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Title:

The use of biofeedback for gait retraining: a mapping review

Abstract:

Background: Biofeedback seems to be a promising tool to improve gait outcomes for both
healthy individuals and patient groups. However, due to differences in study designs and
outcome measurements, it remains uncertain how different forms of feedback affect gait
outcomes. Therefore, the aim of this study is to review primary biomechanical literature
which has used biofeedback to alter gait-related outcomes in human participants.

Methods: Medline, Cinahl, Cochrane, SPORTDiscus and Pubmed were searched from
inception to December 2017 using various keywords and the following MeSHterms:
biofeedback, feedback, gait, walking and running. From the included studies, sixteen
different study characteristics were extracted.

Findings: In this mapping review 173 studies were included. The most common feedback
mode used was visual feedback (42%, n=73) and the majority fed-back kinematic parameters
(36%, n=62). The design of the studies were poor: only 8% (n=13) of the studies had both a
control group and a retention test; 69% (n=120) of the studies had neither. A retention test
after 6 months was performed in 3% (n=5) of the studies, feedback was faded in 9% (n=15)
and feedback was given in the field rather than the laboratory in 4% (n==8) of the studies.
Interpretation.: Further work on biofeedback and gait should focus on the direct comparison
between different modes of feedback or feedback parameters, along with better designed and

field based studies.

Keywords:

Gait; movement retraining; biofeedback; real-time feedback
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1. Introduction

Patient groups with lower-limb musculoskeletal and neurological conditions experience gait
limitations (Baram, 2013; James, 1992; Richards et al., 2016; Tate and Milner, 2010), such as
reduced walking speed and distance (Baram, 2013; James, 1992; Richards et al., 2016; Tate
and Milner, 2010). These limitations can have a major impact on patients’ lives, as their daily
living activities and social interactions are often affected (Baram and Miller, 2006). Other
examples of gait limitations include insufficient foot clearance for patients with multiple
sclerosis (Bregman et al., 2010) and stroke patients (Balaban and Tok, 2014), leading to
increased risk of trips and falls, a reduced push-off power for patients with multiple sclerosis
(Bregman et al., 2010) and diabetes (Mueller et al., 1994) and increased knee flexion or
excessive knee extension during walking for stroke patients (Balaban and Tok, 2014) and
individuals with cerebral palsy (Rodda and Graham, 2001). Healthy individuals might also
display gait patterns that predispose them to chronic overuse injuries. Tibial stress injuries
(Agresta and Brown, 2015) and patellofemoral pain (Cheung and Davis, 2011) are both
common running injuries for which altered landing mechanics have been identified as key
risk factors (Noehren et al., 2012). Such overuse injuries can cause significant disruption to

training, a reduction in physical fitness as well as personal frustration (Clansey et al., 2014).

Treatment options to reduce the risk of overuse injuries in athletes and improve gait
limitations in patients, range from the use of orthotic devices to surgical procedures on nerves
or muscles (National Institute for Health and Care Excellence, 2016a, 2016b, 2013; Yeung
and Yeung, 2001). Gait retraining, a non-invasive technique which focusses on the
rehabilitation of gait by either muscle strengthening, treadmill training, neurodevelopmental
techniques or intensive mobility exercises (Eng and Fang Tang, 2007), is an additional

treatment option. Understanding how gait retraining may be used to benefit different patient
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groups or reduce the risk of overuse injuries is an important step in developing non-invasive

treatment plans or prevention strategies to help improve individual outcomes.

Biofeedback makes use of electronic equipment to provide the user with additional biological
information, beyond that which is naturally available to them (Agresta and Brown, 2015;
James, 1992; Tate and Milner, 2010). Advances in technology have made biofeedback
systems more affordable and more accessible to researchers; as a result there has been an
increase in the literature in this area over recent years. Research suggests biofeedback to be a
promising tool used to complement gait retraining (Stanton et al., 2011; Tate and Milner,
2010) and improve outcomes among several patient groups (Baram, 2013; James, 1992;
Richards et al., 2016). For instance, stroke patients decreased the number of knee
hyperextensions and increased gait speed when they received feedback on their joint
kinematics (Stanton et al., 2011). Biofeedback has also been found to be effective at altering
gait patterns in healthy subjects (Agresta and Brown, 2015; Richards et al., 2016) and
reducing injury risk factors in runners (Agresta and Brown, 2015). Agresta and Brown (2015)
found in their systematic review that runners demonstrated reduced kinetic risk factors
associated with tibial stress fracture when receiving feedback on their peak tibial
accelerations over the course of a run. Despite this, other studies included in the review of
Tate and Milner (2010) have failed to find the use of biofeedback in gait retraining to be an
effective tool in improving gait outcomes. These conflicting results might be due to
differences in study designs and the populations examined (Stanton et al., 2011; Tate and

Milner, 2010).

It is suggested that presenting the feedback in the field results in a more representative

experimental design (Brunswik, 1956; Aragjo et al., 2007). A more representative
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experimental design provides a better representation of the behavioural setting, which could
lead to more beneficial and representative results (Araujo et al., 2007). With respect to the
mode of feedback, researchers have suggested that multisensory feedback is superior to
separate modes (visual, auditory, sensory) of feedback, not only due to encoding the most
information but also due to the reduction of cognitive load associated with the separate
systems due to distribution of information processing (Sigrist et al., 2013). With respect to
the feedback parameter, feedback on knowledge of results might be more beneficial then
feedback on knowledge of performance (Winstein, 1991). Further, studies have suggested
that gradually removing feedback over time -fading the feedback- reduces the chances of
participants becoming dependent on the feedback, facilitating improved learning (Agresta
and Brown, 2015; Richards et al., 2016). Moreover, long term follow-up retention tests after
gait retraining are important to assess learning (Agresta and Brown, 2015; Tate and Milner,
2010). Studies in the literature differ in the choice of feedback parameters and mode of
feedback given, as well as the length of any retention period, which makes it difficult to draw
firm conclusions about the effectiveness of, and optimal strategies for, gait retraining
interventions. Advances in technology have made biofeedback systems more affordable and
more accessible to researchers; as a result, there has been a surge in the literature in this area
over recent years. Therefore, a mapping review of the biofeedback for gait retraining
literature is required to get a broader understanding of the studies, characterise what has been

done, and to identify what areas need future research.

The aim of this study was to review primary biomechanical literature which has used
biofeedback to alter gait-related outcomes in human participants. Areas of interest included
the mode of feedback, which parameters were fed-back, the intervention design and the

length of any retention period. We intend that this rigorous approach to evaluating the trends
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in the area will help to inform future research in these key areas, to help provide clarity for

the use of biofeedback for gait retraining applications.

2. Methods

2.1 Research design

This study used a mapping review approach; mapping reviews give an overview of the
existing published research and can be used to obtain a better insight into the literature within
a particular area (Booth et al., 2016). The results can be used to identify gaps in the literature
and inform more specific future reviews and/or primary research studies. A mapping review
searches the literature in a systematic way, but does not exclude articles based on quality. In

the current mapping review the focus was on the methods used rather than the outcome.

2.2 Data sources and search strategy

The following databases were systematically searched from inception to December 2017:
Medline (via EBSCOhost Research Databases), Cinahl (via EBSCOhost Research
Databases), Cochrane, SPORTDiscus (via EBSCOhost Research Databases) and Pubmed.
Searches used the following combination of MeSH terms: (biofeedback (psychology) OR
feedback (sensory)) AND (gait OR walking OR running). The same terms were searched
separately in: Title, Abstract and Subject/Keywords. An exception was the term feedback
which was not searched in the different fields as the term is too broad and led to an
unmanageable volume of results. Instead, a selection of terms was combined to make the
search more specific to the area of interest: augmented feedback, real-time feedback, sensory
feedback, proprioceptive feedback, vibrotactile feedback, tactile feedback, visual feedback,
virtual feedback, auditory feedback and audio feedback. There were exceptions for the

databases: Cinahl and SPORTDiscus, which did not have a separate MeSH term for feedback
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(sensory), for these databases the other MeSH terms were searched together with the separate
search terms. Since there was no separate field for Keywords/Subject in Pubmed, all fields
were searched in this database. Furthermore reference lists were checked from all relevant

reviews that were found and additional articles were identified.

2.3 Study selection

The primary researcher (LvG) selected articles based on the relevance of the title and abstract
using the following inclusion criteria: (1) feedback was given on biological information
beyond what was naturally available to the participants; (2) feedback was given on one or
more gait related parameters (corresponding to the categories of 'Feedback parameter' in
Table 1); (3) at least one of the tasks performed in the research was gait (4) the study aimed
to modify one or more gait related parameters as opposed to, for example, testing the validity
of a system; (5) feedback was given in real-time; (6) measurements were performed using
technology as opposed to verbal feedback; (7) treatment did not involve a combination of
biofeedback and another treatment; (8) the article was written in English and (9) the article
gave sufficient information on all the items listed in Table 1. The full texts of all articles that
were deemed potentially relevant were then checked by the primary researcher using the

same inclusion criteria.

2.4 Data extraction of included articles

The primary researcher extracted the information of interest (Table 1) from all articles that
met the inclusion criteria. When an article reported a study that covered more than one
category, each category was considered separately. This could occur when more than one
participant group was tested, for example healthy participants and participants who

experienced a stroke, when more than one feedback mode was tested, for example one group
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got auditory feedback and one group got visual feedback or when different parameters were
fed-back, for example one group got feedback on knee angle while another group got
feedback on knee moment. A second researcher (AB) reviewed a random sample of 10% of
the articles at the start of the process to check the reliability of data extraction. Any
disagreements between the researches were discussed and a consensus was sought with a
third researcher (BH). This informed the final data extraction form which was used for all

articles.

2.5 Study design categorisation

The final set of articles were assigned to four categories based on their research design: (A)
the study had an experimental and a control group of at least ten participants per group and a
retention test; (B) the study had an experimental and a control group of at least ten
participants per group, but no retention test; (C) the study had no control group or a control
group with less than ten persons per group and a retention test and (D) the study had no
control group or a control group with less than ten persons per group and no retention test. A
control group was defined as a group who received no intervention or an alternative (non-
biofeedback) intervention at the same time as the experimental group received biofeedback.
Ten participants per group was used as a cut off since this was recommended by Whitehead
et al. (2016) for trials with a large effect size (0.8) with 90% power and two-sided 5%
significance. A retention test was defined as a test after one day or longer during which

participants had to walk or run without biofeedback.



Topics

Categories

Authors

Journal

Year of publication
Number of participants
Participant group

Mode of feedback

Feedback parameter

Feedback system

Feedback in the laboratory or in the
field

Number of sessions

Frequency of training

Fading of the feedback

Retention test and if so, after what
time

Test with or without feedback
Feedback on gait or another task
Outcome

Healthy, runners, stroke/hemiplegia, Parkinson's, incomplete spinal cord
injuries, cerebral palsy, multiple sclerosis, amputees, diabetics, knee
injuries, other (included: ibromyalgia syndrome; uncompensated
unilateral vestibular loss; bilateral peripheral vestibular loss/areflexia;
different neurological gait disorders; out patients referred to a geriatric
falls and balance clinic; inpatient rehabilitation program; asymptomatic
participants; orthopaedic surgery; chronic ankle instability; hip
arthroplasty with trochanteric osteotomy; idiopathic bilateral peripheral
neuropath and Charcot-marie-tooth-disease; toe walking and Parkinson or
stroke; spina bifida; lower extremity disabilities)

Visual, auditory, sensory, visual-auditory, visual-sensory, auditory-
sensory, multisensory which is a combination of visual, auditory and
sensory feedback

Spatiotemporal (included: stride width and symmetry, step length, stride
length and symmetry, stance time, swing time, temporal symmetry in
stance), kinematic (included: ankle, knee, hip, pelvis and trunk joint
angles, foot contact angle, shank angle, foot progression angle, toe-out in
stance phase, knee distance, minimum toe clearance, peak tibial
acceleration, anterior-posterior and medial-lateral position of the subject’s
trunk, trunk sway and angular velocity), kinetic (included: ground
reaction force, average loading rate, torque, pressure of the heel, pressure
of the foot, centre of pressure, centre of mass, weight bearing, knee
medial tibiofemoral contact force, peak vertical force on the cane during
gait and human-machine interaction forces), muscle activation,
physiological (included: heart rate, ventilation, VO2 and lower extremity
temperature), combination

Force sensors fixed on participants, force plates fixed in place, optical
motion capture system, motion capture system and force plates fixed in
place, inertial measurement unit, electromyography systems, other
(included: video camera, green screen; two sensors who have to be close
to each other; electrogoniometer; position transducer; ultrasound;
electrode to measure brain waves; biofeedback unit stabilizer, P

pressure of muscles; Lokomat system (exoskeleton); Cycle-ergometer;
heart rate monitor; thermal feedback system; motion capture and
accelerometers; force plates and inertial sensors; EMG, 3D kinematics
and instrumented treadmill, infrared, SPLnFFT Noise Meter)

Laboratory, field, combination

1, 2-5, 6-10, 11-20, >20, continuously wearing the device

1 session, daily, twice a day, once a week, 2 times a week, 2-3 a week, 3
times a week, 4 times a week, 5 times a week, continuously wearing the
device, unknown

Yes, no

None, < 1 week, > 1 week, >4 weeks, > 3 months, > 6 months

With, without

Feedback on gait, feedback on gait and another task

Beneficial, no difference between an experimental and a control group or
between a pre- and post- test, negative, no inferential statistics

Table 1. The fields that were extracted and in the second column the categories that were

found for each field.
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3. Results

3.1 Search results

1316 articles were identified in Medline, 392 in Cinahl, 333 in Cochrane, 303 in
SPORTDiscus and 1769 in Pubmed (Fig 1). After removing duplicates a total of 2165 articles
were checked for relevance based on the title and abstract and 1674 articles were excluded.
The full text of the remaining 491 articles was checked against the inclusion criteria and 143
articles were identified as relevant to the review. Five additional articles from the reference
lists of the reviews identified were also included. Details of all articles included in this review
(n=148) can be found in the supplementary material. These articles included a total of 173

studies, since some articles reported more than one study.

3.2 Overview of study characteristics

3.2.1 Year of publication

There has been an increase in published studies over recent years (Fig 2), with most studies
published in 2016 (n=26) and 2017 (n=20). When considering older studies from 1977 until
1994, participants only received auditory feedback or a combination of auditory and visual
feedback. Sensory feedback was first reported in 1994 and multimodal feedback was not
reported until 2010. The use of motion capture systems in combination with biofeedback for

gait was first reported in 2010.

3.2.2 Participant groups

A total of 2479 participants, across the 173 studies, were included - with a mean of 15.5
(range: 1-240) participants per study. Groups included healthy participants, runners (healthy
or injured) and participants with various gait disorders, numbers and percentages are depicted

above the groups in the figure (Table 1, Fig 3).

10
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3.2.3 Feedback mode
A range of feedback modes and combinations of modes were used within the included studies

(Table 1, Fig 4). The most common mode of feedback used was visual.

3.2.4 Feedback parameter
A range of feedback parameters were used in the included studies (Table 1, Fig 5). Kinematic

parameters were most frequently fed-back.

3.2.5 Feedback system

A variety of feedback systems (Table 1) were used to provide biofeedback to participants.
Force sensors fixed to the participants feet or shoes were most frequently used (28%, n=49),
followed by optical motion capture systems (15%, n=26), inertial measurement units (15%,
n=25), motion capture in combination with force platforms (11%, n=19), force platforms
alone (9%, n=16) and electromyography systems (9%, n=15). Other approaches were adopted

in 13% (n=23) of the included studies.

3.2.6 Laboratory or field based studies
Ninety six percent (n=165) of the included studies were performed in a laboratory, 2% (n=4)
in the field and the remaining 2% (n=4) used feedback given in both field and laboratory

settings.

3.2.7 Training strategy and retention
More than half of all studies (53%, n=92) reported only one gait retraining session in which

the participants received biofeedback. Three percent (n=5) of the studies reported 2-5

11
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sessions, 20% (n=34) 6-10 session, 16% (n=27) 11-20 sessions while only 6% (n=11) gave
the participants more than 20 sessions of feedback. In two percent (n=4) of cases participants

were constantly wearing the device for the duration of the intervention. .

When studies included several sessions, most studies included 3 training sessions per week
(n=24, 14%), 11% (n=19) included two sessions a week and 6% (n=11) of the studies
reported up to 5 sessions a week. Three percent (n=5) of the studies included one training
session a week, 3% (n=5) included four sessions a week, 2% (n=3) of the studies had daily
training sessions, 1% of the studies included 2-3 training sessions a week (n=2) and 1% of the
studies included training sessions twice a day (n=2). In 2% (n=4) of the studies participants
wore the devices continuously in the field. Four percent (n=6) of the studies did not report the

frequency of the feedback sessions.

Only 9% (n=15) of the studies faded the feedback over the course of the gait retraining
intervention. In nine of these studies the task duration increased over time and the duration of
the feedback decreased. The other six articles did not increase task duration, but did
progressively decrease the feedback. Decreasing the feedback was done by giving alternating
blocks of feedback and blocks of no feedback. In 10% (n=18) of the studies feedback was

given on gait in combination with another task, such as a postural balance task.

Forty four percent (n=76) of the studies had no retention test, so the re-test was completed
while participants were still receiving biofeedback. Thirty-two percent (n=55) had a retention
test within a week of the intervention finishing, 8% (n=15) completed a retention test after

more than a week and within 4 weeks, 10% (n=17) after 4 weeks and within 3 months, 3%

12
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(n=5) after 3 months and within 6 months, while only 3% (n=5) completed a retention test 6

months or more after the intervention finished.

3.3 Outcomes

Sixty eight percent (n=118) of the studies reported beneficial outcomes related to one or more
gait parameters, 20% (n=34) reported no difference between the experimental and control
groups and/or pre- and post- test outcomes and 12% (n=21) did not report inferential
statistics. Negative effects of biofeedback on gait parameters were not reported in any

studies.

3.4 Study design categories

Based on the study design categories outlined in the methods, only 8% (n=13) of all studies
were in category A, 8% (n=14) in category B, 15% (n=26) in category C with the remaining
studies (69%, n=120) categorized as group D. Since all studies in category A had an
experimental and a control group of at least ten participants and a retention test, these studies

were considered in further detail.

Research in category A used a range of participant groups (Table 2) with the majority of
studies using visual feedback (n=5, S25, S328, S50, S105, S122) followed by a combination
of visual and auditory (n=4, S24, S33, S96-1, S96-2), auditory (n=3, S61, S77, S101)

feedback and one article using multisensory feedback (S94).

Most of these studies (S24, S33, S38, S94, S96-1, S96-2, S101, S122) provided feedback on
kinematic parameters. Seven of the studies in this category (S24, S61, S77, S96-1, S96-2,

S101, S122) reported 18 feedback sessions or more while 2 studies (S38, S105) used only a

13



single feedback session. Two studies (S24, S25) faded the feedback given and only one study
(S61) gave feedback in the field. Only 4 (S25, S33, S96-2, S101) of the 13 (31%) studies
reported beneficial effects of gait retraining on their selected outcome variable. In 6 (S50,
S38, S61, S94, S96-1, S122) of the studies a significant difference was reported between the
baseline and retention tests, but no significant difference was reported between the
experimental and the control groups. The remaining studies (S24, S105, S77) reported no

difference between baseline and retention tests or between groups.
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4. Discussion

The aim of this study was to review primary biomechanical literature which has used
biofeedback to alter gait-related outcomes in human participants. A total of 173 relevant
studies were identified. Visual feedback was the most commonly used mode and feedback on
kinematic parameters was most commonly used. The vast majority of studies were performed
in a laboratory and reported only one feedback session, did not fade the feedback given and
had no retention test. Sixty-nine percent of all studies suggested some beneficial effects of
biofeedback on gait outcomes with no significant negative effects reported, however this
percentage of beneficial results was lower in studies that both included a control group and a

retention test (Category A articles).

Visual feedback was given most frequently in the studies included in this mapping review. In
a systematic review on injured and healthy runners, different modes of feedback were found
to be effective in reducing variables related to ground reaction forces, but no mode of
feedback was identified as being superior (Agresta and Brown, 2015). This is important since
some modes of feedback such as auditory and sensory may be more practicable for use in
field-based biofeedback systems. It has previously been suggested that multisensory is
superior to separate modes of feedback, not only due to presenting the most information but
also due to the reduction of cognitive load associated with the separate systems due to
distribution of information processing (Sigrist et al., 2013). Some of the included studies in
this mapping review directly compared different feedback modes. Hirokawa and Matsumura
(1989) and Shin and Chung (2017) found the best gait-related outcomes when using
combined visual and auditory feedback, compared to each mode separately. However, it
should be noted that different modes of feedback were used for different parameters: visual

feedback for step length and auditory feedback for step duration. A study comparing visual,
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sensory and combined visual and sensory feedback on stride length in participants with
incomplete spinal cord injury, found combined visual and sensory feedback to give
significantly better results than the two modes presented separately (Yen et al., 2014). In this
mapping review, multisensory feedback was only reported in 4% (n=6) of the studies. Future
research on the effectiveness of different modes of feedback is therefore needed to help
establish optimum feedback strategies for gait retraining applications within different
populations. This suggestion supports previous research which has identified the need for
research studies which directly compare different modes of feedback to further our

knowledge in this area (Agresta and Brown, 2015; Sienko et al., 2017).

Kinematic variables were most frequently fed-back in the studies included in this mapping
review. A previous systematic review on gait retraining found biofeedback of kinematic,
kinetic and spatiotemporal parameters to show more promise than feedback on muscle
activity, resulting in moderate to large short-term treatment effects in different patient groups
(Tate and Milner, 2010). Feedback on muscle activity might be less effective since this mode
of feedback focusses towards knowledge of performance. By moving away from knowledge
of results and moving more towards knowledge of performance the learning response might
be reduced (Winstein, 1991). Some studies included in this review support the suggestion that
feedback on muscle activation results in smaller effects than feedback on other parameters.
Franz et al. (2014) found that feedback on ground reaction forces (kinetic parameters)
increased propulsive ground reaction forces and gastrocnemius muscle activity during push-
off, while feedback on muscle activity only had no effect on the same gait related outcomes.
In another study, feedback on muscle activity of the pretibial and calf muscles had no effect
on walking speed, while feedback on ankle angle during heel-off and swing through

(kinematic parameter) had a beneficial effect on the same gait related outcome (Mandel et al.,
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1990). However, a direct comparison between kinetic and kinematic parameters has not been
reported in gait related studies, therefore it remains uncertain which group of variables may
offer the best outcomes. A direct comparison between the different groups of parameters is
needed to provide more insight into which parameter might be most effective at improving

gait related outcomes.

Only 4 of the 173 studies gave feedback in the field, with a further 4 studies giving a
combination of laboratory and field based training. Even though two previous reviews
concluded that field based systems should be considered (Richards et al., 2016; Shull et al.,
2014), to date the vast majority of published research is confined to laboratory settings.
Presenting feedback in the field may facilitate the trend for healthcare to move away from a
clinical model to a self-care model supported by technology (McCullagh et al., 2010), and it
would also improve the representative design of experiments (Aratjo et al., 2007). However,
presenting feedback in the field does have some practical implementation issues. For
example, visual feedback could be shown on a screen in the laboratory, but this would not be
easily possible in the field. Auditory and sensory feedbacks are therefore easier to facilitate in

field based settings.

Future research should also focus on the design of feedback interventions. Over half of the
included studies reported one feedback training session. Since beneficial outcomes could be
related to the duration of the intervention (Adamovich et al., 2009; Agresta and Brown,
2015), both the duration and number of sessions required for effective retraining should be
explored. These findings are supported by a review of Gordt et al. (2017) on the effects of
feedback of wearable sensor data on balance, gait and functional performance in both healthy

and patient populations. These authors concluded that future randomised controlled trials
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should be designed with adequate intervention periods to enhance learning. In the current
mapping review, only fifteen of the included studies used a faded feedback approach within
their intervention. By gradually removing feedback over time, it is suggested that participants
do not become dependent on the feedback, facilitating improved learning (Winstein, 1991).
The majority of studies in this review had no retention test or a short term retention test
within a week of the intervention finishing. Establishing the long term retention of any gait
related changes represents a crucial step in prescribing gait retraining interventions as an
effective alternate to existing treatment options (Agresta and Brown, 2015; Gordt et al. 2017,
Stanton et al., 2017; Tate and Milner, 2010). Further, only thirteen studies combined having a
retention test with having a control group. Of those thirteen studies, eleven studies reported
beneficial effects of gait retraining when comparing baseline values to the retention values,
four studies found significant differences between experimental and control groups.
Therefore, the use of biofeedback shows promising results, since it has the same or a better
effect compared to existing interventions, without the need for a health practitioner, or
several trips to the clinic if field based feedback could be applied. However, at present there
is a lack of well-designed studies that have established the long term efficacy of biofeedback
for use in gait retraining interventions. Therefore, future work should focus on higher quality

study designs, with a special focus on assessing the long term effects of any interventions.

This review has some limitations that are noteworthy: we used a selection of terms combined
with feedback (as stated in the methods, section 2.2), since feedback is too broad as a term
and would therefore have led to too many results. By using a selection of terms instead of
feedback, there is a possibility that we missed some articles. However, we covered the area
which we were interested in by a wide selection of terms and we further searched the

reference list of reviews we found as well to make sure no articles were missed. Another
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limitation is the risk of publication bias, which might inflate the number of beneficial effects
reported for the main outcome. Publication bias could mean that studies are less likely to be
published when they have not found beneficial results. By choosing a mapping review instead
of a systematic review we chose not to assess quality, assessing of the quality could have
reduced the publication bias. However, in the current review the focus was on assessing the
body of literature on the use of biofeedback to alter gait-related outcomes and the methods

used; for this a mapping review was the most appropriate approach.

5. Conclusion

There is a growing body of research on the use of biofeedback in gait retaining. This mapping
review has identified several areas within the current body of research that warrant further
work. Future research should focus on direct comparisons between groups of parameters and
feedback modes for specific gait retraining applications. Furthermore, researchers should
seek to produce high quality well designed studies that explore the fading of feedback, the
appropriate number of sessions as well as include a control group as assessing the long-term
benefits of any intervention. Finally, researchers should seek to develop and assess the
efficacy of field-based gait retraining systems using experimental designs more representative

of real life situations.
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Figure legends

Fig 1. Flow diagram of search strategy

Fig 2. Number of studies published each year

Fig 3. The number of studies published for each participant group
Fig 4. The number of studies published for each mode of feedback

Fig 5. The numbers of studies published for each parameter which was fed-back
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