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Constructing a statistical mechanics for Beck-Cohen superstatistics
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The basic aspects of both Boltzmann-Gibbs~BG! and nonextensive statistical mechanics can be seen
through three different stages. First, the proposal of an entropic functional (SBG52k( i pi ln pi for the BG
formalism! with the appropriate constraints (( i pi51 and( i piEi5U for the BG canonical ensemble!. Second,
through optimization, the equilibrium or stationary-state distribution (pi5e2bEi/ZBG with ZBG5( je

2bEj for
BG!. Third, the connection to thermodynamics~e.g.,FBG52(1/b)ln ZBG andUBG52(]/]b)ln ZBG). Assum-
ing temperature fluctuations, Beck and Cohen recently proposed a generalized Boltzmann factorB(E)
5*0

`db f (b)e2bE. This corresponds to the second stage described above. In this paper, we solve the corre-
sponding first stage, i.e., we present an entropic functional and its associated constraints which lead precisely
to B(E). We illustrate with all six admissible examples given by Beck and Cohen.
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The foundation of statistical mechanics and thermo
namics is a fascinating and subtle matter. Its far reach
consequences have attracted deep attention since more
one century ago~see, for instance, Einstein’s remark on t
Boltzmann principle@1#!. The field remains open to new pro
posals focusing nonequilibrium stationary states, such as
taequilibrium and others. One of such proposals is nonex
sive statistical mechanics, advanced in 1988@2,3# ~see Ref.
@4# for reviews!. This formalism is based on an entropic i
dex q ~which recovers usual statistical mechanics forq
51), and has been applied to a variety of systems, cove
certain classes of both~meta!equilibrium and nonequilibrium
phenomena, e.g., turbulence@5#, hadronic jets produced b
electron-positron annihilation@6#, cosmic rays@7#, motion of
Hydra viridissima @8#, quantum chaos@9#, and one-
dimensional@10# and two-dimensional@11# maps, among
others. In addition to this, it has been noted that it could
appropriate for handling some aspects of long-range inter
ing Hamiltonian systems~see Ref. @12#, and references
therein!.

Let us be more precise. Nonextensive statistical mech
ics is based on the entropic form~here written forW discrete
events!

Sq5k

12(
i 51

W

pi
q

q21 S (
i 51

W

pi51;qPRD , ~1!

with

S15SBG52k(
i 51

W

pi ln pi . ~2!

If we focus on the canonical ensemble~system in contact
with a thermostat!, we must add the following constraint@3#:
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(
i 51

W

pi
q

5Uq ~U15UBG!, ~3!

where$Ei% is the set of eigenvalues of the Hamiltonian wi
given boundary conditions. OptimizingSq , we straightfor-
wardly obtain the distribution corresponding to the equil
rium, metaequilibrium, or stationary state, namely,

pi5
@12~12q!bq~Ei2Uq!#1/(12q)

Z̄q

, ~4!

with

Z̄q5(
j 51

W

@12~12q!bq~Ej2Uq!#1/(12q), ~5!

and

bq5
b

(
j 51

W

pj
q

, ~6!

b being the Lagrange parameter. We easily verify that,
q51, we recover the celebrated BG equilibrium distributi

pi5
e2bEi

ZBG
, ~7!

with

ZBG5(
j 51

W

e2bEj . ~8!
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Very recently, Beck and Cohen have proposed@13# a gener-
alization of the BG factor. More precisely, assuming that
inverse temperatureb might itself be a stochastic variable
they advance

B~E!5E
0

`

db8 f ~b8!e2b8E, ~9!

where the distributionf (b8) satisfies

E
2`

`

db8 f ~b8!51. ~10!

It is clear thatf (b8)5d(b82b) recovers the usual BG fac
tor. They have also shown that, iff (b8) is the g ~or x2)
distribution, then the distribution associated with nonext
sive statistical mechanics is reobtained. They have also il
trated their proposal with the uniform, bimodal, log-norm
and F distributions. Moreover, they define~see also Ref.
@14#!

qBC5
^b2&

^b&2 S ^•••&[E
2`

`

db f ~b!~••• ! D , ~11!

where we have introduced the notationqBC in order to avoid
confusion with the presentq. Clearly, if f (b8) is theg dis-
tribution, thenqBC5q ~see Ref.@13#!. Finally, they argue
that wheneveruqBC21u!1, for all admissiblef (b), we can
write the asymptotic expressionB(E)5^e2bE&.e2^b&E(1
1s2E2/2), wheres25^b2&2^b&2. This expression coin-
cides with the expansion of the power-law function that re
resents the generalized Boltzmann factor associated
nonextensive statistical mechanics if we use Eq.~11! and
identify qBC5q. In other words, nonextensive statistical m
chanics would correspond, for this particular mechanis
where nonextensivity is driven by the fluctuations ofb, to
the universal behavior whenever the fluctuations are re
tively small.

This is no doubt a very deep and interesting result,but it
does not constitute by itself a statistical mechanics. The
son is that the factorB(E) has been introduced through wh
can, in some sense, be considered as anad hocprocedure.
The basic element which is missing in order to be legitim
to speak of a statistical-mechanical formalism is to be abl
derivethe factorB(E) from an entropic functional with con
crete constraints~and especially the energetic constrai
which generates the concept of thermostat temperature!. The
purpose of the present paper is to exhibit such entropic f
and constraint.

Let us first write a quite generic entropic form~from now
on k51 for simplicity!, namely,

S5(
i 51

W

s~pi ! @s~x!>0;s~0!5s~1!50#. ~12!

For the BG entropySBG , we haves(x)52x ln x, and for the
nonextensive oneSq , we haves(x)5(x2xq)/(q21). The
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function s(x) should generically have a definite concavi
;xP@0,1#. Conditions~12! imply that S>0 and that cer-
tainty corresponds toS50.

Let us now address the constraint associated with the
ergy. We consider the following form:

(
i 51

W

u~pi !Ei

(
i 51

W

u~pi !

5U @0<u~x!<1;u~0!50;u~1!51#.

~13!

For the BG internal energyUBG , we haveu(x)5x, and for
the nonextensive oneUq , we haveu(x)5xq. The function
u(x) should generically be a monotonically increasing on
Certainty about Ej implies U5Ej . The quantity
u(pi)/( j 51

W u(pj ) constitutes itself a probability distribution
~which generalizes the escort distribution defined in R
@15#!. The constraint associated with the energy applies
principle, for the~meta!equilibrium state. However, its valid
ity ~either exact or approximate! has been verified in variou
nonequilibrium stationary states related with nonextens
statistical mechanics~e.g., turbulence@5#, granular matter
@18#!. For example, we may interpret the energy spectr
used in the constraint in the same spirit as the tempera
used by Beck and Cohen. It represents the mean valu
some fluctuation distribution. The general foundational qu
tion and its possible geometrical interpretation~in phase
space! remain, nevertheless, open.

Let us consider now the functional

F[S2a(
i 51

W

pi2b

(
i 51

W

u~pi !Ei

(
i 51

W

u~pi !

, ~14!

where a and b are Lagrange parameters. The conditi
]F/]pj50 implies

s8~pj !2a2
b

(
i 51

W

u~pi !

u8~pj !~Ej2U !50. ~15!

Let us now heuristically assume

u8~x!5m1ns8~x!, ~16!

u~x!5mx1ns~x!1j. ~17!

But the conditions(0)5u(0)50 impliesj50, and the con-
ditions s(1)50 andu(1)51 imply thatm51, hence,

u~x!5x1ns~x! ~18!

and

u8~x!511ns8~x!. ~19!
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Observe that ifn50, we haveu(x)5x and ( j 51
W u(pj )

5( j 51
W pj51.

The replacement of Eq.~19! into Eq. ~15! yields

s8~pi !5

a1b
Ei2U

(
j 51

W

u~pj !

12bn
Ei2U

(
j 51

W

u~pj !

, ~20!

hence

pi5~s8!21S a1b
Ei2U

(
j 51

W

u~pj !

12bn
Ei2U

(
j 51

W

u~pj !

D , ~21!

where (s8)21(•••) is the inverse function ofs8(•••). The
condition ( i 51

W pi51 enables the~analytical or numerical!
elimination of the Lagrange parametera. The function~21!
is to be identified withB(E)/*0

`dE8B(E8) from Ref.@13#. In
other words, if E(y) is the inverse function of
B(E)/*0

`dE8B(E8), we have that

s~x!5E
0

x

dy

a1b
E~y!2U

(
j 51

W

u~pj !

12bn
E~y!2U

(
j 51

W

u~pj !

, ~22!

which, together with Eq.~18!, completely solves the problem
once n is determined. Summarizing, given an admissi
function B(x), we have uniquely determined the functio
s(x) andu(x), which replaced into Eqs.~12! and ~13! con-
cludes the formulation of the statistical mechanics associ
with the Beck-Cohen superstatistics. An important rem
remains to be made, namely,any monotonic function ofS
given by Eq.~12! also is a solution at this stage. Which
those is to be retained for a possible connection with th
modynamics is a different matter, and remains an open is
at the present stage. For example, for nonextensive statis
mechanics, in what concerns the stationary distribution,Sq

and the Renyi entropySq
R5 ln@11(12q)Sq#/(12q) are

equivalent. In other words,at this level, we could indistinc-
tively useSq or Sq

R . There is, however, a variety of physic
arguments which are out of scope of the present work
which nevertheless point, in that particular case,Sq as being
the correct physical quantity to be used for thermodyna
02610
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and dynamic purposes. A strong argument along this
concerns the stability of the entropy under arbitrarily sm
deformation of the statistical state probabilities@16#. For in-
stance, Abe@17# and Lesche@16#, respectively, showed tha
Sq is stable andSq

R is unstable.
Let us now compare theB(E) factor obtained by Beck-

Cohen formalism with the distribution presented here in E
~21!. In addition to the fact that the former does not inclu
the normalization constant whereas the latter does, we no
that theB(E) factor has parameters such asb0[^b&, instead
of the parametersa, U, n, andb/( j

Wu(pj ) @generalization
of Eq. ~6!# appearing in Eq.~21!. This problem will be
handled as follows. Since our aim is to determine thefunc-
tional formsof s(x) andu(x), it is enough to work with only
one variable. So, we takeb05b/( j

Wu(pj )51 and U50.
Let us now determinen. Using Eqs.~15! and~19!, and inte-
grating, we obtain

u~x!5~11an!E
0

x dy

12nE~y!
. ~23!

It is physically reasonable to assume thatu(x) monotonically
increases withx, hencedu/dx>0, and (11an)/(12nE)
>0. We shall verify later that 11an.0, hence it must be
n<1/E. If we noteE* , the lowest admissible value ofE, we
are allowed to considern51/E* . In particular, if E* →
2`, then it must ben50. An example whereE* is finite is
nonextensive statistical mechanics withq.1. In this case,
E* 51/(12q), hencen512q. We can trivially verify that
this value forn, together withs(x)5(x2xq)/(q21) and
u(x)5xq precisely satisfy Eq.~18!.

Summarizing, the final form ofu(x) is given by

u~x!5~11a/E* !E
0

x dy

12E~y!/E*
, ~24!

and, therefore,

s~x!5E
0

x

dy
a1E~y!

12E~y!/E*
. ~25!

In what follows, we shall illustrate the above procedu
by addressingall the admissible examples appearing in R
@13#. The cases associated with the Diracd and theg distri-
butions forf (b) ~respectively corresponding to BG and no
extensive statistical mechanics! can be handled analytically
The other four cases@uniform, bimodal, log-normal, andF
distributions forf (b)] have been treated numerically as fo
lows. We first choosef (b), then calculateB(E), and from
this calculate*0

`dE8B(E8). By inverting the axes of the
variables, we find the inverseE(y) of Beck-Cohen supersta
tistics. From this, we obtainE* . Two cases are possible. Th
first one corresponds toE* →2`, hencen50, u(x)5x,
and s(x)5ax1*0

xdyE(y). The conditions(1)50 deter-
minesa, which is therefore given bya52*0

1dyE(y). The
second case corresponds to a finite and known value ofE* ,
which determines n51/E* . From this, we calculate
*0

xdy/@12E(y)/E* #. From the conditionu(1)51 and using
6-3
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Eq. ~24!, it is easy to see that 11an511a/E*
51/*0

1dy/@12E(y)/E* #.0 and it is direct to determinea,
which in turn enables the calculation ofu(x) using once
again Eq.~24!. Finally, from Eq.~18!, we calculates(x), and
the problem is solved.

In Figs. 1~a! and 1~b!, typical examples ofs(x) andu(x)
are presented for all the cases addressed in Ref.@13#. In Fig.
2, we show the entropies associated with all these exam
assumingW52.

Let us conclude by saying that it has been possible to
expressions for the entropy and for the energetic constr
that lead to a generic Beck-Cohen superstatistics. Of cou

FIG. 1. Functionss(x) ~a! and u(x) ~b! for illustrative ex-
amples of the cases focused on in Ref.@13#. From top to bottom:
~i! F distribution @ f (b)524/(21b)4#; ~ii ! bimodal @ f (b)
50.5d(b21/2)10.5d(b23/2)#; ~iii ! log normal @ f (b)

5(1/bA2p)e2[(0.51 ln b)2/2]#; ~iv! uniform @ f (b)51 on the interval
@1/2,3/2#, and zero otherwise#; ~v!Dirac d @ f (b)5d(b21)#; ~vi!
g @ f (b)5@(b)0.25/(0.8)1.25G(1.25)#e21.25b#, which corresponds to
q51.8.
02610
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similar considerations are valid for other constraints if w
were focusing on say the grandcanonical ensembles.
step we have discussed is necessary for having the statis
mechanics generating these superstatistics through a v
tional principle. What remains to be done is the possi
connection with thermodynamics. This is not a trivial ta
because unless we are dealing with a nonlinear power law
u(x) ~which precisely is nonextensive statistical mechanic!,
the Lagrange parametera is not factorizable in Eq.~21!,
hence no partition function can be defined in the usual se
i.e., a partition function which depends onb ~and other
analogous parameters!, but doesnot depend ona. Summa-
rizing, nonextensive statistical mechanics not only parad
matically represents, as shown in Ref.@13#, the universal
behavior of all Beck-Cohen superstatistics in the limitqBC
.q.1, but it is the only one for which ana-independent
partition function can be defined.

Last but not least, let us emphasize that the present re
strengthen the idea that the statistical-mechanical meth
can bein principle used out of equilibrium as well. To be
more specific, we can think of using them~i! in equilibrium
~e.g., in thet→` limit of noninteracting or short-range in
teracting Hamiltonians, as well as in the lim

N→`
lim

t→`
of

long-range interacting many-body Hamiltonian systems; t
is essentially BG statistical mechanics!, ~ii ! in metaequilib-
rium ~e.g., in the lim

t→`
lim

N→`
of long-range interacting

many-body Hamiltonian systems; see, for instance, R
@12#!, and ~iii ! for appropriate classes ofstationary states
~see, for instance, Refs.@5,18#!. Further foundational work
would be welcome for case~iii !.

Useful remarks from F. Baldovin are gratefully acknow
edged. Partial support from PCI/MCT, CNPq, PRONEX, a
FAPERJ~Brazilian agencies! is also acknowledged.

FIG. 2. W52 entropies associated with the examples presen
in Fig. 1.
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