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ABSTRACT

The mechanisms of gene expression regulation by miRNAs have been extensively studied. However, the regulation of miRNA
function and decay has long remained enigmatic. Only recently, 3′ uridylation via LIN28A-TUT4/7 has been recognized as an
essential component controlling the biogenesis of let-7 miRNAs in stem cells. Although uridylation has been generally
implicated in miRNA degradation, the nuclease responsible has remained unknown. Here, we identify the Perlman syndrome-
associated protein DIS3L2 as an oligo(U)-binding and processing exoribonuclease that specifically targets uridylated pre-let-7
in vivo. This study establishes DIS3L2 as the missing component of the LIN28-TUT4/7-DIS3L2 pathway required for the
repression of let-7 in pluripotent cells.
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INTRODUCTION

RNA processing and stability play key roles in the regulation
of gene expression and have impacts on complex cellular pro-
cesses including cell growth, proliferation, and differentia-
tion. RNA stability is regulated by a dynamic interplay of
post-transcriptional modifications and trans-acting protein
or RNAmolecules that can be stabilizing as well as destabiliz-
ing factors. MicroRNAs (miRNAs) were identified as post-
transcriptional regulators of gene expression more than two
decades ago. MicroRNAs are essential for normal develop-
ment and overall cellular physiology, among other functions.
Dysregulation of miRNA expression can be detrimental
and is often associated with human disease (Croce 2009). Al-
though miRNA transcription, processing, and function have
been studied in great detail, the mechanisms of regulation
and turnover of miRNAs remain unknown.

Recently, the post-transcriptional control of let-7 biogen-
esis in early embryogenesis was revealed. Let-7 miRNA is
one of the key regulators of embryonic cell differentiation,
and its expression must be tightly controlled because it tar-
gets mRNAs encoding factors required for the maintenance
of pluripotency (Bussing et al. 2008). This regulation appears

to take place predominantly on the post-transcriptional level:
The RNA binding protein LIN28A specifically binds the pre-
let-7 family of miRNAs and, in an RNA-dependent manner,
recruits the terminal uridyltransferases TUT4 and TUT7,
which add a stretch of uridines (Heo et al. 2008, 2009;
Piskounova et al. 2008; Hagan et al. 2009; Thornton et al.
2012). In turn, this modification inhibits Dicer-mediated
processing of pre-let-7 miRNAs. In contrast to its role in em-
bryonic stem cells, the monouridylation of pre-let-7 cata-
lyzed by TUT2/4/7 proteins enhances Dicer processing of
certain types of miRNAs in somatic cells (Heo et al. 2012).
Single UMP addition repairs the 3′ ends of some pre-
miRNAs, forming a dinucleotide overhang that is preferred
by Dicer (Zhang et al. 2004).
In mammals, nontemplated uridylation also plays a role in

the processing of other small RNAs, such as U6 small nuclear
RNA (snRNA) (Trippe et al. 2006), and in the degradation of
replication-dependent histone mRNAs (Schmidt et al. 2011;
Minasaki and Eckmann 2012; Su et al. 2013). Intriguingly, re-
cent transcriptome-wide studies revealed extensive uridyla-
tion of a wide spectrum of RNAs (Rissland et al. 2007;
Schmidt and Norbury 2010; Choi et al. 2012), suggesting a
general role for (U)-tailing in RNA metabolism and stability.
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Although the molecular mechanism of LIN28A-TUT-me-
diated oligouridylation has been studied in great detail (Yeom
et al. 2011), the fate of the uridylatedmolecules remains enig-
matic. Oligouridylation of pre-let-7 has been generally as-
sumed to trigger its degradation (Hagan et al. 2009; Heo
et al. 2009); however, the downstream-acting factors, such
as the specific nucleases responsible for this activity, remain
unknown. In this work, we have searched for factors involved
in the downstream processing or degradation of uridylated
RNAs, and we have identified mammalian DIS3L2 as an
oligo(U)-binding exonuclease that specifically targets uridy-
lated let-7 miRNA precursors in vivo. This finding establishes
DIS3L2 as the missing component of the LIN28-TUT4/
7-DIS3L2 pathway, which is required for the regulation of
let-7 expression in pluripotent cells.

RESULTS AND DISCUSSION

Identification of Dis3l2 as an oligo(U)-binding
nuclease in mouse embryonic stem cells

To identify factors involved in the regulation of uridylated
RNAs, we carried out affinity purifications of nuclear and
cytoplasmic fractions from mouse embryonic stem cells
(mESC) with biotin-labeled U30 RNA and a nonspecific
30-nt RNA control (Fig. 1A). Analyses of both the nuclear
and cytoplasmic U30-precipitated proteins revealed several
proteins that were previously reported to specifically inter-
act with (mostly internal) (U)-rich motifs, such as ELAV1
(Kim et al. 2012), TIAR (Kim et al. 2012), hnRNP C
(Soltaninassab et al. 1998), and La protein (Stefano 1984;
Fig. 1B,C; Supplemental Tables S1, S2). When searching
for factors involved in RNA degradation, we found that the

Skiv2l2/mMtr4 RNA helicase, which is a component of the
yeast and human exosome targeting complexes TRAMP
and NEXT (LaCava et al. 2005; Vanacova et al. 2005; Lubas
et al. 2011), specifically coprecipitated with U30 RNA from
both cellular compartments (Fig. 1B,C; Supplemental Tables
S1, S2). However, the most intriguing finding was the identi-
fication of a putative exoribonuclease, Dis3l2, in the U30 sam-
ple from the cytoplasmic fraction (Fig. 1C; Supplemental
Table S1). To further test the oligo(U)-specific binding of
DIS3L2, we have performed filter-aided sample preparation
of IP eluates obtained with random and U30 RNAs, and we
analyzed the resulting peptide mixtures using LC-MS/MS.
The quantification of label-free DIS3L2 showed more than
sevenfold enrichment of DIS3L2 (two biological replicates)
over the random RNA sample (Supplemental Fig. S1A,B;
Supplemental Table S2). DIS3L2 protein has gained attention
only recently due to its association with the Perlman syn-
drome in humans (Astuti et al. 2012). Although it has been
reported that disruption of the DIS3L2 gene can lead to an-
euploidy, mitotic errors, and expression changes in several
mitosis-related proteins (Astuti et al. 2012), the molecular
mechanism of DIS3L2 function has remained elusive.

Human DIS3L2 is an oligo(U)-binding, cytoplasmic,
Mg++-dependent exoribonuclease that does not
associate with exosomes

DIS3L2 is a member of the RNase II family of enzymes
and is a sequence homolog of the main catalytic subunit
of yeast and mammalian exosomes (Rrp44p in yeast, DIS3
and DIS3L in humans) (Fig. 2A; Dziembowski et al. 2007;
Schneider et al. 2007; Tomecki et al. 2010). In mice, DIS3L2
is expressed in at least two isoforms. We have identified
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FIGURE 1. Identification of Dis3l2 as an oligo(U)-binding nuclease inmouse embryonic stem cells (mESCs). (A) Schematic overview of the protocol.
(B) Proteins identified in control and U30 RNA-bound nuclear extracts. (C) Proteins identified in control and U30 RNA-bound cytoplasmic extracts.
Equal amounts of eluates from control RNA (Ctrl) and U30 RNA bait fractions were separated on 12% SDS-PAGE gels and silver stained. Proteins
identified only in the U30 RNA sample are indicated on the right.
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isoform 2 in our U30 RNA samples (Supplemental Tables S1,
S2). Interestingly, isoform 2 was previously identified in the
mouse embryo transcriptome (Diez-Roux et al. 2011). To
further study the biochemistry and function of this protein,
we have subcloned the human DIS3L2 isoform 1, which is
the closest homolog of mouse DIS3L2 isoform 2.

Human DIS3 and DIS3L show distinct subcellular locali-
zation patterns; DIS3 is primarily nuclear, whereas DIS3L is
cytoplasmic (Staals et al. 2010; Tomecki et al. 2010). Here,

we demonstrate that DIS3L2 is localized
in the cytoplasm of mouse ESCs (Fig.
1C) as well as HeLa and HEK293 cells
(Fig. 2B; Supplemental Fig. S2A). This
finding is in agreement with recent re-
ports indicating the cytoplasmic localiza-
tion of human and fission yeast DIS3L2
(Astuti et al. 2012; Lubas et al. 2013;
Malecki et al. 2013). In contrast to DIS3
and DIS3L, DIS3L2 lacks the PIN do-
main (Fig. 2A), which is essential for
interaction with the exosome core (Dzie-
mbowski et al. 2007; Lebreton et al. 2008;
Schneider et al. 2009). Here, we showed
that DIS3L2 did not coprecipitate with
exosome subunits from HEK293T cells,
whereas these subunits were detected in
purified control samples of DIS3 and
DIS3L (Fig. 2C). This finding indicates
the functional independence of DIS3L2
from the exosome core complex. To fur-
ther explore the role of DIS3L2 in RNA
uridylation, we evaluated the binding
and activity of wild-type (WT) and cata-
lytically inactive (D391N) recombinant
DIS3L2 (rDIS3L2) (Supplemental Fig.
S2B) toward U30 RNA. The recombi-
nant protein showed nanomolar affinity
for U30 RNA in vitro (Fig. 2D), required
divalent metal ions for exonuclease activ-
ity (Fig. 2E), and degraded U30 RNA to 2-
to 4-nt end-products (Fig. 2E; Supple-
mental Fig. S2C,D). No degradation
was observed with the D391N mutant
(Supplemental Fig. S2C).

Human DIS3L2 targets 3′-uridylated
precursors of let-7 miRNA

Because we initially pulled down DIS3L2
from embryonic stem cells, we next asked
whether DIS3L2 could be the missing
component of the pre-let-7 uridylation/
degradation pathway. To test the ability
of DIS3L2 to bind pre-let-7 miRNA, we
ectopically expressed pri-let-7 miRNA

and LIN28A in HEK293T-Rex cell lines stably expressing ei-
ther the WT or D391N forms of FLAG-DIS3L2 to promote
pre-let-7 uridylation according to Heo et al. 2008. The in
vivo association between pre-let-7 and DIS3L2 was moni-
tored by RNA immunoprecipitation (RIP) followed by
Northern blot analyses. Mature let-7 miRNA coprecipitated
only with AGO2, which was used as a positive control for
let-7 interaction (Fig. 3A). Intriguingly, the D391N mutant
of DIS3L2 coprecipitated with slower migrating forms of
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FIGURE 2. DIS3L2 is a cytoplasmic, oligo(U)-binding, Mg++-dependent exoribonuclease that
does not associate with exosomes. (A) Schematic representation of the domain organization of
DIS3L2 homologs from Saccharomyces cerevisiae and Homo sapiens. The PIN domain is shown
in green, the CSD1 and CSD2 RNA binding domains are in orange, the RNB ribonuclease domain
is in blue, and the S1 domain is in pink. (B) Immunofluorescence staining of HEK293T and HeLa
cells transfected with either DIS3L2 C-terminally fused to an EGFP (DIS3L2-EGFP) or an empty
EGFP-expressing plasmid (EGFP). DAPI was used to visualize nuclei. The scale bar corresponds
to 10 μm. The Western blot on the right shows the relative abundance of endogenous and EGFP-
tagged DIS3L2 in transfected HeLa cells as detected with a DIS3L2-specific antibody. (C) DIS3L2
does not interact with core exosome components. FLAG-tagged DIS3, DIS3L, and DIS3L2 were
immunoprecipitated from stable cell lines inducibly overexpressing the individual proteins. The
composition of the IP samples was analyzed by Western blot with the indicated antibodies. (D)
DIS3L2 binds U30 RNA with nanomolar affinity. Electromobility shift assay with recombinant
DIS3L2 and 5′ end-32P-labeled U30 RNA. The migration patterns of free RNA and protein-
RNA complexes are indicated. (E) The catalytic activity of DIS3L2 requires divalent metal cations.
A degradation assay using recombinant DIS3L2 with U30 RNA as a substrate was performed in the
presence of different divalent metal ions as indicated. (EDTA) Reactionmixture containing 5mM
EDTA; (np) control reaction without the addition of any protein.
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pre-let-7 miRNA (pre-let-7+U) (Fig. 3A). This binding was
specific to pre-let-7 because no signal was observed with
probes specific for miR-30 or miR-16 (Fig. 3A). The migra-

tion pattern of the extended form of pre-let-7 miRNA resem-
bled that of the uridylated pre-let7 miRNAs induced in
HEK293 cells upon LIN28A overexpression (Heo et al.
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2008). To uncover the identity of D391N-bound fragments,
we modified the immunoprecipitated RNAs with 3′ RNA
linkers to allow for cDNA synthesis using linker-specific
primers. The subsequent PCR amplification with pre-let-7-
specific forward and linker-specific reverse primers revealed
a product of ∼70 nt in length in D391N-bound RNAs but
not in background controls from untransfected HEK293T-
Rex cells (Supplemental Fig. S3A). The PCR products were
subcloned, and 35 clones were sequenced. Sequencing anal-
ysis confirmed that the bound fragments corresponded to
pre-let-7 miRNAs (Supplemental Fig. S3B). Most important-
ly, 31 out of the 35 sequenced clones displayed nontemplate
uridine stretches at their 3′ ends (Fig. 3B). These oligo(U) ex-
tensions ranged between five and 17 nt in length (Fig. 3B),
which strongly correlates with the length distribution of
oligo(U) tails previously identified on pre-let-7a-1 in
HEK293T cells ectopically expressing LIN28A and pri-let-
7a-1 (Heo et al. 2008). To test the importance of oligouridy-
lation for pre-let-7 degradation, we performed in vitro degra-
dation assays with purified FLAG-DIS3L2. We observed
that 4- to 8-nt oligo(U) extensions significantly enhanced
pre-let-7 miRNA degradation by DIS3L2 in vitro (Fig. 3C;
Supplemental Fig. S3C). Because the oligo(A8) modification
also activated degradation by DIS3L2, we examined DIS3L2
nucleotide preference by using unlabeled RNA competitors.
We demonstrated that DIS3L2 prefers oligo(U) over oligo
(A), as only uridylated pre-let-7 and oligo(U) RNAs were
able to inhibit the degradation of labeled uridylated pre-let-
7 RNA substrates (Fig. 3D; Supplemental Fig. S3D).

The lack of pre-let-7+U coprecipitation with WT DIS3L2
was likely due to high turnover of the bound substrate in vivo.
Importantly, overexpression of WT DIS3L2 caused a reduc-
tion in the uridylated pre-let-7 miRNA level compared
with that in untransfected cells or cells overexpressing the
D391Nmutant (Fig. 3A, pre-let-7a+U, RNA input). Interest-
ingly, D391N was also able to pull down pre-let-7U+ frag-
ments without the ectopic expression of LIN28A or pri-let-
7a-1 (Supplemental Fig. S4A). This result suggests that either
low endogenous levels of LIN28A (Heo et al. 2012) or other
TUT cofactor(s) are sufficient to promote efficient pre-let-7
oligouridylation in epithelial cells. We, therefore, examined
whether DIS3L2 targets pre-let-7 in HeLa cells that exhibit
higher endogenous levels of let-7 miRNA expression.
Northern blot analysis of RNAs isolated from cells treated
with two different sets of siRNAs did not indicate pre-let-7
stabilization. On the contrary, Northern blot and Q-PCR
analyses revealed reduced levels of mature let-7 and, less
significantly, miR-30 miRNAs (Supplemental Fig. S4B,C).
This miRNA down-regulation was not due to altered levels
of Dicer (Supplemental Fig. S4D). Currently, the connection
between DIS3L2 down-regulation and let-7 reduction in
somatic cells is unknown. Future studies will reveal whether
miRNA dysregulation may contribute to the development of
Perlman syndrome or increased tumor incidence in individ-
uals bearing the mutant DIS3L2 allele (Astuti et al. 2012).

In summary, we have demonstrated that the cytoplasmic
exoribonuclease DIS3L2 specifically recognizes uridylated
pre-let-7miRNAs in vivo and that pre-let-7 uridylation is im-
portant for DIS3L2-mediated degradation. This establishes
DIS3L2 as a strong candidate for the sought-after nuclease
targeting uridylated pre-let-7 in embryonic stem cells (Fig.
4). Because the TUT-DIS3L2 mechanism strongly resembles
the nuclear polyadenylation-mediated RNA degradation
pathway (Kadaba et al. 2004; LaCava et al. 2005; Vanacova
et al. 2005), future studies should examine to what extent it
operates as a general cytoplasmic (mi)RNA surveillance
and decay pathway.
Over the course of preparing this manuscript, two other

groups reported their findings on the role of DIS3L2 in the
degradation of uridylated RNAs. Malecki et al. identified
DIS3L2 as an oligo(U)-specific enzyme targeting uridylated
mRNAs in Schizosaccharomyces pombe (Malecki et al.
2013). Chang et al. revealed the role of mouse Dis3l2 in the
LIN28A-TUT4/7 pathway (Chang et al. 2013). These authors
showed the in vitro activity of Dis3l2 toward uridylated
pre-let-7 miRNAs and demonstrated that down-regulation
of Dis3l2 in mESCs can lead to elevated levels of uridylated
pre-let-7 without affecting the level of mature let-7
miRNA. Because we observed down-regulation of mature
let-7 upon DIS3L2 knockdown, it is possible that DIS3L2
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has two distinct cell type-specific mechanisms operating dur-
ing let-7 biogenesis.

MATERIALS AND METHODS

LC-MS/MS analysis

Thin slices excised from a stained SDS-PAGE gel were de-stained,
washed, and incubated with trypsin. Liquid chromatography–tan-
demmass spectrometry (LC–MS/MS) analysis was performed using
the EASY-nLC system (Thermo Fisher Scientific) coupled with an
HCTultra PTM Discovery System ion trap mass spectrometer
(Bruker Daltonik). TheMASCOT 2.3.02 (MatrixScience) search en-
gine was used for processing the MS and MS/MS data. Database
searches were performed against the NCBI database (nonredundant,
taxonomy:Mus musculus). (For details, see Supplemental Material.)

siRNA-mediated knock down of DIS3L2

On the day prior to transfection, 1.7 × 105 cells were seeded. siRNAs
were transfected using INTERFERin transfection reagent (Polyplus
transfections) at a 20-nM final concentration, following the manu-
facturer’s instructions. The siRNA treatment was repeated after 24 h,
and the cells were collected for further analysis on the following day.
(See Supplemental Table S4 for the list of siRNAs used.)

In vitro degradation assay

In vitro degradation assays were performed in 10-μL reaction vol-
umes containing 10 mM Tris (pH 8.0), 50 mM KCl, 5 mM
MgCl2, and 10 mM DTT (modified from Lorentzen et al. 2008;
Staals et al. 2010; Tomecki et al. 2010). Typically, 150 nM of purified
recombinant protein and 20 pmol of 5′ end-labeled RNA substrate
were incubated at 37°C for the time periods indicated. The reactions
were terminated with one volume of formamide loading buffer
(80% formamide, 0.1% bromphenol blue, 0.1% xylene cyanol, 5
mM EDTA). The reactions were resolved on denaturing 20% poly-
acrylamide gels containing 8 M urea. The radioactively labeled sub-
strate was detected using a phosphorimaging screen and an FLA-
9000 phosphorimager (FujiFilm).

RNA binding assay

The binding reactions were performed in 10-μL volumes.
Recombinant DIS3L2 was incubated with 5′ end-labeled U30 RNA
for 20 min at room temperature in binding buffer (50 mM KCl,
10 mM Tris pH 8.0, 10 mM DTT, 10% glycerol, 0.1 μg of BSA).
Proteins and RNAs were resolved on native 8% polyacrylamide
gels at 100 V for ∼8 h and visualized by phosphorimaging.

Northern blot analysis

Total RNA was resolved on a 15% denaturing polyacrylamide gel
and transferred to a Hybond-N+ membrane (GE Healthcare)
by electroblotting (BioRad). Hybridization with radioactively la-
beled oligonucleotides was performed in ULTRAhyb-oligo hybridi-
zation buffer (Ambion) at 42°C. Prior to the addition of the labeled

probe, the membrane was prehybridized at 42°C for 2 h. The radio-
active signal was monitored using an FLA-9000 phosphorimager
(FujiFilm).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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