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Abstract

Social media are increasingly used to disseminate emergency warnings,
alerts, and other hazard-related information. In this context, the tim-
ing of information propagation is of immediate interest. Time-sensitive
information must reach members of the general public before the perti-
nence of the information expires. In this research we build a prelim-
inary model for the time between information dissemination and re-
distribution on Twitter, i.e. the waiting time of a retweet. We explore the
relationship between this time and features about the users involved, the
external context, and the message itself. Results suggest shorter waiting
times for hazard-related content.

1 Introduction

Recent developments in social media technologies and mobile devices have transformed informal
communication by allowing individuals to reach a larger number of individuals across greater dis-
tances. As a result, computer-mediated forms of communication, such at microblogs, are increas-
ingly being used for disseminating emergency warnings, alerts, and other hazard-related information
[19]. In emergency settings, time-sensitive information must reach members of the general public
before a specific time, after which the content may no longer be relevant or useful. For example,
flood evacuation alerts must reach the target population before flooding occurs; failure to do so can
have severe consequences. Moreover, collecting and organizing information about events in a timely
and efficient way can aid in reducing deaths, economic losses and social disruption [23].

In the context of extreme events, serial transmission of content from one individual to the next is
vital for information dissemination. Typically a small number of individuals are exposed to the initial
warning and others hear through a process of information exchange [1, 14]. Indeed, previous social
science research has shown that information exchange in emergencies primarily occurs via pre-
existing social ties [12, 30]. While early work in this area focused on face-to-face communication,
the phenomenon extends to computer-mediated forms of communication as well. Online social
networks thus provide “soft infrastructure” for information dissemination which can be utilized in
the event of a crisis situation. In addition, they provide viable platforms for collective problem
solving and efficient coordination in response efforts.

The ability to broadcast, redistribute, and organize information quickly makes Twitter, a popular mi-
croblogging service, a viable emergency warning dissemination system. However, questions arise
about the efficiency and practicality of this system. Does information get lost among the myriad
content making it hard to find thus delaying or reducing exposure? Does hazard-related information
posted to Twitter actually reach individuals faster than traditional media outlets? Information propa-
gation has been studied in many online contexts, however, less attention has been paid to the timing



of this phenomena. In particular, the waiting time between the first posting of content and instances
of serial transmission is the quantity of interest for this research. How do waiting times differ based
on the social features of the poster, the message’s content, and the external context at the time of
posting ? The properties of these waiting times have important consequences for the speed and reach
of information propagation, especially in the context of hazard-related content.

2 Background

Information exchange via chains of informal social ties has been a topic of longstanding interest to
social scientists [21, 16, 38]. One of the most well-known demonstrations of information propaga-
tion [1] illustrates the process of serial transmission and its susceptibility to information distortion.
Since early studies social theorists have proposed many other factors thought to influence infor-
mation transmission [8, 6, 32]; notable examples include anxiety levels and the relevance of the
message content to behavior [3, 40]. The question of how individuals evaluate content and decide to
pass along information continues to be a popular theme in modern research [22, 5].

Prior work shows that social ties are pathways for information exchange in the event of a disaster or
emergency situation. In many cases, pre-existing social ties are the primary means by which people
obtain time-sensitive information, especially when official sources are slow to release updates or
are unavailable [12, 30, 29]. This informal communication process plays a critial role in collective
problem solving [32]. Moroever, in the context of extreme events, individuals are likely to pass
along time-sensitive information without first evaluating content due to the high potential cost of
failing to transfer critical information to others [12].

When a disaster or crisis event occurs, informal collection and dissemination of event-relevant in-
formation is increasingly conducted via social media [36, 34]. This has not gone unrecognized by
emergency management practitioners, who are beginning to recognize the power of this “soft infras-
tructure” in a response context. In fact, the integration of social media and mobile devices enables of
collective sense-making despite a chaotic environment in part because it utilizes pre-existing social
ties. The success of such this technology has been demonstrated in recent years via the responses
to major episodes of rioting in Mumbai and London, large earthquakes in Haiti, Japan, and New
Zealand, and other world events [24, 27]. While this progress is encouraging, utilization of social
media to facilitate response to extreme events continues to be constrained by our lack of knowledge
regarding how such services are typically used for information diffusion and how such use changes
in the context of an extreme event.

Retweeting — passing along messages on Twitter — offers a direct means of tracking information dif-
fusion through social ties [25, 5, 22, 4, 41, 11]. Retweeting behavior has been explored specifically in
the context of disaster or hazard events. [33] demonstrate that individuals are more likely to retweet
information originally distributed through Twitter accounts run by local media and traditional ser-
vice organizations. Though not specifically about retweeting, [37] demonstrate how Twitter allows
for distributed users to share and collectively organize information about local disaster events. Our
contribution looks directly at modeling the timing of retweets based on social features of the users
involved, the content of the message, and the external context during which it was posted.

3 Dataset

Tweets containing a pre-specified list of hazard-related keywords were collected using the Twitter
Search API from the period of January 1, 2011 until September 23, 2011 [7]. Tweets were also
collected for a series of “control” keywords — words chosen at random from Ogden’s English word
list. Over 250 million tweets were collected.

In this work we use a sample of 20,000 non-retweet posts for keyword streams related to mudslides,
earthquakes, tornadoes, and the control group. For each tweet we use the Twitter Rest API to obtain
a list of its direct retweets (this does not include higher-order retweets, i.e. retweets of retweets).!
Each message has an associated posting time, along with a set of attributes for the poster. The
proportion of original posts that are retweeted varies across keywords. Differences also exists in the

"This query is censored at 100 results. This limit was not reached for any of the sampled data.



proportion of use mean median standard error

group keyword hazard-related  waiting time  waiting time  of mean waiting time
control words  chalk 0.00 1036.11 15.40 139.10
collar 0.00 1050.81 14.07 217.14
form 0.00 885.99 19.05 224.52
secretary 0.00 583.17 19.60 123.14
trouble 0.00 731.23 7.16 135.69
earthquakes aftershock 0.61 1429.73 9.85 308.24
earthquake 0.75 376.85 12.20 69.01
magnitude 0.76 507.42 14.93 137.91
quake 0.75 1205.83 16.73 196.51
seismic 0.28 302.94 20.38 42.48
mudslides buried 0.04 2961.13 14.68 518.60
debris 0.68 1496.78 14.02 363.94
landslide 0.21 1260.95 11.01 322.09
mudflow 0.84 638.49 19.27 318.40
mudslide 0.81 309.76 14.76 66.62
tornados funnel+cloud 0.87 54.03 5.47 5.79
shelter 0.06 966.11 24.97 180.18
tornado 0.38 421.93 10.28 110.62
twister 0.01 1089.15 8.58 317.51
wind 0.60 408.09 12.82 71.76

Table 1: Descriptive statistics of the retweets waiting times. Shown are estimated proportion that a
keyword is used in the content of hazard-related content, the mean waiting time, the median waiting
time, and the standard error of the mean waiting time.

proportion of unique individuals in the sample. While retweeters tend to be unique, many of the
original tweeters on a given keyword are captured more than once. This may indicate some topics
are dominated users who tend to post frequently with the same keywords.

Waiting times can be calculated by computing the difference between the time of the original tweet
and each of its retweets. In turn we obtain a distribution of waiting times for each keyword. It
is important to note that not all tweets are retweeted. In fact, typically only around 10% of posts
have one or more retweets. Users may manually specify a retweet by copying text and reposting
manually. In this case the retweet may be missing because it is not identified as such by Twitter, and
is therefore not included in our dataset.

In Table 1 we show basic descriptives about the waiting times for each keyword. In Figure 1 we
compare the mean waiting time in minutes for each keyword in the dataset. Keywords are grouped
according to their topic e.g. mudslides, control, etc. Control keyword have consistent mean waiting
times; we find more variability in the hazard keywords. Keyword such as “funnel cloud” have small
waiting times while “twister” has longer waiting times on average. These differences may result
from the differential tendency for words to be used in the context of hazard-related conversation.

Keywords are used for many different purposes: mudslide could be used to talk about a hazard event
or to refer to a drink. In order to understand which keywords are more representative of hazard-
related conversation on Twitter. We estimate for the proportion of times a keyword is used in the
context of a hazard event, as seen in Table 1. These estimates were obtained by manually coding 100
randomly sampled tweets for each keyword from the data collected.? This feature gives an estimate
of the “hazardousness” of the keyword in question. In the case of Figure 1 the fact that 87% of uses
of “funnel cloud” are hazard-related while only 1% of uses of “twister” refer to hazard events, may
explain some of the difference in waiting time distributions.

To illustrate potential differences in the waiting times we compare the observed waiting time distri-
butions for “funnel cloud” and “chalk” in Figure 2. “Funnel cloud” has a more peaked waiting time
distribution, with shorter waiting times on average. “Chalk”, on the other hand, has a flatter distri-
bution with longer waiting times. This exploratory analysis suggests a possible difference between
hazard and control related content.

’In ongoing work, we use Amazon Mechanical Turk to get a better estimate of this proportion.
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Figure 1: Mean and 95% confidence interval of Figure 2: Waiting time distributions. Illustrative
the mean for observed retweet waiting times for example of potential differences between hazard
each keyword. and control related content.

4 Statistical Models for Waiting Times

The quantity of interest in this research is the time between a tweet and each of its direct retweets.
Our goal is to characterize the relationship between waiting time and known quantities about the
tweet, such as its content, the user who created it, the user who retweeted it, and the external context
at the time of posting.

A number of different factors affect this waiting time. We study each stage in turn: the exposure
of a given tweet, the atfentiveness of the exposed user, and propensity to retweet. Exposure occurs
when a user follows the original poster, follows a list of interest or searches for a relevant keyword.
Attentiveness refers to the differences in how users perceive the tweets they are exposed to, i.e.
whether they notice them, comprehend them, or ignore them [10]. For example, some users may
consistently see, read, and decide to retweet within a minute of the original post, while others do
not see the tweet until hours later, if ever. In many cases this delay may be determined by the
services individuals use to manage their Twitter accounts; use of web-based versus mobile clients,
for example. Finally, the propensity to retweet reflects a decision that will vary by user, the subject
matter of the tweet, and the context in which the decision is made. During extreme events, the hazard
context may be particularly important as previous research indicates that actors are less likely to
evaluate the content before passing it to others when it refers to warnings or alerts [12].

To model retweet times, we assume a linear model on the expected value of the log waiting time
of the ith retweet E[logy;] = x.3 where y; € RT is the waiting time of retweet i, x; € RY is
a vector of P covariates, and 3 is a vector of model parameters. The likelihood of IV retweets is
given by L(y|0) = vazl x;/3, and we compute maximum likelihood estimates by optimizing the
log likelihood using the 1m function in the R statistical computing environment [28].

Since waiting times are strictly positive, it is reasonable to model the log transform of the response as
we have done above. Due to the log transform, the interpretation of each parameter is multiplicative:
two groups of tweets with a unit difference for some covariate x;, will have an expected ratio of
median waiting times of e’7, all else held constant. This is a simplistic model, but it provides an
initial characterization of the waiting time. Future work will explore more sophisticated waiting
time models.

In the following sections we discuss in detail various known quantities that we have collected which
may have a relationship with the waiting time. A summary of these features in shown in Table ??.

4.1 Social Features

As information exchange on Twitter is automated through a series of following relationships, the
structure of this network impacts the communication dynamics and, in turn, observed waiting times
between tweets and retweets. After all, a necessary condition for serial transmission is exposure.
One cannot pass along information without first being privy to it. Differential exposure would have
consequences for the distribution of waiting times. For example, if more people were on average
initially exposed to a message containing keyword k than a message containing keyword j, there is
greater opportunity for smaller waiting times to be observed for tweets containing keyword k.
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Exposure can occur via several different mechanisms. Individuals may follow lists of interest, or
search for relevant keywords. Unfortunately, getting reliable estimates for these exposure cases is
difficult. We can, however, easily obtain data on the initial exposure based on following relation-
ships. In this case we approximate exposure based on the number of followers of the original poster.
Numbers of followers and friends (i.e. the number of initiated following relations) of the original
poster have consistently been shown to be correlated with retweetability [25, 35]. Social features
may also impact the propensity of the exposed users to retweet. Arguably, Twitter users are able to
judge authoritativeness or credibility based on the number of followers of a given account [15, 9, 26].
These node level properties of the Twitter follower networks will likely impact waiting times as they
influence exposure and propensity to retweet a given message.

Attentiveness of the recipient is important factor in waiting times because it affects the time of
exposure. One way in which we might estimate attentiveness is to consider the activity of the
retweeting user. One such measure of activity is the total number of statuses posted by the user.
We consider this quantity for both the tweeter and retweeter. Additional user features considered
here include whether the user is “verified.” Verification is used to confirm the authenticity of user
accounts. In previous work, verification has been shown to have significantly impact of retweeting
behaviors [25]. Users with verification may be considered influential or authoritative sources, which
in turn may affect people’s attentiveness to content posted by these users or the propensity for others
to retweet messages posted by these users.

4.2 Content Features

There is a strong tradition of research on how information or message content affects its subsequent
transmission. Studies have shown that dread rumors tend to be more prevalent in the population
[40]. Work on urban legends also supports the claim that dreadful or disgusting content in rumors
increases the chance of transmission [17, 39]. Other influential factors in the content itself may
include references to authoritative or credible sources [18, 15].

The keywords in each tweet may themselves impact the waiting time. Each keyword varies in
the extent to which it is actually used to describe hazard-related events on Twitter. As previously
discussed, we include a estimate of the proportion of use which is hazard-related for each keyword
of interest. Content features such as these are important factors that may influence the propensity
for users to retweet as well as the attentiveness of exposed users.

Research on predicting retweet occurrence explores a number of these features [25, 35]. This work
suggests that the number of hashtags, URLs, and mentions of other users are highly correlated with
retweetability. Hashtags allow users to add metadata to message, in a sense specifying content
channels of interest. This convention aids in indexing content and subsequently facilitates search. If
users can easily and quickly find content of interest, waiting times for retweets may be smaller due
to faster exposure times. Inclusion of external URLSs is another method for sharing information. In
many cases these links point to new articles, photos, or even content that exceeds the 140 character
limit. Additional references may impact credibility and therefore retweetability. We also consider
mentions of other users, measured by the number of @ mentions in the text. Again, third party
mentions may add additional context for the information and impact its reception with users.

4.3 External Context

The context of interaction is known to structure the way individuals response of others [2]. Acts
of communication taken place within a social, economic and political environment. Indeed, tweets
reflect current events, newsworthy stories, gossip, etc. In the case of hazard-related content, the
context remains important to the saliency and relevance of the information.

The time a tweet is posted to that individuals stream likely impacts the chance that others are exposed
to that message. Tweets posted during the morning in one country may be received in the middle of
the night in a different location. These differences impact exposure and attentiveness. Since Twitter
has a global user base we consider the time of posting in the time zone of the retweeter. We further
consider basic seasonality indicators for day of week and time of day of the tweet.

Information is more likely to be important, time-sensitive, and relevant to potential behavior during
an hazard-related event than during period of no events. We utilize data from the National Oceanic
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and Atmospheric Administration® on tornado warnings and data from the U.S. Geological Survey*
on earthquake events to explore the effect of event occurrence on retweeting. Event saliency can
influence both the propensity to retweet content as well as the attentiveness of users. Individuals
may be more likely to search out content and thus be exposed faster. Additionally, emergency warn-
ings and alerts present important information that had direct relevance to the behaviors of affected
individuals. In each case, the consequence of an event may be shorter waiting times.

5 Results

To gain a sense of the explanatory power of the Model BIC
various features we discuss above, we compare social + content + context 231275.92
the fit of the model using different combina- social + content 231927.95
tions of features. To describe model fit we com- content + context 232292.08
pute the Bayesian Information Criterion (BIC), social 237442.02
a statistic which computes the loglikelihood as context 237132.26
a measure of model fit while penalizing for the content 233760.06

number of parameters used in the model [31].
In Table 2 we show the results of this analysis, Table 2: Model selection via BIC. We compare the
which suggest that using each category of co- inclusion of each category of covariates. Lower
variates play a role in the performance of the values are better.

model. The best fit results from combining so-

cial, content and context features suggest each

plays a role in waiting times.

In Figure 4 we show the effect of the hour of the original post computed with respect to the timezone
of the retweeter from the best performing model (R? = .1281). These results show a clear pattern of
hourly seasonality. Waiting times are longer during night hours and become shorter during the day,
suggesting optimal hours for fast retweeting. Results from the day of week seasonality term do not
show as clear of a pattern; only Saturday shows longer waiting times than the reference category,
Monday, with an estimate of 0.25 with standard error 0.039.

In Figure 3 we show selected estimates for social and content coefficients from the best performing
model. Several features appear to be correlated with a decrease in the waiting time for a retweet. For
example, e~3! = 0.733 is the ratio of median waiting times between two populations whose log
tweeter’s status count differ by one unit. Likewise, for a 1% increase in the “hazard use propensity”
estimate there is an expected 0.9% decrease in the median waiting time.

We find that inclusion of external URLs and @ mentions of other users (both third party and directed)
are associated with longer waiting times. Hashtags, on the other hand are associated with shorter
waiting times. Perhaps the inclusion of hashtags allows for increased exposure since individuals may
search for content by hashtag. URLS and @ mentions present an interesting case; one explanation of
these results might be that users are more likely to follow the external links and/or look at other users

3www.n0aa.gov
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when evaluating content, delaying the overall process. The same might explain longer waiting times
being associated with verified users. These features may also lead to heavier tailed distributions.

Social features are also associated with waiting times. The activity level of both the original poster
and the retweeter are both correlated with shorter waiting times. High activity may indicate more
attentive usage patterns. Interestingly, a higher number of followers and friends for the tweeter have
positive effects (i.e. longer waiting times) while those of the retweeter have negative effects.

Finally, consider the relationship between the estimated hazard use proportion and waiting times.
Recall, this estimate captures the propensity for keyword to be used in the context of hazard-related
conversation. There is large variability in this proportion across keywords, even within the same
hazard group. We find that the effect of hazard use is strongly associated with waiting times; higher
propensities have smaller observed waiting times on average. These results suggest that hazard-
related content demonstrates shorter waiting times when compared with control words.

We also considered event occurrence, which captures the event of a hazard in the 48 hour period
prior to the posting of the tweet. Since only data on earthquake and tornado events is available,
we fit this model to a subset of the full data. Results indicate that waiting times are significantly
smaller after recent events on average. However, the magnitude of the effect is smaller than social
and content features.

6 Discussion

In this research we compare waiting times between online messages and instances of their redistri-
bution. Our results suggest that the distribution of waiting times is related to a variety of factors.

Content features such as hashtags are strongly correlated with smaller waiting times. The number
of followers of the tweeter, on the other hand, is associated with longer waiting time. These results
suggests that exposure through search may be an important factor. Tweets containing hashtags
are easily found by users searching for content. This may be especially relevant in the context of
extreme events where people are actively seeking specific information. Use of hashtags may be an
easy means of increasing visibility of hazard-related content posted to Twitter.

Social features present an interesting case for further study. We might have predicted that a high
number of followers for the tweeter would lead to shorter waiting times because initial exposure
would be greater. However, results suggest just the opposite, pointing to an alternate mechanism.
One plausible explanation is the classic theory of diffusion of responsibility [13, 20]. Typically used
to explain the bystander effect, the theory attempts to explain phenomena in which the greater the
number of people present, the less likely any single individual will take responsibility (e.g. in aiding
an individual in distress). In the case of Twitter, messages broadcast to a larger number of individuals
may decrease the perceived need among recipients to repost the content. An alternate explanation
may be one of message superfluousness. If large numbers of individuals are initially exposed to the
original content, retweeting might be redundant. Potential retweeters might assume that others have
already been exposed to the content as well.

Comparisons between hazard-related and control-related content also have important implications.
The strength with which specific keywords are associated with hazard-related conversation has one
of the strongest associations with waiting times. Tweets containing keywords that are typically used
to refer to hazard events have smaller waiting times on average. These results suggest that exposure
to hazard-related content may in fact be faster than average content. These results have important
consequences for disaster practitioners by demonstrating that Twitter could be a viable system for
information dissemination. Findings are also important for research on information diffusion more
generally.
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