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How many biological replicates are needed in an RNA-seq
experiment and which differential expression tool should
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ABSTRACT

RNA-seq is now the technology of choice for genome-wide differential gene expression experiments, but it is not clear how many
biological replicates are needed to ensure valid biological interpretation of the results or which statistical tools are best for
analyzing the data. An RNA-seq experiment with 48 biological replicates in each of two conditions was performed to answer
these questions and provide guidelines for experimental design. With three biological replicates, nine of the 11 tools evaluated
found only 20%-40% of the significantly differentially expressed (SDE) genes identified with the full set of 42 clean replicates.
This rises to >85% for the subset of SDE genes changing in expression by more than fourfold. To achieve >85% for all SDE
genes regardless of fold change requires more than 20 biological replicates. The same nine tools successfully control their false
discovery rate at $5% for all numbers of replicates, while the remaining two tools fail to control their FDR adequately,
particularly for low numbers of replicates. For future RNA-seq experiments, these results suggest that at least six biological
replicates should be used, rising to at least 12 when it is important to identify SDE genes for all fold changes. If fewer than
12 replicates are used, a superior combination of true positive and false positive performances makes edgeR and DESeq2 the
leading tools. For higher replicate numbers, minimizing false positives is more important and DESeq marginally outperforms
the other tools.
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INTRODUCTION Doerge 2010; Hansen et al. 2011; Busby et al. 2013; Liu
et al. 2014), the precise relationship between replicate num-
ber and the ability to correctly identify the differentially ex-
pressed genes (i.e., the statistical power of the experiment)
has not been fully explored.

The rise of RNA-seq technology has led to the develop-
ment of many tools for analyzing DGE from these data
(e.g., Anders and Huber 2010; Hardcastle and Kelly 2010;
Robinson et al. 2010; Wang et al. 2010; Tarazona et al.
2011; Li et al. 2012; Lund et al. 2012; Trapnell et al. 2012;
Leng et al. 2013; Li and Tibshirani 2013; Frazee et al. 2014;
Law et al. 2014; Love et al. 2014; Moulos and Hatzis 2015).
Each tool makes assumptions about the statistical properties
inherent to RNA-seq data and they exploit a range of normal-
ization and analysis techniques to compute the magnitude of

RNA-seq has now supplanted microarrays as the technology
of choice for genome-wide differential gene expression
(DGE) experiments. In any experimental design, selecting
the appropriate number of biological replicates is a trade-
off between cost and precision. For microarray methods it
has been shown that low replicate experiments often have in-
sufficient statistical power to call DGE correctly (Pan et al.
2002) and cannot accurately measure the natural biological
variability (Churchill 2002). Although it is widely appreciated
that increasing the number of replicates in an RNA-seq ex-
periment usually leads to more robust results (Auer and
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a DGE result and estimate its significance. Several studies
have generated data specifically for the purpose of testing
the assumptions intrinsic to DGE methods (Marioni et al.
2008; SEQC/MAQC-III Consortium 2014), but most rely ei-
ther on RNA-seq data sets designed to test biological hypoth-
eses (Bullard et al. 2010; Rapaport et al. 2013; Seyednasrollah
et al. 2013) or simulated data (Busby et al. 2013; Soneson
2014), or a combination of the two (Kvam et al. 2012; Li
et al. 2012; Dillies et al. 2013; Guo et al. 2013; Soneson and
Delorenzi 2013; Burden et al. 2014). The majority of studies
based on analysis of experimental RNA-seq data rely on data
from experiments with fewer than five replicates per condi-
tion (Marioni et al. 2008; Bullard et al. 2010; Kvam et al.
2012; Li et al. 2012; Busby et al. 2013; Dillies et al. 2013;
Rapaport et al. 2013; SEQC/MAQC-III Consortium 2014;
Soneson 2014), limiting their ability to compare the perfor-
mance of DGE tools as a function of replication.

Two studies explore higher replication by exploiting pub-
licly available RNA-seq data from 21 individual clones of
two laboratory strains of mouse (Bottomly et al. 2011;
Soneson and Delorenzi 2013; Burden et al. 2014). Burden
et al. (2014) consider false discovery rate (FDR) as the
main metric for ranking five tools and conclude that at least
six replicates per condition and multiplexing DGE tools gives
the best results. Soneson and Delorenzi (2013) focus on the
degree of concordance between tools as a metric for compar-
ison and conclude that none of the 11 tools they tested per-
form well with fewer than three replicates. Nevertheless,
since the experiments are from individual mice, the data
may reflect interindividual variance in RNA expression as
well as from other aspects of the experimental protocol.
The same is true of studies in human that make use of data
from individuals to explore higher sample replication in
DGE (Guo et al. 2013; Seyednasrollah et al. 2013). Guo
et al. (2013) expand the replicate number by comparing six
tools using RNA-seq data from breast cancer tumor-normal
paired samples from 53 individuals in The Cancer Genome
Atlas (TCGA, The Cancer Genome Atlas Research Network
2008), using this primarily to guide the construction of a sim-
ulated data set. They conclude that all six of the tools they test
suffer from oversensitivity but that edgeR represents the best
compromise between accuracy and speed. Seyednasrollah
et al. (2013) examine the performance of eight tools using
mouse data (Bottomly et al. 2011) and lymphoblastoid cell
data from a cohort of 56 unrelated Nigerian individuals
from the HapMap project (The International HapMap
Consortium 2005). They recommend limma and DESeq for
data with fewer than five replicates per condition, finding
that edgeR is “oversensitive” and suffers from high variability
in its results while SAMSeq suffers from a lack of statistical
power with few replicates. The idea of combining DGE meth-
ods is implemented in the novel tool PANDORA, which
weights the results of different DGE tools according to their
performance on test data and performs at least as well as
the constituent tools (Moulos and Hatzis 2015).
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In this paper, the performance of DGE tools is evaluated
through the first highly replicated RNA-seq experiment de-
signed specifically to test both the assumptions intrinsic to
RNA-seq DGE tools (Gierliriski et al. 2015) and to assess
their performance. The paper focuses on 11 popular RNA-
seq specific DGE tools (as judged by citations): baySeq,
cuffdiff, DEGSeq, DESeq, DESeq2, EBSeq, edgeR (exact and
glm modes), limma, NOISeq, PoissonSeq, and SAMSeq (see
Table 1 for references) and assesses their performance as a
function of replicate number and fold change. The study pro-
vides general recommendations on:

How many replicates future RNA-seq experiments require to
maximize the sensitivity and accuracy of DGE identifica-
tion and quantification.

The most appropriate DGE tools to use to detect DE genes in
RNA-seq experiments with a given number of replicates.

RESULTS

Tool-specific gold standards

RNA was sequenced from 48 biological replicate samples of
Saccharomyces cerevisiae in each of two well-studied experi-
mental conditions; wild-type (WT) and a Asnf2 mutant.
Quality control and data processing steps reject several repli-
cates from each condition resulting in 42 WT and 44 Asnf2
biological replicates of “clean” data totaling ~889M aligned
reads (see Materials and Methods for a full description on
the experiment, the mutant strain, the sequencing and the
quality control and data processing steps). The data used
for the performance comparison here represents a best-case
scenario for the DGE tools since biological variation within
conditions is low (Pearson’s R>0.97 for all pairs of repli-
cates). In contrast, the mean Pearson’s correlation (1 SD)
between replicates using the count data for four RNA-seq
studies from the ReCount project (Frazee et al. 2011) show
only R=0.86700; (Cheung et al. 2010), R = 0.95100,
(Bottomly et al. 2011), R = 0.897077 (Montgomery et al.
2010; Pickrell et al. 2010), R = 0.647)-33 (Wang et al. 2008).

The performance of each DGE tool as a function of repli-
cate number and expression fold change was evaluated by
comparing the DGE results from subsets of these replicates
against the “gold standard” set of DGE results obtained for
each tool with the full set of clean replicates. The tool-specific
gold standards were computed by running the tool on the
read-count-per-gene measurements from the full set of clean
data and marking as “significantly differentially expressed”
(SDE) those differentially expressed genes with multiple
testing corrected P-values or FDRs <0.05. These gold-stan-
dard runs typically result in 60%—75% of the 7126 genes in
the Ensembl v68 (Flicek et al. 2011) S. cerevisiae annota-
tion being identified as SDE (except for DEGSeq, NOIseq,
and PoissonSeq, which call >80% of the genes as SDE; see
Supplemental Figs. S4, S10, S11A).
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TABLE 1. RNA-seq differential gene expression tools and statistical tests

Assumed
Name distribution Normalization Description Version ~ Citations® Reference
t-test Normal DEseq® Two-sample t-test for equal variances - - -
log t-test Log-normal DEseq® Log-ratio t-test - - -
Mann-Whitney  None DEseq® Mann-Whitney test - - Mann and
Whitney (1947)
Permutation None DEseq® Permutation test - - Efron and
Tibshirani (1993a)
Bootstrap Normal DEseq® Bootstrap test - - Efron and Tibshirani
(1993a)
baySeq* Negative Internal Empirical Bayesian estimate of posterior ~ 2.2.0 159 Hardcastle and Kelly
binomial likelihood (2010)
Cuffdiff Negative Internal Unknown 2.1.1 918 Trapnell et al. (2012)
binomial
DECseq* Binomial None Random sampling model using Fisher’s 1.22.0 325 Wang et al. (2010)
exact test and the likelihood ratio test
DESeq“ Negative DEseq® Shrinkage variance 1.20.0 1889 Anders and Huber
binomial (2010)
DESeq2°¢ Negative DEseq” Shrinkage variance with variance based 1.8.2 197 Love et al. (2014)
binomial and Cook's distance pre-filtering
EBSeq“ Negative DEseq® Empirical Bayesian estimate of posterior 1.8.0 80 Leng et al. (2013)
binomial (median) likelihood
edgeR® Negative TMMP Empirical Bayes estimation and either an ~ 3.10.5 1483 Robinson et al. (2010)
binomial exact test analogous to Fisher’s exact
test but adapted to over-dispersed data
or a generalized linear model
Limma“ Log-normal TMMP Generalized linear model 3.24.15 97 Law et al. (2014)
NOISeq* None RPKM Nonparametric test based on signal-to- 2.14.0 177 Tarazona et al. (2011)
noise ratio
PoissonSeq* Poisson log- Internal Score statistic 1.1.2 37 Li et al. (2012)
linear model
SAMSeq* None Internal Mann-Whitney test with Poisson 2.0 54 Li and Tibshirani

resampling

(2013)

2See Anders and Huber (2010).
bSee Robinson and Oshlack (2010).
“R (v3.2.2) and bioconductor (v3.1).

9As reported by PubMed Central articles that reference the listed reference (December 21, 2015).

With the tool-specific gold standards defined, each DGE
algorithm was run iteratively on i repeated subselections
drawn from the set of clean replicates (without replacement).
For each of the tools, bootstrap runs were performed with i =
100 iterations and n, = 2,...,40 replicates in each condition
(cuffdiff was significantly slower than the other tools so the
number of iterations was reduced to i= 30 for this tool).
For a given value of 7, the mean log, transformed fold
change [log,(FC)] and median adjusted P-value or FDR cal-
culated across all the bootstrap iterations was considered
representative of the measured behavior for each individual
gene. Again, genes were marked as SDE when the adjusted
P-value or FDR was <0.05. From these results, true posi-
tive, true negative, false positive, and false negative rates
(hereafter TPR, TNR, FPR, FNR) were then calculated as a
function of n, for four arbitrary fold-change thresholds
(|10g2(FC)‘ =T € {0,0.3,1,2}), by comparing the SDE
genes from each bootstrap with the SDE genes from the tool’s
gold standard (see Materials and Methods for a detailed de-

scription of these calculations). Intrinsic to this method of
measuring each tool’s performance is the assumption that
the large number of replicates in the full data set will enable
each tool to unambiguously identify the “true” differentially
expressed genes in the experiment.

Tool performance

Figure 1 shows an example of the key performance data for
edgeR (exact) (similar figures for edgeR’s generalized linear
model mode and the other tools can be found in
Supplemental Figs. S2—-512). The fraction of all genes edgeR
(exact) calls as SDE increases as a function of n, and the im-
pact of sampling effects on this fraction shrinks as 7, increases
(Fig. 1A). The TPR performance changes as a function of
both replicate number and fold-change threshold (Fig. 1B,
C). However, edgeR (exact) successfully controls its FDR for
all combinations of both #, and T and the primary effect of
increasing the number of replicates or imposing a fold-
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FIGURE 1. Statistical properties of edgeR (exact) as a function of |log,(FC)| threshold, T, and the number of replicates, #,. Individual data points are
not shown for clarity; however, the points comprising the lines are each an average over 100 bootstrap iterations, with the shaded regions showing the
1 SD limits. (A) The fraction of all (7126) genes called as SDE as a function of the number of replicates (boxplots show the median, quartiles and
95% limits across replicate selections within a bootstrap run). (B) Mean true positive rate (TPR) as a function of #, for four thresholds
Te{0,0.3,1,2} (solid curves, the mean false positive rate [FPR] for T'= 0 is shown as the dashed blue curve, for comparison). Data calculated for every
An,=1. (C) Mean TPR as a function of T for 1n,&€{3,6,10,20,30} (solid curves, again the mean FPR for 1, = 3 is shown as the dashed blue curve, for
comparison). Data calculated every AT =0.1. (D) The number of genes called as true/false positive/negative (TP, FP, TN, and FN) as a function of
n,. The FPR remains extremely low with increasing 7, demonstrating that edgeR is excellent at controlling its false discovery rate. Data calculated for

every An, = 1.

change threshold is to increase the sensitivity of the tool, con-
verting false negatives to true positives (Fig. 1D).

Figure 2 summarizes the performance of all 11 tools con-
sidered in this study as a function of replicate number and
fold-change threshold. The TPR for bootstrap subselections
with three replicates and no fold-change threshold (n, =3,
T=0) is ~20%—-40% for all the tools except NOISeq and
DEGSeq, indicating that with this few replicates these exper-
iments were unable to identify the majority of DE genes
regardless of the tool used to analyze the data (Fig. 2A).
DEGSeq and NOISeq both show strong TPR performance
but this is coupled with high FPRs (DEGSeq: ~17%,
NOISeq: ~9%). For DEGSeq in particular this originates
from overestimating the number of SDE genes regardless of
the number of replicates (Supplemental Fig. S4A). Excluding

842 RNA, Vol. 22, No. 6

DEGSeq, the TPR performance for all the remaining tools is
a strong function of fold change (Fig. 1C; Supplemental Figs.
S2-S12C). For the highest fold-change genes (T'=2), these
tools show TPRs 285% and with the exception of cuffdiff
also show FPRs consistent with zero (Fig. 2E). These tools
are successfully capturing the majority of the true differential
expression signals for the most strongly changing genes from
each tool’s gold standard with as few as three replicates per
condition. For this cohort of high fold-change SDE genes
the TPR is largely insensitive to replicate number. Irrespec-
tive of the tool, increasing the number of replicates to n, =
20 for T'=2 provides only a modest increase in TPR from
~85% to ~95% (Figs 1B, 2F; Supplemental Figs. S2-S12B).
Increasing the number of replicates has a dramatic effect
on the detection rate of genes with smaller fold changes.
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—rows) for three [log,(FC)| thresholds (T€{0,0.5,2}—columns). The TPRs and FPRs for each
tool are calculated by comparing the mean number of true and false positives (TPs and FPs) cal-
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using the full clean data set (error bars are 1 SD). Although the TPRs and FPRs from each tool are
calculated by comparing each tool against itself rather than a tool-independent “gold standard”
(albeit with the full clean data set), the results are comparable across tools except for DEGSeq
which calls a significantly larger fraction of genes as DE for all values of T and n,
(Supplemental Fig. S4). In general, the TPR increases with increasing n, (A—D) while both the
TPR increases and the FPR decreases with increasing T (A,D,E,F). The TPR for bootstrap subse-
lections with three replicates and no fold-change threshold is ~20%-40% for all the tools except
NOISeq and DEGSeq (A). For the highest fold-change genes (T = 2), the tools show TPRs >85%
and, with the exception of cuffdiff also show FPRs consistent with zero ([E] NOISeq and
PoissonSeq produce no FPs for the highest threshold genes and thus no FPR is shown for
them). For T = 2, increasing 7, provides only a modest increase in TPR (~85% to ~95%) irre-
spective of the tool (E and F). PoissonSeq and BaySeq show an increasing FPR with increasing
n, (A-D), and cuffdiff unexpectedly shows an increase in FPR with increasing T. DESeq appears
more conservative than the other tools, consistently returning fewer FPs (particularly for high val-
ues of n, [D and F]) and fewer TPs (particularly at low values of 7, [A and E]).

of T=1, 0.3, and 0 requires ~9, 11, and
26 replicates, respectively (Fig. 1B,C).
For all the tools except DEGSeq, the
TPR performance as a function of fold-
change threshold has two distinct linear
regions: a shallow linear regime at high-
T and a steeper region at low-T (Fig.
1C; Supplemental Figs. S2, S3, S5-
S12C). The transition between these
two regions is a function of both the
tool and the number of replicates. For
edgeR (exact) with n, =3, this transition
fold-change threshold is ~0.5 and drops
to ~0.25 and ~0.15 for n,=10 and 30,
respectively (Fig. 1C). These transitions
represent an optimal fold-change thresh-
old to filter the data by, to maximize both
the quality and the utility of the data.

The best performing tools, DESeq,
DESeq2, EBSeq, edgeR, and limma, suc-
cessfully control their FPR, maintaining
it consistently close to or below 5% ir-
respective of fold-change threshold or
number of replicates (Figs. 1B,C, 2;
Supplemental Figs. S5, S7, S9B,C), high-
lighting again that the primary effect of
increasing replicate number is to increase
the sensitivity of these tools, converting
false negatives to true positives (Fig. 1D;
Supplemental Figs. S5, S7, S9D). Other
tools are not so successful in this regard
but a detailed interpretation of the FPR
from this test is complicated by the fact
that each tool is tested against its own
gold standard. A more robust method
for probing the FPR performance of
DGE tools is presented below.

Tool consistency with high
replicate data

The DGE tool performance tests de-
scribed here assume that, given enough
replicates, the tools converge on the true
underlying differential expression signal
in the data. This assumption was tested
by clustering the DGE measurements
for each tool’s “gold standard” along
with the results from five additional sim-

Reducing the fold-change threshold reduces the TPR inde-
pendently of replicate number for all the tools except
DEGSeq (Fig. 2A-D). The reduced TPR associated with a re-
duced fold-change threshold can be recovered by increasing
the replicate number. For example, achieving an ~85%
detection rate with edgeR (exact) for fold-change thresholds

ple statistical tests applied to the same data (see Materials and
Methods for a detailed description of the statistical tests). For
each tool or test, a 7126-element long vector of 1s and Os was
constructed representing whether each gene in the annotation
was called as SDE (adjusted P-value or FDR threshold <0.05)
by the tool or not. The vectors for each tool or test were
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42 WT and 44 Asnf2 replicates. For each tool, or test, a 7126-element
long vector of 1’s and 0’s was constructed representing whether each
gene in the annotation was called as SDE (adjusted P-value or FDR
threshold <0.05) by the tool or not. The vectors for each tool and test
were then ordered by the gene id and hierarchically clustered by
Correlation distance with complete linkage using the R package pvclust.
Approximately unbiased P-value percentages (bracketed values) calcu-
lated for each branch in the clustering represent the support in the
data for the observed sub-tree clustering. AU% >95% are strongly
supported by the data. AU% values are not shown for branch points
where AU% =100 for clarity. The outlier clustering of baySeq,
DEGSeq, edgeR (GLM), and NOISeq suggest that these tools are clearly
distinct from the other tools. Combined with the tool performance data
shown in Figure 2, this suggests that, given a large number of replicates,
the tools and tests in Cluster 1 are reliably and reproducibly converging
on a similar answer, and are likely to be correctly capturing the SDE sig-
nal in the data.

ordered by gene id and then hierarchically clustered by corre-
lation distance with complete linkage (Fig. 3) using the R
package pvclust (Fig. 3; Suzuki and Shimodaira 2006). pvclust
uses bootstrapping to compute the statistical significance of
subclusters within the dendrogram. Approximately unbiased
P-value percentages (AU%—TFig. 3, bracketed values) calcu-
lated for each branch in the clustering are an indication of
how robust each branch is to sampling error. Three widely
used tools (DESeq2, edgeR [exact], and limma, Table 1) are
tightly grouped in a robust cluster with the standard statistical
tests (Fig. 3, cluster 3). cuffdiff, DESeq, and EBSeq cluster
tightly and are distinct from cluster 3 (Fig. 3, cluster 4).
Despite the separation between these clusters being signifi-
cant at the ~3% level, this is the weakest clustering observed
in the tree, suggesting that these tools and tests are converging
on approximately the same answer, given a large number of
replicates. Several of the standard statistical tests are nonpara-
metric (Mann-Whitney, permutation and bootstrap) and use
very different underlying methods compared to the tools in
this cluster, indicating that the agreement of techniques with-
in this group is not the result of a similar underlying method-
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ology, but is likely reflective of the true differential expression
signal in the data. NOISeq, DEGSeq, baySeq, and edgeR (gen-
eralized linear model; hereafter GLM) form a distinct inde-
pendent cluster (Fig. 3, cluster 2) suggesting that these tools
reach a considerably different result to those in Cluster 1.

Testing tool false positive rates

Perhaps the most important performance measure for RNA-
seq differential expression tools is their false detection rate.
The large number of replicates in this study permits a simple
test of the FPR for each of the tools. Two sets of #, replicates
were randomly selected (without replacement) from the WT
condition. Under the null hypothesis that there is no expres-
sion change between these two sets, every gene identified as
SDE is, by definition, a false positive. For each bootstrap
run, the fraction of the total gene set identified as SDE was
computed. The distribution of this false positive fraction as
a function of the number of replicates, for each differential
expression tool, is shown in Figure 4. This approach shows
that DEGSeq, NOISeq, and SAMSeq perform poorly even
with a large number of replicates. DEGSeq, in particular,
has poor false positive performance with every bootstrap iter-
ation identifying >5% of all genes as false positives (FPs) and
a median FPR of ~50% irrespective of the number of repli-
cates. Approximately 10% of cuffdiff, PoissonSeq, and ~40%
of SAMSeq bootstrap iterations identify >5% of all genes as
EPs, suggesting that these tools are also not controlling their
FPR well. BaySeq, DESeq, and EBSeq perform particularly
well in this test with edgeR, DESeq2, and limma also perform-
ing adequately.

DISCUSSION

In this work, the performance of eleven popular RNA-seq
DGE tools has been evaluated using a highly replicated
two-condition RNA-seq experiment designed specifically
for the purpose of benchmarking RNA-seq DGE tools on
genuine biological replicate data. Five of the 11 tools,
EBSeq, edgeR (exact), DESeq, DESeq2, and limma show excel-
lent performance in the tests presented here. Reassuringly,
edgeR and DESeq are the most widely used of the tools tested
here as measured by citations (Table 1), suggesting that the
majority of the RNA-seq DGE analyses in the literature are
using the most appropriate tools for the job. An additional
important feature of these five tools (run in GLM mode) is
that they allow confounding experimental factors to be spec-
ified for DGE permitting them to be used even with challeng-
ing data sets. Where it is important to capture as many of
the truly SDE genes as possible but with a low number of rep-
licates (i.e., n S 12), the data presented here suggest edgeR
(exact) or DESeq2 in preference to the other tools due to
their superior TP identification rate and well-controlled
FDR at lower fold changes. All the tools perform well for
experiments with sufficient numbers of replicates to ensure
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FIGURE 4. Testing false positive rate (FPR) performance: Each tool was used to call significantly
differentially expressed (SDE) genes based on two artificial “conditions,” each constructed only
from WT biological replicates. Genes identified as SDE are, by definition, false positives. The
box plots show the median, quartiles, and 95% data limits on the FPR for 100 bootstrap iterations
of each of the eleven tools and the log #-test for 1, = 3,4,..,20. The red line highlights a 5% FPR. (A)
y-axis scale 0-0.5; (B) y-axis scale 0—1.0. In most cases the tools perform well for each bootstrap
iteration, with only a small number of iterations showing a FPR >5%. DEGSeq, NOISeq, and
SAMSeq consistently show a higher and more variable FPR, suggesting that they are struggling

to control their FPR adequately.

that the majority of the true SDE is already being captured
(i.e., n212); however, the marginally better FPR perfor-
mance of DESeq suggests it should be the tool of choice in
this regime. Conversely, baySeq, cuffdiff, DEGSeq, NOISeq,
PoissonSeq, and SAMSeq all show inferior performance in one
or more areas. Table 2 summarizes the recommendations for

Number of replicates

choosing RNA-seq DGE tools, based on
the results of these benchmarking tests.

It is clear from the benchmarking runs
that even the best tools have limited sta-
tistical power with few replicates in each
condition, unless a stringent fold-change
threshold is imposed (Fig. 2). For all the
tools the FPR is approximately constant
regardless of fold-change threshold, sug-
gesting that controlling the FNR rather
than the FPR is the primary justification
for imposing this limitation. The varia-
tion intrinsic to any experimental proce-
dures and protocols will result in a hard
lower limit on the detectable fold changes
for biologically relevant DGE. Unfortu-
nately, it is not possible to calculate this
limit here using the gene count data
alone since it requires prior knowledge
of actual fold changes to measure the im-
pact of experimental variance. DESeq2
includes an option to specify a fold-
change threshold for the null hypothesis
being tested. In this mode the tool tests
whether the measured gene fold changes
are consistent with being below this
threshold value (rather than being con-
sistent with zero), providing a natural
mechanism for incorporating a fold-
change threshold in a statistically mean-
ingful way. As expected, this reduces the
number of genes called as SDE. Setting
n,=10 and running 100 DESeq2 boot-
straps, the number of SDE genes called
is reduced from 3470 to 1277 by includ-
ing a null hypothesis testing the fold-
change threshold of 0.5.

When designing an RNA-seq experi-
ment with the primary goal of identifying
those SDE genes that change by more
than a factor of two (T'=1), three clean
replicates per condition may be sufficient.
However, this is not the same as conduct-
ing the experiment with a total of three
replicates, because there is a significant
minority chance that one or more repli-
cates within each condition should be
rejected (see Gierliriski et al. 2015). Con-
versely, for biological questions in which

identifying the majority of the DE genes is important, a low-
replicate experiment may not provide a sufficiently detailed
view of the differential expression to inform the biology accu-
rately. In these situations, it would be prudent to obtain at least
12 clean replicates per condition allowing the identification
of 290% of the truly SDE genes with T'> 0.3 by any of the
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TABLE 2. A summary of the recommendations of this paper

Tool recommended for:
(# good replicates per

condition)?

Agreement with other tools® WT vs. WT FPRP Fold-change threshold (T) <3 <12 >12

DESeq Consistent Pass 0 - - Yes

0.5 - Yes Yes

2.0 Yes Yes Yes

DESeq2 Consistent Pass 0 - - Yes

0.5 Yes Yes Yes

2.0 Yes Yes Yes

EBSeq Consistent Pass 0 - - Yes

0.5 - Yes Yes

2.0 Yes Yes Yes

edgeR (exact) Consistent Pass 0 - - Yes

0.5 Yes Yes Yes

2.0 Yes Yes Yes

Limma Consistent Pass 0 - - Yes

0.5 - Yes Yes

2.0 Yes Yes Yes
cuffdiff Consistent Fail
BaySeq Inconsistent Pass
edgeR (GLM) Inconsistent Pass
DECSeq Inconsistent Fail
NOISeq Inconsistent Fail
PoissonSeq Inconsistent Fail
SAMSeq Inconsistent Fail

“Full clean replicate data set, see section “Tool Consistency with High Replicate Data” and Figure 3.

PSee section “Testing Tool False Positive Rates” and Figure 4.

See section “Differential Expression Tool Performance as a Function of Replicate Number.”

dSee Figure 2.

tools presented here. It is worth recalling that identifying a
gene as SDE does not necessarily equate to identifying it as bio-
logically significant and that it is important to consider both
the magnitude of the measured fold change and existing bio-
logical knowledge alongside the statistical significance when
inferring a biological significance for the results of DGE
experiments.

The experiment performed here is likely to be a best-case
scenario and thus represents the upper limit in performance
of the tools tested. S. cerevisiae is one of the best-studied mod-
el organisms in biology, with a genome that is relatively small
and well understood and few genes containing more than a
single exon. Furthermore, the experiment contains no tis-
sue-specific gene expression and the variation between bio-
logical replicates is small. In an experiment with samples
from individuals, or samples with higher biological variation,
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the performance of all the DGE tools is likely to be worse.
Similarly, for experiments using an organism with a more
complex transcriptome, the performance of all the DGE
tools is likely to be worse due to the presence of multiple
transcript isoforms, anti-sense noncoding RNA transcrip-
tion, and incomplete or poorly known annotations, particu-
larly for 5 and 3’ UTRs (Schurch et al. 2014). Although the
majority of current DGE tools, including the 11 analyzed
here, rely on an existing genome annotation, the recently
published DGE tool derfinder (Frazee et al. 2014) examines
differential expression for any region of a genome without
annotations by analyzing differential expression at base pair
resolution and grouping adjacent regions with similar signals.
Such annotation-free differential expression tools may well
represent the future for differential gene expression studies
with RNA-seq data since they have the potential to mitigate
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the impact of genome annotation on detection of differential
expression.

To the best of our knowledge, the experiment presented
here is the most highly replicated RNA-seq data set to date
and the only one specifically designed for testing the process
of calling differential expression. As such, it will be a useful
resource for the bioinformatics community as a test-bed
for tool development, and for the wider biological science
community as the most detailed description of transcription
in wild-type and Asnf2 mutant S. cerevisiae.

Recommendations for RNA-seq experiment design

The results of this study suggest the following should be con-
sidered when designing an RNA-seq experiment for DGE:

At least six replicates per condition for all experiments.

At least 12 replicates per condition for experiments where
identifying the majority of all DE genes is important.

For experiments with <12 replicates per condition; use edgeR
(exact) or DESeq?2.

For experiments with >12 replicates per condition; use
DESeq.

Apply a fold-change threshold appropriate to the number of
replicates per condition between 0.1 < T'<0.5 (see Fig. 2
and the discussion of tool performance as a function of
replication).

MATERIALS AND METHODS

The Asnf2 mutant

Saccharomyces cerevisiae is one of the best-studied organisms in mo-
lecular biology with a relatively small transcriptome and very limited
alternative splicing and was chosen in order to give us the simplest
RNA-seq data possible. SNF2 is the catalytic subunit of ATP-depen-
dent chromatin remodeling SWI/SNF complex in yeast. SNF2 forms
part of a transcriptional activator and mutation in SNF2 brings
about significant changes in transcription (e.g., Neigeborn and
Carlson 1984; Stern et al. 1984; Peterson et al. 1991; Hirschhorn
et al. 1992; Peterson and Herskowitz 1992; Holstege et al. 1998;
Sudarsanam et al. 2000; Becker and Horz 2002; Gkikopoulos et al.
2011; Ryan and Owen-Hughes 2011, and references therein).

S. cerevisiae growth conditions and RNA extraction

The S. cerevisiae strains used in the experiment were wild type
(BY4741 strain, WT) and Asnf2 mutant in the same genetic back-
ground. Asynchronous WT and Asnf2 mutant strains were streaked
out on rich media (YPAD) to get individual colonies. For 48 repli-
cates in both strains, single colonies were inoculated to 15 mL cul-
tures and cells were grown to an OD600 of 0.7-0.8 (corresponding
to approximately 10° cells) at 30°C. RNA was isolated using the hot-
phenol method (Kohrer and Domdey 1991) and cleaned up using
the RNeasy mini kit (Qiagen) protocol that uses Zymolyase for yeast
cell lysis and DNase treatment to remove DNA contamination. The
amount of total RNA extracted ranged from 30.3 to 126.9 ug per

sample. Although the amount of RNA extracted was variable, the
distributions were consistent with being drawn from the same pop-
ulation (Kolmogorov—Smirnov test, P = 0.16) indicating no bias in
RNA content between WT and Asnf2 mutant samples.

Library preparation, spike-in addition, and sequencing

The RNA-seq experiment described here implements a “balanced
block design” in order to control for technical artifacts such as library
batch effects (Kaisers et al. 2014), barcoding biases, and lane effects
via randomization of the libraries (Colbourn and Dinitz 2007; Auer
and Doerge 2010). Additionally, all the replicates include artificial
RNA spike-in controls in order to allow external calibration of the
RNA concentrations in each sample and of the measured fold changes
between the two conditions (Jiang et al. 2011; Loven et al. 2012). The
96 samples were prepared in batches of 24 samples with 12 of each
strain in each batch. Barcodes were preassigned randomly between
the samples with barcode IDs 1-48 assigned to the Asnf2 mutant sam-
ples and 49-96 to the WT strain. For each batch the Illumina TruSeq
protocol was used to prepare the sequencinglibrary, with the addition
of the ERCC spike-in standard (Ambion) (Jiang et al. 2011). Briefly,
samples were poly(A) enriched with poly(dT) beadsand 1 uL of 1:100
spike-in added to 19.5 pL of poly(A) enriched samples. Spike-in mix 1
was used with the Asnf2 mutant and mix 2 with WT. The RNA was
then fragmented and subsequently underwent both first and second
strand cDNA synthesis. The cDNA was then subjected to end repair,
3’ end adenylation, and barcode sequences were added. Finally, the
un-barcoded adapters were ligated, templates purified and finally
the samples were enriched via barcode-specific PCR primers. At
this point the quality of the libraries was examined and passed before
being diluted down to 10 nM and quantified (using fluorescence-
based quantification) for accurate aliquoting for cluster generation
and appropriate lane loading. Seven independent pools of the 96 bar-
coded samples were prepared and loaded onto seven lanes of an
Mlumina HiSeq 2000. Thus, each lane contains all 96 samples pre-
pared in four batches with different spike-in mixes in each strain.
The flow-cell was run for 51 cycles single-end.

Read alignment and read-count-per-gene
measurement

The lane data were demultiplexed and processed through Cassava
pipeline v1.8 to generate 672 fastq files comprising seven technical
replicates for each of the 96 biological replicates in the experiment.
A total of ~10° reads were reported with each technical replicate
having between 0.8 and 2.8 x 10° reads. Aggregating the technical
replicates across lanes results in ~10” reads per biological replicate.
First pass quality control of the reads was performed with fastQC
(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc) for each
technical replicate. The reads from each technical replicate were
then aligned to the Ensembl release 68 (Flicek et al. 2011) S. cerevi-
siae genome with bowtie2 (v2.0.0-beta7) (Trapnell and Salzberg
2009) and TopHat2 (v2.0.5) (Trapnell et al. 2009) using the follow-
ing parameters: —max-intron-length 1000 —min-intron-length 10 —
microexon-search —b2-very-sensitive —max-multihits 1. The aligned
reads were then aggregated with htseq-count (v0.5.3p9, Anders
et al. 2015) using the Ensembl v68 S. cerevisiae genome annotation
to give total gene read counts for all 7126 gene features for each tech-
nical replicate. Finally, the read-count-per-gene measurements for
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each technical replicate were summed across sequencing lanes to
give read-count-per-gene for each of the 96 biological replicates,
and these were then used to identify poorly correlating “bad” repli-
cates within the two conditions that were then subsequently re-
moved from the analysis (see Gierliriski et al. 2015 for a detailed
description of this process). This resulted in a total of 42 WT and
44 Asnf2 biological replicates of “clean” read-count-per-gene data.

Tool details and considerations for differential
expression calculations

Most of the DGE tools assessed here calculate both a fold change
(typically expressed as a logarithm to base 2 of the expression ratio,
log,FC) and a statistical significance of differential expression for
each gene. The fold change is based on the mean count across rep-
licates in each condition, and for many of the tools this includes
a calculation of sample-specific normalization factors based on
the gene read-count data. For this study, the default normalization
factors were used for each of the tools assessed. While there are
differences between the normalizations used by these tools, it has
been suggested that the details of which method is used to nor-
malize the data does not significantly alter the downstream DGE
results (Seyednasrollah et al. 2013). These normalization methods
do, however, rely on the assumption that the majority of genes
do not change their expression levels between conditions (e.g.,
Dillies et al. 2013). If this assumption is not satisfied, the measure-
ments of both DGE fold change and significance are likely to be
incorrect.

The statistical significances calculated by DGE tools are usually
based on the null hypothesis of no expression change between the
conditions. Calculating this significance typically relies on two key
factors: (i) an assumption about the probability distribution that un-
derlies the raw read-count measurements, and (ii) being able to
accurately measure the mean count and variance for each gene.
Different tools assume different forms for the underlying read-count
distribution including the negative binomial (baySeq, Cuffdiff,
DESeq, DESeq2, EBSeq, and edgeR), beta-binomial (BBSeq), bino-
mial (DEGSeq), Poisson (PoissonSeq), and log-normal (limma) dis-
tributions. A few algorithms make no assumptions about the
read-count distribution and instead take nonparametric approaches
to testing for DGE (NOISeq and SAMSeq). Gierliriski et al. (2015)
show that for this data the majority of gene expression is consistent
with both log-normal and negative binomial distributions except
for the lowest expression genes, for which only the negative binomial
distribution remains consistent with the data. For experiments with
high numbers of replicates per condition (n > 12), the mean and var-
iance estimators can be accurately computed directly on the data.
However, many RNA-seq DGE studies rely on a low number of rep-
licates per condition (1 < 3), so several of the DGE tools (e.g., DESeq,
DESeq2, edgeR, limma) compensate for the lack of replication by
modeling the mean-variance relation and borrowing information
across genes to shrink the given gene’s variance toward the common
model (Cui et al. 2005; De Hertogh et al. 2010; Robinson et al. 2010).
The stabilized variance helps avoid some of the spurious false posi-
tives and negatives, but is strongly dependent on an assumed read
count distribution and on the assumptions intrinsic to the normali-
zation of the count data, namely that the large majority of the gene
counts are not truly differentially expressed. For a full description
of the measured individual gene read count distributions in these
data, a comparison of these with the assumptions made by DGE tools,
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and the impact this has on the DGE results, see Gierliriski et al. (2015).
Given these methods’ dependence on accurate mean and variance
measurements, it is somewhat surprising that scientists would con-
template doing DGE analysis without replicated data, but for com-
pleteness we note that several DGE analysis tools advertise that
they can work with a single replicate per condition (Anders and
Huber 2010; Robinson et al. 2010; Tarazona et al. 2011).

Bootstrap differential expression calculations

A utility pipeline was written to automate the process of running each
DGE algorithm iteratively on i repeated subselections of clean repli-
cates. Each subselection is comprised of #, replicates chosen at ran-
dom without replacement (that is, an individual replicate can appear
only once within each subselection). This bootstrapping procedure
includes applying the default normalization for each tool where
relevant and possible (see section “Tool Details and Considerations
for Differential Expression Calculations”) and the full output for
each tool was stored in alocal sglite database, including the log, trans-
formed fold change and the statistical significance for every expressed
gene in the S. cerevisiae annotation. Most of the tools return
Benjamini—-Hochberg (hereafter BH; Benjamini and Hochberg
1995) corrected P-values or FDRs as their measure of statistical
significance. Genes with an adjusted P-value or FDR <0.05 were
marked as “significantly differentially expressed” (SDE). Supple-
mental Figure S1 shows an example of the output mean log,FC
and median P-value data for the tool edgeR (exact) with n,= 3.
From these data, TPRs, TNRs, FPRs, and FNRs for each tool were
computed as a function of the number of replicates, #,, for four ar-
bitrary absolute log, fold-change thresholds, T€{0,0.3,1,2}. A refer-
ence fold change was used for deciding whether each gene falls above
the threshold T because the measured values of mean [log, FC| cal-
culated for a gene varies considerably with both the tool being used
and n,. These reference fold changes were defined independently of
the tools by applying DESeq normalization (Anders and Huber
2010) to the read-count-per-gene data from the full clean set of bi-
ological replicates for each condition and then taking the log, trans-
formed ratio of the mean normalized read-count-per-gene for each
condition. For each individual DGE calculation within a bootstrap
run (i.e., an individual differential expression calculation with a spe-
cific tool with a given n,), each gene was called as true/false positive/
negative by comparing whether it was called as SDE in the bootstrap
run, and whether it was called as SDE in the corresponding tool-
specific “gold standard.” Then, taking each fold-change threshold
in turn, the mean of the number of true/false positives/negatives
(TP, TN, FP, EN) for genes with reference fold changes above this
threshold was calculated across all the individual DGE calculations
within a bootstrap run. This results in a TPR, TNR, FPR, and
FNR for a tool, for a given n, and for a given T (Equations 1-4):

B TP(n,, T)
TPR(n,, T) = TP(n,, T) + FN(n,, T) M
B FP(n,, T)
FPR(n,, T) = FP(n,, T) + TN(n,, T) @
B TN(n,, T)
TNR(#n,, T) = TN(n,, T) + FP(n,, T) ®
R B EN(n,, T)
(n,, T) = @

FN(n,, T) + TP(n,, T)
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Uncertainties in the resulting values were calculated by propagat-
ing the standard deviations of the numbers of TPs, TNs, FPs, and
FNs across the calculations within each bootstrap run, to reflect
the spread of calculated values due to the random sampling of
replicates.

Standard statistical tests for differential expression

When assessing the performance of each DGE tool on the full set of
clean data, we compare the tools not only within themselves, but
also to the following set of standard statistical tests. For the following
mathematical descriptions, xg = (Xg1k, Xg2k» -+ Xgnk) is @ Vector
of ny (clean) replicates for gene g and condition k, Xg and sz,kare the
mean and variance of this vector.

t-test

The null hypothesis in the #-test is that the given gene under two
conditions has the same mean count, Hy: jig; = jigo. We used the
test statistic

Xg1 — X2
tg=—2 % (5)

2 (141
Sq12 (z + *)
with common variance estimator 5§1z = [(m — l)sg1 + (n, — 1)552,2]/1),
and the number of degrees of freedom is v=n; + n, — 2.

Log-ratio t-test

This modified #-test is more appropriate for log-normally distribu-
ted data. The null hypothesis is Iny,; = Inji,. The test statistic,

Inx,; — InX,
gl g2
= (©)
Sgl S;(Z

) =2
Xy, mxg,

is approximately distributed with #-distribution with n; +n, —2
degrees of freedom (see Olsson 2005).

Mann-Whitney test

The Mann-Whitney (Mann and Whitney 1947—hereafter MW) test
is a nonparametric test assessing if count rate in a gene under one
condition tends to be larger than under the other. The null hypoth-
esis is Hy : Pr(xg > xg2) = 1/2, for each pair of replicates i and j.
P-values were calculated using normal approximation (Bellera
et al. 2010) and taking ties into account (Sheskin 2004). The MW
test relies on ranks, not actual data values, which makes it distribu-
tion-free. On the other hand, when every replicate in one condition
is larger than every replicate in the other condition, the MW test will
return the same P-value, regardless of how much the two conditions
differ.

Permutation test

In the permutation test, counts from both conditions are pooled to-
gether (for each gene), x, = (x;1,%,) and then randomly resampled B
times without replacement from Xy using the original sizes, n; and
n,. For the b-th random permutation x;l(b) and xzz(b) we find the
test statistic, D;(b) = X;l(b) — Xzz(b), which is the difference be-
tween the means of the two sampled vectors. This is compared
with the observed statistic Dy = Xg; — Xg2. The test P-value is the

fraction of cases where the resampled statistic exceeds the observed
one, p, = #{|D§(b)| > |Dg|}/B (for more details, see Efron and
Tibshirani 1993a). The advantage of the permutation test is that it
does not make any assumptions about the underlying distribution,
but rather models it directly from data. The disadvantage is that it
requires many replicates to build this underlying distribution, as it
is not applicable for a typical experiment with, say, three replicates.

Bootstrap test

The Studentized bootstrap test described by Efron and Tibshirani
(1993b) was used here. It estimates probability distribution of the
two populations with sample sizes 7; and n,, under the null hypoth-
esis of the common mean. Data are resampled with replacement to
estimate the significance level. For the b"” bootstrap, x5, (b) and
x;‘z(b), the test statistic is

b -T®

shb(L+1)

t;(b): =12,..B, (7)

where the common variance estimator is
s;‘fz(b) = [(n, — 1)5;12(17) + (ny — l)sg(b)]/(nl +mn, —2). This is
compared with the observed statistic (Equation 5). As in the permu-
tation test, the test P-value is the fraction of cases where the resam-
pled statistic exceeds the observed one, p, = #{It;(b)| > |t,|}/B.

DATA DEPOSITION

The data sets supporting the results of this article are available in
the European Nucleotide Archive repository (ENA) (PRJEB5348,
http:// www.ebi.ac.uk/ena/data/view/ERX425102). All the code for
this work is publicly available (https://github.com/bartongroup/
profDGE48).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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