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ABSTRACT

Prediction of RNA secondary structure by free energy minimization has been the standard for over two decades. Here we
describe a novel method that forsakes this paradigm for predictions based on Boltzmann-weighted structure ensemble. We
introduce the notion of a centroid structure as a representative for a set of structures and describe a procedure for its
identification. In comparison with the minimum free energy (MFE) structure using diverse types of structural RNAs, the
centroid of the ensemble makes 30.0% fewer prediction errors as measured by the positive predictive value (PPV) with
marginally improved sensitivity. The Boltzmann ensemble can be separated into a small number (3.2 on average) of clusters.
Among the centroids of these clusters, the ‘‘best cluster centroid’’ as determined by comparison to the known structure
simultaneously improves PPV by 46.5% and sensitivity by 21.7%. For 58% of the studied sequences for which the MFE
structure is outside the cluster containing the best centroid, the improvements by the best centroid are 62.5% for PPV and
31.4% for sensitivity. These results suggest that the energy well containing the MFE structure under the current incomplete
energy model is often different from the one for the unavailable complete model that presumably contains the unique native
structure. Centroids are available on the Sfold server at http://sfold.wadsworth.org.
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INTRODUCTION

RNA molecules are key elements in some of the cell’s most
fundamental processes, including catalysis, RNA splicing, and
regulation of transcription and translation. To a large degree,
the function of a structural RNA molecule is determined by
its structure. Computational methods for modeling RNA
secondary structure have proven to be valuable in many
cases in which crystal structures are not available.

Free energy minimization is a long-established paradigm
in computational structural biology that is based on the
assumption that, at equilibrium, the solution to the under-
lying molecular folding problem is unique, and that the
molecule folds into the lowest energy state. Applications of

this paradigm include RNA folding (Zuker 1989), protein
folding (Anfinsen 1973; Abagyan 1993), and transmembrane
helix packing (Pappu et al. 1999). The prediction of RNA
secondary structure has been widely applied, with good
success. Efficient algorithms for computing the minimum
free energy (MFE) structure and a set of suboptimal struc-
tures (Zuker and Stiegler 1981; Mathews et al. 1999, 2004)
are based on free energy parameters that are estimated or
extrapolated from chemical melting experiments (Xia et al.
1998; Mathews et al. 1999, 2004). An alternative approach
computes all suboptimal foldings within an energy incre-
ment above the MFE (Wuchty et al. 1999). The exponential
growth in the number of these foldings motivated recent
development of the RNAshapes method for the efficient
representation of the near optimal set (Giegerich et al.
2004). In a drastic departure from the MFE perspective,
efforts have been made to characterize the ensemble of
structures (McCaskill 1990; Bonhoeffer et al. 1993).
Recently, we have presented an algorithm that draws sam-
ples from the ensemble of secondary structures in propor-
tion to their Boltzmann weights (Ding and Lawrence 2003).
In other words, our algorithm guarantees the generation
of a statistically representative sample of the Boltzmann-
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weighted ensemble of structures, and thus enables the calcu-
lation of sampling statistics for structural features (Ding and
Lawrence 2001, 2003). In this report, we examine the utility
of such samples in RNA secondary structure prediction.

In applications of the sampling algorithm, we found that
there often exist distinct clusters in the Boltzmann ensem-
ble (Ding and Lawrence 2003), with each cluster containing
similar structures.

To aid in the characterization of the sampled structural
space, we introduce the centroid structure as an efficient
means to characterize the central tendency for a set of
structures and present a procedure for its identification.
We examine the predictive value of the centroid of the
entire sampled ensemble, the centroid of the largest cluster,
and the cluster centroid that is closest to the structure
determined by comparative sequence analysis.

RESULTS

Clustering results

From online RNA databases, 81 RNA sequences from nine
structural RNA classes were selected (see Materials and Meth-
ods section for sequence selection process). For each sequence,
1000 structures sampled by our algorithm (Ding and Lawrence
2003) are clustered, and then the cluster to which the MFE
structure belongs is determined (see Materials and Methods
section for clustering procedure). Although a structural RNA
may have unique structure in solution, we have found that
there exists a small number (3.2 on average) of distinct clusters
of similar structures in the Boltzmann ensemble. Although the

number of conformational states grows exponentially with
sequence length, we found no evidence that the number of
clusters increases with the length of the sequence (correlation
coefficient =�0.1180, P-value= 0.294). Since the algorithm
samples structures in accordance with their Boltzmann-
weighted probabilities, the probability of a cluster is estimated
by the frequency of structures in that cluster, i.e., the number of
structures in the cluster divided by the sample size. In the case
of multiple occurrences of the same structure, each occurrence
is counted in the calculation. The MFE structure is present in
the largest cluster for 55 of the 81 RNAs (68%). For 36 of these
55 sequences, the largest cluster dominates the structure space,
with a probability of 0.7 or higher. Thus, the MFE structure is
in a dominant cluster for only 44% (36/81) of the RNAs. The
clustering results in Table 1 for 12 sequences exemplify possible
scenarios for the cluster of theMFE structure. The cluster of the
MFE structure can be the largest cluster with either a dominant
probability or a moderate probability. The MFE cluster can
also be in a cluster that is secondary in size, or in some cases a
cluster of only small or negligible probability. The 23S rRNA
sequence for Chlamydomonas reinhardtii (accession number
X15727) presents an extreme case for which theMFE structure
is not similar to any structure in the sampled ensemble. These
findings suggest that the MFE structure does not always
represent well the Boltzmann-weighted ensemble, thus moti-
vating our search for more reliable representatives.

Centroid structures as representatives

As an alternative to the MFE structure, we propose the
centroid structure. The centroid for a given set of struc-

TABLE 1. Clusters for sampled structures and MFE structure

RNA type Organism
GenBank

accession no. Length (nt)
Number of
clusters Cluster probabilitiesa

SSU (16S) rRNA Bordetella bronchiseptica U04948 1532 2 0.930* 0.070
tRNA Crossostoma lacustre M91245 70 2 0.906* 0.094
Group I intron Acanthamoeba griffini U02540 556 2 0.950* 0.050
LSU (23S) rRNA Thermus thermophilus X12612 2915 3 0.339* 0.335 0.326
Group I intron Acanthamoeba griffini S81337 526 5 0.464*

0.048
0.400
0.036

0.052

Group II intron Saccharomyces cerevisiae AJ011856 2520 4 0.557*
0.007

0.432
0.004

5S rRNA Agrobacterium tumefaciens X02627 120 2 0.591
0.409*

tmRNA Dehalococcoides ethenogenes
strain 195

GSPb 352 2 0.578
0.422*

RNase P Tarsius syrichta L08801 286 3 0.552
0.446* 0.002

LSU (23S) rRNA Chlamydomonas reinhardtii X15727 2902 3 0.907 0.093 0.000*
RNase P Dermocarpa sp. X97396 359 2 0.803 0.197*
RNase P Leptospirillum ferrooxidans AF296042 327 2 0.804 0.196*

aAsterisk indicates cluster of MFE structure.
bhttp://tigrblast.tigr.org/ufmg/index.cgi?database=d_ethenogenes|seq.
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tures is the structure in the entire structure ensemble that
has the minimum total base-pair distance to the structures
in the set. Thus, the centroid structure can be considered as
the single structure that best represents the central ten-
dency of the set. A centroid is refered to as the ensemble
centroid when the set is the entire collection of structures
sampled from the ensemble. A centroid of a cluster of
similar structures is referred to as a cluster centroid. The
mathematical definition of centroid structure and the deri-
vation for its identification are presented in the Materials
and Methods section. Ever since the emergence of mfold
(multiple folds) it has been a common practice to report a
number of suboptimal folds for predicitive purposes (Zuker
1989, 2003). Both the optimal fold and the best from a long
list of suboptimal folds are of interest for performance
evaluation (Mathews et al. 1999). Here we employ a similar
evaluation strategy and report on the predictive performance
of the ensemble centroid and that of the best of a short list of
cluster centroids, i.e., the best centroid. In other words,
when a reference structure is available as the standard, the
best cluster centroid is defined as the cluster centroid that
has the shortest base-pair distance to this known structure.
Of course, just as with the best suboptimal, the identity of
this best centroid cannot be determined when a reference
structure is not available. In keeping with accepted practice
in this field, we employed structures determined from com-
parative sequence analysis as the standard for comparison
and for the identification of the best centroid.

Performance measures

We consider three measures for making performance com-
parisons between the MFE structure and centroids: base-
pair distance, sensitivity, and PPV. More specifically, we
compute the base-pair distance between the MFE structure
and the structure determined by comparative sequence
analysis and between the ensemble centroid or a cluster
centroid and the structure determined by comparative
sequence analysis. The sensitivity for a predicted structure
is the percentage of base pairs in the structure determined
by comparative sequence analysis that are also present in
the predicted structure. The PPV is the percentage of base
pairs in the predicted structure that are in the structure
determined by comparative sequence analysis. These two
complementary measures have become the standards for
measuring predictive accuracy (Mathews et al. 1999; Dow-
ell and Eddy 2004; Mathews 2004). The sensitivity focuses
on predicting base pairs in the structure determined by
comparative sequence analysis without regard to false posi-
tive base pair predictions, while the PPV focuses on accu-
racy of the predicted base pairs without regard to false
negative base pairs. A perfect prediction is achieved if
both the sensitivity and the PPV are 100%, in which case
the two structures being compared are identical and have a
distance of zero base pairs.

Centroids are closer to the structure determined
by comparative sequence analysis than is the
MFE structure

The ensemble centroid, the centroid of the largest cluster,
and the best centroid are closer in base-pair distance to the
structure determined by comparative sequence analysis than
is the MFE structure for 66 (81.5%), 60 (74.1%), and 74
(91.4%) sequences, respectively. Furthermore, these centroids
are either closer to the structure determined by comparative
sequence analysis than is the MFE structure or are as close to
the structure determined by comparative sequence analysis as
is the MFE structure for 73 (90.1%), 71 (87.7%), and 80
(98.8%) of the 81 sequences, respectively.

For each sequence, the percentage of distance improve-
ment by a centroid over the MFE structure is calculated by
[1�D(C, P)/D(M, P)]3 100%, where D(C, P) is the base-
pair distance between the centroid and the structure deter-
mined by comparative sequence analysis and D(M, P) is the
base-pair distance between the MFE structure and the
structure determined by comparative sequence analysis.
For each RNA type, the averaged percentage of improve-
ment is calculated; these values are presented in Table 2.
For the best cluster centroid, the average improvement is
> 19% for every RNA type. For the ensemble centroid and
the centroid of the largest cluster, substantial improve-
ments are obtained, except for the SRP RNAs.

Centroids yield comparable or improved sensitivities

For each RNA type, the averaged sensitivity by the MFE
structure and the average percentage of improvement in
sensitivity by each of the three centroids are presented in
Table 3. For the MFE structure, the ensemble centroid, and
the centroid of the largest cluster, the results are comparable
with marginal overall improvements by the centroids.
Furthermore, the ensemble centroid and the largest cluster
centroid show equal or improved sensitivity for > 60% of the
sequences. For the best cluster centroid, there is an average
improvement of 21.74% for all RNA types, and negative
improvement is only observed for group II introns.

Centroid predictions yield fewer errors

For each RNA type, the averaged PPV by the MFE structure
and the average percentage of improvement in PPV by each of
the three centroids are presented in Table 4. For both the
ensemble centroid and the best centroid, there is an
improvement over the MFE structure, with an overall average
of 30.0% and an overall average of 46.5%, respectively. For the
best centroid, in particular, the PPV is either the same or
improved for 79 of the 81 sequences (97.5%). For the centroid
of the largest cluster, there is an improvement for seven of the
nine RNA types, with an overall average improvement of
17.6%.
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MFE predictions break down when the
MFE structure is in the wrong cluster

The degree of improvement by the best centroid largely
depends on the location of the MFE structure. For 34
sequences (42.0%) for which the MFE structure is in the
cluster of the best centroid, the base-pair distance and the
PPV are substantially improved, and the sensitivity is
improved appreciably; for the other 47 sequences (58.0%)
for which the MFE structure is outside the cluster of the
best centroid, the improvements by the best centroid are
36.5% for base-pair distance, 62.5% for PPV, and 31.4%
for sensitivity (Table 5). The latter case is illustrated by the
energy landscape of the sampled ensemble and representative
structures for Agrobacterium tumefaciens 5S rRNA (Fig. 1).

Large standard deviations due to a wide range
of improvements

The unusually large standard deviations in Tables 2–5
are due to a wide range of improvements, as illustrated
by Figure 2 for the best centroid. For base-pair distance,
only one sequence has a negative improvement of
�1.1%, and the improvement is as high as 100% (Fig.
2A). In terms of sensitivity, there are small to moderate
negative improvements for 20 of the 81 sequences
(24.7%), with an average of �9.6%, and the positive
improvement is as high as 245.5% (Fig. 2B). For PPV,
the improvement is as high as 313.6%, with only two
sequences having negative improvements of �8.3% and
�25.3% (Fig. 2C).

TABLE 2. Distance improvement by centroids over MFE structure

Number of
Average percentage of improvement in base-pair distance, with respect to MFE structurea

RNA type sequences Ensemble centroid Largest cluster centroid Best cluster centroid

SSU (16S) rRNA 10 12.88 6 4.82 9.11 6 6.15 24.03 6 13.28
LSU (23S) rRNA 10 19.66 6 13.37 16.78 6 13.57 21.52 6 10.53
5S rRNA 10 13.18 6 19.68 17.75 6 28.59 27.90 6 33.08
Group I intron 9 15.98 6 22.09 6.10 6 23.46 23.02 6 7.19
Group II intron 2 21.73 6 0.01 21.11 6 1.40 23.03 6 1.31
RNase P 10 8.72 6 15.35 2.41 6 14.06 21.46 6 17.40
SRP RNA 10 –9.48 6 46.06 –14.64 6 64.23 19.55 6 16.60
tmRNA 10 19.10 6 19.65 12.47 6 16.56 25.20 6 15.72
tRNA 10 21.11 6 17.87 11.77 6 15.78 56.32 6 36.35

Total 81 12.83 6 23.37 8.07 6 28.56 27.32 6 22.97

aDistance improvement by a centroid with respect to the MFE structure = [1 – (base-pair distance between structure determined by comparative
sequence analysis and centroid)/(base-pair distance between structure determined by comparative sequence analysis and MFE structure)] 3
100%.

TABLE 3. Sensitivity of MFE structure and sensitivity improvement by centroids over MFE structure

Number of Sensitivitya
Average percentage of improvement in sensitivity with respect to MFE structureb

RNA type sequences of MFE structure Ensemble centroid Largest cluster centroid Best cluster centroid

SSU (16S) rRNA 10 49.80 6 14.62 –4.14 6 9.31 –2.75 6 8.18 9.10 6 16.51
LSU (23S) rRNA 10 35.35 6 13.26 0.75 6 15.41 0.42 6 15.33 5.46 6 12.43
5S rRNA 10 55.93 6 24.52 2.41 6 37.38 15.15 6 61.20 41.81 6 84.82
Group I intron 9 45.48 6 19.97 6.46 6 21.72 4.60 6 24.19 29.06 6 55.63
Group II intron 2 44.48 6 6.74 0.54 6 9.46 0.33 6 8.08 –2.09 6 4.66
RNase P 10 48.47 6 18.52 –5.60 6 13.95 –13.37 6 33.04 4.48 6 20.35
SRP RNA 10 76.20 6 13.20 –1.93 6 9.48 –0.76 6 14.97 4.00 6 5.73
tmRNA 10 36.16 6 19.06 31.50 6 81.06 24.06 6 78.30 42.64 6 85.71
tRNA 10 64.16 6 17.55 –0.25 6 3.39 9.76 6 31.90 42.83 6 38.90

Total 81 51.34 6 21.29 3.54 6 33.73 4.53 6 39.81 21.74 6 50.24

aSensitivity = (number of base pairs in common between structure determined by comparative sequence analysis and predicted structure)/
(number of base pairs in structure determined by comparative sequence analysis) 3 100%.
bSensitivity improvement by a centroid with respect to the MFE structure = [(sensitivity of centroid)/(sensitivity of MFE structure) – 1] 3
100%.
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Computational costs and availability

The main memory requirement for the clustering proce-
dure is the storage of the distance matrix. The computation
of the centroid is a linear operation. The CPU times and
memory requirements for our version of partition function
calculation for sampling 1000 structures and for clustering
and centroid calculation are given in Table 6 for several
sequences of various lengths. Clustering features including
centroids are available through the module Srna of the
Sfold software for folding and design of nucleic acids.
Sfold is available through Web servers at http://sfold.
wadsworth.org and http://www.bioinfo.rpi.edu/applica
tions/sfold. Sample output for a folded sequence is avail-
able at http://sfold.wadsworth.org/demo.

DISCUSSION

Ourmain finding is that ensemble centroids yieldmore specific
predictions with average improvements of 30.0% in PPV and
3.5% in sensitivity. More strikingly, the best of a small number
of cluster centroids improves the PPV by 46.5% while simulta-
neously increasing the sensitivity by >20%. Perhaps our most
provocative finding is that the MFE structure falls outside the
cluster containing the best centroid for over half of the studied
sequences. In such cases, > 31% more base pairs are correctly
identified with >62% fewer predictive errors (Table 5).

The consistent finding of improved PPV suggests that the
MFE structure may tend to overpredict. It has been argued
that the structure determined by comparative sequence anal-
ysis is a minimal model for RNA secondary structure, because
only base pairs for which comparative evidence exists are
included in the structure model (Larsen and Zwieb 1991).
This raises the possibility that overprediction by MFE struc-
ture is in part due to underrepresentation of base pairs in
the structure determined by comparative sequence analysis.

However, recent comparisons of structure determined by
comparative sequence analysis with crystal structures indicate
that covariation analysis for 16S and 23S rRNAs identifies
nearly all base pairings (Cannone et al. 2002). For 16S and
23S rRNAs, the improvements by the centroids are substan-
tial (Tables 2–4), and thus cannot be attributed to potential
underrepresentation of base pairs in the structure determined
by comparative sequence analysis. For other types of RNAs,
comprehensive data for comparing crystal structures with
structure determined by comparative sequence analysis are
needed for making a more general assessment.

To a large degree, the ensemble centroid is reflective of
the high-frequency base pairs in the structure sample.
Because the base-pair frequencies are sampling estimates
of the base-pair probabilities computed by partition func-
tions (McCaskill 1990), the finding of improved PPV by
the ensemble centroid is consistent with the recent report
that base pairs in MFE structure that have high probabil-
ities have a significantly higher PPV than that of base pairs
with lower probabilities (Mathews 2004).

TABLE 5. Improvement by the best centroid with respect to the
location of the MFE structure

Improvement by best centroid over MFE
structure (%)

Performance
measure

MFE structure
in the cluster

of the best centroid
(34 sequences)

MFE structure
outside the cluster
of the best centroid
(47 sequences)

Base-pair distance 14.62 6 14.28 36.51 6 23.79
Sensitivity 7.03 6 43.20 31.44 6 52.87
Positive predictive
value (PPV) 23.77 6 52.49 62.52 6 66.87

TABLE 4. Positive predictive values (PPV) for MFE structure and PPV improvement by centroids over MFE structure

Number of PPVa
Average percentage of improvement in PPV with respect to MFE structureb

RNA type sequences of MFE structure Ensemble centroid Largest cluster centroid Best cluster centroid

SSU (16S) rRNA 10 48.10 6 14.37 14.08 6 10.67 9.54 6 11.17 28.31 6 22.97
LSU (23S) rRNA 10 33.68 6 13.80 43.86 6 52.10 36.84 6 47.51 46.37 6 43.28
5S rRNA 10 59.78 6 25.76 26.52 6 52.76 21.60 6 57.60 51.42 6 88.62
Group I intron 9 37.95 6 20.81 36.37 6 44.36 20.04 6 32.99 56.50 6 57.24
Group II intron 2 29.31 6 26.14 33.33 6 4.37 31.55 6 1.26 32.84 6 3.09
RNase P 10 42.89 6 16.49 14.16 6 18.84 –3.86 6 37.00 27.99 6 27.41
SRP RNA 10 77.59 6 15.83 1.69 6 13.23 –0.48 6 15.64 9.63 6 12.99
tmRNA 10 30.28 6 19.83 76.78 6 116.97 39.57 6 91.33 95.55 6 122.81
tRNA 10 55.15 6 20.34 26.49 6 36.50 15.29 6 30.62 60.07 6 44.22

Total 81 47.84 6 23.28 30.00 6 55.19 17.64 6 46.87 46.51 6 64.02

aPositive predictive value (PPV) = (number of common base pairs between structure determined by comparative sequence analysis and predicted
structure)/(number of base pairs in predicted structure) 3 100%.
bPPV improvement by a centroid with respect to the MFE structure = [(PPV of centroid)/(PPV of MFE structure)�1] 3 100%.
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All of the ensemble centroids in our analysis are based on
samples of structures. However, we could also use the base-
pair probabilities calculated from partition functions
(McCaskill 1990) for this purpose. Because sample base-
pair frequencies used for centroid calculation approach the
base-pair probabilities as the sample size increases, our
sample-based-centroid will approach the partition-func-
tion-based centroid. However, because base-pair probabil-
ities give only the marginal probabilities of individual base
pairs, the identification of clusters of similar structures
based on base-pair probabilities alone is at best difficult.
In contrast, because sampled structures are real-
izations from the joint high-dimensional distribution of
all base pairs (Ding and Lawrence 2003), clustering is
greatly facilitated. Accordingly, a statistical sample enables
the decomposition of the two-dimensional histogram of
base pairs into subhistograms of distinct structural clusters
(Ding and Lawrence 2003).

Although the best centroids are the best predictors, these
centroids cannot be defined when a reference structure is
unavailable. However, it is an appealing feature that the best
centroid predictions are based ononly three to four clusters, on
average. The small number of cluster centroid predictions can
facilitate further structural determination by allowing the
incorporation of other types of information, e.g., partial struc-
ture information from enzymatic or chemical probing. In
order that our comparison be as direct and clear-cut as possi-
ble, all predicted structures in this analysis are based on the
same set of energy rules (Xia et al. 1998; Mathews et al. 1999).
Wehave not compared these approaches using recently revised
energy rules (Mathews et al. 2004). Comparisons incorporat-
ing constraints (e.g., for forcing modified bases in tRNAs to be
unpaired or for the incorporation of other partial structure
information) and coaxial stacking also await further study.
However, we currently see no reason why the advantages of
these sample-based predictions should not extend to other

Fig 1. live 4/c

FIGURE 1. The energy landscape of the sampled ensemble and representative structures for Agrobacterium tumefaciens 5S rRNA (GenBank
accession number X02627) of 120 nt. The structure determined by comparative sequence analysis is in the larger (blue color) cluster with a
probability of 0.591 and the MFE structure is in the smaller cluster (purple color) with a probability of 0.409. The coordinates for a structure is
(axis 1, axis 2, energy), where the horizontal axes are from multidimensional scaling (MDS; Kruskal and Wish 1977) for presenting high-
dimensional objects in typically two dimensions, and the vertical axis is the free energy of a secondary structure. The base-pair distances between
structures (see Materials and Methods section) are used for MDS. The coordinates are (21.50, �5.73, �46.80) for the structure determined by
comparative sequence analysis, (�27.92, �0.45, �50.50) for the MFE structure, (6.55, 3.15, �36.40) for the ensemble centroid, (20.14, �2.88,
�45.80) for the larger cluster centroid, and (�25.95, �0.34, �50.50) for the smaller cluster centroid.
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cases. We also expect that the use of experimental constraints
may improve the predictions, as demonstrated for predictions
based on free energyminimization (Mathews et al. 1999, 2004).

We have examined the constrained MFE structure, using
base pairs in the ensemble centroid as the constraints. In com-
parison with the ensemble centroid, we found that on average

FIGURE 2. Distribution of the improvement percentage by the best centroid for base pair distance (A), sensitivity (B), and PPV (C). The best
centroid is the cluster centroid with the shortest base-pair distance to the structure determined by comparative sequence analysis.

TABLE 6. Computational costs of clustering and centroid identification in comparison to those for computing partition functions (PFs) and
sampling 1000 structures

CPU timea (seconds) Memory usage (MB)

RNA sequenceb

(GenBank accession no.) Length (nt) PFs Sampling
Clustering and

centroid computation PFs + Sampling
Clustering and

centroid computation

tRNA (M91245) 70 0.06 1.74 9.92 2.65 65.51
5S rRNA (X02627) 120 0.33 3.84 9.73 2.89 65.82
RNase P RNA (X97396) 359 6.54 11.26 11.81 5.62 67.12
Group I intron (U02540) 556 25.57 22.00 12.66 10.00 68.82
Small subunit rRNA (U04948) 1532 527.06 160.09 21.31 57.34 77.04
Large subunit rRNA (X12612) 2915 4082.19 430.21 37.22 198.75 95.79

aBenchmarked on an AMD Opteron 1.8-GHz processor under the Linux operating system.
bThe name of the organism of the sequence can be found in Table 1.
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the sensitivity is improved by 2.22% for the constrained
MFE structure as a result of more predicted base pairs;
however, this small improvement has a cost of 7.05% average
decrease in PPV. It remains an open question whether the
combination of centroid prediction with other approaches
can further improve structure prediction. The base pair fre-
quencies for the entire structure sample aswell as for individual
clusters might be used as weights by the maximal weighted
matching or the iterated loop matching method (Tabaska
et al. 1998; Ruan et al. 2004) for calculating representative
structures with pseudoknots.

As alternatives to examining clusters and centroids for
sampled structures, one might consider clustering the 1000
structures with the lowest energies computed by RNAsub-
opt of the Vienna RNA package (Hofacker 2003) or the
abstract shape representation of foldings within an energy
increment from the MFE (Giegerich et al. 2004). These two
methods focus on the lowest end of the free energy density
of states, whereas structure sampling allows characteriza-
tion of Boltzmann-weighted density of states (Ding and
Lawrence 2003). Thus, the energy landscape is examined
from two different perspectives. For short sequences such
as tRNAs, there is generally a good correspondence be-
tween our centroids and the abstract shapes or centroids
for 1000 best structures (data not shown), as the low energy
structures are well represented in a sample. However, the
degree of correspondence and the overlap in the energy
coverage diminishes as sequence length increases, because
apparently the Boltzmann-weighted density of states be-
comes increasingly dictated by structures at an energy dis-
tance from the MFE, and these structures far outnumber
those with energies near the MFE. For example, for the
rabbit b-globin mRNA of 589 nt (GenBank accession no.
V00879), the 1000 best structures represent a small free
energy range of 1.3 kcal/mol for default parameter settings
of RNAsubopt, while a statistical sample presents represen-
tative structures from a much wider energy interval of
39.80 kcal/mol. In addition, a statistical sample can reveal
‘‘entropic clusters’’ (Ding and Lawrence 2003). For an
entropic cluster, each member has a probability too small
to command individual attention, but collectively the clus-
ter has an appreciable probability because of the large
number of cluster members. In computer RNA folding
applications, it is a common practice among users to
examine structures from mfold. Because the structure sam-
ple from mfold is heuristic rather than statistically or low-
energy representative, the method presented here and the
RNAshapes approach present two improved and comple-
mentary alternatives. The two methods are also comple-
mentary because RNAshapes provides an alternative
method for the identification of structure clusters with
cluster members having a common shape. It will be inter-
esting to apply the RNAshapes algorithm to a sampled
ensemble. The larger number of shape representatives
than the number of our clusters suggests that our clustering

procedure reports major clusters whereas the abstract
shape approach may reveal more subtle structural dissim-
ilarities.

As pointed out by Abagyan (1993), two major compo-
nents are needed to solve macromolecular folding prob-
lems. First, all essential terms of the free energy of a trial
conformation must be calculated with sufficient accuracy,
and, second, a procedure is needed to find the minimum of
this energy function. For RNAs, the global minimum can
be found for an incomplete energy model, i.e., only the
secondary structure model. Thus, it may not be a surprise
that, for a majority of analyzed sequences (47 of 81
sequences), a centroid of an alternative cluster (probably
representing an alternative energy well) is about 37% closer
to the structure determined by comparative sequence anal-
ysis than the MFE structure computed with the incomplete
energy function (Table 5). As argued by Abagyan, since
only a small number of such alternative structural classes
are needed to find this best alternative, an approach that
employs a post-analysis filter function maybe a productive
path for selecting among clusters for improved structure
prediction. Since for protein structural models neither of
Abagyan’s two components is attainable, our findings argue
that a more comprehensive examination of the energy
landscape of the approximate models for structures of
proteins and other macromolecules may also be worthy of
further investigation. Even in the case of the complete
model and energy function, the Boltzmann ensemble view
is also important, e.g., for the investigation of metastable
states, particularly RNA conformational switches (Barrick
et al. 2004; Voss et al. 2004).

MATERIALS AND METHODS

RNA sequences

From publicly available databases (Larsen and Zwieb 1991; Sprinzl
et al. 1998; Brown 1999; Cannone et al. 2002; Alm Rosenblad et al.
2003; Zwieb et al. 2003), we took samples of sequences for diverse
types of structural RNAs with secondary structures determined by
comparative sequence analysis. For tRNAs, RNase P RNAs,
tmRNAs, signal recognition particle (SRP) RNAs, small subunit
(16S or 16S-like) rRNAs, large subunit (23S or 23S-like) rRNAs,
and 5S rRNAs, 10 sequences were randomly selected for each RNA
type. In addition, nine group I introns without undetermined
nucleotides and two group II introns that are available in the
databases were also included in our analysis. The list of the 81
sequences is available from the authors upon request and will also
be posted on the Sfold Web server.

Clustering procedure

For comparing two secondary structures, we use the base-pair
distance. The discriminatory power of this distance is adequate
in our context, because we are interested in comparing multiple
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structures sampled for a given RNA sequence. In other circum-
stances, e.g., when structures of homologous sequences are com-
pared, alternative metrics (Moulton et al. 2000) may be more
appropriate to account for insertions and deletions. For hierarchi-
cal clustering of structures, we employ Diana (Kaufman and
Rousseeuw 1990), a top-down divisive method that has per-
formed well in other contexts (Datta and Datta 2003). For determin-
ing the number of clusters, we use the CH index (Calinski and
Harabasz 1974) that was assessed as the best in a comprehensive
study (Milligan and Cooper 1985). For a given divisive level on the
clustering tree from Diana, the CH index is calculated as
CH(k)= [B(k)/(k� 1)]/[W(k)/(ntotal� k)], where k is the number of
clusters, ntotal is the total number of objects to be clustered, B(k) is the
between-cluster sums of squares, andW(k) is the within-cluster sums
of squares. Thenumberof clusters atwhich theCH index ismaximized
is the optimal number of clusters. This number is then used to
determine the structural clusters by identifying the corresponding
divisive level for the hierarchical clustering tree produced by Diana.
As described below, a secondary structure is an object in a high-
dimensional Euclidean space that can be expressed by an upper trian-
gularmatrix. The clustermeans required for the calculation of the sum
of squares can be computed in two ways: averaging the corresponding
Euclidean coordinates for all structures in a cluster or using the
centroid of a cluster as its mean and computing the base-pair distance
between the centroid and any structure in the cluster (see below for
centroid calculation). The former is computationally intensive for long
sequences whereas the later is a linear operation. We did not observe
appreciable differences in the clustering results by the two methods.
Therefore, we decided to use cluster centroids in the implementation
of the CH index.

For every RNA sequence, we first cluster 1000 statistically
sampled structures. We compute the MFE structure with mfold
3.1 (Zuker 2003) for the same set of Turner thermodynamic
parameters (Xia et al. 1998; Mathews et al. 1999) that are currently
implemented by our sampling algorithm (Ding and Lawrence
2003). To decide which cluster the MFE structure belongs to, we
first identify the cluster whose centroid has the shortest base-pair
distance to the MFE structure. If this distance is less than or equal
to the longest base-pair distance between a structure in the cluster
and the cluster centroid, the MFE structure belongs to this cluster;
otherwise, the MFE structure does not belong to any cluster in the
sample, i.e., it is in a new cluster by itself. The structure sample
size of 1000 has been shown to be sufficiently large to guarantee
statistical reproducibility in typical sampling statistics including
base-pair frequencies, even when two independent samples do
not share a single structure (Ding and Lawrence 2003). As
reported below, base pair frequencies are all that are needed for
centroid identification. In addition, regardless of sequence length,
a cluster with an appreciable probability is expected to be repre-
sented in a sample of 1000 structures. Larger samples would
reveal additional clusters that are insignificant at a significance
level of 0.001.

Matrix representation of RNA secondary structure

For an RNA sequence of n nucleotides, a secondary structure I can
be expressed by an upper triangular matrix of indicators {Iij},
1� i < j� n, where Iij indicates base-pairing status between base
i and base j. Specifically, Iij=1 if the ith base is paired with the jth

base or Iij=0 otherwise. The requirement of at least three unpaired
intervening bases between any base pair implies Iij=0 for j= i+1,
i+2, and i+3, 1� i, i+3� n. The indicators are not independent
of one another, because they are subject to constraints. The
assumption of no pseudoknots implies IijIi0j0 =0 for i0 < i< j0 < j.
Also, when base triples are prohibited, S1�i�nIij� 1, and
S1�j�nIij� 1.

Base-pair distance

While the base-pair indicators are binary and under constraints,
they are also coordinates in a Euclidean space of dimension
(n� 1)n/2. For two structures I1 = {Iij

1} and I2 = {Iij
2}, consider

the following metric D1 and the squared Euclidean distance D2:
D1(I1, I2)=

P
1�i<j�n |Iij

1� Iij
2| andD2(I1, I2)=

P
1�i <j�n (Iij

1� Iij
2)2.

In general, both metrics have sufficient discriminatory power for
the purpose of clustering. In our context, both metrics are equal
to the number of different base pairs in I1 and I2. In other words,
both of the metrics are in fact the well-known base-pair distance
D(I1, I2). This interpretation does not apply to the square root of
D2, i.e., the Euclidean distance.

Definition and derivation of centroid

For a set of m secondary structures I1, I2, . . . , Im, with Ik= {Iij
k},

1� k�m, the centroid for the set is defined as the structure in the
entire ensemble of secondary structures that has the shortest total
base-pair distance to the structures in the set. To compute the
centroid structure, we need to find the secondary structure
I= {Iij} that minimizes the following sum of distances under the
constraints discussed above:

S1�k�mSiSj
Iij
k � Iij

� �2

¼ S1�k�mSi
S

j
Iij
k

� �2�2IijIij
k þ Iij

� �2h i

¼ S1�k�mSi
S

j
Iij
k

� �2�2 S
i
S

j
S1�k�mIij

k
� �

Iij þm S
i
S

j
Iij

¼ Cs þ S
i
S

j
m� 2 Cij

� �
Iij ð1Þ

where Cs=S1�k�mSiSj(Iij
k)2 is a constant for the given structure

set, and Cij=S1�k�mIij
k is the total number of occurrences of base

pair i � j in the structure set. Because Iij
2� Iij, the nonlinear pro-

gramming problem is in fact a linear programming problem with
nonlinear constraints. For a base pair with a frequency under
50%, it cannot be in the centroid because (m� 2Cij) > 0, and
thus Iij must be 0 for the centroid. A base pair with a frequency
of 50% does not influence the double sum in (1), because
(m� 2Cij) = 0. For a base pair with a frequency > 50%, because
(m� 2Cij) < 0, the inclusion of this base pair (i.e., Iij= 1) decreases
the double sum in (1). Furthermore, any two base pairs with
frequencies > 50% do not form a pseudoknot, because no base
pairs in the structure set are involved in pseudoknots. Thus, the
consensus structure formed by all base pairs with a frequency
> 50% is a centroid. We note that for base pairs with a frequency
of 50%, inclusion of any compatible combination into the > 50%
consensus does define another centroid. However, the > 50%
consensus structure is always the unique centroid with the smal-
lest number of base pairs and is the one we use for analysis.
The centroid is referred to as the ensemble centroid when the

structure set is the statistical sample generated by our sampling
algorithm, typically with m=1000. In this case, Cij is the observed
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count for base pair i � j in the sample. For a cluster of similar
structures identified from the statistical sample, the centroid is
referred to as a cluster centroid. In this case, Cij is the observed
count for base pair i � j in the cluster.
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