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Constructing a statistical mechanics for Beck-Cohen superstatistics
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The basic aspects of both Boltzmann-Gibl&G) and nonextensive statistical mechanics can be seen
through three different stages. First, the proposal of an entropic functi®aH—k=;p;In p; for the BG
formalism with the appropriate constraint& (p;=1 andZ;p;E;=U for the BG canonical ensemblesecond,
through optimization, the equilibrium or stationary-state distributipp=e ™ #5i/Zg s with ZBG:Eje‘ﬁEi for
BG). Third, the connection to thermodynamiesg.,Fgs= — (1/8)In Zgg andUge= — (3/9B)In Zgg). Assum-
ing temperature fluctuations, Beck and Cohen recently proposed a generalized BoltzmanrB{&jtor
= [5dBf(B)e PE. This corresponds to the second stage described above. In this paper, we solve the corre-
sponding first stage, i.e., we present an entropic functional and its associated constraints which lead precisely
to B(E). We illustrate with all six admissible examples given by Beck and Cohen.
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The foundation of statistical mechanics and thermody- W
namics is a fascinating and subtle matter. Its far reaching > plE;
consequences have attracted deep attention since more than i=1
one century agdsee, for instance, Einstein’s remark on the W
Boltzmann principld1]). The field remains open to new pro- E p
posals focusing nonequilibrium stationary states, such as me- i=1
taequilibrium and others. One of such proposals is honexten-
sive statistical mechanics, advanced in 198%3] (see Ref. where{E;} is the set of eigenvalues of the Hamiltonian with
[4] for reviews. This formalism is based on an entropic in- given boundary conditions. Optimizing,, we straightfor-
dex g (which recovers usual statistical mechanics tpr wardly obtain the distribution corresponding to the equilib-
=1), and has been applied to a variety of systems, coveringum, metaequilibrium, or stationary state, namely,
certain classes of boimetgequilibrium and nonequilibrium
phenomena, e.g., turbulenfg], hadronic jets produced by [1—(1—q)gq(Ei—Uq)]1/(1*<1)
electron-positron annihilatiof6], cosmic rayg7], motion of pi= 2 ) (4)
Hydra viridissima [8], quantum chaos[9], and one- a
dimensional[10] and two-dimensiona[11] maps, among .
others. In addition to this, it has been noted that it could beVith
appropriate for handling some aspects of long-range interact- w
ing Hamiltonian systemgsee Ref.[12], and references — U(1-q)
therein. Zq:jgl [1-(1=q)Bq(Ej—Ug)] , ®)

Let us be more precise. Nonextensive statistical mechan-
ics is based on the entropic forfnere written forW discrete and

=Ug (U1=Ugg), ()

events
w B
1-2 o w Ba=w ©)
i=1
= =1 q
Sq k q_l (21 pl 11qER>1 (1) 1‘21 pj
with B being the Lagrange parameter. We easily verify that, for
W g=1, we recover the celebrated BG equilibrium distribution
$1=Spc= k2, pilnp;. @ o bE
pi= ZBG ’ (7)
If we focus on the canonical ensemifgystem in contact
with a thermostat we must add the following constraif8]: with
w
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Very recently, Beck and Cohen have propo§&8] a gener-  function s(x) should generically have a definite concavity
alization of the BG factor. More precisely, assuming that the¥x [0,1]. Conditions(12) imply that S=0 and that cer-
inverse temperatur@ might itself be a stochastic variable, tainty corresponds t&=0.

they advance Let us now address the constraint associated with the en-
ergy. We consider the following form:
B(E)- | apt(s)e ?e @ W
0 21 u(p)E;
i
where the distributiorf (3') satisfies —w ——— =U [0=u(x)<1;u(0)=0u(1)=1].
. 21 u(p;)
i=
f, dp'f(B")=1. (10 (13)

) , , For the BG internal energygs, we haveu(x)=x, and for
Itis clear thatf(8") = (8’ — B) recovers the usual BG fac- he nonextensive ond,, we haveu(x)=x9. The function

AN 2
tor. '_rhe_y have also SUOW.” that’ (s ).'S the Y (or x%) u(x) should generically be a monotonically increasing one.
distribution, then the distribution associated with nonexten-

sive statistical mechanics is reobtained. They have also illuch: ertainty about E; implies U=E,. The quantity
trated their proposal with the uniform, bimodal, log-normal (pi)/=j=1u(p;) constitutes itself a probability distribution

N : ’(which generalizes the escort distribution defined in Ref.
?&d])': distributions. Moreover, they defingsee also Ref. [15]). The constraint associated with the energy applies, in

principle, for the(metaequilibrium state. However, its valid-

2 . ity (either exact or approximatéas been verified in various
@((. . .>EJ’ dgf(B)(- - _))1 (1)  nonequilibrium stationary states related with nonextensive
(B)? — statistical mechanicge.g., turbulencd5], granular matter

[18]). For example, we may interpret the energy spectrum
where we have introduced the notatigg in order to avoid used in the constraint in the same spirit as the temperature
confusion with the present. Clearly, if f(8’) is they dis- used by Beck and Cohen. It represents the mean value of
tribution, thenqggc=q (see Ref[13]). Finally, they argue some fluctuation distribution. The general foundational ques-
that whenevelqgc— 1|<1, for all admissiblef(B8), we can  tion and it; possible geometrical interpretatin phase
write the asymptotic expressioB(E)=(e #E)~e (AE(1  spacg remain, nevertheless, open.

Osc™

+02E?/2), whereo?=(B2)—(B)2. This expression coin- Let us consider now the functional

cides with the expansion of the power-law function that rep- W

resents the generalized Boltzmann factor associated with > u(p)E,

nonextensive statistical mechanics if we use Ekf) and w = S

identify ggc=q. In other words, nonextensive statistical me- d=S—a, pi—B—w— (14
chanics would correspond, for this particular mechanism, =1 E

where nonextensivity is driven by the fluctuations g&f to = u(pi)

the universal behavior whenever the fluctuations are rela-

tively small. where @« and 8 are Lagrange parameters. The condition

This is no doubt a very deep and interesting redaut,it d®/ap;=0 implies
does not constitute by itself a statistical mechanics. The rea-
son is that the factdB(E) has been introduced through what

can, in some sense, be considered asdrocprocedure. s'(p)—a~ u’(p;)(Ej—U)=0. (15)
The basic element which is missing in order to be legitimate E u(pi)
to speak of a statistical-mechanical formalism is to be able to i=1

derivethe factorB(E) from an entropic functional with con- o
crete constraintsand especially the energetic constraint, L€t US now heuristically assume
which generates the concept of thermostat tempenatline

purpose of the present paper is to exhibit such entropic form ()= ptws’(x), (16)
and constraint. _

Let us first write a quite generic entropic forfinom now UOO =X+ vs(X) +¢. (17
on k=1 for simplicity), namely, But the conditiors(0)=u(0)=0 impliesé=0, and the con-

w ditionss(1)=0 andu(1)=1 imply thatu=1, hence,
$=2 s(p) [s()=0;s(0)=s(1)=0]. (12 U(X) =X+ v(X) (18)
and

For the BG entropysg s, We haves(x) = —x Inx, and for the
nonextensive on&;, we haves(x) =(x—x9)/(q—1). The u’' (x)=1+wvs'(x). (19
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Observe that ify=0, we haveu(x)=x and Eﬂlu(pj) and dynamic purposes. A strong argument along this line

:z}/\ilpjzl_ concerns the stability of the entropy under arbitrarily small
The replacement of Eq19) into Eq. (15) yields deformation of the statistical state probabilit[d$]. For in-
stance, Abd17] and Leschd16], respectively, showed that
Ei—U S, is stable andsf is unstable.
atfw—— Let us now compare thB(E) factor obtained by Beck-
u(p)) Cohen formalism with the distribution presented here in Eq.
, j=1 (21). In addition to the fact that the former does not include
s'(pi) = E-u ' (20 the normalization constant whereas the latter does, we notice
1-Br— : that theB(E) factor has parameters such@s=(p), instead
D of the parameters;, U, v, andﬁ/E}Nu(pj) [generalization
- u(p;) of Eq. (6)] appearing in Eq.21). This problem will be
handled as follows. Since our aim is to determine filmec-
hence tional formsof s(x) andu(x), it is enough to work with only
one variable. So, we takﬁo=/3/2}"’u(pj)=1 andU=0.
Ei—-U Let us now determine. Using Egs(15) and(19), and inte-
at By grating, we obtain
,-21 u(p;) . dy
— r—1 = - -
pi=(s’) E-U , (21 u(x) (1+6¥V)J01_V v (23
1-Brv—y

It is physically reasonable to assume théx) monotonically
E u(p;) increases withx, hencedu/dx=0, and (1+ av)/(1—vE)
=0. We shall verify later that + av>0, hence it must be
where ') 1(---) is the inverse function o§'(---). The v<1E.Ifwe noteE*, the lowest admissible value & we

condition =} ;p;=1 enables theanalytical or numerical ~ar€ allowed to consider=1/E*. In particular, if E*—
elimination of the Lagrange parameter The function(2) ~ % thenitmust bes=0. An example wher&* is finite is

is to be identified WItI‘B(E)/chd EIB(EI) from Ref[13] In nonextensive statistical mechanics th>l In th|s case,
other words, if E(y) is the inverse function of E.—1/(1~0), hencev=1—q. We can trivially verify that

o 41 , this value forv, together withs(x)=(x—x%)/(g—1) and
B(E)/JodE'B(E’), we have that u(x)=xY precisely satisfy Eq(18).
E(y)—U Summarizing, the final form afi(x) is given by
at By ——

S u(py) o=+ aren) [V (24)

X i=1 ' 0 1—E(y)/E*’

s(x)= J dy = : (22)

0 1_31,# and, therefore,
> u(p)) X +E
=l s(x):j dy—2TEW)_ (25)

1-E(y)/E*

which, together with Eq(18), completely solves the problem

once v is determined. Summarizing, given an admissible N what follows, we shall illustrate the above procedure
function B(x), we have uniquely determined the functions by addressingill the admissible examples appearing in Ref.
s(x) andu(x), which replaced into Eq$12) and (13) con- [13]. The cases associated with the Diiaand they distri-
cludes the formulation of the statistical mechanics associateutions forf(3) (respectively corresponding to BG and non-
with the Beck-Cohen superstatistics. An important remarkextensive statistical mechanjosan be handled analytically.
remains to be made, namelgny monotonic function ofS The other four caseguniform, bimodal, log-normal, an&
given by Eq.(12) also is a solution at this stage. Which of distributions forf(8)] have been treated numerically as fol-
those is to be retained for a possible connection with therlows. We first choosé (), then calculateB(E), and from
modynamics is a different matter, and remains an open issubis calculatef/;dE'B(E’). By inverting the axes of the
at the present stage. For example, for nonextensive statisticediriables, we find the inverdg(y) of Beck-Cohen supersta-
mechanics, in what concerns the stationary distributign, tistics. From this, we obtai&*. Two cases are possible. The
and the Renyi entropySi=In[1+(1-q)S)/(1-q) are first one corresponds t&* ——, hencev=0, u(x)=x,
equivalent. In other wordst this leve] we could indistinc- and s(x)=ax+ [3dyE(y). The conditions(1)=0 deter-
tively useS, or S§. There is, however, a variety of physical minesa, which is therefore given by = — [3dyE(y). The
arguments which are out of scope of the present work busecond case corresponds to a finite and known vallg* of
which nevertheless point, in that particular ca8gas being ~ which determines v=1/E*. From this, we calculate
the correct physical quantity to be used for thermodynamid sdy/[1—E(y)/E*]. From the conditioru(1)=1 and using
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FIG. 1. Functionss(x) (a) and u(x) (b) for illustrative ex-
amples of the cases focused on in Héf3]. From top to bottom:
(i) F distribution [f(B)=24/(2+B)*]; (i) bimodal [f(B)
=0.58(B—1/2)+0.58(B—3/2)]; (i) log normal [f(B8)
= (1B\2m)e @5 B%21]: (i) uniform [f(8)=1 on the interval
[1/2,3/2], and zero otherwide (v)Dirac & [f(B)=4d(8—1)]; (vi)
v [£(B)=[(B)*?¥(0.8)?T(1.25)]e”+?54], which corresponds to
q=1.8.

Eq. (24), it is easy to see that dav=1+«a/E*
=1/fédy/[1— E(y)/E*]>0 and it is direct to determine,
which in turn enables the calculation afx) using once
again Eq(24). Finally, from Eq.(18), we calculates(x), and
the problem is solved.

In Figs. 1@ and Xb), typical examples o0§(x) andu(x)
are presented for all the cases addressed in[R8}. In Fig.

PHYSICAL REVIEW E67, 026106 (2003

S/k

Y

FIG. 2. W=2 entropies associated with the examples presented
in Fig. 1.

similar considerations are valid for other constraints if we
were focusing on say the grandcanonical ensembles. The
step we have discussed is necessary for having the statistical
mechanics generating these superstatistics through a varia-
tional principle. What remains to be done is the possible
connection with thermodynamics. This is not a trivial task
because unless we are dealing with a nonlinear power law for
u(x) (which precisely is nonextensive statistical mechanics
the Lagrange parameter is not factorizable in Eq.(21),
hence no partition function can be defined in the usual sense,
i.e., a partition function which depends gh (and other
analogous parametgrsdut doesnot depend one. Summa-
rizing, nonextensive statistical mechanics not only paradig-
matically represents, as shown in RE1L3], the universal
behavior of all Beck-Cohen superstatistics in the liopic
=qg=1, but it is the only one for which an-independent
partition function can be defined.

Last but not least, let us emphasize that the present results
strengthen the idea that the statistical-mechanical methods
can bein principle used out of equilibrium as well. To be
more specific, we can think of using theim in equilibrium
(e.g., in thet—< limit of noninteracting or short-range in-
teracting Hamiltonians, as well as in the melimHoc of

long-range interacting many-body Hamiltonian systems; this
is essentially BG statistical mechanic§i) in metaequilib-
rium (e.g., in the IirrgﬁxlimNHw of long-range interacting

many-body Hamiltonian systems; see, for instance, Ref.
[12]), and (iii) for appropriate classes aftationary states
(see, for instance, Ref§5,18]). Further foundational work

2, we show the entropies associated with all these exampl&goyid be welcome for caséii).

assumingW=2.

Let us conclude by saying that it has been possible to find Useful remarks from F. Baldovin are gratefully acknowl-
expressions for the entropy and for the energetic constrairedged. Partial support from PCI/MCT, CNPq, PRONEX, and
that lead to a generic Beck-Cohen superstatistics. Of coursEAPERJ(Brazilian agenciesis also acknowledged.
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