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Abstract

Contact tracing is an essential tool in containing infectious diseases such as COVID-19. Many countries
and research groups have launched or announced mobile apps to facilitate contact tracing by recording
contacts between users with some privacy considerations. Most of the focus has been on using random
tokens, which are exchanged during encounters and stored locally on users’ phones. Prior systems allow
users to search over released tokens in order to learn if they have recently been in the proximity of a user
that has since been diagnosed with the disease. However, prior approaches do not provide end-to-end
privacy in the collection and querying of tokens. In particular, these approaches are vulnerable to either
linkage attacks by users using token metadata, linkage attacks by the server, or false reporting by users.

In this work, we introduce Epione, a lightweight system for contact tracing with strong privacy
protections. Epione alerts users directly if any of their contacts have been diagnosed with the disease,
protects the privacy of users’ contacts from both central services and users, and provides protection
against false reporting. As a key building block, we present a new cryptographic tool for secure two-party
private set intersection cardinality (PSI-CA), which allows two parties, each holding a set of items, to
learn the intersection size of their sets without revealing the intersection items. We specifically tailor it to
the case of large-scale contact tracing where clients have small input sets and the server’s database of
tokens is much larger.

1 Introduction

Contact tracing is an important method to curtail the spread of infectious diseases. The goal of contact tracing is
to identify individuals that might have come into contact with a person that has been diagnosed with the disease,
so they can be isolated and tested.

In the ongoing COVID-19 pandemic, contact tracing has been facilitated by mobile apps that detect nearby
mobile phones using Bluetooth, and several countries / organizations have developed such apps. Such large-scale
collection of personal contact information is a significant concern for privacy [1, 2, 3].

The main purpose of contact tracing applications—recording the fact that two or more individuals were near
each other at a certain moment of time—seems to be at odds with their privacy. The app must record information
about the individual’s personal contacts and should be able to reveal this information (possibly, on demand) to
some authorities.

Multiple ways have been proposed to protect user contact data, offering different privacy guarantees and
coming at different implementation costs. For instance, in the recently released BlueTrace protocol used by the
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Singapore Government [5], users are guaranteed privacy from each other, but this model places complete trust in
certain operating entities for protecting user information.

We consider a model where governments (or operators) do not store any such sensitive user information.
Not only are such databases lucrative targets for cyber-attackers, in many jurisdictions the collection of such
information may raise public concerns or even conflict with privacy regulations. This is important not just for
user privacy, but also because contact tracing is expected to be effective only when participation is high (e.g. 60%
or more of the population [4]). Thus the overall success of the app could be limited if users are reluctant to use a
contact tracing app due to privacy concerns.

In our model, the health authorities maintain a database of tokens corresponding to users which have been
diagnosed with the disease. The tracing app periodically checks an untrusted server to determine if the user is
potentially at risk. This is done in such a way that the server cannot deduce any information about the user which
is not implied by the desired functionality. The users also learn no information beyond whether they may have
been exposed to the disease.

Our model can also be contrasted to several other decentralized mobile contact tracing system/protocols,
which we analyze in the full version of the paper [7]. As we see through our analysis, existing proposals or
launched systems are vulnerable to one or more of the following privacy attacks:

(1) Infection status / exposure source by users: If tokens of users diagnosed positive are publicly released,
Alice can determine which publicly-posted tokens match the log on her phone. This could reveal the time,
for example, when Alice and the user diagnosed positive with the disease (Bob) were in close proximity,
enabling her to identify Bob. Such identification is undesirable as people have been reported to harass
individuals suspected to be the source of exposure to the disease [8], leading to the so-called “vigilante”
problem.

(2) Infection status by server: If the server can determine which users have been diagnosed with the disease,
this leaks the infection status of users to the server operator. This may not be a concern in jurisdictions
where the server is operated by the health authority which already knows this information. However, in
jurisdictions where the server is operated by another party that does not or should not have this information,
this form of linkage can be a serious privacy threat.

(3) Social graph exposure and user tracking: If a central database is used to collect both sent and received
tokens as in [9], or it is possible to infer the source of a sent token as in the case of [10], then the operator
of this server is able to deduce all of the social connections of a user that is reported positive for the disease,
including when and for how long each contact was made. This co-location information can also exacerbate
the risk of users’ location tracking [4, 3].

(4) False-positive claims by users: A user may claim to have been diagnosed with the disease when in reality,
they are not. This would spread false information and panic other users, and reduce trust in the system.

Table 2 provides a brief comparison of different contact tracing systems with respect to security/privacy
properties, required computational infrastructure and client’s communication cost, all of which are important for
a wide-scale real-world contact tracing. Details of the systems compared is discussed in the full version [7].

Our Contributions. In this work, we introduce Epione, a new system for decentralized contact tracing with
stronger privacy protections than the existing systems. As a key primitive enabling Epione, we introduce a
new private set intersection cardinality or PSI-CA, which is used to check how many tokens held by a user
(client) match the tokens in a set stored on a server, without the user revealing their tokens. More formally,
PSI-CA allows two parties, each holding a private set of tokens, to learn the size of the intersection between their
sets without revealing any additional information. Our PSI-CA primitive is designed to be efficient for a large
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System Req. Privacy Protection Against Client
System Trusted | # Infection Status Social | False-positive Comm.
Server By User | By Server | Graph User Cost
TraceTogether [5] Yes 1 Yes No No Yes O(n)
Baseline* 1 No No Most Some O(N)
Private Messaging [2] No 3 No Yes Yes No
Epione 2 Yes Yes Yes Yes O(nlog(N))

Table 2: Comparison of contact tracing systems with respect to security, privacy, required computational
infrastructure, and client communication cost. Baseline systems include Private Kit[13], Covid-watch [9],
CEN [14], DP-3 [15], and PACT’s baseline system [12]. Some of these systems provide a limited level of
false-positive claim protection with an additional server (or healthcare provider), and most provide protection
from social graph discovery. IV is the total number of contact tokens from users diagnosed positive with the
disease, n is the number of contact tokens recorded by an average user that need to be checked for disease
exposure (Note that % is typically the number of new positive diagnoses per day, thus n << ).

server-side database and a small client-side database, as is the case for contact tracing applications. Our new
PSI-CA construction allows us to meet our privacy goals. With several other optimizations in our system design,
we show that PSI-CA can make privacy-preserving contact tracing practical.

1.1 System Overview

Figure 1 shows an overview of the Epione system. Users of Epione want to be notified if any of the people they
have been in contact with are later diagnosed with the disease. They do not want to reveal to other users their
identity, reveal whether they have been diagnosed positive, be tracked over time, or reveal their contacts to any
other organization.

We use a short-range network (such as Bluetooth) to detect when two users are within close range and
exchange a randomly generated “contact token”. All of the sent and received contact tokens are stored securely
on the user’s phone in the “sent token list” and “received token list”, respectively. The received token list never
leaves the user’s phone in a form that can be used by anyone else, and the sent token list is only revealed to a
healthcare provider on a positive diagnosis and with the user’s consent. In Section 5, we explain in detail how to
generate and store the tokens.

In Epione, we assume that there is an untrusted service provider, which we call the Epione Server, which
can collect the transmitted contact tokens from all users tested positive with the disease. The Epione server
allows users to check whether they have received a token from a user who has since been diagnosed with the
disease, without revealing to the server their tokens (and thus their contacts) and without the server revealing
any information to the user about the tokens of users diagnosed positive beyond the count of contact tokens in
common. We use secure computation techniques, particularly PSI-CA, for private matching. This prevents the
Epione server from inferring linkages between users, as well as preventing users from inferring the diagnosis
status of other users, or the source of any exposure to the disease.

It is assumed that a healthcare provider (such as a hospital) is aware of the identity of the user whom it
diagnoses as having the disease. Thus, exposing the identity of the user diagnosed positive to the provider is
not considered as a threat. It is also assumed that the healthcare provider keeps a local database of positively
diagnosed users to be able to verify if a user was legitimately diagnosed positive. The healthcare provider collects
(with the user’s consent) the list of “sent tokens” from a positively diagnosed user’s app and sends it to the Epione
server, which the latter adds to a database of contact tokens from such users.

Note that in this model the server does not know the identity of the user diagnosed positive. It is not hard to
imagine collusion between the healthcare database and the backend server for Epione, say by a state actor or
attacker within the healthcare provider. Even then, the sent tokens are not useful for identifying any contacts
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Figure 1: Overview of our Epione system. When a person is diagnosed with the disease, the healthcare provider
collects their sent tokens and forwards them to the Epione server encrypted under the server’s public key (actually,
the PRG seed is collected to reduce communication costs). The Epione server decrypts the received ciphertexts
from the healthcare provider and obtains the transmitted tokens of all patients diagnosed positive. Next, each
user’s app uses PSI-CA to compare their set of received tokens with the set of sent tokens stored on the Epione

server. If the intersection size is more than zero, then the user is alerted that they may have been exposed to the
disease.

or any other private information. Since tokens are randomly generated, the attacker would need to know which
users received those tokens to re-identify them. Section 5 shows that the Epione server never learns the received
tokens of any user and thus linkage is not possible.

2 Related Work

We begin by discussing previous approaches to contact tracing, and then current approaches to secure computation
and private set intersection, which form the basis for our own PSI-CA used in Epione.

2.1 Contact Tracing Approaches

Due to the rapid spread of the COVID-19 pandemic and the importance of contact tracing, many research
groups have been developing tools to improve contact tracing. Most schemes either (1) rely on and expose
data to a trusted third-party, such as TraceTogether [5], or (2) uses a decentralized/public list approach such as
COVID-Watch [9], PACT [12], or Google/Apple [11] that allows users to infer linkages such as exposure sources.

In this work, we focus on the latter approach. Covid-watch [9], Private Kit [13]!, PACT’s baseline design [12],
and Google/Apple [11] are all variations on this design. Some use pseudo-random number generators, and
upload seeds for the sent token lists to reduce communication and storage costs at the expense of greater cost
for comparisons. All of these designs are susceptible to linkage attack by either users, the server, or both. Some
offer protection against false-positive claims. We refer the reader to the full verion of this paper [7] for additional
discussion of decentralized contact tracing.

'PrivateKit claims that in V3 they will introduce strong privacy protections, but as of writing this paper the protocol to do so has not
been announced.
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In some of the above systems, each phone has to compare the publicly posted contact tokens against their
own history, which requires to them download all public tokens. This requires significant bandwidth and places a
burden on mobile devices.

2.2 Secure Computation and Private Set Intersection

Private set intersection (PSI) refers to a cryptographic protocol that allows two parties holding private datasets to
compute the intersection of these sets without either party learning any additional information about the other’s
dataset. PSI has been motivated by many privacy-sensitive real-world applications. It does, however, reveal
the intersection elements to at least one party. In many scenarios (such as contact tracing) it is preferable to
compute some function of the intersection without revealing the elements in it, such as whether intersection size
is more than a given threshold. Limited work has focused on this so-called f-PSI problem. The Diffie-Hellman
homomorphic encryption approach in [16] is preferable in many real-world f-PSI applications?, due to its more
reasonable communication complexity.

3 Problem Statement and Security Goal

3.1 Problem Definition

We define the problem of contact tracing based on token exchange as follows. Various clients communicate with
each other and with a contact tracing service. The service is provided by one or more servers. The overall system
consists of the following procedures:

* Generate(k) — t: Client uses the Generate function to generate contact tokens, ¢, to be exchanged
with other users. The function takes a security parameter ~ as input.

* Exchange(t,) — tp: The client (client A) uses the Exchange function to exchange tokens with another
user (client B). Client A sends token ¢, to B, and receives ¢; from client B. Client A then stores ¢, in the
“received tokens list” (T r), and client B stores ¢, in their “received tokens list”.

* Query(Tg,S) — a: With a set Ty of received tokens from Exchange, the client uses the Query
function to query the server S and get an answer indicating how many of their tokens came from users
currently diagnosed positive for the disease.

3.2 Security Goal

We consider a set of parties who have agreed upon a single function f to compute (such as contact tracing) and
have also consented to give f’s final result to some particular party. At the end of the computation, nothing is
revealed by the computational process except the final output. In real-world execution, the parties often execute
the protocol in the presence of an adversary .4 who corrupts a subset of the parties. In the ideal execution, the
parties interact with a trusted party that evaluates the function f in the presence of a simulator Sim that corrupts
the same subset of parties.

For simplicity, we assume there is an authenticated secure channel between each pair of clients, and client-
server pair (e.g., with TLS). In this work, we consider a model with non-colluding servers. A desirable contract
tracing system would make an honest user’s actions perfectly indistinguishable from actions of all other honest
users as well as servers. Thus, an ideal security system property would guarantee that executing the system
in the real model is equivalent to executing this system in an ideal model with a trusted party. In particular,

2Google Security Blog, June 19, 2019 "Helping organizations do more without collecting more data”
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Epione provably provides all of the functions of contact tracing while protecting against the linkage attacks and
false-positive claims described in Section 1.

4 Preliminaries

In this work, the computational and statistical security parameters are denoted by «, A, respectively. For n € N,
we write [n] to denote the set of integers {1,...,n}.

Definition 1: [17] Let G(x) be a group family parameterized by security parameter . For every probabilistic
adversary A run in polynomial time in )\, we define the advantage of A to be |Pr[A(g, g%, ¢°, g%°) = 1] —
Pr[A(g, g% ¢°, g¢) = 1], where the probability is over a random choice G from G()), random generator g of G ,
random a, b, ¢ € [|G|] and the randomness of .A. We say that the Decisional Diffie—Hellman assumption holds for
G if for every such A, there exists a negligible function e such that the advantage of A is bounded by €(\).

Definition 2: [18] A pseudorandom number generator (PRG) is a function that, once initialized with some
random value (called the seed), outputs a sequence that appears random, in the sense that an observer who does
not know the value of the seed cannot distinguish the output from that of a (true) random bit generator.

Private Information Retrieval. Private Information Retrieval (PIR) allows a client to query information from
one or multiple servers in a such way that the servers do not know which information the client requested. Recent
PIR [19, 20, 21] reduces communication cost to logarithmic in the database size. In PIR, the server(s) hold a
database DB of N strings, and the client wishes to read item D B[i| without revealing i.

Chor, et al. [22] define a variant of PIR called keyword PIR, in which the client has an item x, the server has
a set .S, and the client learns whether x € S. In this paper, we are interested in Keyword PIR based on both
1-server PIR [20, 21] and 2-server PIR [23, 24] with different trade-offs.

Private Set Intersection Cardinality. Private set intersection cardinality (PSI-CA) is a two-party protocol that
allows one party to learn the intersection size of their private sets without revealing any additional information.

5 Our Epione System

We now present the Epione system in detail, the construction of which closely follows the high-level overview
presented in Section 1.1. Recall that Epione aims to alert any users who have, within the infection window, come
into contact with another user who has been diagnosed positive with an infectious disease.

Epione’s design combines several different cryptographic primitives. We refer the reader to Section 4 and
Section 6 for more details on the cryptographic gadgets used here. The Epione system consists of four phases as
follows.

Agreement and Setup Phase. The Epione server takes a security parameter A as input, outputs a public-private
key pair (pk, sk), and shares the public key with every user. Each user/client u; generates a random PRG seed s;
which it uses to generate contact tokens in the next phase. As long as the server’s configuration does not change,
this phase does not need to be re-run. Whenever a new user registers with Epione, they only need to generate
their own PRG seed, and the server shares the public key with the new user.
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Figure 2: Epione System Design without Agreement and Setup Phase. (I) Tokens are exchanged when two users
are in close proximity. (II) When a user is diagnosed with the disease, the user encrypts their PRG seed using the
public key of the Epione server, and gives the encrypted value to the healthcare provider, who then transmits it to
the Epione server. Using its private key, the Epione server decrypts the received ciphertexts and obtains the
PRG seeds of diagnosed users. The Epione server generates the sent tokens of users diagnosed positive using the
PRG. (III) Each user invokes a secure matching algorithm with the Epione server, where the user’s input is their
received tokens and the server’s input is the database of tokens from users diagnosed with the disease. The user
learns only whether (or how many) tokens there are in common between the two sets, while the Epione server
learns nothing.

Token Generation. Similar to most recent contract tracing systems [2, 9, 14, 12], we use Bluetooth to exchange
contact tokens whenever two users are in close proximity. The Generate(sy,d;, j) — t, ; function is used
to generate tokens of x bits each to be sent by user u on day ¢ and timeslot j. The precise details of the token
generation are left as an implementation detail, so long as the following criteria are met:

* Tokens are indistinguishable from random by anyone not in possession of the user’s seed s,. In other
words, the Generate function acts as a PRG as defined in Section 4.

» Tokens can be deterministically generated for the given day d;, and time slot j using a secret seed, s,,, such
that when a user gives their seed to the Epione server, the server is able to regenerate the tokens sent by
the user.

 All users and the Epione server agree on the method used to generate tokens, the time intervals, and day
numbering.

Contact. As illustrated in Figure 2 part I, when two users, say Alice and Bob, enter within close proximity,
Epione detects this condition with a short range network such as Bluetooth, and then uses that network to
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exchange tokens using the function Exchange. Alice generates token t, < Generate(sq,d;,j), where
Sq 1s Alice’s private seed, d; is the current day, and j is the current time slot. Similarly Bob generates token
ty < Generate(sy,d;, j). Alice sends t, to Bob, and Bob send ¢ to Alice.

Alice then adds the token received from Bob, t;, to her set of received tokens, T'r 4, and Bob adds ¢, to
Tr . We use Tg 4 to represent the set of tokens Alice has sent to other users (which includes ¢,), though Alice
does not actually store such a list since it can be regenerated at any time from her private seed. Alice and Bob
discard received tokens that are older than the infection window (e.g. 14 days for COVID-19).

Positive Diagnosis and Token Collection. When a user (u; in general) is diagnosed with the disease, the user
encrypts their PRG seed using the public key of the Epione server and gives that to the healthcare provider
(provided the user consents to this, of course). The healthcare provider gathers the seeds from several users
diagnosed positive, shuffles them, and transmits the set of seeds over a secure channel to the Epione server. Using
its private key, the Epione server decrypts the received values to obtain the secret PRG seeds. The Epione server
can then generate all of the tokens for the infection window sent by users diagnosed positive with the disease, T'g.
The token collection process is shown in part II of Figure 2.

Two servers are used at this phase to prevent any one server from knowing both the diagnosis status of a
user and their sent tokens. This is useful in the case that the Epione server is operated by an untrusted party,
such as a commercial provider, that should not have access to sensitive information such as a user’s diagnosis. If
such protection is not needed, for example if the Epione server is operated by a health authority that already has
access to the infection status of users and can be trusted not to try to discern a user’s diagnosis status from the
token collection process, then both services can be provided by the same server.

Alternatively, the healthcare provider could provide a token to the user that the user then provides the Epione
server when they upload their tokens to prove that they have a legitimate positive diagnosis. This would allow the
Epione server to verify that the user’s claim is legitimate, but does not protect the user from the server linking
them to a positive diagnosis.

Query. Recall from the contact phase that each user u; keeps a list of tokens received from other users they
have been in contact with within the infection window, T'g ,,,. The query phase aims to securely compare the
user’s received contact tokens T'r ,,, with the Epione server’s set of tokens sent by users diagnosed positive
with the disease, ’i‘g. If there are any tokens in common, then user u; has come into contact with an individual
diagnosed positive within the infection window, and should be notified that they are at risk of having contracted
the disease. This process is illustrated in part III of Figure 2.

The comparison of tokens is done by calling the Query function, which we implement using PSI-CA. We
describe PSI-CA in detail in Section 6. Note that revealing the intersection size is acceptable in the contact tracing
application we consider, however, it is possible hide the intersection size as we discuss in the full version [7].

6 Cryptographic Gadgets

This section provides more detail on the cryptographic tools we use to implement Epione, with a specific
emphasis on our PSI-CA design and PIR. Extension to those tools is discussed in the full version [7].

6.1 PSI cardinality (PSI-CA) for asymmetric set sizes
6.1.1 Our technique

We start with a private set intersection (PSI) in the semi-honest setting, where two parties want to learn the
intersection of their private set, and nothing else. The earliest protocols for PSI were based on the Diffie-Hellman

102



(DH) assumption in cyclic groups. Currently, DH-based PSI protocols [25] are still preferable in many real-world
applications due to their low communication cost.

DH-based PSI. Assume that the server has input X = {z1,...,zx} and client has input Y = {y1,...,yn}.
Given a random oracle H : {0,1}* — G, and a cyclic group G in which the DDH assumption holds, the basic
DH-based PSI protocol is shown in Figure 3. Intuitively, the client sends { H (y;)" },,cy for some random, secret
exponent r. The server raises each of these values to the k power, and the client can then raise these results to the
1/r power to obtain { H (y;)*},,cy as desired.

PARAMETERS: cyclic group G of order p; random oracle H.
INPUTS: Server has input X = {z1,...,zx}; client has input Y = {y1,...,yn}.
PrROTOCOL:

1. Client chooses 7 < Z,, for each y; € Y sends m; = H (y;)" to the server.

2. Server chooses k <+ Z, and for each i € [n], sends m, = mF to the receiver

in a randomly permuted order .
3. Foreach i € [n], the client computes v; = (m/)!/".

4. For each x; € X, the server computes u; = H (z;)* and sends U = {u; | ; € X} (randomly permuted)
to the client.

5. [PSI-CA output] The client outputs | {i € [n] | v; € U} | .

Figure 3: DH-based PSI protocol and extension to PSI-CA with changes highlighted .

From DH-based PSI to PSI cardinality (PSI-CA). If the client uses the same r for every item, it is possible
to extend the basic PSI algorithm to compute functions such as intersection set size (cardinality) without revealing
the intersection items by having the server shuffle the items. This observation was suggested by [25] and recently
was incorporated into private intersection sum [16], which allows two parties to compute the sum of payloads
associated with the intersection set of two private datasets, without revealing any additional information. Clearly,
PSI-CA is a special case of private intersection sum, where the payload is constant and equal to 1.

Figure 3 also shows the extension to PSI-CA with the highlighted changes. The key idea to transform
PSI into PSI-CA is that instead of sending m/ in step 2 of Figure 3 in order, the server shuffles the set in a
randomly permuted order. Shuffling means the client can count how many items are in the intersection (PSI-CA)
by checking whether v; € U, but learns nothing about which specific item was in common (e.g. which v;
corresponds to the item y;). Thus, the intersection set is not revealed.

From PSI-CA to PSI-CA for asymmetric sets. In many applications, including contact tracing, the two
parties (client and server) have sets of extremely different sizes. A typical client has less than 500 new tokens per
day, while the server may have millions of tokens in its input set. In PSI, most work is optimized for the case
where two parties have sets of similar size, and as such their communication and computation costs scale with the
size of the larger set. For contact tracing, it is crucial that the client’s effort (especially communication cost) be
sub-linear in the server’s set size. More practically, we aim for communication of at most a few megabytes in a
setting where the client is a mobile device.

We observe that the last two steps of Figure 3 are similar to the function performed by keyword PIR, which is
communication-efficient in the conventional client-server setting. Keyword PIR allows clients to check whether
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their item is contained in a set held by a server, without revealing the actual item to the server. Therefore,
step 4 and 5 of Figure 3 can be replaced by keyword PIR. Concretely, after step 3, the client has an input set
V ={v1,...,v,} and the server has input set U = {u1, ..., un}. The client sends a multi-query keyword PIR
request with all of the elements in V' to be queried against U on the server. From the PIR response, the client can
count the number of v; € U to find the set size, without revealing to the server the actual values in V' and without
the client learning any more information about U.

6.1.2 Protocol

Our semi-honest PSI-CA protocol is presented in Figure 4, following closely the description in the previous
subsection. The client runs keyword PIR searches for each v;c [, in a set U held by the server. For communication
and computation efficiency, the values of both u; and v; can be truncated, and the protocol is still correct as long
as there are no spurious collisions. We can limit the probability of such a collision to 2~ by truncating to length
A + log(N) bits. In Figure 4, we use a truncation function 7(z) which takes z as input and returns the most
significant \ + log(N) bits of z.

PARAMETERS: cyclic group G of order p; random oracle H, Multi-query Keyword PIR primitive (Section 4),
a truncate function 7(z) takes z as input and returns first A + log(N) bits of z.

INPUTS: Server 1 hasinput X = {x1,...,znN}; client has input Y = {y1,...,y,}; Server 2 has no input
PROTOCOL:
1. Server 1 chooses k < Z, and computes dataset U = {r(H(z;)*) | i € [N]}.

Server 1 sends U to Server 2
2. Client chooses 1 <— Zj,, and sends m; = H (y;)" for each y; € Y to the server 1.

3. Server 1 chooses a random permutation 7 : [n] — [n]. For each i € [n], sends m] = (m;))" to the
client.

4. For each i € [n], the client computes v; = 7 ((m})/").
5. Parties invoke Multi-query Keyword-PIR:

* Server 1 acts as Keyword-PIR server 1 with dataset U
* Server 2 acts as Keyword-PIR server 2 with dataset U

* Client acts as Keyword-PIR client with V' = {v; | ¢ € [n]}
* Client learns whether v; € U, Vi € [n]

6. Client outputs |V N U|

Figure 4: Our semi-honest PSI-CA protocol for asymmetric sets, and extension to 2-server PIR based PSI-CA
with changes highlighted

PSI-CA Cost. The server and client must communicate (1) O(n) group elements, (2) O(n) homomorphically
encrypted selection vectors for Keyword-PIR. If Keyword-PIR uses O(log(V)) bits for each vector?, the total

3There is a tradeoff between communication and computation complexity in PIR/Keyword-PIR as discussed in [21]. Traditional
PIR is O(log(NV)) or O(polylog(N)) for query vectors, but some schemes trade slightly higher communication complexity for reduced
computational complexity.
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communication cost is O(nlog(V)) bits. We provide more analysis of performance in Section 7 and the full
version of the paper [7]. The client’s computation is O(n) and the server’s computation is O(nN).

The two-server PIR model can be used to speed up the server side computation by avoiding homomorphic
encryption operations.

6.2 PSI-CA with 2-server PIR

Recall that the client and server invoke Keyword PIR in step 5 of Figure 4. To speed up the computational
overhead on the server side, we introduce a second, independently operated server. The primary server sends the
dataset U to the second server after it has been computed. By DDH, the second server learns nothing about the
item z; from wu;.

The client sends PIR queries with keyword v; to both servers, and learns whether v; € U and nothing else.
Neither PIR server learn anything about the client’s query as long as the two servers do not collude.

With 2-server PIR, the computation cost of PIR contains only symmetric-key operations, using approximately
2N PREF calls, and the communication cost of PIR is O(log(N)) bits. The highlights in Figure 4 shows the
changes in PSI-CA to go from single-server to 2-server PIR.

7 Implementation Choices and Performance Estimates

The main computation cost of our solution is PSI-CA algorithm, which itself is dominated by (1) token transforms
(exponentiation) and (2) keyword PIR [20, 21]. We first propose the parameters of our estimation in the following
subsection, then summarize the overall system performance. We refer reader to the full verion of the paper [7]
for additional analysis of the Epione’s performance.

7.1 Parameters and token storage

Assuming that a contact token is generated every 15 minutes for approximately 20 hours a day, then each user
sends 80 distinct 128-bit tokens per day. If we assume that a user also receives approximately the same number of
tokens and the infectious period is 14 days for COVID-19, then each client receives a total of n = 1120 over 14
days. If there are 5,000 new cases per day, the server receives N = 1120 x 5000 = 5.6 x 10° new tokens per day.

In Epione, the server maintains a list of tokens from positive patients for the duration of the infectious window.
When a user is diagnosed positive for the disease, they give all of their sent contact tokens for the infection
window (or the seeds to generate them) to the server. Rather than storing these by day they were exchanged, it is
both more efficient and improves privacy for the server to store them by the day the server received the tokens.
This way clients can query only for new tokens that have arrived since they last checked, rather than querying
against the entire set.

If there are 5,000 new cases per day, the server receives 5.6 x 10° new tokens per day. Storing both sent
and received tokens requires 35 KiB of storage on the client (this can be reduced to 18 KiB if sent tokens are
generated with a PRG and only the seed needs to be stored). Assuming the server needs to keep 15 days of tokens
in case clients are offline, the total storage for tokens is 1.25 GiB.

7.2 Implementation optimization: Database shape

The bottleneck for scaling PSI-CA to serve a large dataset to a large number of users is PIR. In order to scale up
PIR, we propose using a bucket system similar to the password checkup design in [21]. First, the database is split
into ngpargs shards (sometimes referred to as megabuckets). Transformed tokens are grouped into buckets, each
bucket holding the same number of tokens, with dummies added as needed. Rather than performing keyword
PIR, normal PIR with a bucket address is used. Since tokens are expected to have a uniform distribution (both
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before and after transformation), tokens should be uniformly distributed across shards and buckets. As such,
the bucket addresses can simply be the first logs (7spardsMbuckets) Most significant bits of the transformed token
itself. Alternatively, a fast hash of the transformed token into the number of bits needed can be used. Recall that
each transformed token is truncated to 74 bits before being stored in the database. We use the top bits of the token
to be the shard index and bucket address, and only store the remaining bits.

For example, if there are 5.6 million tokens in the server’s set, the database can be sharded into 8 sets each
with approximately 700,000 tokens (again, assuming a uniform distribution of tokens). If each shard holds 2'®
buckets, then each bucket holds (7031(8)00] = 3 transformed tokens, with dummies added as necessary to pad
buckets to the required length. The first three most significant bits of the transformed token are used as the shard
number, and the following 18 bits of the transformed token are then the bucket address. Since each transformed
token is stored as 74 — 3 — 18 = 53 bits, each bucket has 20 bytes. More detail of the implementation is present
in the full version [7].

7.3 Overall PSI-CA Performance Estimates

A major advantage of the Epione design is that the database shape described in the previous section can be tuned
to fit the needs of the application and adjusted over time. If on a given day there is a spike in the number of tokens
from users diagnosed with the disease, the number of database shards can be increased or the size of the buckets
increased.

Using the parameters in Section 7.1 as a starting point and a few assumptions on the database shape, we
estimate that single-server PIR-based PSI-CA will take approximately 35 seconds to complete a query. If the
query is done in the background without the user waiting on a response, then the query can be done in the cloud as
a lower-priority batch processing job, and server resources can be scaled up to meet the number of users required.
This was an intentional tradeoff for network efficiency. If the server does some caching of the query keys, then
only 37 MiB of network traffic is needed.

The 2-server approach reduces both server computational load and produces a large savings in network
bandwidth, but requires an independent party and thus may increase infrastructure costs. Concretely, to complete
a query, it requires 1.8 seconds and 679 KiB data transmitted.

We believe that the Epione solution proposed is feasible in practice. This will be studied further at implemen-
tation to determine the optimal configuration.
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