensile strength (TS) and elongation at break (ε%) of obtained gelatin films. 

 Tickness 
(mm) 

Opacity 
(uA*nm) 

WVP*1013 
(Kg/Pa.s.m) 

 RH 65:0 

MC 
(%) 

TS 
(MPa) 

εεεε% 
(%) 

Ge 0.21±0.04 a 33.0±2.0 a 2.50±0.13 a 14.00±1.25 a 3.9±1.0 a 96.9±11.9 a 

Ge/Na+MMt 0.15±0.02 a 49.0±3.0 b 1.62±0.14 b 13.74±0.62 a 11.9±1.6 b 56.4±6.8 b 

Ge/H+MMt 0.18±0.06 a 51.0±9.0 b 2.04±0.30 b 13.78±0.58 a 9.9±1.6 b 49.8±6.9 b 

Ge/Cu2+MMt 0.16±0.03 a 89.8±13.0 c 1.43±0.40 b 13.58±1.03 a 10.9±1.4 b 48.4±7.8 b 

Any two means in the same column followed by the same letter are not significantly 

(P>0.05) different according to Turkey test. 
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Table 3. Antimicrobial activity against E. coli and L. monocytogenes measured as 

inhibition zone expressed as millimeter (mm) of Ge films with and without clays. 

 

d0:15mm Inhibition zone (mm) 

Ge Ge/Na+MMt Ge/H+MMt Ge/Cu2+MMt 

E. coli 15.0±0.0 a 

 

19.5±0.7 b 

 

24.0±1.4 c 

 

23.5±0.7 c 

 

L. 

monocytogenes 

16.0±1.0 a 

 

30.5±0.7 b 

 

33.5±0.7 c 

 

37.0±2.8 c 

 

 
Any two means in the same row followed by the same letter are not significantly (P>0.05) 
different according to Turkey test. 
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FIGURE CAPTIONS 1 

Figure 1. XRD pattern of Na
+
MMt (___), H

+
MMt (….) and Cu

2+
MMt (----). 2 

Figure 2. Chemical composition of a) Na
+
MMt, b) H

+
MMt and c) Cu

2+
MMt 3 

determined by EDX. 4 

Figure 3. FTIR spectra between 4000–400 cm
-1

 for Na
+
MMt(___), H

+
MMt (….) and 5 

Cu
2+

MMt (----). 6 

Figure 4. XRD pattern of Ge (-.-.-), Ge/Na
+
MMt (___), Ge/H

+
MMt (….) and 7 

Ge/Cu
2+

MMt (----) films. 8 

Figure 5. FTIR spectra of Ge (-.-.-), Ge/Na
+
MMt (___), Ge/H

+
MMt (….) and 9 

Ge/Cu
2+

MMt (----) films. 10 

 11 
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Highlights 

1. Cu2+MMt was obtained by ion exchange from acid activated Na+MMt 

2. Cu2+MMt showed strong activity against E. coli and L. monocytogenes  

3. Inclusion of 5 % w/w clay enhanced tensile strength and water vapor barrier of gelatin 
films  

4. Significant antibacterial property was observed for Ge/Cu2+MMt films  

 

 

   

 


