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1 Title:

2 The use of biofeedback for gait retraining: a mapping review

3

4 Abstract:

5 Background: Biofeedback seems to be a promising tool to improve gait outcomes for both 

6 healthy individuals and patient groups. However, due to differences in study designs and 

7 outcome measurements, it remains uncertain how different forms of feedback affect gait 

8 outcomes. Therefore, the aim of this study is to review primary biomechanical literature 

9 which has used biofeedback to alter gait-related outcomes in human participants.

10 Methods: Medline, Cinahl, Cochrane, SPORTDiscus and Pubmed were searched from 

11 inception to December 2017 using various keywords and the following MeSHterms: 

12 biofeedback, feedback, gait, walking and running. From the included studies, sixteen 

13 different study characteristics were extracted. 

14 Findings: In this mapping review 173 studies were included. The most common feedback 

15 mode used was visual feedback (42%, n=73) and the majority fed-back kinematic parameters 

16 (36%, n=62). The design of the studies were poor: only 8% (n=13) of the studies had both a 

17 control group and a retention test; 69% (n=120) of the studies had neither. A retention test 

18 after 6 months was performed in 3% (n=5) of the studies, feedback was faded in 9% (n=15) 

19 and feedback was given in the field rather than the laboratory in 4% (n=8) of the studies. 

20 Interpretation: Further work on biofeedback and gait should focus on the direct comparison 

21 between different modes of feedback or feedback parameters, along with better designed and 

22 field based studies.

23

24 Keywords:

25 Gait; movement retraining; biofeedback; real-time feedback
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1 1. Introduction

2 Patient groups with lower-limb musculoskeletal and neurological conditions experience gait 

3 limitations (Baram, 2013; James, 1992; Richards et al., 2016; Tate and Milner, 2010), such as 

4 reduced walking speed and distance (Baram, 2013; James, 1992; Richards et al., 2016; Tate 

5 and Milner, 2010). These limitations can have a major impact on patients’ lives, as their daily 

6 living activities and social interactions are often affected (Baram and Miller, 2006). Other 

7 examples of gait limitations include insufficient foot clearance for patients with multiple 

8 sclerosis (Bregman et al., 2010) and stroke patients (Balaban and Tok, 2014), leading to 

9 increased risk of trips and falls, a reduced push-off power for patients with multiple sclerosis 

10 (Bregman et al., 2010) and diabetes (Mueller et al., 1994) and increased knee flexion or 

11 excessive knee extension during walking for stroke patients (Balaban and Tok, 2014) and 

12 individuals with cerebral palsy (Rodda and Graham, 2001). Healthy individuals might also 

13 display gait patterns that predispose them to chronic overuse injuries. Tibial stress injuries 

14 (Agresta and Brown, 2015) and patellofemoral pain (Cheung and Davis, 2011) are both 

15 common running injuries for which altered landing mechanics have been identified as key 

16 risk factors (Noehren et al., 2012). Such overuse injuries can cause significant disruption to 

17 training, a reduction in physical fitness as well as personal frustration (Clansey et al., 2014). 

18

19 Treatment options to reduce the risk of overuse injuries in athletes and improve gait 

20 limitations in patients, range from the use of orthotic devices to surgical procedures on nerves 

21 or muscles (National Institute for Health and Care Excellence, 2016a, 2016b, 2013; Yeung 

22 and Yeung, 2001). Gait retraining, a non-invasive technique which focusses on the 

23 rehabilitation of gait by either muscle strengthening, treadmill training, neurodevelopmental 

24 techniques or intensive mobility exercises (Eng and Fang Tang, 2007), is an additional 

25 treatment option. Understanding how gait retraining may be used to benefit different patient 
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1 groups or reduce the risk of overuse injuries is an important step in developing non-invasive 

2 treatment plans or prevention strategies to help improve individual outcomes.

3

4 Biofeedback makes use of electronic equipment to provide the user with additional biological 

5 information, beyond that which is naturally available to them (Agresta and Brown, 2015; 

6 James, 1992; Tate and Milner, 2010). Advances in technology have made biofeedback 

7 systems more affordable and more accessible to researchers; as a result there has been an 

8 increase in the literature in this area over recent years. Research suggests biofeedback to be a 

9 promising tool used to complement gait retraining (Stanton et al., 2011; Tate and Milner, 

10 2010) and improve outcomes among several patient groups (Baram, 2013; James, 1992; 

11 Richards et al., 2016). For instance, stroke patients decreased the number of knee 

12 hyperextensions and increased gait speed when they received feedback on their joint 

13 kinematics (Stanton et al., 2011). Biofeedback has also been found to be effective at altering 

14 gait patterns in healthy subjects (Agresta and Brown, 2015; Richards et al., 2016) and 

15 reducing injury risk factors in runners (Agresta and Brown, 2015). Agresta and Brown (2015) 

16 found in their systematic review that runners demonstrated reduced kinetic risk factors 

17 associated with tibial stress fracture when receiving feedback on their peak tibial 

18 accelerations over the course of a run. Despite this, other studies included in the review of 

19 Tate and Milner (2010) have failed to find the use of biofeedback in gait retraining to be an 

20 effective tool in improving gait outcomes. These conflicting results might be due to 

21 differences in study designs and the populations examined (Stanton et al., 2011; Tate and 

22 Milner, 2010). 

23

24 It is suggested that presenting the feedback in the field results in a more representative 

25 experimental design (Brunswik, 1956; Araújo et al., 2007). A more representative 
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1 experimental design provides a better representation of the behavioural setting, which could 

2 lead to more beneficial and representative results (Araújo et al., 2007). With respect to the 

3 mode of feedback, researchers have suggested that multisensory feedback is superior to 

4 separate modes (visual, auditory, sensory) of feedback, not only due to encoding the most 

5 information but also due to the reduction of cognitive load associated with the separate 

6 systems due to distribution of information processing (Sigrist et al., 2013). With respect to 

7 the feedback parameter, feedback on knowledge of results might be more beneficial then 

8 feedback on knowledge of performance (Winstein, 1991). Further, studies have suggested 

9 that gradually removing feedback over time -fading the feedback- reduces the chances of 

10 participants becoming dependent on the feedback, facilitating improved learning (Agresta 

11 and Brown, 2015; Richards et al., 2016). Moreover, long term follow-up retention tests after 

12 gait retraining are important to assess learning (Agresta and Brown, 2015; Tate and Milner, 

13 2010). Studies in the literature differ in the choice of feedback parameters and mode of 

14 feedback given, as well as the length of any retention period, which makes it difficult to draw 

15 firm conclusions about the effectiveness of, and optimal strategies for, gait retraining 

16 interventions. Advances in technology have made biofeedback systems more affordable and 

17 more accessible to researchers; as a result, there has been a surge in the literature in this area 

18 over recent years. Therefore, a mapping review of the biofeedback for gait retraining 

19 literature is required to get a broader understanding of the studies, characterise what has been 

20 done, and to identify what areas need future research. 

21

22 The aim of this study was to review primary biomechanical literature which has used 

23 biofeedback to alter gait-related outcomes in human participants. Areas of interest included 

24 the mode of feedback, which parameters were fed-back, the intervention design and the 

25 length of any retention period. We intend that this rigorous approach to evaluating the trends 
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1 in the area will help to inform future research in these key areas, to help provide clarity for 

2 the use of biofeedback for gait retraining applications.

3

4 2. Methods

5 2.1 Research design

6 This study used a mapping review approach; mapping reviews give an overview of the 

7 existing published research and can be used to obtain a better insight into the literature within 

8 a particular area (Booth et al., 2016). The results can be used to identify gaps in the literature 

9 and inform more specific future reviews and/or primary research studies. A mapping review 

10 searches the literature in a systematic way, but does not exclude articles based on quality. In 

11 the current mapping review the focus was on the methods used rather than the outcome. 

12

13 2.2 Data sources and search strategy

14 The following databases were systematically searched from inception to December 2017: 

15 Medline (via EBSCOhost Research Databases), Cinahl (via EBSCOhost Research 

16 Databases), Cochrane, SPORTDiscus (via EBSCOhost Research Databases) and Pubmed. 

17 Searches used the following combination of MeSH terms: (biofeedback (psychology) OR 

18 feedback (sensory)) AND (gait OR walking OR running). The same terms were searched 

19 separately in: Title, Abstract and Subject/Keywords. An exception was the term feedback 

20 which was not searched in the different fields as the term is too broad and led to an 

21 unmanageable volume of results. Instead, a selection of terms was combined to make the 

22 search more specific to the area of interest: augmented feedback, real-time feedback, sensory 

23 feedback, proprioceptive feedback, vibrotactile feedback, tactile feedback, visual feedback, 

24 virtual feedback, auditory feedback and audio feedback. There were exceptions for the 

25 databases: Cinahl and SPORTDiscus, which did not have a separate MeSH term for feedback 
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1 (sensory), for these databases the other MeSH terms were searched together with the separate 

2 search terms. Since there was no separate field for Keywords/Subject in Pubmed, all fields 

3 were searched in this database. Furthermore reference lists were checked from all relevant 

4 reviews that were found and additional articles were identified.

5

6 2.3 Study selection

7 The primary researcher (LvG) selected articles based on the relevance of the title and abstract 

8 using the following inclusion criteria: (1) feedback was given on biological information 

9 beyond what was naturally available to the participants; (2) feedback was given on one or 

10 more gait related parameters (corresponding to the categories of 'Feedback parameter' in 

11 Table 1); (3) at least one of the tasks performed in the research was gait (4) the study aimed 

12 to modify one or more gait related parameters as opposed to, for example, testing the validity 

13 of a system; (5) feedback was given in real-time; (6) measurements were performed using 

14 technology as opposed to verbal feedback; (7) treatment did not involve a combination of 

15 biofeedback and another treatment; (8) the article was written in English and (9) the article 

16 gave sufficient information on all the items listed in Table 1. The full texts of all articles that 

17 were deemed potentially relevant were then checked by the primary researcher using the 

18 same inclusion criteria.

19

20 2.4 Data extraction of included articles

21 The primary researcher extracted the information of interest (Table 1) from all articles that 

22 met the inclusion criteria. When an article reported a study that covered more than one 

23 category, each category was considered separately. This could occur when more than one 

24 participant group was tested, for example healthy participants and participants who 

25 experienced a stroke, when more than one feedback mode was tested, for example one group 
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1 got auditory feedback and one group got visual feedback or when different parameters were 

2 fed-back, for example one group got feedback on knee angle while another group got 

3 feedback on knee moment. A second researcher (AB) reviewed a random sample of 10% of 

4 the articles at the start of the process to check the reliability of data extraction. Any 

5 disagreements between the researches were discussed and a consensus was sought with a 

6 third researcher (BH). This informed the final data extraction form which was used for all 

7 articles. 

8

9 2.5 Study design categorisation

10 The final set of articles were assigned to four categories based on their research design: (A) 

11 the study had an experimental and a control group of at least ten participants per group and a 

12 retention test; (B) the study had an experimental and a control group of at least ten 

13 participants per group, but no retention test; (C) the study had no control group or a control 

14 group with less than ten persons per group and a retention test and (D) the study had no 

15 control group or a control group with less than ten persons per group and no retention test. A 

16 control group was defined as a group who received no intervention or an alternative (non-

17 biofeedback) intervention at the same time as the experimental group received biofeedback. 

18 Ten participants per group was used as a cut off since this was recommended by Whitehead 

19 et al. (2016) for trials with a large effect size (0.8) with 90% power and two-sided 5% 

20 significance. A retention test was defined as a test after one day or longer during which 

21 participants had to walk or run without biofeedback. 

22
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Topics Categories

Authors

Journal

Year of publication

Number of participants

Participant group Healthy, runners, stroke/hemiplegia, Parkinson's, incomplete spinal cord 

injuries, cerebral palsy, multiple sclerosis, amputees, diabetics, knee 

injuries, other (included: ibromyalgia syndrome; uncompensated 

unilateral vestibular loss; bilateral peripheral vestibular loss/areflexia; 

different neurological gait disorders; out patients referred to a geriatric 

falls and balance clinic; inpatient rehabilitation program; asymptomatic 

participants; orthopaedic surgery; chronic ankle instability; hip 

arthroplasty with trochanteric osteotomy; idiopathic bilateral peripheral 

neuropath and Charcot-marie-tooth-disease; toe walking and Parkinson or 

stroke; spina bifida; lower extremity disabilities)

Mode of feedback Visual, auditory, sensory, visual-auditory, visual-sensory, auditory-

sensory, multisensory which is a combination of visual, auditory and 

sensory feedback

Feedback parameter Spatiotemporal (included: stride width and symmetry, step length, stride 

length and symmetry, stance time, swing time, temporal symmetry in 

stance), kinematic (included: ankle, knee, hip, pelvis and trunk joint 

angles, foot contact angle, shank angle, foot progression angle, toe-out in 

stance phase, knee distance, minimum toe clearance, peak tibial 

acceleration, anterior-posterior and medial-lateral position of the subject’s 

trunk, trunk sway and angular velocity), kinetic (included: ground 

reaction force, average loading rate, torque, pressure of the heel, pressure 

of the foot, centre of pressure, centre of mass, weight bearing, knee 

medial tibiofemoral contact force, peak vertical force on the cane during 

gait and human-machine interaction forces), muscle activation, 

physiological (included: heart rate, ventilation, VO2 and lower extremity 

temperature), combination

Feedback system Force sensors fixed on participants, force plates fixed in place, optical 

motion capture system, motion capture system and force plates fixed in 

place, inertial measurement unit, electromyography systems, other 

(included: video camera, green screen; two sensors who have to be close 

to each other; electrogoniometer; position transducer; ultrasound; 

electrode to measure brain waves; biofeedback unit stabilizer, P

pressure of muscles; Lokomat system (exoskeleton); Cycle-ergometer; 

heart rate monitor; thermal feedback system; motion capture and 

accelerometers; force plates and inertial sensors; EMG, 3D kinematics 

and instrumented treadmill, infrared, SPLnFFT Noise Meter)

Feedback in the laboratory or in the 

field

Laboratory, field, combination

Number of sessions 1, 2-5, 6-10, 11-20, >20, continuously wearing the device

Frequency of training 1 session, daily, twice a day, once a week, 2 times a week, 2-3 a week, 3 

times a week, 4 times a week, 5 times a week, continuously wearing the 

device, unknown

Fading of the feedback Yes, no

Retention test and if so, after what 

time

None, < 1 week, ≥ 1 week, ≥4 weeks, ≥ 3 months, ≥ 6 months

Test with or without feedback With, without

Feedback on gait or another task Feedback on gait, feedback on gait and another task

Outcome Beneficial, no difference between an experimental and a control group or 

between a pre- and post- test, negative, no inferential statistics

1 Table 1. The fields that were extracted and in the second column the categories that were 

2 found for each field.

3
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1 3. Results

2 3.1 Search results

3 1316 articles were identified in Medline, 392 in Cinahl, 333 in Cochrane, 303 in 

4 SPORTDiscus and 1769 in Pubmed (Fig 1). After removing duplicates a total of 2165 articles 

5 were checked for relevance based on the title and abstract and 1674 articles were excluded. 

6 The full text of the remaining 491 articles was checked against the inclusion criteria and 143 

7 articles were identified as relevant to the review. Five additional articles from the reference 

8 lists of the reviews identified were also included. Details of all articles included in this review 

9 (n=148) can be found in the supplementary material. These articles included a total of 173 

10 studies, since some articles reported more than one study. 

11

12 3.2 Overview of study characteristics

13 3.2.1 Year of publication 

14 There has been an increase in published studies over recent years (Fig 2), with most studies 

15 published in 2016 (n=26) and 2017 (n=20). When considering older studies from 1977 until 

16 1994, participants only received auditory feedback or a combination of auditory and visual 

17 feedback. Sensory feedback was first reported in 1994 and multimodal feedback was not 

18 reported until 2010. The use of motion capture systems in combination with biofeedback for 

19 gait was first reported in 2010. 

20

21 3.2.2 Participant groups

22 A total of 2479 participants, across the 173 studies, were included - with a mean of 15.5 

23 (range: 1-240) participants per study. Groups included healthy participants, runners (healthy 

24 or injured) and participants with various gait disorders, numbers and percentages are depicted 

25 above the groups in the figure (Table 1, Fig 3). 
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1

2 3.2.3 Feedback mode

3 A range of feedback modes and combinations of modes were used within the included studies 

4 (Table 1, Fig 4). The most common mode of feedback used was visual. 

5

6 3.2.4 Feedback parameter 

7 A range of feedback parameters were used in the included studies (Table 1, Fig 5). Kinematic 

8 parameters were most frequently fed-back. 

9

10 3.2.5 Feedback system

11 A variety of feedback systems (Table 1) were used to provide biofeedback to participants. 

12 Force sensors fixed to the participants feet or shoes were most frequently used (28%, n=49), 

13 followed by optical motion capture systems (15%, n=26), inertial measurement units (15%, 

14 n=25), motion capture in combination with force platforms (11%, n=19), force platforms 

15 alone (9%, n=16) and electromyography systems (9%, n=15). Other approaches were adopted 

16 in 13% (n=23) of the included studies.

17

18 3.2.6 Laboratory or field based studies

19 Ninety six percent (n=165) of the included studies were performed in a laboratory, 2% (n=4) 

20 in the field and the remaining 2% (n=4) used feedback given in both field and laboratory 

21 settings.

22

23 3.2.7 Training strategy and retention 

24 More than half of all studies (53%, n=92) reported only one gait retraining session in which 

25 the participants received biofeedback. Three percent (n=5) of the studies reported 2-5 
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1 sessions, 20% (n=34) 6-10 session, 16% (n=27) 11-20 sessions while only 6% (n=11) gave 

2 the participants more than 20 sessions of feedback. In two percent (n=4) of cases participants 

3 were constantly wearing the device for the duration of the intervention. .

4

5 When studies included several sessions, most studies included 3 training sessions per week 

6 (n=24, 14%), 11% (n=19) included two sessions a week and 6% (n=11) of the studies 

7 reported up to 5 sessions a week. Three percent (n=5) of the studies included one training 

8 session a week, 3% (n=5) included four sessions a week, 2% (n=3) of the studies had daily 

9 training sessions, 1% of the studies included 2-3 training sessions a week (n=2) and 1% of the 

10 studies included training sessions twice a day (n=2). In 2% (n=4) of the studies participants 

11 wore the devices continuously in the field. Four percent (n=6) of the studies did not report the 

12 frequency of the feedback sessions.

13

14 Only 9% (n=15) of the studies faded the feedback over the course of the gait retraining 

15 intervention. In nine of these studies the task duration increased over time and the duration of 

16 the feedback decreased. The other six articles did not increase task duration, but did 

17 progressively decrease the feedback. Decreasing the feedback was done by giving alternating 

18 blocks of feedback and blocks of no feedback. In 10% (n=18) of the studies feedback was 

19 given on gait in combination with another task, such as a postural balance task.

20

21 Forty four percent (n=76) of the studies had no retention test, so the re-test was completed 

22 while participants were still receiving biofeedback. Thirty-two percent (n=55) had a retention 

23 test within a week of the intervention finishing, 8% (n=15) completed a retention test after 

24 more than a week and within 4 weeks, 10% (n=17) after 4 weeks and within 3 months, 3% 
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1 (n=5) after 3 months and within 6 months, while only 3% (n=5) completed a retention test 6 

2 months or more after the intervention finished. 

3

4 3.3 Outcomes

5 Sixty eight percent (n=118) of the studies reported beneficial outcomes related to one or more 

6 gait parameters, 20% (n=34) reported no difference between the experimental and control 

7 groups and/or pre- and post- test outcomes and 12% (n=21) did not report inferential 

8 statistics. Negative effects of biofeedback on gait parameters were not reported in any 

9 studies.

10

11 3.4 Study design categories 

12 Based on the study design categories outlined in the methods, only 8% (n=13) of all studies 

13 were in category A, 8% (n=14) in category B, 15% (n=26) in category C with the remaining 

14 studies (69%, n=120) categorized as group D. Since all studies in category A had an 

15 experimental and a control group of at least ten participants and a retention test, these studies 

16 were considered in further detail. 

17

18 Research in category A used a range of participant groups (Table 2) with the majority of 

19 studies using visual feedback (n=5, S25, S328, S50, S105, S122) followed by a combination 

20 of visual and auditory (n=4, S24, S33, S96-1, S96-2), auditory (n=3, S61, S77, S101) 

21 feedback and one article using multisensory feedback (S94). 

22

23 Most of these studies (S24, S33, S38, S94, S96-1, S96-2, S101, S122) provided feedback on 

24 kinematic parameters. Seven of the studies in this category (S24, S61, S77, S96-1, S96-2, 

25 S101, S122) reported 18 feedback sessions or more while 2 studies (S38, S105) used only a 
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1 single feedback session. Two studies (S24, S25) faded the feedback given and only one study 

2 (S61) gave feedback in the field. Only 4 (S25, S33, S96-2, S101) of the 13 (31%) studies 

3 reported beneficial effects of gait retraining on their selected outcome variable. In 6 (S50, 

4 S38, S61, S94, S96-1, S122) of the studies a significant difference was reported between the 

5 baseline and retention tests, but no significant difference was reported between the 

6 experimental and the control groups. The remaining studies (S24, S105, S77) reported no 

7 difference between baseline and retention tests or between groups.
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1 4. Discussion

2 The aim of this study was to review primary biomechanical literature which has used 

3 biofeedback to alter gait-related outcomes in human participants. A total of 173 relevant 

4 studies were identified. Visual feedback was the most commonly used mode and feedback on 

5 kinematic parameters was most commonly used. The vast majority of studies were performed 

6 in a laboratory and reported only one feedback session, did not fade the feedback given and 

7 had no retention test. Sixty-nine percent of all studies suggested some beneficial effects of 

8 biofeedback on gait outcomes with no significant negative effects reported, however this 

9 percentage of beneficial results was lower in studies that both included a control group and a 

10 retention test (Category A articles).

11

12 Visual feedback was given most frequently in the studies included in this mapping review. In 

13 a systematic review on injured and healthy runners, different modes of feedback were found 

14 to be effective in reducing variables related to ground reaction forces, but no mode of 

15 feedback was identified as being superior (Agresta and Brown, 2015). This is important since 

16 some modes of feedback such as auditory and sensory may be more practicable for use in 

17 field-based biofeedback systems. It has previously been suggested that multisensory is 

18 superior to separate modes of feedback, not only due to presenting the most information but 

19 also due to the reduction of cognitive load associated with the separate systems due to 

20 distribution of information processing (Sigrist et al., 2013). Some of the included studies in 

21 this mapping review directly compared different feedback modes. Hirokawa and Matsumura 

22 (1989) and Shin and Chung (2017) found the best gait-related outcomes when using 

23 combined visual and auditory feedback, compared to each mode separately. However, it 

24 should be noted that different modes of feedback were used for different parameters: visual 

25 feedback for step length and auditory feedback for step duration. A study comparing visual, 
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1 sensory and combined visual and sensory feedback on stride length in participants with 

2 incomplete spinal cord injury, found combined visual and sensory feedback to give 

3 significantly better results than the two modes presented separately (Yen et al., 2014). In this 

4 mapping review, multisensory feedback was only reported in 4% (n=6) of the studies. Future 

5 research on the effectiveness of different modes of feedback is therefore needed to help 

6 establish optimum feedback strategies for gait retraining applications within different 

7 populations. This suggestion supports previous research which has identified the need for 

8 research studies which directly compare different modes of feedback to further our 

9 knowledge in this area (Agresta and Brown, 2015; Sienko et al., 2017). 

10

11 Kinematic variables were most frequently fed-back in the studies included in this mapping 

12 review. A previous systematic review on gait retraining found biofeedback of kinematic, 

13 kinetic and spatiotemporal parameters to show more promise than feedback on muscle 

14 activity, resulting in moderate to large short-term treatment effects in different patient groups 

15 (Tate and Milner, 2010). Feedback on muscle activity might be less effective since this mode 

16 of feedback focusses towards knowledge of performance. By moving away from knowledge 

17 of results and moving more towards knowledge of performance the learning response might 

18 be reduced (Winstein, 1991). Some studies included in this review support the suggestion that 

19 feedback on muscle activation results in smaller effects than feedback on other parameters. 

20 Franz et al. (2014) found that feedback on ground reaction forces (kinetic parameters) 

21 increased propulsive ground reaction forces and gastrocnemius muscle activity during push-

22 off, while feedback on muscle activity only had no effect on the same gait related outcomes. 

23 In another study, feedback on muscle activity of the pretibial and calf muscles had no effect 

24 on walking speed, while feedback on ankle angle during heel-off and swing through 

25 (kinematic parameter) had a beneficial effect on the same gait related outcome (Mandel et al., 
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1 1990). However, a direct comparison between kinetic and kinematic parameters has not been 

2 reported in gait related studies, therefore it remains uncertain which group of variables may 

3 offer the best outcomes. A direct comparison between the different groups of parameters is 

4 needed to provide more insight into which parameter might be most effective at improving 

5 gait related outcomes.

6

7 Only 4 of the 173 studies gave feedback in the field, with a further 4 studies giving a 

8 combination of laboratory and field based training. Even though two previous reviews 

9 concluded that field based systems should be considered (Richards et al., 2016; Shull et al., 

10 2014), to date the vast majority of published research is confined to laboratory settings. 

11 Presenting feedback in the field may facilitate the trend for healthcare to move away from a 

12 clinical model to a self-care model supported by technology (McCullagh et al., 2010), and it 

13 would also improve the representative design of experiments (Araújo et al., 2007). However, 

14 presenting feedback in the field does have some practical implementation issues. For 

15 example, visual feedback could be shown on a screen in the laboratory, but this would not be 

16 easily possible in the field. Auditory and sensory feedbacks are therefore easier to facilitate in 

17 field based settings. 

18

19 Future research should also focus on the design of feedback interventions. Over half of the 

20 included studies reported one feedback training session. Since beneficial outcomes could be 

21 related to the duration of the intervention (Adamovich et al., 2009; Agresta and Brown, 

22 2015), both the duration and number of sessions required for effective retraining should be 

23 explored. These findings are supported by a review of Gordt et al. (2017) on the effects of 

24 feedback of wearable sensor data on balance, gait and functional performance in both healthy 

25 and patient populations. These authors concluded that future randomised controlled trials 
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1 should be designed with adequate intervention periods to enhance learning. In the current 

2 mapping review, only fifteen of the included studies used a faded feedback approach within 

3 their intervention. By gradually removing feedback over time, it is suggested that participants 

4 do not become dependent on the feedback, facilitating improved learning (Winstein, 1991). 

5 The majority of studies in this review had no retention test or a short term retention test 

6 within a week of the intervention finishing. Establishing the long term retention of any gait 

7 related changes represents a crucial step in prescribing gait retraining interventions as an 

8 effective alternate to existing treatment options (Agresta and Brown, 2015; Gordt et al. 2017, 

9 Stanton et al., 2017; Tate and Milner, 2010). Further, only thirteen studies combined having a 

10 retention test with having a control group. Of those thirteen studies, eleven studies reported 

11 beneficial effects of gait retraining when comparing baseline values to the retention values, 

12 four studies found significant differences between experimental and control groups. 

13 Therefore, the use of biofeedback shows promising results, since it has the same or a better 

14 effect compared to existing interventions, without the need for a health practitioner, or 

15 several trips to the clinic if field based feedback could be applied. However, at present there 

16 is a lack of well-designed studies that have established the long term efficacy of biofeedback 

17 for use in gait retraining interventions. Therefore, future work should focus on higher quality 

18 study designs, with a special focus on assessing the long term effects of any interventions. 

19  

20 This review has some limitations that are noteworthy: we used a selection of terms combined 

21 with feedback (as stated in the methods, section 2.2), since feedback is too broad as a term 

22 and would therefore have led to too many results. By using a selection of terms instead of 

23 feedback, there is a possibility that we missed some articles. However, we covered the area 

24 which we were interested in by a wide selection of terms and we further searched the 

25 reference list of reviews we found as well to make sure no articles were missed. Another 
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1 limitation is the risk of publication bias, which might inflate the number of beneficial effects 

2 reported for the main outcome. Publication bias could mean that studies are less likely to be 

3 published when they have not found beneficial results. By choosing a mapping review instead 

4 of a systematic review we chose not to assess quality, assessing of the quality could have 

5 reduced the publication bias. However, in the current review the focus was on assessing the 

6 body of literature on the use of biofeedback to alter gait-related outcomes and the methods 

7 used; for this a mapping review was the most appropriate approach. 

8

9 5. Conclusion

10 There is a growing body of research on the use of biofeedback in gait retaining. This mapping 

11 review has identified several areas within the current body of research that warrant further 

12 work. Future research should focus on direct comparisons between groups of parameters and 

13 feedback modes for specific gait retraining applications. Furthermore, researchers should 

14 seek to produce high quality well designed studies that explore the fading of feedback, the 

15 appropriate number of sessions as well as include a control group as assessing the long-term 

16 benefits of any intervention. Finally, researchers should seek to develop and assess the 

17 efficacy of field-based gait retraining systems using experimental designs more representative 

18 of real life situations. 
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Figure legends

Fig 1. Flow diagram of search strategy

Fig 2. Number of studies published each year

Fig 3. The number of studies published for each participant group

Fig 4. The number of studies published for each mode of feedback

Fig 5. The numbers of studies published for each parameter which was fed-back 
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