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Abstract. Analytical expressions have been developed in which the elastic behaviour of the α-
quartz and α-cristobalite molecular tetrahedral frameworks of both silica and germania are 
modelled by rotation, or dilation or concurrent rotation and dilation of the tetrahedra. Rotation 
and dilation of the tetrahedra both produce negative Poisson’s ratios (auxetic behaviour), 
whereas both positive and negative values are possible when these mechanisms act 
concurrently. Concurrent rotation and dilation of the tetrahedra reproduces with remarkable 
accuracy both the positive and negative ν31 Poisson’s ratios observed in silica α-quartz and α-
cristobalite, respectively, when loaded in the x3 direction. A parametric fit of the concurrent 
model to the germania α-quartz experimental ν31 Poisson’s ratio is used to predict ν31 for 
germania α-cristobalite, for which no experimental value exists. This is predicted to be +0.007. 
Strain-dependent ν31 trends, due to concurrent rotation and dilation in the silica structures, are 
in broad agreement with those predicted from pair-potential calculations, although significant 
differences do occur in the absolute values. Concurrent dilation and rotation of the tetrahedra 
predicts that an alternative uniaxial stress (σ3)-induced phase exists for both silica α-quartz and 
α-cristobalite and germania α-cristobalite, having geometries in reasonable agreement with β-
quartz and idealised β-cristobalite, respectively.  

PACS numbers: 62.20.dj, 46.70.Lk, 62.90.+k, 89.90.+n 
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1. Introduction 
There is currently a great deal of interest in the development of ‘negative’ materials with counter-
intuitive properties such as negative thermal expansion [1], negative permeability [2], negative 
permittivity [2], negative refractive index [3] and negative Poisson’s ratios [4]. These unusual 
properties are related in some manner to the structural geometry of the materials, leading to a need to 
develop increased understanding of the mechanisms acting within the material nano-, micro- or 
macro- structures. 
 
Negative Poisson’s ratio materials undergo lateral expansion upon longitudinal tensile loading, and 
also lateral contraction under longitudinal compression. There is increasing interest in the 
development of these novel materials, known as auxetic materials [5], due to their counter-intuitive 
behaviour and also in applications where the auxetic property itself [4,6], or enhancements in other 
materials properties due to a negative Poisson’s ratio [4,7], may be exploited. Enhanced indentation 
resistance [7] and fracture toughness [4] are among the properties that have been demonstrated to 
benefit from having a negative value of Poisson’s ratio. Man-made and natural auxetic materials and 
structures exist from the molecular [6,8] to the micro- [7,9] and macroscopic levels [4,10]. The 
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development of molecular auxetics [5,11—13] is expected to lead to high modulus auxetic materials 
as well as having potential in sensor, molecular sieve and separation technologies [14,15]. 
 
The discovery of auxetic behaviour at the molecular level in the α-cristobalite polymorph of 
crystalline silica [8] has led to an increase in research into the modelling, design and development of 
molecular auxetic materials [12,13,16—20]. Computer modelling calculations, based on classical 
interatomic potentials and on fully quantum-mechanical ab initio pseudopotentials, have previously 
been performed to investigate the elastic behaviour of both α-quartz and α-cristobalite [16—19]. A 
comprehensive study of the anisotropy of the Poisson’s ratio in these polymorphs of silica is 
presented in ref. [17]. The computer calculations are in reasonable agreement with the experimental 
Poisson’s ratios for both polymorphs. It is difficult, however, to pinpoint the origin of the auxetic 
effect from computer calculations alone, since many different deformation mechanisms may be 
operating at a molecular level. One mechanism that has been suggested is the cooperative rotation of 
the SiO4 tetrahedra leading to auxetic behaviour in α-cristobalite [8,16,17]. 
 
Rotation of rigid SiO4 tetrahedra has been previously used as a model for lattice parameter changes in 
silica structures undergoing phase transitions or thermal expansion [21] and, more recently, in the 
‘Rigid Unit Modes’ (RUM) model for framework aluminosilicate crystals [22]. In the RUM model a 
certain number of phonon modes are considered to propagate through rotation and displacement of 
rigid SiO4 and AlO4 tetrahedra. Examples of RUMs known in silicates include those that alter the Si-
O-Si bond angle and those that alter the O-O-O angle. RUMs can become energetically favourable 
due to the fact that the energy required to rotate linked tetrahedra about a common vertex is much less 
than that required to distort the tetrahedra through stretching of the strong Si-O bond. RUMs have 
been found to be important for a number of phenomena in tetrahedral framework structures, including 
providing the instability associated with structural phase transitions in quartz and cristobalite, and the 
effects of both tetrahedral stiffness and chemical composition on the phase transition temperature. 
Consequently, we expect the rotation of rigid tetrahedra to be worthy of consideration in the 
deformation response of quartz and cristobalite subject to uniaxial loading, and also for the 
investigation of the effect of the change in chemical composition from the silica to germania 
analogues.  
 
We have recently shown that dilation of the tetrahedra (i.e. variation in tetrahedron size) can also lead 
to auxetic behaviour in the tetrahedral framework structure for α-cristobalite, and that both auxetic 
and non-auxetic behaviour are possible when rotation and dilation of the tetrahedra act concurrently 
[23]. Positive Poisson’s ratios may be realised when one of the mechanisms acts to expand the 
structure while the other acts to contract the structure. This criterion may be satisfied when inter-
tetrahedral and intra-tetrahedral forces within molecular tetrahedral framework structures are taken 
into account. Deformation due to simultaneous rotation and dilation of the tetrahedra has previously 
been considered in an attempt to understand the thermal expansion coefficients of crystal structures 
with tilts [24]. 

 
We have now extended the models developed earlier [23] to include the related α-quartz structure, 
and have shown how they explain the dichotomy between auxetic and non-auxetic behaviour in the 
two silica polymorphs [25]. Here we report the full methodology employed in the development of the 
model for the α-quartz structure, compare this with the previous model for α-cristobalite and explain 
how auxetic and non-auxetic behaviour can be produced in both cases. This approach is then applied 
to germania. Experimental elastic constants for GeO2 α-quartz are available for comparison [26]. We 
are unaware of any experimental elastic constants data available for GeO2 α-cristobalite, and so we 
make a prediction of the Poisson’s ratio for this system based on the parametric fit of the model to the 
quartz system. 
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Model predictions are also presented for the strain dependence of the Poisson’s ratios and the 
existence of an interesting martensitic-like phase transition induced by a uniaxial stress, leading to 
predicted structures akin to those of β-quartz and β–cristobalite. 
 
2. Tetrahedral framework structures 
The basic molecular ‘building block’ for both the α-cristobalite and α-quartz polymorphs of 
crystalline silica is the nearly regular SiO4 tetrahedron consisting of an O atom at each of the four 
corners surrounding a central Si atom. Both structures consist of a framework of corner-sharing SiO4 
tetrahedra in which each O atom is shared between two adjacent tetrahedra. α-cristobalite contains 4 
tetrahedra per tetragonal primitive unit-cell (space group P41212) and α-quartz contains 3 tetrahedra 
per trigonal primitive unit-cell (space group P3121) – see figure 1. The germania polymorphs have 
essentially the same geometry, with silicon replaced by germanium. 
 

Figure 1 here 
 
Assuming regular tetrahedra of uniform size, then the lattice parameters for both α-cristobalite and α-
quartz structures can be derived in terms of the tilt angle (δ) of a tetrahedron and the edge length (l) of 
a tetrahedron – see Figs. 1 and 2. δ is defined with respect to an axis passing through the midpoints of 
two opposing edges of each tetrahedron. For example in figure 2(a) the relevant tilt axis for 
tetrahedron A is out of the plane of the paper. The untilted (δ = 0) orientation of tetrahedron A 
(indicated by a dashed outline) is shown with respect to the tilted tetrahedron (solid outline), clearly 
defining the angle of tilt, δ. We denote the mutually orthogonal principal axes as x1, x2 and x3 and the 
crystallographic symmetry axes as x, y and z. The two sets of axes coincide for α-cristobalite. For α-
quartz the x1 and x3 principal axes coincide with the x and z symmetry axes, respectively, and the y 
symmetry axis lies in the plane of the x1 and x2 principal axes but at an angle of 120º from the x1 axis 
– see figure 1. For α-cristobalite the tilt axes are aligned parallel to the diagonals in the x-y plane; 
whereas they are parallel to either of the x or y axes or parallel to the short diagonal in the x-y plane 
for α-quartz. δ = 0 when the top and bottom edges of each tetrahedron are perpendicular to the z axis - 
see, for example, the untilted (δ = 0) tetrahedron A (dashed outline) in figure 2(a) for the α-
cristobalite structure. Rotation of a tetrahedron corresponds to a variation in δ, whereas dilation of a 
tetrahedron corresponds to a variation in l. 
 

Figure 2 here 
 
In the case of α-quartz it is convenient to define a non-primitive unit cell with cell edges along the 
principal axes. The lattice parameters in the principal axis system are related to l and δ by: 

( )
2

cos31
1

δ+= l
X                (1) 

( )
2

cos313
3 12

δ+== l
XX              (2) 

2

cos3
3

δl
X =                 (3) 

where X1, X2 and X3 are the lattice parameters in the x1, x2 and x3 directions, respectively.  
 
For α-cristobalite the lattice parameters are 

( )δcos1
21

+== lXX               (4) 

δcos223 lX =                (5) 
 
3. Models 
The Poisson’s ratio νij of a material under tension (or compression) in the xi direction is defined by 
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where dεi and dεj are the incremental true strains (and therefore are applicable to both linear and non-
linear elastic deformation [27,28]) in the mutually orthogonal xi and xj directions, respectively (i,j = 1, 
2 or 3 and i ≠ j) and the s’s are elastic compliance coefficients (using conventional reduced matrix 
notation). Tensile strains are positive and contractile strains are negative. Hence a material in which 
longitudinal extension is accompanied by lateral expansion has a negative Poisson’s ratio by virtue of 
having strains of equal sign.  
 
We have previously developed three models for the deformation of the α-cristobalite structure in 
silica [23]. In the Rotating Tetrahedra Model (RTM) deformation is assumed to be due to the 
cooperative rotation of rigid tetrahedra. The Dilating Tetrahedra Model (DTM) assumes deformation 
occurs via size variation of a tetrahedron at fixed orientation. The third, Concurrent Tetrahedra Model 
(CTM), assumes both rotation and dilation of a tetrahedron occur concurrently. From figure 3 it can 
be seen that both the RTM and DTM give rise to auxetic deformation. The CTM allows the 
possibility of both positive and negative Poisson’s ratios to be realised when rotation and dilation of a 
tetrahedron act in an opposite sense to each other (i.e. one expands the structure whereas the other 
contracts the structure). This phenomenon is shown schematically in Figs. 4a and 4b, and a more 
detailed discussion is given in ref. [23], including the possibility of designing ultra-high Young’s 
modulus materials. 
 

Figure 3 here 
 
The model expressions developed previously [23] for the α-cristobalite structure are quoted in table 1. 
In the following, equivalent expressions are derived for the α-quartz structure. 
 
An infinitesimal incremental change of dXi in the lattice parameter Xi corresponds to an infinitesimal 
increment of true strain in the xi direction of 

i

i
i X

Xd
d =ε                  (7) 

where, for l and δ both varying 

l
l

XX
X ii

i ddd
∂

∂δ
∂δ
∂

+=                (8) 

 
Consider the changes in X1, X2 and X3 due to rotation and dilation of a tetrahedron occurring 
simultaneously. Equations (1) - (3), (7) and (8) give 

( )
( )δ

δδδεε
cos31

dsin3dcos31
dd 21 +

−+==
l

ll
           (9) 

and 
( )

δ
δδδε

cos
dsindcos

d 3 l
ll −=              (10) 

Substituting equations (9) and (10) into (6) gives: 
12112 −==νν                (11) 

( ) ( )δκδ

δκδ

δ
δνν
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sincos
3

1
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cos31
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��
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� −+
⋅

+
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where κ is a ‘strength’ parameter defined by 
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l
l

d
dδκ =                  (13) 

Equations (11) and (12) give the analytical Poisson’s ratios for the α-quartz structure of either silica 
or germania, assuming both rotation and dilation of a tetrahedron occur simultaneously, i.e. the CTM. 
The expressions for the RTM, in which deformation is by the cooperative rotation of rigid (constant l, 
i.e. dl = 0) tetrahedra, are derived by substituting κ = ∞ in (12). Similarly, substituting κ = 0 into (12) 
yields the expression for the DTM, in which size variation of a tetrahedron occurs at fixed orientation 
(dδ = 0). (11) is independent of κ, δ or l, with ν12 = -1 for all 3 models. This corresponds to the 
structure maintaining transverse shape symmetry during deformation in each model. 
 
4. Results 
Table 2 summarises the structural and mechanical property parameters determined experimentally 
and/or employed within the model calculations for the silica and germania analogues of α-quartz and 
α-cristobalite. 
 
4.1. Positive and negative Poisson’s ratios in the CTM 
For both the quartz and cristobalite structures increasing δ leads to a decrease in the lattice 
parameters, whereas increasing l leads to an increase in the lattice parameters (see, for example, 
equations (1) to (5) and figure 3). Hence in the CTM both mechanisms act to expand (or contract) the 
structure for negative values of κ (i.e. dδ and dl of opposite sign), leading to auxetic behaviour. 
Positive values of κ (dδ and dl of the same sign) correspond to one of the mechanisms expanding the 
structure whereas the other contracts the structure. In this case an overall positive Poisson’s ratio is 
possible when the Poisson’s ratios associated with each deformation mechanism are different such 
that the overall longitudinal strain is tensile and the overall transverse strain is contractile for a 
longitudinal tensile load [23], see figure 4b. From (12), positive values for ν31 are realised for the α-
quartz structure when the following condition is satisfied: 

δ

δ
κδ

sin

cos
3

1

cot
+

<<              (14) 

Similarly, for the α-cristobalite structure ν31 is positive when [23]: 

δ
δκδ

sin
cos1

cot
+<<               (15) 

 
Figure 4 here 

 
Regions of positive and negative ν31 are plotted on a κ versus δ map for the α-cristobalite and α-
quartz structures in figure 5. There are four regions of behaviour corresponding to: (I) and (IV) ν31 is 
negative for both α-cristobalite and α-quartz; (II) ν31 is positive for both α-cristobalite and α-quartz; 
(III) ν31 is negative for α-quartz but positive for α-cristobalite. The boundaries of each region were 
calculated from equations (14) and (15).  
 

Figure 5 here 
 
4.2. Poisson’s ratios of the undeformed silica and germania polymorphs 
The experimental Poisson’s ratios were calculated by employing the experimentally determined 
elastic compliance coefficients in (6) for silica α-cristobalite [8] and α-quartz [29], respectively. α-
quartz has positive Poisson’s ratios for uniaxial loading in all three principal directions (ν12 = ν21 = 
+0.141±0.002; ν13 = ν23 = +0.097±0.001; ν31 = ν32 = +0.127±0.001). α-cristobalite has both positive 
and negative principal Poisson’s ratios (ν12 = ν21 = +0.06±0.01; ν13 = ν23 = -0.10±0.02; ν31 = ν32 = -
0.07±0.01). Similarly, employing the experimentally determined elastic compliance coefficients in (6) 
for germania α-quartz [26], yielded the experimental Poisson’s ratios for germania α-quartz. 
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Germania α-quartz has positive Poisson’s ratios for uniaxial loading in all three principal directions 
(ν12 = ν21 = +0.24; ν13 = ν23 = +0.21; ν31 = ν32 = +0.37). We have been unable to find any 
experimental data for germania α-cristobalite for comparison. 
 
The calculated Poisson’s ratios for α-cristobalite and α-quartz loaded along x3 for all three analytical 
models are compared with experimental and computer modelling [16,17,26,29,30] data in table 3. The 
computer modelling calculations are in reasonable agreement with the experimental Poisson’s ratios 
for both polymorphs. To test whether or not the rigidity of the SiO4 tetrahedra contributed to the 
auxetic behaviour of α-cristobalite, pair-potential calculations have also previously been performed 
[16] with the O-O and Si-O bond distances constrained to remain fixed at the distances known to 
occur in crystals of these polymorphs. The Poisson’s ratios (ν31) thus calculated with this constraint of 
rigid SiO4 tetrahedra are also included in table 3. The analytical model calculations employed the 
experimentally determined tilt angles of δ = 16.3° and 23.5° for silica α-quartz [31], and α-
cristobalite [32], respectively and 26.5° and 34.0° for germania α-quartz [33], and α-cristobalite [34], 
respectively. 
 
In considering the values of κ to be employed in the CTM for α-cristobalite and α-quartz it is 
instructive to expand the definition of κ given in (13) into the following form: 

l
R

R
l

d
d

d
secd

secd
d

d
d ⋅⋅⋅⋅= θ

θ
θ

θ
δκ             (16) 

In both polymorphs l ~ 2.63Å (tetrahedron edge length = O-O bond length) for silica and 2.85Å for 
germania. dR/dl is purely geometrical (= √3/(2√2); R = M-O bond length). dsecθ/dR relates the 
amount of intertetrahedral angle change (θ = M-O-M angle) to the change in size of a tetrahedron and 
is related to the inter- and intratetrahedral forces. Both polymorphs contain tetrahedra of similar size 
(see above) and have similar intertetrahedral angles (θ ~ 144.4 and 146.4° for silica α-quartz [35] and 
silica α-cristobalite [36], respectively and 130° and 128° respectively for germania [33,34]) and 
intertetrahedral distances (Si…Si distance ~ 3.06Å for the silica polymorphs [32,33]; Ge…Ge 
distance ~ 3.15Å for the germania polymorphs [37]). Therefore, to a first approximation we expect the 
inter- and intra-tetrahedral forces to yield similar values of dsecθ/dR for both polymorphs if the CTM 
is valid. Hence it is reasonable to assume that, for a given chemical composition (SiO2 or GeO2), 
l(dsecθ/dR)(dR/dl) will also be approximately equal for both polymorphs if the CTM is valid. dδ/dθ 
and dθ/dsecθ are purely geometrical and expressions relating δ to θ have been derived elsewhere for 
α-quartz [31] and α-cristobalite [21] structures containing regular tetrahedra. 
 
For the α-quartz structure: 

( ) 21
32cos

4
3

cos ��
	


�
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−
δθ              (17) 
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The expression for dθ/dsecθ is the standard differential: 

θ
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θ
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ecd
d 2

=
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Hence, from equations (17)-(19): 
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For the α-cristobalite structure: 
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2 δδθ −−
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θ
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sincos212
sin3

d
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+
−=              (22) 

Equations (19), (21) and (22) yield: 

( )
[ ] δδ

δδ
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θ
θ
δ

sincos216
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d
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From equations (20) and (23), and assuming that l(dsecθ/dR)(dR/dl) is the same for both polymorphs, 
then the ratio of the strength parameters for α-quartz and α-cristobalite is dependent only on the 
respective values of δ: 

( )
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( )221

221

cos2cos21

sincos213

sin32cos
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4
3
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cc

qq
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−
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      (24) 

where the subscripts q and c refer to α-quartz and α-cristobalite, respectively. Employing the 
experimental values of δq = 16.3º and δc = 23.5º in (24) yields κq/κc = 0.9995 for the silica 
polymorphs.  
 
We have shown elsewhere that if only bonded and next-nearest neighbour non-bonded interactions are 
considered then deformation resulting in a decrease in θ (contracting the structure, i.e. increasing δ - 
see equations (1)-(5)) may be accompanied by a concomitant increase in l (and R, i.e. expanding the 
structure) [23]. This, then, corresponds to a positive value of κ in the CTM. Molecular orbital 
calculations for α-quartz under thermal loading conditions show a linear relation between R and -
1/cosθ which implies l increases as θ decreases (δ increases) for 90<θ<180° [31]. There is 
experimental evidence for such a relationship between the mean Si-O length and θ in both α-quartz 
and α-cristobalite (e.g. ref. [32]), and also between the mean Ge-O length and θ in GeO2 α-quartz 
[37]. Hence two deformation mechanisms acting in opposite senses to each other are known in these 
polymorphs. To a first approximation, then, we expect from simple geometrical considerations the 
strength parameters to be employed in the CTM for SiO2 α-quartz and α-cristobalite to be positive 
and equal in magnitude if the CTM is valid.  
 
Substituting the experimental values of ν31 and δ into the appropriate CTM expressions (table 1) 
yields κ = 5.13 and κ = 5.24 for SiO2 α-quartz and α-cristobalite, respectively. From the experimental 
errors associated with the ν31 and δ values we estimate uncertainties of around ±2% in κ for both 
polymorphs. The two values of κ thus obtained for α-quartz and α-cristobalite are, therefore, equal in 
magnitude (within error) and positive, providing excellent support for the validity of the CTM. The 
CTM ν31 values in table 3 for silica were, therefore, calculated using an average value of κ = 5.18 
±0.07 for both polymorphs. For both α-quartz and α-cristobalite the CTM ν31 values are in as good or 
better agreement with experiment than computer modelling calculations based on classical interatomic 
potentials and on fully quantum-mechanical ab initio pseudopotentials [16,17]. 
 
From table 1 it is seen that all three analytical models predict ν12 = ν21 = -1 for both polymorphs. It is 
clear, therefore, that none of the analytical models are suitable for describing the deformation of these 
polymorphs when loaded in either of the transverse principal directions (x1 or x2) since the sign and 
magnitude of these Poisson’s ratios are incorrectly predicted. Hence other models, possibly based on 
alternative tetrahedral rotation mechanisms and/or tetrahedral distortion effects, are likely to be 
required for deformation due to uniaxial transverse loading. 
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Substituting the experimental values of ν31 = +0.37 and δ = 26.5° into the appropriate CTM 
expression (table 1) yields κ = 2.81 for GeO2 α-quartz. Employing the experimentally determined tilt 
angles for the germania polymorphs (δq = 26.5° and δc = 34.0°) in (24) yields κq/κc = 0.8659 for 
germania. Hence, assuming the CTM remains valid for loading along x3 in the germania polymorphs, 
then a value of κ = 3.245 is calculated as the appropriate strength parameter for GeO2 α-cristobalite. 
These values of κ were employed in the CTM calculations presented in table 3 for the GeO2 
polymorphs. 
 
The calculated RTM ν31 values for the germania analogues show only a slight variation from those 
calculated for the silica counterparts even though the values of δ are significantly different. This is 
due to the fact that ν31 is largely insensitive to variations in δ for the RTM. Clearly the DTM 
calculations are the same for both the silica and germania polymorphs since ν31 = -1 in all cases for 
the DTM. Interestingly, however, the CTM calculations predict that the germania α-cristobalite 
structure exhibits a very low (near zero) magnitude for ν31 and is non-auxetic (ν31 = +0.007). This is 
opposite to the CTM-predicted and experimentally-observed values for silica α-cristobalite. The δ,κ 
coordinates for the germania and silica structures are also plotted on figure 5. 
 
4.3. Strain-dependent ν31 variations 
Strain-dependent variations in Poisson’s ratio can be investigated by using the expanded form of dδ/dl 
given in (16) to derive an expression relating the change in tetrahedron edge length to the change in 
tilt angle at any value of δ. For example, from equations (13), (16) and (20), we find for α-quartz the 
following expression: 
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Similarly, for α-cristobalite equations (13), (16) and (23) give 
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From equations (16), (20) and (23), a value of dsecθ/dR = -3.445Å-1 is required to give κ = +5.18 for 
undeformed α-quartz and α-cristobalite (δ = 16.3 and 23.5°, respectively). Previous structural 
investigations indicate dsecθ/dR remains approximately constant with deformation due to thermal 
[31,32] and pressure [33,38] loading. Hence, if dsecθ/dR is assumed to also remain constant for 
deformation due to uniaxial loading of the structures along the x3 direction, and the initial (i.e. 
undeformed) values of δ, κ and l are known, then equations (25) and (26) can be integrated and 
substituted into (16) to give the value of κ to be used in the appropriate CTM expression for ν31 (table 
1) at any subsequent tilt angle during the deformation. For α-quartz we have 
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and for α-cristobalite 
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The constants in equations (27) and (28) are found by substituting the initial values for l, δ and 
(dsecθ/dR) into the expressions. The variation of ν31 with total true loading strain ε3 is shown in figure 
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6(a) for both silica polymorphs. The total true strain in figure 6(a) was calculated by integrating (7) to 
give  

� �
�

�

�

�
�

�

�
== 3

)0(3 )0(3

3

3

3
3 ln

dX

X X
X

X
Xε              (29) 

where X3 and X3(0) are the deformed and undeformed lattice parameters along x3 obtained by 
substituting the deformed and initial values, respectively, of l and δ in equations (3) and (5) for α-
quartz and α-cristobalite. The deformed values of l were calculated from equations (27) and (28) for 
α-quartz and α-cristobalite, respectively. The CTM predicts ν31 for α-cristobalite will become 
positive under uniaxial compression and increasingly negative under tensile loading. For α-quartz ν31 
is predicted to become increasingly positive under compression but is also predicted to be negative 
under sufficient tensile loading.  
 

Figure 6 here 
 

Strain-dependent Poisson’s ratios have also been predicted from computer modelling calculations 
[16]. In ref. [16] the Poisson’s ratios were calculated from the ratio of total engineering strains (i.e. -
ε1

eng/ε3
eng) whereas we have used the incremental true strain ratio (equation (6)) which is known to be 

appropriate for non-linear deformation [27,28]. Hence to facilitate comparison between the two sets 
of data the computer modelling data have been converted into the incremental true strain ratio form 
used in this paper. The conversion was achieved by firstly calculating the engineering strain in the x1 
direction (ε1

eng) using ε1
eng = -ν31

engε3
eng (where ν31

eng is the Poisson’s ratio calculated from the total 
engineering strain ratio, and ν31

eng and ε3
eng are provided in ref. [16]). Secondly, the total engineering 

strains were converted to total true strains using the standard conversion εi = ln(1+εi
eng). Finally, 

strain-dependent ν31 values were calculated from the gradient of a plot of ε1 vs. ε3 (i.e. the definition 
from (6)). 

 
The converted computer modelling ν31 vs. ε3 data are also included in figure 6(a). The general trends 
from the computer modelling calculations are in agreement with those from the CTM (i.e. ν31 is 
positive under increased compression and negative under increased tension, with α-cristobalite and α-
quartz being auxetic and non-auxetic, respectively, in the undeformed state). However, for both 
structures ν31 is predicted by the computer modelling calculations to reach a plateau under large 
compressive strain whereas it is predicted to continue to become increasingly positive in the CTM. 
The ν31 values are also predicted to reach more negative values in the computer modelling 
calculations than in the CTM. 
 
The experimental data for undeformed α-cristobalite and α-quartz are also included in figure 6(a). 
The CTM calculations are in better agreement with the experimental data than the computer 
modelling calculations. 
 
Using the same analytical method for germania, but with the appropriate data, δ = 26.5 and 34.0º, and 
κ = 2.810 and 3.245 for undeformed GeO2 α-quartz and GeO2 α-cristobalite, generates the curves in 
figure 6(b) (filled symbols). The trends are similar to those predicted by the CTM for the silica 
counterparts (empty symbols in Fig. 6(b)), i.e. compression along x3, causes an increasingly positive 
value for ν31, whereas extension along x3 leads to a reduction and eventual transition to negative value 
for ν31 for both polymorphs. 
 
The strain magnitudes considered in the model predictions in Figs. 6(a) and 6(b) are of the order of a 
few per cent strain and are consistent with those used in the previous computer modelling simulations 
[16] and in temperature and pressure studies for both the germania and silica polymorphs [30-33, 35, 
38]. 
 



Auxetic mechanisms in silica and germania α-cristobalite and α-quartz Page  10  
 

 

4.4. Predicted σ3-induced second phases in the cristobalite and quartz structures 
We have previously shown that the CTM predicts a second stable phase exists for any given value of 
the strength parameter κ.21 The strain energy per unit volume of a material, U, is derived from 
classical elasticity theory to be: 

2

2
1

2
1

iiii EU εεσ ==                (30) 

where σi and Ei are the stress and Young’s modulus, respectively, in the xi direction. We have seen 
from comparison with experimental ν12 and ν21 values that the CTM is not a valid model for α-
cristobalite and α-quartz when loaded in the x1 and x2 directions (this is also confirmed by comparison 
of the model and experimental ν13 and ν23 values). Hence, we consider only the case of a uniaxial 
stress applied in the x3 direction (σ3) (i.e. σ1 = σ2 = 0 since the deformation mechanisms in the CTM 
do not operate in these loading cases). Therefore, for these structures, considering terms for uniaxial 
loading in the x3 direction in (30) for the CTM, we can define a normalised strain energy function by 
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Now, for a given value of κ we have from (13) 
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where lα and δα are the tetrahedron edge length and tilt angle, respectively, for the α-phase, and the 
tilt angles are in radians. The normalised strain energy function for the quartz structure loaded in the 
x3 direction is then derived from equations (3), (29), (31) and (33) to be: 
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where δα = 16.3º and the subscript ‘CTM’ indicates that the normalised strain energy function refers 
to the CTM. (34) also holds for the cristobalite structure (with δα = 23.5º). Note that, for a given value 
of κ, the normalised strain energy function depends only on the tilt angle of a tetrahedron, i.e. it is 
independent of l, the edge length of a tetrahedron.  
 
Expressions for the RTM and DTM can also be derived. The normalised strain energy function for the 
RTM is derived by substituting κ = ∞ (i.e. dl = 0 in (13)) in (34): 
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In the case of the DTM then equations (3), (5), (29) and (31) yield 
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for both structures. 
 
Figures 7(a) and 7(b) show the normalised strain energy as a function of tilt angle for the silica quartz 
(δα = 16.3º) and silica cristobalite (δα = 23.5º) structures, respectively. In each case curves are 
calculated for the CTM, RTM and DTM, and δα corresponds to the value of the tilt angle known to 
occur in the α-phase. Stable phases are indicated by minima in the U* vs δ curves. For the DTM only 
one minimum is predicted (δ = δα), indicating that no other phase is predicted by the DTM. The RTM 
curves are symmetrical about δ = 0º and so two phases (minima) are predicted, corresponding to δ = 
±δα. However, since the sign of the tilt angle of the tetrahedra is a purely arbitrary choice then the two 
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phases predicted by the RTM will be energetically equivalent and indistinguishable from each other 
and so will both correspond to a degenerate α-phase. The CTM, on the other hand, predicts two 
distinct phases for both structures. For the quartz structure (δα = 16.3º) a σ3-induced second silica 
phase is predicted by the CTM to occur at δ = 5.5º for κ = 5.18. For the cristobalite structure the CTM 
predicts the σ3-induced second silica phase will occur when δ = -2.0º (for κ = 5.18 and δα = 23.5º). 
Employing these values for the second phases in the CTM expressions yields predicted values of ν31 = 
-1.4 and –0.9 for quartz and cristobalite, respectively. In other words, the predicted σ3-induced second 
phases are predicted by the CTM to be auxetic for both silica quartz and silica cristobalite. 
 

Figure 7 here 
 
Figure 7(c) shows the normalised strain energy as a function of tilt angle for GeO2 quartz (δα = 26.5º) 
and GeO2 cristobalite (δα = 34.0º) structures, respectively. Figure 7(c) shows that σ3-induced second 
phases for the germania quartz and cristobalite structures are predicted by the CTM to occur at δ = 
12.5° (κ = 2.810) and -0.8º (κ = 3.245), respectively. By analogy with silica we know quartz and 
cristobalite each has two phases. Employing these values for the second phases in the CTM 
expressions yields predicted ν31 values of -1.6 and -1.0, respectively. Hence ν31 values for the second 
phases of the germania structures are predicted by the CTM to have opposite signs to those for the α 
phases.  
 
5. Discussion 

 
5.1. Silica 
Comparison of the CTM model calculations with experimental data shows excellent agreement, 
demonstrating that single-crystal silica α-quartz and silica α-cristobalite are examples of two 
molecular materials for which the model of concurrent rotation and dilation of a tetrahedron is valid 
for loading in the x3 direction. α-cristobalite exhibits auxetic functionality as a result of two 
independent auxetic mechanisms acting concurrently. α-quartz, on the other hand, provides clear 
evidence that two auxetic deformation mechanisms can lead to non-auxetic behaviour when one (i.e. 
RTM) acts to expand the structure and the other (i.e. DTM) acts to contract it. The remarkable 
accuracy with which the values of the real materials are predicted by a model having only a few 
degrees of freedom indicates that tetrahedron distortion is not a significant deformation mechanism 
for loading along the x3 direction. Force field-based molecular modelling simulations have recently 
been performed for uniaxial loading along each principal direction of SiO2 α-cristobalite [39]. The 
simulations indicate uniform variation of the intertetrahedral Si-O-Si angle (θ) for loading along the x3 
direction, indicative of the cooperative rotation of tetrahedra mechanism considered here. 
 
The CTM fails to accurately predict the Poisson’s ratios of SiO2 α-quartz and SiO2 α-cristobalite for 
loading in either the x1 or x2 direction, possibly indicating the need to incorporate tetrahedron 
distortion and/or one or more additional rigid unit modes to accurately predict the micromechanical 
mechanisms for transverse uniaxial loading. The recent force-field based simulations indicate that 
uniaxial loading along either of the x1 or x2 directions leads to a divergence of the intertetrahedral Si-
O-Si angles into two distinct values and is consistent with an additional rigid unit mode comprising 
cooperative rotation of each tetrahedron about the tetrahedron axis most closely aligned along the x3 
axis [39,40]. Similarly, divergent Si-O-Si (θ) angles would lead to divergent tilt angle (δ) values for 
the rigid unit rotation mode considered in the model presented in this paper (equations (17) and (21) 
for α-quartz and α-cristobalite, respectively). This would also lead to divergent edge length (l) values 
(equations (25) and (26)) and, therefore, an inevitable tendency for distortion of the tetrahedra. 
 
Tetrahedral rotation is known to occur for hydrostatic pressure and thermal loading of SiO2 α-quartz 
and SiO2 α-cristobalite. However, it can be shown that a single value of κ employed within the CTM 
cannot accurately predict the strain response of both SiO2 α-quartz and SiO2 α-cristobalite under 
either of these conditions and so the CTM does not appear to be valid for pressure or thermal loading. 
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It appears, then, that the necessary conditions for the two mechanisms employed in the CTM to be the 
predominant mechanisms in SiO2 α-quartz and SiO2 α-cristobalite correspond to the specific case of a 
uniaxial applied load along the x3 direction. For this reason, the remainder of this paper has 
concentrated only on the Poisson’s ratio for loading along x3. We leave the development of a model 
containing the salient mechanisms for transverse uniaxial loading to a later paper. 
 
The strain-dependent ν31 trends calculated from the CTM are consistent with those from computer 
modelling calculations for loading along x3, i.e. at the largest compressive loads ν31 is positive 
whereas at the largest tensile loads ν31 is negative for both polymorphs (figure 6a). ν31 has also been 
predicted from pair-potential calculations to be negative for α-quartz under reduced hydrostatic 
pressure and is known to be negative at elevated temperatures (800-850K) [41]. However, there are 
discrepancies between the CTM and computer modelling predictions at high tensile and compressive 
strains, probably due to a breakdown in the assumptions employed in the calculation of κ under 
extreme tension and compression. 
 
The CTM predicts that a σ3-induced second phase exists for both polymorphs. The β-quartz structure 
is known [31] to correspond to the ‘untilted’ geometry (i.e. δ = 0), which is in reasonable agreement 
with that predicted by the CTM (figure 7(a)). There is not, however, a concensus in the literature on 
the actual structure of β-cristobalite. The ‘idealised’ structure originally proposed [42] for β-
cristobalite, corresponding to the ‘untilted’ (δ = 0) geometry, contains collinear Si-O-Si bonds (figure 
8(b)) and requires an Si-O bond length of 1.54Å in order to reproduce the volume change known to 
occur when undergoing the α-to-β phase transformation. Si-O-Si bond angles of 180° are unusual in 
silica polymorphs, and the required Si-O bond length is small compared to the typical value for silica 
of ~1.61Å. Consequently a locally ordered structure (‘ordered’ β-cristobalite) [21,43,44] has also 
been proposed. Ordered β-cristobalite is derived from the idealized β-cristobalite structure by rotation 
of each tetrahedron by an angle φ (= 19.8°) about the tetrahedron axis aligned along the x3 direction 
(figure 8(c)). The ordered structure requires the more realistic Si-O bond length of 1.61Å to achieve 
the correct volume change associated with the α-to-β phase transformation. Note that both idealised 
and ordered β-cristobalite have δ = 0. Yet other views proposed include that β-cristobalite has a 
dynamically disordered framework in which the oxygen atoms precess about the Si-Si axes in the 
idealised structure [45], and that the β-cristobalite structure is a dynamic average of domains of α-
cristobalite [46].  
 

Figure 8 here 
 
Using the CTM we propose that the “ideal” structure for β-cristobalite has a tilt angle of δ ~ 0º (figure 
7(b)). Both the predicted second phases occurring at δ ~ 0 in the CTM are stabilised as a result of 
dilation/contraction of the tetrahedra (since the structures at δ = 0 are predicted to be unstable in the 
RTM). Hence in addition to removing the tilt of the tetrahedra, we must also expect variation of the 
size of the tetrahedra to occur at the phase transition as implied by (33). In separate work we have 
shown that a σ3-induced phase transition to ordered β-cristobalite  can be modelled by force-field 
based simulations [39,40]. 
 
5.2. Germania 
The role of tetrahedral rotation in GeO2 α-quartz under pressure is considered to be less pronounced 
than in the silica equivalent, with angular distortion of the tetrahedra playing a more significant role 
[47]. Given that the apparently fortuitous combination of framework structure and applied loading 
direction along x3 leads to deformation via concurrent rotation and dilation of the tetrahedra in SiO2 
(see above), it is interesting to pose the question as to whether or not this dual mechanism also acts in 
the GeO2 structures under the same loading condition, or whether angular distortion of the tetrahedra 
is more likely to occur.  
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The fit of the CTM to the experimental ν31 value for GeO2 α-quartz requires a value of κ = 2.810, 
corresponding to a value of dsecθ/dR = -4.013Å-1. Assuming this value of dsecθ/dR applies also to 
GeO2 α-cristobalite, corresponding to κ = 3.245 for this polymorph, leads to a CTM model prediction 
of a near zero Poisson’s ratio (ν31 = +0.007). The CTM prediction for undeformed GeO2 α-cristobalite 
is, therefore, for a ν31 value of opposite sign to the silica counterpart, although it is noted that the δ,κ 
combination for GeO2 α-cristobalite is in the vicinity of the transition from non-auxetic to auxetic 
behaviour (figure 5).  
 
The values of κ for the germania structures are lower than those for the silica counterparts, indicating 
rotation of the tetrahedra assumes a decreasing importance (i.e. dδ decreases with respect to dl in 
Equation (13)) in the dual-mode deformation mechanism for germania if the CTM is valid. This could 
indicate that the energy mis-match between the (low energy) rotation of linked tetrahedra about the 
common oxygen atom and the (higher energy) dilation of the tetrahedra through stretching of the 
intratetrahedral Ge-O bond is less pronounced in the germania structures than the equivalent 
processes in the silica structures. In which case, other intraterahedral distortions, such as O-Ge-O 
angle variation, leading to angular distortion of the tetrahedra (as opposed to dilation which retains 
tetrahedron shape) may also become significant and thus decrease the validity of the CTM for 
germania. Experimental determination or detailed computer modelling simulations of the mechanical 
properties and structural evolution of germania under loading along x3 are now required to test further 
the effect of composition on the validity of the CTM in the α-quartz and α-cristobalite frameworks. 
 
The CTM predicted strain-dependent trends for the germania polymorphs are similar to those for the 
silica counterparts (Fig. 6(b)), i.e. compression along x3 leads to positive Poisson’s ratio response 
whereas extension leads eventually to auxetic behaviour. The effect of changing composition from 
SiO2 to GeO2 is to raise the value of ν31 for any given applied strain, and to increase the strain at 
which the transition from positive to negative Poisson’s ratio response occurs. 
 
A σ3–induced second phase for GeO2 cristobalite is predicted from the CTM to be similar to that 
proposed for the silica counterpart, i.e. corresponding to a β-cristobalite structure having a tilt angle 
of δ ~ 0º (figure 7(c)). The CTM-predicted σ3–induced second phase for GeO2 quartz has a tilt angle 
of δ = 12.5º (figure 7(c)). We are not aware of any experimental evidence for the existence of a 
distinct second (‘β’) phase for GeO2 quartz. The tilt angle of the second phase predicted in the CTM 
is sensitive to the value of κ employed in the model. For example, a value of κ = 4.20 leads to a 
second phase for GeO2 quartz corresponding to a value of δ = 0º (figure 9). Interestingly, at a value of 
κ = 2.006 the two predicted phases of GeO2 quartz become degenerate (same predicted value of tilt 
angle δ = 26.5° - figure 9). We are not aware of any experimental evidence for the existence of a 
distinct second (‘β’) phase for GeO2 quartz. 
 

Figure 9 here 
 
6. Conclusions 
To conclude, simple analytical models have been developed in which the deformation of the α-quartz 
and α-cristobalite structures deform by rotation of the tetrahedra, dilation of the tetrahedra and 
concurrent rotation and dilation of the tetrahedra. The models have been applied to both silica and 
germania.  
 
Tetrahedron rotation and tetrahedron dilation are both mechanisms giving rise to negative Poisson’s 
ratios (auxetic behaviour), whereas both positive and negative values are possible when these 
mechanisms act concurrently. In particular, we have shown that concurrent rotation and dilation of the 
tetrahedra can explain both the positive and negative Poisson’s ratios observed in SiO2 α-quartz and 
SiO2 α-cristobalite, respectively, when loaded in the x3 direction. The remarkable accuracy with 
which the values are predicted by the model is attributable to the orientation of the tetrahedra with 
respect to this specific loading direction in these two polymorphs. Concurrent rotation and dilation of 
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the tetrahedra leads to a positive ν31 to be predicted for both GeO2 α-quartz and GeO2 α-cristobalite. 
The predicted value for GeO2 α-cristobalite is opposite in sign to that for the silica equivalent, 
although it is noted that the predicted value is very low (near zero) for GeO2 α-cristobalite.  
 
The strain-dependent ν31 trends due to concurrent rotation and dilation in the silica structures are in 
broad agreement with those predicted from pair-potential calculations, although significant 
differences do occur in the absolute values. It is likely that more degrees of freedom are required in 
the analytical models to reconcile the strain-dependent predictions with the pair-potential calculations, 
particularly at large strain where distortion of the tetrahedra may become a significant deformation 
mechanism. Predictions of the strain-dependent ν31 trends for the germania structures have been 
made, and the trends are similar to those for the silica structures. These now require verification 
through experimental measurement and alternative modelling methodologies. 
 
The presence of a σ3-induced second phase is predicted when deformation is due to rotation of the 
tetrahedra, or concurrent rotation and dilation of the tetrahedra. In the case of rotation of the 
tetrahedra the two phases correspond to equal but opposite signs of tilt angle, and so are likely to be 
energetically indistinguishable. Concurrent dilation and rotation of the tetrahedra, on the other hand, 
leads to two clearly distinguishable phases having different values of tilt angle. The second phases 
predicted for silica are in reasonable agreement with the β- and idealised β-phases for quartz and 
cristobalite, respectively. The predicted second phase for SiO2 cristobalite is also consistent with the 
ordered β-cristobalite structure, although an additional rotation system, not present in the current 
CTM model, is required to operate for this transformation to occur from the α-phase. The predicted 
second phase for GeO2 cristobalite is also consistent with the idealised β-cristobalite structure. 
 
In the absence of any experimental data, a model prediction for Poisson’s ratio has been made for 
GeO2 α-cristobalite. Experimental Poisson’s ratio data for this germania polymorph are now required 
to test whether the CTM model is as applicable to germania as it has been found to be for silica [25]. 
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Table 1. RTM, DTM and CTM Poisson’s ratio expressions derived for the tetrahedral frameworks of 
α-quartz and α-cristobalite. 
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Table 2. Structural and mechanical properties employed in the calculations for silica and germania 
analogues of α-quartz and α-cristobalite. 

 SiO2 GeO2 

 α-cristobalite α-quartz α-cristobalite α-quartz 

l (O-O) (Å) 2.63 2.63 2.85 2.85 

θ (M-O-M) (°) 146.4 144.4 128 130 

R (M-O) (Å) 1.61 1.61 1.74 1.74 

M…M (Å) 3.06 3.06 3.13 3.15 

δ (°) 23.5 16.3 34.0 26.5 

ν12 +0.06±0.01 +0.141±0.002  +0.24 

ν13 -0.10±0.02 +0.097±0.001  +0.21 

ν31 -0.07±0.01 +0.127±0.001  +0.37 

dsecθ/dR (Å-1) -3.445 -3.445 -4.013 -4.013 

κ 5.18±0.07 5.18±0.07 3.245 2.810 
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Table 3. ν31 Poisson’s ratios for silica and germania α-quartz and α-cristobalite. Expt = experimental 
[8,26,29]; RTM = Rotating Tetrahedra Model; DTM = Dilating Tetrahedra Model; CTM = 

Concurrent Tetrahedra Model; CM(ai) = computer modelling ab initio calculations [16,17,30]; 
CM(pp1) = computer modelling pair-potential calculations (constant strain method) [16,17]; CM(pp2) 
= computer modelling pair-potential calculations (method of long waves) [17]; CM(rigid) = computer 

modelling pair-potential calculations (rigid SiO4 tetrahedra constraint) [16,17]. 

 SiO2 GeO2 

 α-quartz α-cristobalite α-quartz α-cristobalite 

Expt +0.127±0.001 -0.07±0.01 +0.37  

RTM -0.62 -0.48 -0.61 -0.45 

DTM -1.00 -1.00 -1.00 -1.00 

CTM +0.11±0.03 -0.06±0.01 +0.370 +0.007 

CM(ai) +0.1 -0.2 +0.29  

CM(pp1) +0.2 -0.17   

CM(pp2) +0.19 -0.05   

CM(rigid) -0.6 -0.5   
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Figure 1. Tetrahedral framework unit cells for α-cristobalite and α-quartz showing tetrahedron 
rotation axes (solid arrows) and geometrical parameters. Filled circles are silicon atoms; empty circles 
are oxygen atoms. 

 

 
 
 

 

 

 

Figure 2. (a) x3-[110] projection of the unit cell for α-cristobalite, showing tetrahedron axes and 
‘untilted’ tetrahedron (A) to define tilt angle δ. (b) x1-x2 projection of the unit cell for α-cristobalite. 
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Figure 3. (a) Cooperative rotation of tetrahedra in which the tetrahedron size remains constant 
whereas the orientation of the tetrahedron varies during rotation. Fully expanded (i.e. δ=0°) and fully 
densified (i.e. δ=45°) 3×3×3 extended tetrahedral networks are shown for α-cristobalite. (b) Dilation 
of tetrahedra in which tetrahedron size varies whilst the orientation of the tetrahedron remains 
constant during dilation. 3×3×3 extended α-cristobalite tetrahedral networks are shown before and 
after contraction of the tetrahedra (δ = same value in both cases). 
 

x3 x2

x1

∆δ∆δ∆δ∆δ

x1 x2

x3

l + ∆∆∆∆l

l

(a)

(b)

 

Fully expanded (δ=0°) Fully densified (δ=45°) 

Before contraction After contraction 



Auxetic mechanisms in silica and germania α-cristobalite and α-quartz Page  21  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Schematic of a material deforming by two concurrent auxetic mechanisms (mechanisms 1 
and 2) acting in opposite sense to each other (i.e. mechanism 1 expands the structure, mechanism 2 
contracts the structure). (a) the lateral expansion due to mechanism 1 is greater than the lateral 
contraction due to mechanism 2, leading to overall auxetic behaviour. (b) the lateral expansion due to 
mechanism 1 is less than the lateral contraction due to mechanism 2, leading to overall non-auxetic 
behaviour. 

 
 
 

 
 
 
 
 
 
 

 
 
 
 
Figure 5. κ versus δ map for the CTM showing regions of positive and negative ν31 for the α-quartz 
(‘α-q’) and α-cristobalite (‘α-c’) structures. Region (I): ν31 negative for both structures; Region (II): 
ν31 positive for both structures; Region (III): ν31 negative for the α-quartz structure, positive for the α-
cristobalite structure; Region (IV): ν31 negative for both structures. Data points are shown for the 
predicted κ values and corresponding experimental values of δ for α-quartz (triangle) and α-
cristobalite (circle) structures. Filled symbols correspond to SiO2, empty symbols correspond to GeO2. 
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Figure 6. �(a) ν31 versus ε3 for SiO2 α-quartz and α-cristobalite calculated from the CTM (solid 
curves) and pair-potential calculations [16] (dashed curves). Experimental data are also shown for 
undeformed α-quartz (triangle) [29] and α-cristobalite (cross) [8]. (b) ν31 versus ε3 for GeO2 (filled 
symbols) and SiO2 (empty symbols) α-quartz and α-cristobalite calculated from the CTM. In the 
CTM calculations, undeformed values of δ = 16.3º and κ = 5.18 were used for SiO2 α-quartz, δ = 
23.5º and κ = 5.18 were used for SiO2 α-cristobalite; δ = 26.5º and κ = 2.810 were used for GeO2 α-
quartz, and δ = 34.0º and κ = 3.245 were used for GeO2 α-cristobalite. 
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Figure 7. Normalised strain energy (U*) vs. tilt angle (δ) predictions from the DTM, RTM and CTM 
(κ = 5.18) for (a) SiO2 quartz (δα = 16.3º) and (b) SiO2 cristobalite (δα = 23.5º). (c) Normalised strain 
energy (U*) vs. tilt angle (δ) predictions from the CTM for GeO2 quartz (δα = 26.5º, κ = 2.810 – solid 
line) and GeO2 cristobalite (δα = 34.0º, κ = 3.245 – dashed line). 
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Figure 8. Projections in the x1-x2 plane of (a) α-cristobalite, (b) idealised β-cristobalite and (c) 
ordered β-cristobalite. 
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Figure 9. Normalised strain energy (U*) vs. tilt angle (δ) predictions from the CTM for GeO2 quartz 
(δα = 26.5º): κ = 4.20 (solid line); κ = 2.81 (long dashed line); κ = 2.006 (short dashed line). 
 


