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Saint Lucy (c. 1625-1630) by Francisco de Zurbaran

CCORDING TO LEGEND, SAINT LUCY PLUCKED OUT

her own eyes and sent them to a Roman suitor after he had
insisted that her beauty allowed him no peace. This act of de-
votion so moved the suitor that he converted to Christianity.
Later, Lucy’s eyesight was miraculously restored one day
during prayer.

The young saint’s connection with eyes may have origi-
nated from the Latin source for her name, Lux, or “light,”
which is inextricably linked with vision. So, if you're having
eyesight troubles, you should see an optometrist, but you may
also want to remember December 13, Saint Lucy’s feast day.
For a focused discussion of eyesight and light, turn to page 48.
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Here at the Washington-area head-
quarters of Quantum, we have the op-
portunity to view one of the most fa-
mous rigid polyhedrons of all time—the
Washington Monument.

Unfortunately, members of Congress
| often seem inspired by the monument’s
lack of flexibility, especially when it
comes time to balance the budget. In the
past, their strict adherence to party lines
has led to a government shutdown. But
enough local color. For the first of a pair
of articles dealing with the rules govern-
ing the flexibility and rigidity of polyhe-
drons, turn to page 4.
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FRONT MATTER

Sc/LINKS: The world's a click away

HE NATIONAL SCIENCE

Education Standards (NSES)

have been out for about three

years now. Have we made
progress? I think most will say the
jury is still out. Most will also argue
that the slow progress is more re-
lated to people’s reluctance to
change than any basic flaws in the
document. The NSES call for every-
body to get a basic science-literacy
education. They also outline how
this should happen, with less em-
phasis on memorizing long lists of
meaningless science factoids and
more emphasis on inquiry-based in-
struction.

The advent of the NSES woke up
an old whipping boy in education—
textbooks. Over the past three years,
there has been a lot of talk about the
decline in the quality of textbooks.
The criticisms center on the propa-
gation of poorly connected factoids
in textbooks, the lack of a true in-
quiry-based learning environment,
and in some cases, the inclusion of
factually incorrect information.

Unfortunately, there has been
less discussion on what brought
about this decline and what might
be done to remedy the situation. I'd
like to take a politically incorrect
stance and suggest we spend less
time bashing textbooks and more
time working to provide more ap-
propriate educational resources and,
as a consequence, a more complete
learning experience.

The challenge starts by first ask-
ing, What is the textbook’s role in
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Pros and con-texts

education? Is it the sole source of the
education of the learner? Of course
not. If not, then what can it do best
and what should we leave to other
sources?

I believe that textbooks, at best,
are a structured presentation of
knowledge. (This characteristic
gives fuel to the critics that stress
the importance of having textbooks
with the correct facts.) Textbooks,
however, are also very static. Once
the printer’s ink hits the page, the
letters and numbers are fixed. So, as
a technology, the textbook repre-
sents the structure of knowledge.
The World Wide Web, on the other
hand, is anything but static. It also
has little (knowledge) structure and
is so clearly unfiltered that one has
to be on constant guard about the
“facts.”

The National Science Teachers
Association (NSTA) is launching a
new project that will blend the
strengths of the two technologies—
textbooks and the Web—into a more
responsive learning tool. NSTA
will partner with textbook pub-
lishers to place symbols in specific
spots within science textbooks. A
sciLINK signals a launch point from
the textbook location to page-spe-
cific enrichment paths within cyber-
space. Each sciLINK will take learn-
ers to the same initial web address
(www.sciLINKS.org). From there,
users will take a cyberpath specific
to the location in their textbook.
Because the cyberpaths are keyed to
the location in that specific text-

book, they provide information and
experiences relevant to the subject
matter and the learner’s level.

All sciLINKS and related cyber-
paths will be the result of a focused
search by teams of professionals.
The process of determining the
sciLINKS sites begins with curricu-
lum-enhancement producers (teams
of professionals from universities,
federal agencies, and nonprofit asso-
ciations) identifying possible links
for consideration by grade-specific
NSTA teacher committees. These
committees, working in concert
with the NSTA staff, will establish
the cyberpaths for the participating
publishers.

To capitalize on the Internet’s
continuous flow of new and exciting
resources and information, the
NSTA staff will review and update
the cyberpaths daily. Today’s late-
breaking news update from a Mars
exploration mission or a major nu-
trition study can be included in the
appropriate cyberpaths tomorrow.
The result is a profound change in
the role of textbooks in America’s
classrooms.

Now, here’s the challenge: If
sciLINKS is part of the future of
textbooks, what other creative
new curriculum tools can we cre-
ate for the twenty-first-century
learner? Send your ideas to me at
gwheeler@nsta.org.

Gerald F. Wheeler is Executive Di-
rector of the National Science
Teachers Association.
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Flexible polyhedral Surfaces

BUILD-IT-YOURSELF MATH

Bending the rules with Euler, Cauchy, and Bricard

by V. A. Alexandrov

HE TOPIC OF POLYHEDRAL

surfaces has traditionally played

a central role in the study of

solid geometry. Moreover, this
topic can suggest many problems to
anyone who wants to attain a deeper
knowledge of the subject. For in-
stance, we can start with the follow-
ing list of problems:

(1) Find the lengths of the edges of
the regular polyhedrons (tetrahe-
dron, cube, octahedron, icosahe-
dron, and dodecahedron) circum-
scribed about (or inscribed in) a
sphere of a given radius.

(2) Prove Euler’s theorem, which
states that the following identity
holds for any convex polyhedron:

V-E+F=2,

where V, E, and F are, respectively,
the numbers of vertices, edges, and
faces of the polyhedron.

(3) Use Euler’s theorem to prove
that the list of regular polyhedrons
given in question (1) is complete.

(4) Prove Cauchy’s theorem,
which states that two convex,
closed polyhedral surfaces whose
corresponding faces are congruent
and whose faces adjoin each other in
the same way are congruent.

Problem (1) doesn’t go beyond the
traditional classroom material. Prob-
lems (2) and (3) are not usually in-
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cluded in mathematics courses, but
they are quite accessible to anvone
who wants to learn more about solid
geometry. The most difficult problem
in the list is problem (4). If you are ea-
ger to know how Cauchy’s theorem
is proved, see the article beginning on
page 8.

In this article we will discuss
some questions connected with
Cauchy’s theorem. More specifi-
cally, we’ll show, using a counter-
example, that the theorem can’t be
extended to nonconvex polyhedrons
(an amazing fact that had remained
unclear for more than 150 years,
since Cauchy proved his theorem in
1813). But before we proceed, let’s
make some definitions.

A polyhedral surface is any surface
in three-dimensional space consisting
of a finite number of polygons. We
call these polygons faces of the sur-
face, and their sides we call edges. We
assume that every edge belongs to no
more than two different faces of the
surface. And if every edge belongs to
two faces of the surface, then we say
that the surface is closed. A good ex-
ample of a closed polyhedral surface
is the surface of a cube (if we remove
a face from it, the remaining part is
not a closed polyhedral surface. We
should stress that it’s convenient to
also consider self-intersecting sur-

faces, whose faces may have com-
mon points other than the vertices of
the surface and the points lying on its
edges.

We assume that it is prohibited to
change the shape and size of any face
(that is, we imagine that the faces
are made of a solid matter). How-
ever, it’s permissible to change the
dihedral angles between the faces, as
if the faces were connected by
hinges. We call a polyhedral surface
flexible if it is possible to change its
shape by means of a continuous de-
formation of its dihedral angles.
Clearly, the (nonclosed) polyhedral
surface consisting of two triangles
connected al edge is flexible.

The rest of our article will discuss
the question of whether or not
closed, flexible polvhedral surfaces
(without self-intersections) exist.

yhedral surface is
undary of a con-
poi (A set of points is
any line segment connect-
ing two of its points is contained
within the set.) Cauchy’s theorem
implies that no closed, convex poly-
hedral surface is flexible.

In 1897 the French mathemati-
cian R. Bricard described all possible
flexible octahedrons. According to
Cauchy’s theorem, none of them
can be convex. It has become a tra-



Figure 1

dition to divide all flexible octahe-
drons, also known as Bricard’s octa-
hedrons, into three types. In this ar-
ticle we’ll consider only one type.

First we'll explain how to as-
semble a cardboard model of this
octahedron. Copy the figure com-
posed of six triangles shown in fig-
ure 1 on a sheet of cardboard. Here
the letters a, b, ¢, and d denote the
lengths of the corresponding edges.
For example, it is convenient to
makea=12,b=10,c=5,andd=11.
(The reader should check that these
are in fact possible lengths for the
polyhedron’s edges.) Cut along the
solid lines, then fold along the dot-
ted lines as follows. Fold the two tri-
angle flaps (one of whose sides has
length c) on the left of the figure to-
ward yourself and glue them to-
gether along the side of length c.
Fold two similar triangle flaps on
the right of the figure in the other
direction and glue them together
along the side of length ¢. You will
obtain the nonconvex, nonclosed
polyhedral surface P shown in fig-
ure 2. Solid lines in this figure rep-
resent the visible edges of the sur-
face, and the dotted lines represent
the edges screened by the faces.
The edges AE, ED, DF, and FA
make up the border of this surface,
and each of them adjoins only one
face of the surface P.

The polyhedral surface P is clearly
tlexible: If we fix the position of tri-
angle BCE in space, we can move
point Fin the directions shown by the
arrows in figure 2. The positions of
points A and D will also vary, but
most important, the distance be-
tween them will remain constant.

To make sure that this is so, let’s
consider the dihedral angle S with

edge EF, whose facets are the half
plane s, passing through B and the
half plane s, passing through C. Let’s
rotate the half plane s, about EF so
that the new half plane ¢, contains
point A. That is, we rotate it toward
the viewer through an angle equal to
the dihedral angle at edge EF of tet-
rahedron BAEF. Similarly, let’s ro-
tate the half plane s, about the line
EF so that the new half plane ¢, con-
tains D. To do so we rotate it away
from the viewer through an angle
equal to the dihedral angle at edge
EF of the tetrahedron CDEF. But, re-
gardless of the position of point F,
these tetrahedrons have equal corre-
sponding edges (see fig. 2}, and thus
they are congruent. In particular,
their dihedral angles at the edge EF

“are equal. Therefore, the dihedral

angle T formed by half planes ¢, and
t, is equal to the dihedral angle S.

So, we see that in tetrahedrons
BCEF and ADEF, we can point out
five pairs of equal corresponding
edges (BE = AF, BF = AE, CF = DE,
CE = DF, and EF is their common
edge) and a pair of equal dihedral
angles, S and T, opposing their sixth
edges (BC and AD, respectively).
Thus, tetrahedrons BCEF and ADEF
are congruent, and therefore
AD = BC = d for all possible posi-
tions of vertex F.

Since AD has a constant length
independent of the position of F, we
conclude that we can attach two
imaginary cardboard triangles ADE
and ADF to the surface P such that
the resulting closed polyhedral sur-
face Q will remain flexible. Of
course, this procedure can be carried
out only in our imagination, because

Figure 2

it results in self-intersections. For
example, faces ADE and BCE will
intersect each other along a line that
is not an edge of the surface Q.
When we start shifting vertex F, this
line changes its position on each of
the faces ADE and BCE. And it’s
impossible to imitate this process in
a cardboard model.

So it is this surface Q that is one
of Bricard’s octahedrons. Like the
usual octahedron, it has 6 vertices
(A, B, C, D, E, and F), 12 edges (AB,
AD, AE, AF, BC, BE, BF, CD, CE,
CF, DE, and DF) and 8 faces (ABE,
ABF, BCE, BCF, CDE, CDF, ADE,
and ADF). Nonetheless, unlike the
usual octahedron, Bricard’s is flex-
ible, nonconvex, and self-intersect-
ing. Now we’re going to modify this
construction so that the self-inter-
sections vanish.

Steffen’s surface

We will start by gluing together
two congruent copies P, and P, of the
polyhedral surface P in a certain way.
We'll denote the vertices of the sur-
face P, by the letters we’ve used for
the corresponding vertices of P, but
with the index 1. We’ll employ simi-
lar notation for P,.

Now draw on cardboard the quad-
rilateral consisting of two congruent
triangles shown at the top of figure
3. Here the letters a and e denote, as
before, the lengths of the corre-
sponding sides. If above you’ve cho-
sen a = 12, now it is convenient to
take e = 17. Cut this figure from the
cardboard along the solid lines and
fold it along the dotted line. You will
obtain the nonclosed polyhedral sur-
tface, which we’ll call R, shown in
figure 3.

Fix the position of the surface R
in space such that the distance be-
tween L and N is equal to d. In other
words, in what follows, we won’t
change the value of the dihedral
angle at edge KM of the surface R.

Superimpose points K and E, A,
and L, and D, and N, and glue sur-
faces P| and R along the edges A E,
and KL and along the edges E, D, and
KN (fig. 4). Tt is clear that we can still
shift vertex F, as we did before, even
though the position of the surface R

QUANTUM/FEATURE 5




Figure 3

is fixed (because the constant dis-
tance between points A and D does
not deny Bricard’s octahedron the
ability to twist, and P, is just a part
of this octahedron). Moreover, point
F, can move freely along the circle
that lies in the plane perpendicular
to segment A,D, and whose center
lies in the middle of this segment.
The faces of surfaces R and P, will
not change their shape; only certain
dihedral angles will vary.

In a similar way, superimpose
points E, and M, D, and L, and A,
and N and glue surfaces P, and R
along edges A,E, and MN and along
edges D,E, and LM (fig. 4). We see
that point F, can move along the
same circle that point F, can move
along. Therefore, if we have given an
arbitrary shape to surface P, (that is,
if we have fixed the position of ver-
tex F, on the aforementioned circle)
we can twist surface P, (preserving
the shape of its faces, of course), so
that vertex F, coincides with F,. But

—7M

Figure 4
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then edges A, F, and D, F, will match
up, as will edges B, F, and A,F,, and
we'll obtain a closed polyhedral sur-
face that is flexible because we were
free when we chose the position of
F, (or F,, which is the same]. This
polyhedral surface is called Steffen’s

polyhedral surface. It has only nine

vertices, which is just one vertex
more than a cube has. (It is help-
ful to make triangle KLM transpar-
ent: You will see what is going on
inside Steffen’s surface when you
twist it.)

Now let’s discuss some properties
of flexible polyhedral surfaces. Every
closed polyhedral surface without
self-intersections bounds a body in
three-dimensional space, and the vol-
ume of this body is finite. The so-
called bellows conjecture says that if
the surface is flexible, the volume of
this body remains constant when the
surface twists. This conjecture ap-
peared in 1978 as a result of investi-
gations of the first examples of closed,

Figure 5

flexible polyhedral surfaces without
self-intersections invented by R.
Connelly. In 1995 the Russian math-
ematician I. H. Sabitov proved this
conjecture. Just imagine: Steffen’s
surface would be flexible even if it
were hermetically sealed and filled
with an incompressible liquid!

A natural question arises: Are
there any other quantities that
characterize a polyhedral surface
and remain constant when the sur-
face is twisted? A trivial example
of such a quantity is the area of the
surface. Another, more significant
example is given by the following
construction.

Let’s define the interior dihedral
angle at an edge of a closed polyhe-
dral surface as the angular measure

of the dihedral angle at this edge,
measured from the side where the
body of finite volume bounded by
the surface lies (note that it can be
greater than 180°). Multiply the
length of an edge of a polyhedral
surface by the value of the interior
dihedral angle at this edge and sum
the products for all edges. The re-
sulting number is called the mean
curvature of the polyhedral surface.
The American mathematician R.
Alexander established in 1985 that
the mean curvature of a closed, flex-
ible polyhedral surface does not vary
when the surface is twisted.

Real-wonld applications?

Here we must confess that no
practical applications have been
found in the 20 years since interest
in the subject of closed, flexible sur-
faces was revived. But we mustn’t
despair, for it has often happened in
the history of science that the first
practical applications of some phe-
nomenon were found only many
years after it had been theoretically
established. For instance, more than
50 years elapsed ‘Lwt\« een the theo-
retical discovery of electromagnetic
waves and the first radio broadcast.

And, although we don’t yet know
any real nontrivial applications of

this theory, we can point out one
very promising direction of thought.
Modern chemistry e _jﬂams many

properties of different substances by
the geometric structure of their
molecules. A molecule can be
viewed as a polyhedron with atoms
at its vertices and whose edges cor-
respond to the interatomic connec-
tions in the molecule. And, while
the distances between the atoms
cannot vary, there is nothing pre-
venting the dihedral angles between
the faces of this polyhedron from
changing.

So, we can imagine a substance
whose molecules have the form of a
flexible surface. The chemical and
physical properties of this substance
would change as the form of its
molecules changed! No such sub-
stances have yet been found. But
who knows what might happen in
the future?
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sQLID SOLUTIONS

Rigidity of convex polyhedrons

The inflexible findings of Cauchy and Euler

by N. P. Dolbilin

N THE PRECEDING ARTICLE,
beginning on page 4, we learned
how to construct a flexible poly-
hedron. Here we examine why a
flexible polyhedron must be convex.
Anyone who has ever made, or
simply held, a paper model of a con-
vex polyhedron probably noticed
that it was not flexible and might
have wondered why not.

have intuitively reasoned
that the rigidity of the
model is not just a
matter of chance
but rather is
predeter-
mined by
some in-
tricate

hid-

B® -

den relationships among the faces
of the polyhedron.

The question of the rigidity of a
polyhedron is an old geometrical
problem, and, as it turned out, quite
a difficult one. It was finally solved
only about 20 years ago, and the first
step to its solution was made in
1813 by the outstanding French

Those who wondered may Vo 's' %
o."”

mathematician Augustin-Louis
Cauchy, an alumnus of the famous
Ecole Polytechnique in Paris, who
was then only 23 years old.!
Cauchy graduated from the Ecole
Polytechnique in 1807, and accord-
ing to the well-known German
mathematician Felix Klein, “one
can put him for his wonderful
achievements in various
branches of mathematics on al-
most the same plane as
Gauss.” This high estimate of
Cauchy’s work holds par-
ticular significance, since
competition between

ematicians was generally
very sharp, and acknowl-
edgments by each party
of its counterpart’s mer-
its were scant.

The results that
brought Cauchy fame
as a great mathema-
tician are concerned,
foremost, with the cal-
culus, algebra, math-
ematical physics, and me-

IFor an account of the
founding of the Ecole Polytech-
nique, see “Revolutionary Teaching”
on page 26 of the March/April 1998
Quantum.



chanics. His work on geometry
would perhaps remain lost in
his vast scientific legacy,
which fills 25 huge vol-
umes, if not for his pa-

per “On polygons and

polytopes,” published
in the Journal de I’Ecole
Polytechnique in 1813.

Cauchy's
unigueness theorem

Cauchy’s paper on poly-
gons explores the following
natural question: To what ex-
tent do the faces of a polyhe-
dron and the order in which
they adjoin each other deter-
mine the shape of the polyhe-
dron? Let’s give an example to
explain the purpose of this ques-
tion. Consider two polyhedrons: a
tower with a four-slope “roof” on a
cubical foundation and another
tower made of the same faces but
with the “roof” pushed into it (figs.
1 and 2).

It’s clear that these two polyhe-
drons are not congruent, even
though they are made of correspond-
ing congruent polygonal faces that
abut each other in the same manner.
Cauchy demonstrated that nothing
of this sort can happen when both
polyhedrons are convex.

Figure 1

Cauchy’s theorem: Two convex
polyhedrons whose corresponding
faces are congruent and adjoin each
other in the same way are also con-
gruent.

The Russian academician A. D.
Alexandrov called the main idea of
this theorem’s proof “one of the
most brilliant arguments ever to ap-
pear in geometry.” In time, this
beautiful argument has become a
common method used to prove
other uniqueness theorems.

Euler's conjecture

The question of whether the
shape of a polyhedron was deter-
mined in a unique way by its faces
or if the surface could somehow
vary despite its faces remaining un-
changed had attracted mathemati-
cians’ attention long before
Cauchy. Indeed, the great Euler
himself pondered the problem of
uniqueness.

In 1766 Euler made the following
conjecture: “A closed spatial figure
does not admit variation unless it is
torn.” What Euler called a “closed

nowadays
called a closed
surface. Thus,
Euler’s conjecture
was concerned not
just with polyhedral
surfaces. But, in the case
of polyhedrons, it seemed
quite correct.

Simple polytopes

Before we proceed, let’s clarify
some notions. Let’s define polytope
(or polyhedron) as the surface com-
posed of polygons and not the body
bounded by it. We will also assume
that our polytope is made of a finite
number of polygonal faces such that
to each edge of each face exactly one
other face is attached. (It is difficult
to give a strict mathematical defini-
tion of a polytope that would em-
brace convex and nonconvex poly-
topes, so we will not attempt this.)
Polytopes that comply with the last
condition are referred to as closed.
This definition is a natural one. All
the polytopes that we encounter in
school (prisms, pyramids, regular
polyhedrons) are closed. An open
cardboard box is not closed, but a
closed box, of course, is.

We will also assume that our
polytopes are topological spheres. A
topological sphere is any surface
that can be compared to a deflated
soccer ball. In other words, if our
polytope was made of rubber, we
would be able to transform it into a
sphere without cutting and pasting.
Let’s agree to call such polytopes
simple. All convex polytopes are
simple, as are both polytopes in fig-
ures 1 and 2. Figure 3 shows an ex-
ample of a toroidal polytope, which
is not simple.
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Sometimes a polytope is so badly
“tangled” that it is difficult to un-
derstand whether or not it is simple.
Thus, it’s remarkable that we can
determine whether or not a polytope
is simple even when simply viewing
it causes confusion. Suppose some-
one tells you the numbers of verti-
ces V, of edges E, and of faces F of a
polytope X. Then you can calculate
the number ¢(X) defined by the for-
mula

o(X)=V-E+F.

This number ¢(X) is called the
Euler characteristic of the poly-
tope X. This number indicates
whether or not X is simple: The
polytope X is simple if and only if
its Euler characteristic is equal to
2. The Euler characteristic of non-
simple polytopes does not exceed
0. In particular, the Euler charac-
teristic of toroidal polytopes (fig. 3)
is zero (we invite the reader to
check this).

Flexibility of polytopes

Imagine a polytope made of sev-
eral cardboard polygons attached
to each other by adhesive tape (of
course, it will be finite, closed, and
simple). Clearly, since all the con-
nections are flexible, it would be
possible to rotate any two faces
about their common edge and thus
change the dihedral angle between
them ... if there were no other
faces.

And when all the faces are con-
nected to form a polytope, we can
ask if it is possible to change the
shape of the polytope continuously
so that all its faces remain un-
changed while the dihedral angles
between them vary. If this can hap-
pen, we call the polytope flexible;
otherwise we call it rigid.

Thus, any deformation of a
polytope, if it exists, is related to the
flexibility of its dihedral angles.
Moreover, although each pair of ad-
joining faces is free to choose the
value of the dihedral angle that it
forms, it seems quite possible that it
loses this freedom in the presence of
the other faces. It seems possible
that Euler based his conjecture on
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the rigidity of closed polytopes on
“plausible reasonings” of this sort.

The article on page 4 shows that
Euler was not right. For, although it
was proved in 1975 that “almost all”
polyhedrons are rigid, almost all is
not all, and the previous article gave
an example of a flexible polytope.
The first example of a flexible poly-
hedron was proposed only in 1978
by the American mathematician R.
Connelly.

By the way, it is more difficult
than it might seem to find such a
polytope. For instance, a bellows
does not give the necessary ex-
ample, because its ability to change
its form is due to the elasticity of
the material and not to its geo-
metrical structure. In effect, if a
bellows were made in the form of a
flexible polytope, it would be use-
less, for every such polytope main-
tains a constant volume in the pro-
cess of deformation. (This is the
statement of the bellows conjec-
ture, proved in 1995 by the Russian
mathematician I. H. Sabitov. In
fact, Sabitov proved an analogue of
Heron’s formula for polytopes,
which expresses the volume of the
polytope in terms of the lengths of
its edges and the areas of its faces.
This is a remarkable result. Note,
for example, that there can be no
analogue of Heron’s formula in two
dimensions for polygons of more
than three sides: Their areas are not
determined solely by the lengths of
their sides.)

Note that Cauchy’s theorem im-
plies that flexible polytopes must
be nonconvex. Clearly, the flexibil-
ity of a polytope means that there
can be other polytopes made of the
same faces in the same order that
are different from the original
polytope because their dihedral
angles are slightly different. At the
same time, if the original polytope
is convex, then the other one
whose dihedral angles are slightly
different, must also be convex. But
if our original flexible polyhedron
were convex, then we could
change its dihedral angles by a sut-
ficiently small amount that it
would form a new convex polyhe-

dron, and this is in direct contra-
diction to Cauchy’s theorem,
which states that such polytopes
should be congruent.

Now we proceed to the main
ideas of the proof of Cauchy’s theo-
rem

Gauchy’s lemma on convex polygons

To prove Cauchy’s theorem, we
first look more closely at some prop-
erties of polygons. It is no coinci-
dence that the word polygon is in
the title of Cauchy’s work on poly-
hedrons. Imagine a plane polygon
made of rods with hinges at the
ends. In the case of a triangle, the
lengths of the rods determine the
angles between them (the “SSS” cri-
terion of congruence for triangles),
and the construction is rigid. This
familiar geometrical fact finds nu-

merous applications in our everyday
life: All constructions made of rods
that must bear he

r loads (bridge
girders, arms of cranes, roofs, and so
on) contain triangular elements for
the sake of rigidity

If the number of sides of a polygon
is greater than three, then its angles
can’t be determined by the lengths of

its sides, a he polygon isn’t

determined by them, either. How-

ever, Cauchy noted one fact about

such polygons that came in handy

when he proved his theorem.
AA,...A andB=B,B,
nvex n-gons such that

4 A =B B

2 “m—1"n n-17"n
We will ascribe the
or “—” to all vertices A,
lygon, depending on
> /B.or LA, < /B,
we do not assign
anything to the vertex A, (we

Lemma 1: Consider two convex
polygons with congruent corre-
sponding sides, some of whose
angles are not congruent. Then the
difference of the corresponding
angles must change its sign at least
four times as we go around the bor-
ders of the two polygons.

It is not hard to see that the num-



ber of alternations must be even and
nonzero. Thus, it is enough to show
that it isn’t equal to 2, which is the
main idea of the proof.

Suppose that the number of al-
ternations is two. Then polygon A
splits into two broken lines: Some
of the vertices of the first broken
ling AA. . v A, are marked with
the sign “+”, and there are no ver-
tices marked by “~” in it. The
other broken line, A A, | ... A,
contains some vertices marked by
“~” and none of its vertices are
marked with “+” (fig. 4).

Therefore, it is possible to obtain
the brokenline A A, | .. A ;from the
corresponding broken line B.B, ...
B, of polygon B by increasing some
ot the angles of the latter. It seems
clear that the length of the segment
that connects the beginning and the
end of the broken line must increase
during this operation—that is, A A ;
> B.B,. (The strict proof of this state-
ment is rather cumbersome, and we
will omit it.)

On the other hand, the second
broken line A A, | ... A, of polygon
A is obtained from the correspond-
ing brok_en line BB, | ... B; of poly-
gon B if we decrease some of the
angles of the latter. The segment
connecting the ends of the broken
line will become shorter. Therefore,
we conclude that A A < B,B;. These
two inequalities contradict each
other, and so the original assump-
tion that there are exactly two alter-
nations of sign is wrong. Thus, the
number of alternations is greater
than or equal to four.

1+1

Figure 4

Figure 5

Now that it is proven, we'll use
lemma 1 to prove Cauchy’s theo-
rem, although we’ll have to change
its setting slightly so that it deals
with convex polygons on a sphere.
The statement and proof of this
variation of lemma 1 will remain
the same, but we must explain the
corresponding definitions.

The definition of a spherical
polygon is quite similar to the defi-
nition of a planar polygon. We just
have to keep several things in mind.
First, a side of a spherical polygon
is an arc of a great circle, and the
length of a side is the length of the
corresponding arc. Second, an angle
of a spherical polygon is the angle
between the tangents drawn to the
sides (arcs) at the point of intersec-
tion (that is, at the vertex of the
polygon). We can see that this angle
is equal to the linear measure of
the dihedral angle between the
planes of the corresponding great
circles (fig. 5). Third, we call a
spherical polygon convex if it lies
completely in one of the two hemi-
spheres into which the sphere is
divided by a great circle containing
one of its sides.

Gauchy’s main lemma

Suppose that there are two non-
congruent polyhedrons that comply
with the conditions of Cauchy’s
theorem. Then we will be able to
point out pairs of corresponding un-
equal dihedral angles in them. We'll
mark each edge of one of these poly-
hedrons with a “+” if the dihedral
angle at this edge is greater than the
corresponding dihedral angle in the
other polyhedron, or a “-” if it is
less. Of course, it can happen that
some of the edges will remain un-

marked, since there might be equal
corresponding dihedral angles.

Let’s choose a vertex O of the
polyhedron that is an endpoint of
some of the marked edges, and draw
a sphere S with a small radius, cen-
tered at O. By “small radius,” we
mean that it is so small that the
sphere S does not intersect any edges
of the polyhedron except for those
with endpoints at O. Each such
edge intersects the sphere exactly
once, and these intersections de-
termine a convex spherical poly-
gon M whose angles are equal to
the corresponding dihedral angles
of the polyhedron.

Now if we draw another sphere &’
with the same radius and center at
the corresponding vertex O’ of the
other polyhedron, we obtain another
polygon M, on it. The sides of poly-
gon M’ are equal to the correspond-
ing sides of polygon M. This equal-
ity follows directly from the
conditions of the theorem: In the
corresponding vertices of the poly-
gons, corresponding congruent faces
are adjacent.

Now it’s time to use lemma 1.
We suppose that Cauchy’s unique-
ness theorem is not valid. Therefore,
there must be at least one edge
marked with either “+” or “-”. Ap-
plying lemma 1 to polygons M and
M’, we see that if there is a marked
edge at the vertex, then there must
be at least four alternations of the
signs assigned to the edges around
the vertex.

It may seem that there is still a
long way to go from this simple ob-
servation to the complete proof of
the theorem. But here Cauchy found
an original idea that made the rest of
the proof just a matter of technique.
It turns out that the following state-
ment holds.

Lemma 2. Let some of the edges
of a closed, convex polytope be
marked with a “+” or “~”. Consider
all the vertices of the polytope such
that at least one of the edges with
endpoints at these vertices is
marked. Then there must be a ver-
tex among them with fewer than
four alternations of signs assigned to
the edges around it.
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Figure 6

For instance, figure 6 represents
an octahedron that has two vertices
for which the number of alterna-
tions of sign is equal to two.

The underlying idea of the proof
of the main lemma is clearest in the
particular case when every edge
bears a sign. Suppose that this is
true. As before, let V be the number
of vertices of the polytope, E the
number of edges, F the number of
faces, and N the total number of al-
ternations of sign around all the ver-
tices. To prove lemma 2, it’s enough
to show that N < 4V,

We will follow Cauchy’s reason-
ing and prove a stronger inequality:
N<4V -8.

It is easy to see that the total
number of alternations of sign
around all the vertices is equal to
the total number of alternations
of sign that one can count by go-
ing along the edges of all faces. In-
deed, each pair of adjacent verti-
ces with endpoints at one vertex is
also a pair of adjacent vertices in
the border of the corresponding
face (fig. 7).

Let F, denote the number of n-
gonal faces of the polytope n < 3.
Then

F=F,+F,+F.+F.+.. (1)

Now the number of sign alterna-
tions along the border of an n-gon is
less than or equal to n, and when n
is odd, it’s not greater than n — 1.
Therefore,

N<2F,+4F, + 4F,
+G6F +6F, + ... (2)

Since every edge belongs to two faces,
2E = 3F,+ 4F,; + BF. + 6F. # i (3]

Let’s rewrite Euler’s formula in the
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Figure 7

following form:
4V 8 = 4E — 4F. (4)

Substituting the expressions from
equations (1) and (3) for F and E in
equation (4), we obtain

4V -8 = 2(3F, + 4F, + 5F. + ...)

- 2(2F,+ 2F, + 2F. + ...)
=2F,+4F, + 6F + .... (5)

The coefficient of F, in equation (5)
is equal to 2(nn — 2) and thus, if n > 3,
it is not less than the correspond-
ing factor in (2), which does not
exceed n. Therefore, equations (2)
and (5) imply the necessary in-
equality: N <4V - 8.

(In the general case, when it may
happen that some of the edges are
unmarked, the proof is complicated
by unimportant technical details,
and we will omit them.)

Note that in our proof of lemma
2 we haven’t used the convexity of
the closed polytopes: This lemma
holds for arbitrary closed polyhe-
drons. We used this assumption
only to satisfy the conditions of
lemma 1.

Let’s reformulate our final con-
clusion. If Cauchy’s theorem were
incorrect, then, according to lemma
1, we would obtain a set of signs as-
signed to each edge that would be
impossible according to lemma 2.
This is the main idea of the proof of
Cauchy’s theorem.

Rlexandrov's Sufficiency theorem

When Cauchy’s paper on polygons
was published, its author’s interests
were already very far from this branch
of mathematics. However, many
other mathematicians studied similar
questions. For example, many pro-
found results in this field were ob-

Figure 8

tained by the Russian mathematician
A.D. Alexandrov and his students. In
1939 Alexandrov proved a theorem
that gives necessary conditions for
determining the development of a
convex polyhedron.

Roughly, a development of a
polyhedron is a polygon obtained
by cutting the surface of the poly-
hedron so that its faces can be
spread out flat on a plane. For in-
stance, figure 8 shows the standard
development of a cube. It is much
more difficult to understand that
the polygon shown in figure 9a is
also a development of a cube. The
letters assigned to the vertices in
figure 9a determine the sides that
must be glued together (fig. 9b).
Let’s note that the polygons of the
development do not necessarily co-
incide with the faces of the corre-
sponding polytope. It can happen
that a face consists of one or several
pieces of different polygons from
the development. Note also that
not every vertex of the develop-
ment must coincide with a vertex
of the polyvtope; some vertices
might be “hidden” inside an edge or
a face of the polytope.

Consider an arbitrary develop-
ment: Take several convex paper
polvgons and note which sides of
these polygons should be glued to-
gether. Of course, we must see that
the lengths of the corresponding
sides are equal. Then glue the poly-
gons together to form the polytope
that had been developed (note that it
is permissible to fold the polygons of
the development). A natural ques-
tion arises: Which developments
can in this way produce a convex
polyhedron? The following two con-
ditions are necessary for this:
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Figure 9

(I] The development must comply
with Euler’s formula (V- E + F = 2).
(II) The sum of the plane angles
around each vertex in the process of
gluing must not exceed 360°.

The idea of Alexandrov’s theorem
is strikingly simple: Conditions (I)
and (IT) are not just necessary, but
also sufficient, for determining the
development to be that of a convex
polygon (although it can happen that
we will have to fold the interior of
some polygons of the development).

Later Alexandrov developed the
ideas that underlie this theorem into
a whole new theory: the internal
geometry of convex surfaces—one of
the most important branches of
modern geometry.

Let’s look again at figure 9a. Even
if we didn’t see figure 9b, we would
still be able to say that this develop-
ment can be glued into a convex
polytope just by checking the condi-
tions of Alexandrov’s theorem for it.
How many different convex polyhe-
drons can we obtain from one devel-
opment? Since the faces of such
polytopes are not determined in a
unique way, Cauchy’s theorem

!0lovianishnikov was a winner of
the First Soviet Mathematical
Olympiad (1934). The events of the
next decade frequently left their mark
on the difficult lives of talented young
people. In 1941 Olovianishnikov
graduated from Leningrad University
and became a postgraduate student
there. His scientific advisor was A. D.
Alexandrov. World War II soon began,
he volunteered to go to the front, and
in autumn 1941 he was wounded. In
the hospital he wrote his work
generalizing Cauchy’s theorem. He
returned to the front and died in
December 1941 in a furious battle in
the Leningrad suburbs.

can’t be used to answer this ques-
tion. So, Alexandrov proved another
theorem that on one hand strength-
ened Cauchy’s theorem and on the
other made his own theorem more
complete: If it is possible to glue a
development into a convex poly-
tope, then this polytope is uniquely
determined.

Moreover, it is impossible to glue
this development onto any other con-
vex surface at all—not only polyhe-
dral but even curvilinear. This
supplement to Alexandrov’s theorem
was proved in 1942 by his young pu-
pil S. P. Olovianishnikov.!

The most complete generalization of
Cauchy’s theorem, which would in-
clude arbitrary surfaces (and not just
polyhedrons), remained unsolved for
along time. Consider an arbitrary sur-
face made of a thin, flexible, but non-
stretchable material. Is it possible to
retain the convexity and transform it
into a different surface? If the original
surface is a convex polytope, then we
can’t do it. This is a particular case of
Cauchy-Alexandrov-Olovianishnikov’s
uniqueness theorem.

The final generalization of
Cauchy’s theorem that would in-
clude the case of arbitrary surfaces
was given in 1949 by the geometer A.
V. Pogorelov, another student of
Alexandrov. Pogorelov showed that
no closed, convex surface is deform-
able if the surfaces that appear in the
process of deformation must be con-
vex. Pogorelov’s uniqueness theo-
rem, along with Alexandrov’s suffi-
ciency theorem, are outstanding
achievements in geometry.

Many interesting related prob-
lems await the researcher. Some of
them can be very simply formu-
lated. For example, the problem of

regular development: Is it true that
for every convex polytope one can
tind a way to cut it along its edges
(none of its faces must be touched)
so that the remaining surface can be
developed, without self-intersec-
tions, into a planar region?

The problem is that each polyhe-
dron has many different develop-
ments. Some of them are the results
of cutting along the edges of the
polytope without touching its faces.
An example of a development of this
sort is given in figure 8 (such devel-
opments are called edgewise). Let’s
call a edgewise development of a
polytope regular if it consists of a
single planar domain such that none
of the faces of the polytope overlap.
For instance, all edgewise develop-
ments of a tetrahedron are regular,
but there are polytopes with as little
as five faces, some of whose edge-
wise developments are not regular.
For instance, take a truncated, regu-
lar triangular pyramid such that one
of the planar angles in its lateral
faces is greater than 100° (see prob-
lem M219 in the November/De-
cember 1997 Quantum). There are
both regular and irregular edgewise
developments of this polyhedron
(fig. 10). So, the problem is: Does

C C

Figure 10

every convex polyhedron have a
regular (edgewise) development?
To conclude, let’s note that all
the theorems mentioned herein
were proved by mathematicians
who were younger than 30 years old.
Mathematics advances by the efforts
of youth. New ideas, as a well-
known mathematician said, are
born in the heads of young geom-
eters, but the old folks are still use-
ful as “midwives.” (@
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FLIGHT DYNAMICS

Why don't planes fly with cats and dogs?

An uplifting conversation in a downpour

by S. K. Betyaev

NE WET AUTUMN NIGHT

while my friend and I waited in

the airport for our flight, we fig-

ured out for ourselves why
planes can’t fly in bad weather. It
took us the better part of a day, but
we did it. I even wrote down our ad-
venture for posterity.

“Flight number 429 delayed due
to weather conditions,” said the
voice on the loudspeaker. It was
raining cats and dogs, and the
streetlights were blurred in the
dense air.

“Why are flights delayed in this
weather?” I thought out loud. “The
thunder and lightning are gone,
wing icing doesn’t happen in warm
weather, and modern navigation
devices can control flights even in
zero visibility.”

“Aha! I know why,” Isaid after a
long silence. “Airplane propellers
aren’t designed to work at such high
humidity.”

“Maybe you're an expert in propel-
lers,” my friend replied, “but ours is
a jet plane. It isn’t seriously affected
by a little water in the engine.”

“Then what’s wrong? Is rainy
weather just a pretext for other rea-
sons?”

“Don’t jump to conclusions. Let’s
draw how an airstream containing
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water droplets flows around an air-
foil.”

Having moved his cup of coffee
aside, my friend took a sheet of pa-
per and some colored pens and
quickly drew a sketch (fig. 1). Then

h N

Figure 1

he said, “Let’s consider the flight
from the plane’s frame of reference.
In this dynamic frame of reference,
the wing is at rest and the airstream
with water droplets is incident to it.
At large distances from the wing,
the speed of the airflow equals the
plane’s speed from a ground-based
frame of reference.”

“What about the force of grav-
ity?” I asked, looking at the sketch.

“Tt doesn’t matter here. From the
runway to the top of the rain clouds,
the average speed of modern passen-
ger planes is about 70 m/s. The
speed of uniformly falling rain drops

Therefore, we can
t th ce of gravity.”
Then how do the droplets hit the

E o ~Onc

zll. lex's consider this process.
Among the trajectories of moving
water particles, two are tangent to
the boundary of the airfoil in our
sketch 1 ABD and A’B’'D’. The

trajectories that flow above ABD or
below A'B'D’ do not hit the wing.
The region colored red will be ‘dry’
because raindrops don’t land there.
By contrast, the site BCB' is con-
tinuously bombarded by drops. Each
time a e wing, the drop’s
momer zes, which means
that it ; by a force due to
the wing. Therefore, a force of the
same magnitude acts on the wing
due to the drop. As you can see, this
force is directed opposite to the
plane’s velo s, how extra
resistance is ted.’

“So this force is the reason flights

are cancelled during a heavy rain?”

“You're rushing ahead again,” my
friend cautioned. “Let’s estimate
this force. Meteorologists know that
the heaviest rains are characterized
by droplets with diameter d =2 mm
and density p, = 2 g/m?. First, let’s
assume that the droplets don’t devi-
ate from their initial trajectories, so

Art by Pavel Chernusky
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the lines ABD and A’B’D’ remain
straight.” (My friend drew the
sketch in figure 2.)

Figure 2

“Tn a unit of time the wing is hit
by vSnn number of droplets. Here S is
the largest cross-sectional area of the
airfoil perpendicular to the velocity
(that is, it is the area of cross-section
BB’) and n = p,/m is the number of
droplets in a unit volume. Provided
that each droplet of mass m loses all
its velocity in an inelastic collision
with the wing, it imparts a momen-
tum mv to the wing. Thus, all the
incident droplets impart a momen-
tum of approximately vSnmv per
unit time to the wing. By definition,
this value is the force affecting the
wing. It acts opposite to the direc-
tion of flight. Therefore, the air resis-
tance is supplemented by a ram
force F originating from the incident
droplets, which is about p Sv2.

The same formula is valid for the
ram force of the droplet-free air, but
in this case it deals with the density
of air p;: F, = p,Sv*. In standard con-
ditions, p, = 1300 g/m?. Thus, the ra-
tio of ram forces resulting from water
droplets and air molecules will be
about F/F, = p,/p, =1073.”

“From these estimations we can
see that the contribution of water
droplets to the total ram force is very
small. It is actually even smaller than
what we’ve estimated, because the
trajectories of the droplets near the
wing deviate from the straight lines
I've drawn, and the wing will not col-
lide with every droplet aimed from in-
finity to the cross-sectional area S (as
drawn in our sketch [fig. 1]).”

“The rain can’t impede the flight,
then. So what’s doing it?” I said, try-
ing to guide the conversation back
to our problematic flight.

“Be patient, my friend! You're
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right. Collisions with water droplets
don’t hinder a flight. However, there
is another force involved—the drag
tangential to the wing’s surface.
Let’s consider this force in detail.
Clearly, the wing will be wet in
rainy weather. This means that in
heavy rain the wing will be sur-
rounded by water, not air. In wet
weather we can expect a profound
increase in the resistance (drag)
force.” My friend drew a wing cov-
ered with a film of water (fig. 3).

Figure 3

“But,” I rejoined, “don’t all ma-
chines, including planes, have extra
power to cope with such problems?”

“That's true. But how much
power is needed to overcome this
additional drag? Let’s do more esti-
mations based on some new assump-
tions. It’s natural to suppose that the
speed of all water particles inside the
film of water is not the same: It is
zero at the wing’s surface (here water
‘sticks’ to the wing), and it increases
with the distance from the wing.

This behavior of the speed is ex-
plained by the forces of viscous fric-
tion in a moving liquid: Every thin
layer of a moving liquid is affected
both by the lower adjacent layer (lo-
cated closer to the wing), where the
viscous force is directed against the
flow, and by the upper adjacent
layer, where the viscous force is di-
rected along the flow. When the vis-
cosity of a liquid is low, the speed
will reach its steady-state value v, at
a very small distance from the wing.
In other words, the viscous forces
are important only in the thin
boundary layer adjacent to the wing.
Let’s suppose that these very condi-
tions are valid in our case.” With
this, my friend drew the sketch
shown in figure 4.

K e

Figure 4

At this critical point I heard an
announcement about our flight. We
had been so engrossed in conversa-
tion that we didn’t notice that the
rain had almost stopped. Everybody
around us was moving; it was not a
time for scientific explication.
When we were comfortably seated
in the plane, T resumed the conver-
sation.

“Let’s clarify the wetness prob-
lem. You had stopped at the bound-
ary layer.”

“Qh, yes. Let’s suppose that this
boundary layer ‘transmits’ the force
of the incoming flow to the wing,
thereby producing the extra resis-
tance. Then we can estimate the
value of this resistance. We are in-
terested in the force that acts tan-
gential to the wing’s surface. This
force acting on a unit area is referred
to as specific drag.

“Tt should be independent of
speed,” I guessed, “because by the
condition of sticking, speed is zero
at y = 0. Then what does specific
drag depend on?”

“The answer to your question
was given by Sir Isaac Newton in
his Principia Mathematica: Spe-
cific drag t is determined by the
first derivative of the velocity v(y)
taken along the normal to the sur-
face—that is, dv/dy. Friction is di-
rectly proportional to this deriva-
tive:

= dv
}'l dy F
where the proportionality factor p is
known as the dynamic coefficient of
viscosity. This formula proved vi-
able over a large range of values.
Media that obey this relationship are
called Newtonian. The media we're



interested in (air and water) are
Newtonian.”

“Let’s say that this reasoning is
correct. But we’ve just substituted
one unknown value 1 by another
(dv/dy), so we haven’t gotten any-
where.”

“That’s true. However, Newton’s
formula provides only a physical
explanation of drag. The next step in
finding the forces affecting the wing
was made by the founder of bound-
ary layer theory, a German hydrody-
namicist named Ludwig Prandtl. In
the boundary layer the action of fric-
tional forces is essential, so it is
natural to suppose that these forces
decelerate the liquid. For the ele-
ment shown in figure 4 it can be for-
mulated as

m— 18,

or

5 dv N dv "

p e = O (1)
where 8 is the characteristic thick-
ness of the boundary layer, s the area
of the element’s base, m = pds its
mass, and dv/dt the absolute value
of the acceleration.

“But we’ve just added to the un-
known values with the newcomer
dv/de ...”

“Actually, there’s another one:
The thickness of boundary layer §
is not a given parameter either.
However, Prandtl could obtain an
estimate for it. Let’s follow his rea-
soning. Since equation (1) is an ap-
proximation, which means equal-
ity to an order of magnitude only,
the first derivative can be replaced
by the corresponding ratio. Thus,
instead of dv/dy we can write v,/8.
The equality dv/dy = v,/3 will be
correct only when the speed profile
in the boundary layer is linear:
v =v,y/d.In all other cases this for-
mula is only an approximation, as
is the original equation (1). Now
let’s estimate the value of dv/dt.
The characteristic length where
the boundary layer exists equals
the span of the airfoil I, (the seg-
ment CO in figure 1). Therefore,
we can suppose

dv  v?
o 20

dt I,

Canceling s from both terms of
equation (1) and inserting the values
of dv/dy and dv/dt, we get

&v v
PZ 0 ooy Y0
o 8
from which we get
1
§ oc (Ef&jz
PVo
or
A
6 o< ]0 RC 2 ’ (2)

where the value Re = pv,[/u is
called the Reynolds number. It’s
named after the English hydrody-
namicist Osborne Reynolds, who
was the first to discover the role of
this dimensionless value in deter-
mining the type of flow. A liquid is
considered low-viscosity if its Re is
large. On the other hand, a liquid is
high-viscosity when its Re is small.
As we said before, the boundary
layer is formed only in a low-viscos-
ity liquid. In aviation, the range of
Re numbers is 10— 108,

“Well, now the question on § is
clarified,” I said after a pause, “but
what we're interested in is 1, not 3.
It’s the value of 1 that says whether
or not the engine can develop the
necessary thrust in wet weather.”

“We can easily solve this problem
with the help of equation (2) and by
calculating the specific drag. At the
bottom of the boundary layer we
have

1
4 Vo 5.3
g PH o B¥D 3

TS T

“A similar relationship is valid
for dry air flow. The respective ‘air’
values will be marked with the
lower index value 1:

1
Ty 8 H1Vor Re?,

Iy

where Re, = p,v,,1,/1,. To deter-

mine by what factor the drag force is
increased in rainy weather, let’s con-
sider the ratio t/t,. Taking into ac-
count the relationships between the
quantities that determine t and 1,,
we get

1 1 3
- B GeS
g P1 My Vo1
“The values of p, p;, i, and 1, can
be found in a textbook. But how can
we determine the value of v,/v,,?”
“We can do it with the help of
Bernoulli’s equation. It provides the
relationship between the velocity of
fluid particles and pressure. In our
case, the air flowing over the wing
virtually moves in a horizontal

plane, so the Bernoulli equation
looks like this:

1 2
p+EpV = const.

“Tt’s not difficult to deduce this
equation. Let’s suppose that pres-
sure varies in the direction of flow as
p(x) = kx + const.” (My friend drew
the plot shown in figure 5.) “Outside

Figure 5

the boundary layer of a flow of fluid
we consider a small parallelepiped
with length Al and lateral face area
As. The left face of the parallelepiped
is affected by the force P,As, and the
right face by the force P,As. The to-
tal force affecting the marked paral-
lelepiped is

P) :p1+d_PAZ,
B dx
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dp dpr
F=-SCAlas=-S2 AV,
dx dx
where AV = AlAs is the volume of the
parallelepiped. The work performed
by moving the parallelepiped along
the x-axis is determined by

deX.

When the transition is made from
point x = a to point x = b,

b b
W:J Fdx:—Avj %dx
=AV(P,-B)

“On the other hand, this work
is equal to the change in the
parallelepiped’s kinetic energy
W = K, - K, (here we neglect the
work of frictional forces):

Vz V2
AV(P, - P,)=AVp| -2 - -4
(a b) p[z 2]/

from which we get

2% 2
Pa+p%=Pb+p%,

or

2
P+pv7 = const.

“Well that’s settled,” I said. “It’s
clear how to deduce Bernoulli’s
equation. Still, how can we deter-
mine v,/v,,?”

“With the same equation. It’s
valid for both liquid and gaseous
flows. As we did before, mark the
value with respect to air with the
index value of 1. Thus, for the water
film formed on the wing’s surface
we have

2
4
P+ p~2— = const,

and for the air flow

2;

v
P, +p; — = const,;.
TP 1

To compare v and v,, we need a re-
lationship between const,, P, and P,.
“Remember that by comparing
the ram forces for flights in dry and
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wet weather, we discover that they
are virtually identical. This means
that the pressure at point C [in fig-
ure 1] can be considered identical in
both cases. The speeds of liquid and
air particles at this point are zero.
Taking this into account, we can
write the following formula for lig-
uid flowing around a wing:

2

\%4
P+p—=~P-.
PZ c

And for the air flow, we have

2

v
P1+91%:PC-
Therefore,
w2 v
P+p 5 :P1+plé.

“Now let’s settle the question of
Pand P,. The selected parallelepiped
moves with the flow virtually in the
horizontal direction. That is, its ver-
tical velocity is zero. Thus, the
forces acting on it from above and
below are equal. However, in both
cases (with and without the water
film) the force which acts from
above is the pressure acting from the
‘outer’ air flow. Thus, both ‘air’ and
‘liquid’ parallelepipeds are affected
from below by identical forces.
Therefore, the existence of a thin
water film doesn’t affect the vertical
distribution of pressure, and the val-
ues of pressure are equal in the same
cross-section of water and air flow:
P-P,.

“Now I see,” I interrupted my
friend. “It follows from the condi-
tion P = P, that

2 2
pv P1v)

2 2

L
v (9_1]2
V1 p
Finally, we inferred that when the
rain is rather heavy, the drag force af-

fecting the wing is increased by a
factor of

Therefore

1

1
<aftef
T P My .

The voice on the loudspeaker in-
formed us that our plane had landed.
I put in my pocket the notes my
friend had given me.

At home T looked in some refer-
ence books and found all the neces-
sary values of density and dynamic
viscosity for water and air. Plugging
them into the last formula, I got
t/t, = 1.5. Therefore, an “all-
weather” plane must have an extra
thrust force of 50 percent compared
with a normal aircraft. This is why
planes don’t fly when it’s raining
cats and dogs.

We obtained this estimate by
supposing that there is an aqueous
boundary layer on the wing’s sur-
face surrounded by air. A question
comes to mind: What thrust force
should an engine have to propel an
airplane in a continuous flow of
water? I challenge you to solve the
problem on your own. Here’s the
answer: To transform an airplane
into a submarine, the power of its
engine should be increased by a fac-
tor of

L (—p—] [-u-] = 230.
T P1 M Q
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BRAINTEASERS

Just for the fun of itl

B241

Natural trio. Sam says he knows three natural numbers x, y, and z that
satisfy the equation 28x + 30y + 31z = 365. Is he right?

B242

Short fuse. You have two pieces of fuse, each of which burns in 1
minute. Use these pieces of fuse to time 45 seconds. You may not use
scissors, and the rate of burning may vary along the fuse.

B243

Disappearing commas. A student wrote three natural numbers on the
blackboard that are consecutive elements of an arithmetic progression.
Then he erased the commas between them, creating a seven-digit
number. What is the maximum possible value of this number?

B244

Cube assembly. The central square is cut from a 5 x 5 grid. Cut the
resulting figure into two parts such that they can be folded into a cube
with an edge length of 2 squares.

B245

Retreating reflection. Once my son and I rowed a boat on a lake. The
forest was reflected beautifully in the calm surface of the water. My son
said, “Let’s sail over the reflection. I want to see it under my feet!” We
tried to do so but failed: The reflection always “ran away.” Why?

AdEnuIayn) |oAed Ag Uy

ANSWERS, HINTS & SOLUTIONS ON PAGE 54
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Euchidean complications

Whats true locally according to Euclid
may not remain valid as we travel further afield

by |. Sabitov

HE GEOMETRY WE STUDY

at school is called Euclidean in

honor of the ancient Greek

who wused the axiomatic
method to systematize this science.
Among the axioms formulated by
Euclid in his Elements, the fifth
postulate—the parallel postulate—
has become the best known. Essen-
tially this postulate states that for
any point not on a given line, there
is a unique line passing through the
given point that is parallel to the
given line. In the Elements, this
postulate was formulated in a dif-
ferent, though equivalent, way: If a
line intersects two other lines and
forms interior angles on one side of
the line whose sum is less than two
right angles, then these two lines
meet at the side where the sum of
the angles is less than two right
angles.

/

Figure 1. In the figure, if Za+ /b < 180,
then lines m and n will intersect to the
right of line 1.
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one parallel

>< many parallels

no parallels

Figure 2. In Euclidean, Lobachevskian,

and Riemannian geometries, different
parallel axioms are used.

However, Euclidean geometry is
not the only logically possible one:
non-Euclidean geometries exist in
which the parallel axiom is quite
different. If we start with a line, and
a point not on it, we can make differ-
ent assumptions about the existence
of lines parallel to the given line and
passing through the given point. As-
suming that there are at least two
such lines leads to the geometry
named after the great Russian math-
ematician N. I. Lobachevsky.! Yet

1You can read the instructive and
dramatic story of the discovery of non-
Euclidean geometry, in which K. F.
Gauss and J. Bolyai took part in
addition to Lobachevsky, in the
November/December 1992 issue of
Quantum (“The Dark Power of
Conventional Wisdom” by A. D.
Alexandrov).

ALTERNATE GEOMETRIES

How many parallels!

Figure 3. In a limited part of the
space, we cannot tell immediately
which of the parallel axioms is valid.

another axiom—that there are no
lines passing through a given point
not on a given line that do not meet
this given line—leads to Rieman-
nian (or elliptical) geometry (see fig-
ure 2).

Which of these three logically
possible geometries—Euclidean,
Lobachevskian, or Riemannian—is
true in our real physical world?

It’s not easy to come up with a
quick answer to this question. It’s not
clear how the parallel axiom can be
verified experimentally. The fact is,
we can extend a line infinitely long
only theoretically. In practice, even
the best telescopes can reach only a
limited part of the Universe. More-
over, as we can see from figure 3,
many lines in the given plane pass
through the given point and do not
meet the given line within the do-

Art by Yuri Vashchenko
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main available for observation (even
if the fifth postulate is valid).

So—how can we verify the paral-
lel axiom?

The cornerstone of geometry?

It turns out that it is possible, in
principle, to verify the parallel

axiom. This axiom is equivalent to -

the proposition that the sum of the
angles of any triangle is 180 de-
grees;? in Lobachevskian geometry,
this sum is less than 180°. Gauss
tried to use geodetic measurements
to calculate the sum of the angles of
a triangle formed by three summits
in the Hartz Mountains (Brocken,
Hohenhagen, and Inselberg) located
about 100 km from one another.
Lobachevsky, on the other hand,
chose cosmic distances for his calcu-
lations: he measured the sum of the
angles of the triangle formed by the
Earth, the Sun, and Sirius, the
brightest star in the northern skies.
But in both experiments the devia-
tion from 180° turned out to be less
than the possible error of the mea-
surements, so no definite conclu-
sion about the geometry of the real
world could be drawn.

However, let’s assume that some
observer has managed to establish
with faultless accuracy that the sum
of the angles of a triangle is 180°.
Does this mean that the geometry of
our world is Euclidean?

The answer is yes if we agree that
Legendre’s theorem is valid (see
footnote 2). However, this theorem
is proved by means of other Euclid-
ean axioms. The question is, are
these other axioms valid in the real
world? For example, how can we be
sure that two lines that intersect on
a sheet of paper never meet again in
real space, if they are extended to an
arbitrary distance? We need to be
equally demanding with all of
Euclid’s axioms—we won’t assume
in advance that if an axiom is true
within a limited domain, it’s also
true in all of space.

Moreover, the French mathema-
tician A. Legendre proved that the
parallel axiom is true if there exists at
least one triangle the sum of whose
angles is equal to 180°.
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So we arrive at the following
question: assuming that Euclid’s
axioms are true “locally” every-
where in “real space”—that is,
within the reach of our instruments
(wherever the observer is situated);
is it true that real space is Euclidean
on the whole? In other words, is all
of Euclidean three-dimensional
space an adequate model of all of
physical space? This important (in
essence, cosmological) question is
open to a purely mathematical for-
mulation, which will be the focus of
this article.

Statement of the problem

Let all the propositions of Eu-
clidean geometry be valid in the
neighborhood of every point in
space (say, in a sphere whose cen-
ter is this point). Naturally these
propositions must be formulated
in such a way that they make
sense inside the sphere—for ex-
ample, the parallel axiom must be
replaced with the proposition that
the sum of the angles of a triangle
equals 180°, and so on. What can
we say about the geometry of
space as a whole?

A space that is Euclidean in a
neighborhood of every point is
called locally Euclidean.

Here is a mathematically more
correct definition of locally Euclid-
ean space. Two sets A and A’ in each
of which the distance between every
pair of points is defined are called
isometric (from the Greek words
100c, which means equal, and
uetpov, which means measure or
length) if there exists a one-to-one
correspondence between their
points that preserves distance. This
means that the distance labl is equal
to la’b’| for any points a, be A if a’
and b’ are the corresponding points
from A’. A space is called locally
Euclidean if a distance is defined
between every two points in it, and
if each point has a neighborhood
that is isometric to a sphere in ordi-
nary Euclidean space.

In this article it won’t be possible
to examine locally Euclidean three-
dimensional spaces. We'll restrict
ourselves to locally Euclidean two-

Figure 4. Infinite cylinder.

dimensional spaces. Such spaces
will be called locally Euclidean
planes. Our problem can be formu-
lated as follows. How do locally Eu-
clidean planes look in the whole of
space?

The cylinder and its development

The Euclidean plane itself is
naturally the simplest example of a
locally Euclidean plane. We won'’t
dwell on this case, but move on to
another rather simple example—the
infinite cylindrical surface, or just
the cylinder. Figure 4 shows this
surface as the set of all points of
horizontal lines (generators) passing
through all possible points of the
unit circle C, (directrix] lying in the
vertical plane o.

However, we don’t have any “ge-
ometry” on the cylinder yet. We
must define a distance between
points, determine what is meant by
“straight lines” on the cylinder, and
so on. To introduce these defini-
tions, we cut the cylinder C along
one of its generators and develop it
onto the coordinate plane Oxy as an
infinite strip IT whose points (x, )
satisfy the inequality 0 <y <27 (see
figure 5). We will assume that the

O X

Figure 5. The cylinder (a ribbon with
two sides identified) is locally Euclidean.




plane strip I1 with its edges “glued
together” (that is, if all pairs of
points (b, 0) and (b, 2xr) are consid-
ered identical) defines the geometry
on the cylinder. Mathematicians say
that we identify the pairs of points
of the form (b, 0) and (b, 2n) for all b
and consider the geometry on the
strip IT using this identification. -

Let’s verify that this geometry on
the cylinder is locally Euclidean. Con-
sider an arbitrary point A(x, y) € IL.
If the point A = A, is not on the edge
of the strip (fig. 5], everything is
clear. Consider a circle of a radius r
less than the distance from A to the
nearest edge. This circle is entirely
in the strip I1and, naturally, is an or-
dinary Euclidean circle. If the point
A=A, ison the edge of the strip (fig.
5), then its coordinates are of the
form (b, 0) = (b, 2x). In this case,
the union of two unit semicircles
(glued together!) with the centers
at the points (b, 0) and (b, 2%) can
be considered a circular neighbor-
hood of this point A = A,. Since
the semicircles are glued on their
diameters MN = M’N’, we obtain
an ordinary Euclidean unit circle
after the gluing.

On the cylinder C, it would be
natural to define the distance be-
tween two points as the length of
the shortest line connecting these
points and lying on C. We could de-
velop another geometry on this ba-
sis. An alert reader might ask
whether this geometry coincides
with the geometry of the strip IT
with identified edges. It turns out
that it does. However, the proof of
this fact, which is related to what is
called differential geometry, is be-
yond the scope of this article.

Geometry on the cylinder

We've established that the geom-
etry of the cylinder is locally Euclid-
ean. How does the geometry of the
cylinder (that is, of the strip [T whose
edges are identified) look in the
larger context? How is “distance”
on the cylinder measured? What are
its “straight lines”? Which axioms
are valid?

Before answering these questions,
let’s consider a rather unusual ex-

B
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Figure 6. The shortest distance
between points A and C is |1AK’| + IKC|.

ample. Think of a kingdom with
two parallel roads, with rest stops lo-
cated at short intervals along these
roads (there may be other roads in
the kingdom as well). The rest stops
that are opposite one another on dif-
ferent roads are connected by tele-
phone lines, but there is no tele-
phone communication between
adjoining rest stops on the same
road. Set the distance between two
points equal to the minimal time
needed to transmit a message be-
tween these points. Suppose we
want to get a message from point A
to point B somewhere in the king-
dom. While there may be a road
from A to B, a courier may do better
to run not directly from A to B, but
toward the nearest telephone booth
(and perhaps even in the opposite di-
rection).

a
N
NTCAW S
v,
b

Figure?. Three types of “straight
lines” on the cylinder: the spiral line ST,
the straight line KL, and the circle MN.

The same unusual distance exists
on our strip with identified edges. In-
deed, consider the points A, B, and C
on the strip TI (see fig. 6). For two
points A and B whose y-coordinates
v, and y, differ by less than half of the
width of the strip I, the distance is
the usual one—that is, the length of
the segment AB. However, for points
A and B for which ly, - yI > =, the
distance is equal to IAK’l + IKC],
where A’ is obtained from A by
translation upward by the vector

AA’ of length 211, K is the point of
intersection of the segment CA’

with the edge of the strip, and KK’
=—AA’ fig. 6). In the language of the
telephone example, it’s more advan-
tageous to send a courier from C to
K, then transmit the message in-
stantly to K’ over the phone, and
then send it with another courier
along the segment K’A to point A.

Problem 1. Prove that the dis-
tance from point A(x,, y,) to point
B(xp, yg) in a strip with identified
edges is given by the formula

'\j(((XA —XB)2 +(YA —YB)2

if [y -yg<m,

|[AB|=

[
\S‘(XA —XB)2 +(275—’YA _YB’)Z

if [y —yg|>m

1

“Straight lines,” as well as dis-
tances, are peculiar in our geometry.
They can be of three kinds (see fig.
7a). First, any ordinary line parallel
to the edges of the strip is a straight
line. Second, any segment connect-
ing the edges with the identified
endpoints that is perpendicular to
the edges is a “straight line.” Third,
the set of oblique parallel segments,
such as that shown in figure 7a, is a
“straight line.” On the cylinder,
these three kinds of straight lines are
generators of the cylinder, circles
parallel to the directrix, and spiral
lines, respectively (see fig. 7b).

As for the axioms, notice that the
parallel axiom holds in the larger
context (that is, on the entire sur-
face)!

Problem 2. Find the unique
“straight lines” that are parallel to
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the “straight lines” KL, MN, and ST
passing through point A in figures 7a
and 7b.

But now other Euclidean axioms
are violated—even the axiom stating
that there is a unique line passing
through two points. For example,
the red (spiral) “straight line” meets
the black line (generator) infinitely
many times (fig. 7!

Problem 3. Describe all pairs of
points on the cylinder through
which only one straight line passes.

However, these examples don’t
exhaust the peculiar properties of
cylindrical geometry. You probably
have already noticed that the
“straight lines” on the cylinder that
are parallel to the directrix are
bounded: the maximum distance
between points on such a line is
equal to T.

Problem 4. Give examples that
show that a straight line segment is
not always the shortest route be-
tween its endpoints, a slanting
line can sometimes be shorter
than the perpendicular, and that the
Pythagorean theorem is not always
true. Determine what a “circle”’—a
set of points equidistant from a
given point—looks like as the radius
of the circle increases.

We see that the local validity of
all axioms of Euclidean geometry,
and even the validity of the parallel
axiom in the larger context, doesn’t
ensure that a world with this geom-
etry is an infinite plane. Such a
world can be structured as an infi-
nite cylinder and, as we will now
see, as other geometrical structures.

The flat torus

Let a rectangle T with vertices A,
B, C, D be given in the plane Oxy
(fig. 8). Let AB have length 2b and let
CD have length 2a. Let’s identify
the side AB with the side CD such
that A is identified with D and B is
identified with C. Next we identify
the side BC with the side AD such
that B is identified with A and C is
identified with D. (With such an
identification, all the vertices of T
are merged into one point.)] We de-
fine the distance between two
points of the rectangle as the length
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Problem 5. (a) Give examples of
pairs of points with the distance
Ja® +b? between them. (b) Prove
that the distance between any two
points cannot be greater than

y
B 7\] i
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7 N M
N D
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Figure 8. The flat torus is a “glued”
rectangle. The shortest distance between
points M and N is IMM, | + IM'|N.

of the shortest path between these
points, taking into account the iden-
tifications made.

We introduce a coordinate sys-
tem as shown in figure 9, with the
origin at the center of the rect-
angle. Let’s calculate, for example,
the “distance” between the points
M(-% a, %b) and N(%a, b) (fig. 8).
First, notice that the segment MN’,
where N(% a, -b), is shorter than
MN. Therefore, we must look for the
shortest path from M to N among
the paths that connect M with N’
(since N’ and N are considered one
and the same point). The region to
the right of segment AB is identical,
under our construction, to the re-
gion to the right of segment BC. Set-
ting the stripa<x<2a,-b<y<b
against side DC (fig. 8), we can see
that any other path from M to N/,
including the segment MN’, is
longer than the segment M’N’. Thus
the shortest path from M to N is the
union of the segments MM, and
M’|N’, and the “distance” between

Mand Nis (a/2)" +(3b/4)" .
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Figure 9. Two “straight lines” (red
and blue) on the torus.

Ja? +b2 . (c] Prove that for any
given point there exists a unique
point that is at a distance \a” + b*
from it.

The rectangle T whose pairs of
opposite sides are identified, result-
ing in the rule for calculating dis-
tances described above, is called the
flat torus.

“Straight lines” on the flat torus
are defined in the same way as on
the strip IT, which is a model of the
cylinder. Figure 9 shows two
“straight lines”: the red closed
“straight line” AC consists of one
Euclidean segment; the blue “straight
line” consists of many segments—
. M| = MM, = M,)M,( = My)..—
and it may possibly close when ex-
tended further.

Problem 6. Prove that a “straight
line” on the flat torus is closed if and
only if the number (a tan «)/b is ra-
tional, where tan o is the slope (with
respect to the axis Ox) of the seg-
ments in T that constitute this line.

We assert that the geometry of
the flat torus thus constructed is
locally Euclidean. Indeed, any in-
terior point of the rectangle T has
a small neighborhood in which all
objects and rules for measurement
that were introduced for the flat
torus are the same as in Euclidean
geometry. For a point M, on the
boundary, the proof can be gleaned
from figure 8. For the vertices, this
is evident from the same figure: all
neighborhoods of the four identi-
fied vertices have been carried to
one point via the identification
rule, and the geometry around this
point turns out to be the geometry
of the Fuclidean circle.

Thus the flat torus provides an-
other example of a locally Euclidean
world. Here, as in the case of the
cylinder, the fifth postulate is valid
in the larger context. However, the
structure of the torus in this larger
context differs from that of the ordi-
nary plane and the cylinder.




Figure 10. Infinite Mobius strip.

Problem 7. Prove that there are no
arbitrarily long distances on the flat
torus, although arbitrarily long
straight lines do exist. Analyze the
shape of the “circle” on the flat
torus as its radius increases.

The flat torus is different from the
cylinder in another important way.
In gluing the strip IT to create a cyl-
inder, the lengths of curves in IT are
preserved. The flat torus, however,
cannot be represented as a surface in
three-dimensional space with the
lengths of all its curves preserved.
However, this difference is called an
external difference, since it becomes
clear only when we try to relate the
geometry of the strip I or the rect-
angle T with the geometry of a sur-
face in a space that is external to
them. If we assume that the rect-
angle T is made of rubber and allow
it to be extended, it’s possible to
make a torus out of it.

The infinite Motiius Strip

Let’s take another look at the in-
finite strip IT, a < y £ b, —o0 < X < +o0,
but this time we identify the edges
of IT according to the following rule:
the point (x, a) is identified with the
point (-x, b) (that is, the line y = b is
first mirror-reflected about the axis
Oy and then is identified with the
line y = a). The definitions of “dis-
tance” and “straight line” are simi-
lar to those for the cylinder and flat
torus. The locally Euclidean plane
constructed in this way is called the
infinite M6bius strip (the ordinary
Mobius strip is a part of the infinite
one and is obtained by gluing a finite
vertical strip such as the shaded one
in figure 10). Figure 11 shows three
“straight lines”: the black one,

which is closed; the blue one, which
is parallel to the edge of the strip IT;
and the red one, which is slanted and
consists of an infinite number of Eu-
clidean segments. Using point B as
an example (fig. 10), we can see how
the identification rule generates a
Euclidean geometry in the neighbor-
hood of an edge point of I1.
Problem 8. Analyze the geometry
of the infinite Mobius strip. Prove
that each slanted line intersects it-
self an infinite number of times. Is
the fifth postulate valid in the larger
context? What do circles look like?

The flat Klein hottle

Let’s return to the rectangle in fig-
ure 8. We'll introduce the following
rule of identification: the side AD is
identified with BC with the order of
the points preserved—that is, the
point (—a, y) € AD is identified with
the point (a, y) € BC. The side AB is
identified with CD with the order of
the points reversed—that is, the
point (x, -b) € AB is identified with
the point (-x, b) e CD. In particular,
all the vertices are considered one
point. “Straight lines” and the rules
for measuring “distances” are the
same as before. Again, it can be veri-
fied that in a neighborhood of each
point, we obtain a Euclidean geom-
etry (perform this verification for a
neighborhood of the rectangle’s ver-
tex). This model of locally Euclidean
geometry is called the flat one-sided
torus or the flat Klein bottle.

Problem 9. Analyze the geometry
of the flat Klein bottle.

As with the flat torus, the Klein
bottle cannot be placed into three-
dimensional space without distort-
ing distances. Moreover, it can be

%
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Figure 11. Straight lines on the
infinite Mébius strip: black (vertical),
blue (MN), and red (A’B).

Figure 12. A model of the Klein
bottle (with self-intersection).

placed into that space only with self-
intersections, even if we allow
stretching and compressing (with-
out breaks). A model of the Klein
bottle with self-intersection is
shown in figure 12.

Euclidean worlds

The principle of “equal demands”
on all axioms has certainly justified
itself. We found that the Euclidean
geometry of the plane is not based
exclusively on the parallel axiom,
but that other axioms help deter-
mine its properties. Moreover, it
turns out that even if a neighbor-
hood of every point is Euclidean and
the fifth postulate holds in the larger
context, this doesn’t necessarily
mean that the space is Euclidean on
the whole (the cylinder and flat
torus provide examples). Thus if the
geometry turns out to be Euclidean
in all the separately examined parts
of space, the Universe on the whole
is not necessarily so simple as the
two-dimensional plane or three-di-
mensional space.

In higher geometries, it is proved
that there are no complete locally
Euclidean “worlds” other than the
five examples mentioned above—
the plane, cylinder, flat torus, infi-
nite Moébius strip, and flat Klein
bottle. (Roughly speaking, “com-
pleteness” means that every
“straight line” can be extended infi-
nitely, even if only along itself.)

As for three-dimensional locally
Euclidean spaces, there are 18 types.
Here we mention only one example:
the layer of space between two par-
allel planes identified at points that
are symmetric about the middle
plane in the layer. (@
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Sound power

NONLINEAR PHYSICS

The nature and uses of intense acoustic waves

by O. V. Rudenko and V. O. Cherkezyan

TOP!” ORDERED THE
captain, and the submarine
stood still at once. “Aim!...
Sound!”

In the first minute nothing
changed in the cruiser’s outline. The
ultrasonic gun operated at point five
of its power. Then suddenly... the
underwater part of the cruiser amid-
ships began to stretch and tear apart
like clay. One minute after the com-
mencement of the ultrasonic at-
tack, the middle of the ship’s side
facing the submarine suddenly was
compressed, and several seconds
later cracked like a giant bubble,
and a formidable stream of water
burst into the holds, engine room,
and ammunition rooms.

This is a passage from the once
popular science fiction novel of G.
Adamov The Mystery of Two
Oceans. The personages of this
novel circumnavigate the world
aboard the experimental submarine
Pioneer—a miracle of military tech-
nology. Both submarine and scuba
divers were equipped with ultra-
sonic guns, which many times
helped them in critical moments.
With the help of powerful ultrasonic
waves the aquanauts tried to destroy
the rock blocking the exit from an
undersea cave; they killed a huge

(44
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sperm whale, which almost sunk
the whalers who harpooned it;
moreover, they destroyed a hostile
cruiser and even the fantastic ma-
rine monsters that kidnapped one of
the sailors.

You may think these details su-
perfluous, but remember that this
novel was published just before
World War II, and at that time one
could think that ultrasonic arms
were possible and could be produced
after solving some technical prob-
lems. However . . .

In this article we consider some
problems of ultrasound physics and,
in particular, we’ll show why pow-
erful acoustic waves cannot be used
as a military weapon. So Adamov’s
novel is pure fancy, at least at this
point. By contrast, the list of “peace-
ful” applications of ultrasonic waves
is quite impressive: ultrasonic imag-
ing, parametric radiators and anten-
nas, ultrasonic surface cleaning,
hole drilling, and kidney stone
therapy, to name just a few.

In recent decades great advances
have been made in our understand-
ing of large-amplitude waves in gen-
eral and ultrasonic waves in particu-
lar. What do we know about such
waves today?

Previously, Quantum described

some interesting phenomena associ-
ated with large waves on the ocean
surface.! Let’s recall what was said
there: The effects that accompany
only waves that are intense enough
and depend on their amplitude are
called nonlinear. There is a field of
science, nonlinear wave physics,
that studies these phenomena. The
subfield of physics that studies in-
tense acoustic waves is called “non-
linear acoustics.” This science plays
a particular role in physics due to
the large variety of phenomena un-
der investigation. Nonlinear waves
are generated in fluids, solid bodies,
and plasmas. They exist in nature in
the atmosphere, ocean, soil, and also
in space objects. Examples include
thunder, seismic waves from earth-
quakes, and a number of other phe-
nomena.

Several natural questions may
occur to readers at this point:

* What is intense sound and what
is weak sound, and where is the de-
marcation line between them?

e What are nonlinear effects,
what is unexpected and extraordi-
nary in them, and what are their
applications?

Ivan Vorobyov, “The Bounding
Main,” May/June 1994, pp. 20-25.

Collage by Vera Khlebnikova
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We will try to answer these ques-
tions one by one. First of all we re-
call what a sound wave is. A sound
wave is composed of traveling vi-
brations of a medium, which are
successive points of high (compres-
sion zones) and low (rarefaction
zones) pressures. Sustained pres-

sure oscillations caused by changes -

in compression occur in every point
of the medium. The pressure varia-
tions are superimposed with the
mean pressure (existing in the me-
dium in the absence of sound
waves) to find the (net) acoustic
pressure.

A sound wave carries energy—the
potential energy of elastic deforma-
tion (when sound is propagated in
the atmosphere, this is the energy of
air elastic deformation) and the ki-
netic energy of moving particles.
The energy is carried in the same
direction as the progress of the wave.
The flow of energy—the amount of
energy passing perpendicularly
through a unit area per unit time in
the direction of the wave propaga-
tion—characterizes the intensity of
the sound wave.

Clearly, both the intensity I and
the acoustic pressure P depend on
the characteristics of the medium
through which the sound wave trav-
els. We will not deduce the respec-
tive formulas but rather will give the
formula that describes the intensity
I in terms of the density p and the
sound velocity ¢ (in the particular
medium):

Ll

I= .
2pc

where P, is the amplitude of the
acoustic pressure.

Now let’s consider what is
“strong” and what is “weak” sound.
The intensity of sound is measured
in terms of decibels (dB), which are
related to the amplitude of the
acoustic pressure:

B =20 log (P/P, ) dB.

Here P is the pressure we are in-
terested in, P, is the threshold of
acoustic pressure, conventionally
accepted to be 2 - 10~ Pa. The pres-
sure P, corresponds approximately
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to the intensity I, = 10712 W/m? of
a very weak sound, which can be
perceived by humans at a frequency
of 1000 Hz.

The greater the acoustic pressure,
the louder the sound. Our subjective
impression of sound intensity is re-
lated to the notion of “volume,” so
it is connected with a certain fre-
quency range characteristic of the
human ear (see Table 1). What
should we do when the sound fre-
quency lies outside of this range and
corresponds to ultrasound? At these
frequencies of about 1 MHz, it is
most simple to observe the nonlin-
ear sound effects in the laboratory
conditions. Thus, an intense wave is
one in which nonlinear phenomena
become pronounced.

Now let’s consider these nonlin-
ear effects. The usual (linear) sound
wave is known to travel in a me-
dium without changing its shape.

The zones of compression and rar-
efaction propagate with the same
speed, which is the speed of sound.
If the source of sound generates, say,
a sine wave, its profile will remain
sinusoidal at any distance from the
source.

By contrast, in an intense sound
wave the compression zones (acous-
tic pressure positive) travel at a
larger speed than the sound, and the
rarefaction zones travel at a smaller
speed than the sound (in the given
medium). As a result, the wave pro-
file is distorted: The wave front be-
comes steeper and the trailing edge
flattens.

Similar phenomena can be ob-
served in ocean waves. At a shoal,
the smooth waves sharpen their
front steeply before breaking in the
surf area. Formation of a steep wave
front or a breaker is a nonlinear phe-
nomenon. The distance I, over

Intensity | Intensity | Acoustic

level of sound | pressure Perception and sound source

(dB) (W/m?) (Pa)
0 102 2-10°° threshold of audibility
10 10" 63105 rustle of leaves in a forest; a weak whisper

' at a distance of 1 m
20 10-1° 210 ticking of pocket watch; a whisper
30 10-° 6.3 10 the reading hall in a library
40 10-8 210 subdued talk; low music
50 1077 6.3 -103 weak sound of a loudspeaker
60 10-¢ 21072 loud talk; moderately busy street
70 105 63.102 | @ truck; noise inside a tram; a piano 10 m
’ away
30 10+ 5 .10 a metal-cutting machine; loudspeaker at
maximum volume; a busy street
90 1073 6.3 -10! old metro car; ambulance siren
100 10 2 the flight compartment of a passenger
plane

110 10! 6.3 fire engine siren; fast train; jackhammer
120 1 20 piston airplane engine; strong thunder
130 10 63 rocket engine; painful sensation

Table 1. Parameters of sound for different examples.



which a wave should travel to suffi-
ciently distort its shape, is called the
length of breaker formation. Like
any nonlinear phenomenon, the dis-
tortion of a wave’s contour depends
on the wave’s amplitude P,: The
length of breaker formation is in-
versely proportional to the ampli-
tude—that is, I, ~ 1/P,. The more
intense the wave, the greater its
amplitude, and the less distance is
needed to distort and break its con-
tour.

However, there is a rival pro-
cess—the damping of a wave in a
viscous medium. Due to this damp-
ing, the wave amplitude decreases,
which results in some “braking” of
the wave contour distortion. If the
damping is rather strong and occurs
over a distance /; that is smaller
than [, the nonlinearity can be sup-
pressed and may not appear at all.
Naturally, parameter /,, similar to I,
depends on the characteristics of the
medium in which the sound propa-
gates.

Now we can formulate a more
exact definition of a powerful
acoustic wave: It is a wave for
which I, < I;. The ratio 1,/I is
called the acoustic Reynolds num-
ber (Re). If Re > 10, the wave is in-
tense, and if Re << 1, it is weak.
Reynolds number is Re = ap,/f,
where f is the sound frequency, o
is a certain constant characterizing
the nonlinear and viscous proper-
ties of a medium (the “response” of
a medium to a powerful impulse
and the degree of its distortion by
the medium). Values of this coef-
ficient are different in various
media: for example, for water
o ~ 300 (Pa - s)"'. When sound of
frequency f ~ 1 MHz propagates in
water, Re > 10 for waves with an
acoustic pressure Py > 3 - 10% Pa.
Thus, an intense sound wave in
water is a wave with intensity

2
B (3-10)
- 2pc (2-10%)(15-10%)

=300 W/m?,

which corresponds to an acoustic
pressure of § > 180 dB.

/\___» ______ _/_\ __________ _/_\X=2‘Ja

Figure 1

Let’s return to the very tempting
idea of transmitting high-density
energy over large distances with the
help of an acoustic beam. For a
rather long time this idea was con-
sidered to be close to implementa-
tion. In recent years an inspiring
example was laser radiation. Read-
ers may know that powerful laser
pulses can destroy structures and
punch holes at large distances from
the laser. At first glance, it seems
that substituting sound for light in
these operations is possible in prin-
ciple, and only some technical
hurdles must be overcome. How-
ever, there are fundamental ob-
stacles that spoil the idea of creating
a supersonic weapon.

The point is that for any given
distance, there is a limiting value of
sound wave intensity that can
reach the target, and the smaller
this limit is, the larger the distance
to the targets.

The problem here is not the
trivial attenuation of acoustic waves
during propagation in an absorbing
medium, which is described by the
formula P, = P, exp(-x/I). Usually
the attenuation length of an acous-
tic wave decreases with frequency as
1, ~ f2. In other words, attenuation
drastically increases with frequency.
However, we can choose the fre-
quency such that the usual (linear)
attenuation at the necessary dis-
tances is negligible.?

Now imagine that at some point
(x = 0) we generate a wave of ampli-
tude and frequency at which the
nonlinear effects are pronounced.
Figure 1 shows the changes of its
one-period oscillation during propa-

2For a 1-MHz ultrasonic wave
propagating in water, I, = 50 m, while
I, for a high-frequency ultrasonic wave
may be only 10 cm.

gation. We can see that in the first
part of its path (x < I, ) the wave does
not decay at all. However, at x > I,
nonlinear attenuation occurs. The
wave amplitude decreases with dis-
tance from the source as

PO
7"
1+—
Zb

PO(X>]b) =

So, the larger the initial ampli-
tude P,, the quicker it fades. At
very large initial amplitudes, the 1
in the denominator can be omitted,
so the amplitude drops as 1/x, and
the rate of decay does not depend
on the initial pressure P, because
I, ~ 1/P,. This attenuation proceeds
to distances where the nonlinear
effects disappear, and thereafter the
wave propagates linearly. Linear
decay is far less pronounced and
does not depend on the initial sig-
nal.

We can obtain a formula for the
maximum amplitude of the sine
wave at the input of a medium, tak-
ing into account both nonlinear (due
to the formation of the steep wave
front) and linear attenuation (which
is described by the attenuation coef-
ficient 1/L ):

. 4f x
Z%gripo(x > Iy )= B x) = ¢ M

Again note that the signal amplitude
Py(x) at the finish (at distance x >> )
does not depend on the signal ampli-
tude P, at the start. We cannot trans-
mit pressure larger than P__ (x) for
any given distance no matter how
powerful the sound generator and
how large the amplitude of the
source signal!

Let’s try to estimate the maxi-
mum intensity that can be transmit-
ted through 100 m of water by an
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Figure 2

ultrasonic wave with frequency 1
MHz:

; Pl (x=100m) gf?

-2x/1,
max — e i
2cp

cpo®

Inserting the values c=1.5- 103 m/s,
p =10% kg/m3, .= 300 (Pa - sJ™!, and
1, =50m, wegetl  =1W/m2
Therefore, in the optimum condi-
tions for the propagation of intense
ultrasonic waves in water, we can
transmit over 100 m only a small
amount of energy, approximately
equal to 1 J/m? of the receiving an-
tenna. This is enough for a flash-
light, but far from the power neces-
sary to damage a ship or traumatize
a sperm whale.

What a disappointing result! So
how are the various technological
applications of ultrasound possible?
The answer is that these operations
are performed at comparatively
small distances from the acoustic
generator, where nonlinear attenua-
tion cannot yet damp a powerful
wave and the saturation effect does
not occur.

A reader may ask how we can
explain the mighty effects of shock
waves. We know that shock waves
from explosions can destroy build-
ings at great distances from the ex-
plosion. Shock waves are a very non-
linear phenomenon, and nonlinear
attenuation should progress more
rapidly here than in the rather mod-
erate waves usually considered in
nonlinear acoustics.

The problem is that a single im-
pulse (fig. 2) behaves quite differ-
ently than a periodic wave (fig. 1). Its
peak value decreases with distance
according to

P
Py(x)=—2—.
o) Ji+x/1
30 SEPTEMBER/OCTOBER 1988

Again, at large initial amplitudes P,
the 1 can be neglected in the de-
nominator. In this case the ampli-
tude of a single pulse at the observa-
tion point (say, an obstacle) does
depend on the amplitude at the ex-
plosion point and is described by the
formula

1 P
Po(x)=Po\/§ ~ ;0

The dependence on initial ampli-
tude P, is very important here. We
see that in a case where nonlinear ef-
fects are strongly manifested (that is,
in the shock wave), the maximum
value of P(x] is not limited by some
value, although it increases more
slowly in comparison with the pres-
sure of the sound generator (it’s
proportional to \/Py and not to Py, as
in the linear case). Thus, by increas-
ing the power of an explosion and
the initial amplitude of the sound
wave, we can create any large pres-
sure at any given distance and de-
stroy a target.

Up to now we've considered the
deformation of a powerful acoustic
wave and the decrease in its ampli-
tude as it travels through a medium.
However, we haven’t mentioned the
most important thing—the change
in its spectrum. This phenomenon
is very important in applied acous-
tics.

Let’s recall the notion of the
spectrum of a signal. Usually the
word spectrum is associated with
magnificent photographs of the
visible atomic emission spectra,
which consist of bands of different
colors. Every atom is characterized
by its individual “spectral finger-
print.” For example, the spectrum
of sodium has a bright yellow line
at the wavelength 0.59 pm. How-

ever hard we may try to transform
a light wave of a given spectrum in
a linear medium—sending it
through any kind of light filters,
scattering media, amplifiers, and
so on—we’'ll never obtain new fre-
quencies (that is, new spectral
lines). However, nonlinear trans-
formation by methods of nonlinear
optics is another matter entirely.
It’s known that the infrared beam
of a high-power laser can become
red after passing through a spe-
cially chosen crystal. In so doing,
it doubles its own frequency.?

A similar phenomenon of a
multiple increase in frequency—
or, in other words, the generation
of higher harmonics—is also im-
portant in the physics of high-
power acoustic waves. When we
discussed the distortion of a har-
monic signal (fig. 1), we actually
brushed up against this effect. In-
deed, the spectrum of the signal
shown in figure 1 is composed of
a set of equidistant frequencies:
the fundamental frequency of the
generated signal f (corresponding
to the initial, nondistorted sinu-
soidal signal) and higher harmon-
ics of frequency nf (n =2, 3, 4, ...},
which arose as the acoustic wave
propagated in a nonlinear me-
dium. In other words, the distor-
tion of the shape of the sinusoidal
wave results in the appearance of
higher harmonics in the spec-
trum. The amplitude of the sec-
ond harmonic (n = 2) increases
proportionally to the distance
traveled by the wave. It can be-
come comparatively large, so it
can be measured quite accurately.
On the other hand, when the dis-
tance between the sound radiator
and the receiver is fixed, the am-
plitude of the second harmonic

3The article of B. Fabrikant
“Through a Glass Brightly”
(Quantum, September/October 1990,
pp. 34-38) describes how visible light
changes its color from green to red
after traveling through several pieces
of green glass. However, that
phenomenon has nothing to do with
nonlinear wave transformation. Can
you guess why?



depends on the elastic properties
of the medium, or as physicists
and materials scientists say, on
the nonlinear modula of the me-
dium. If you're a devoted Quan-
tum reader, you've come across
Young’s modulus any number of
times. This parameter describes
the elastic deformation of a solid
body under the action of applied
mechanical stress (recall Hooke'’s
law). Young’s modulus is a linear
parameter, because according to
Hooke’s law, the deformation of
a body is directly proportional to
the stress (that is, it depends on
the stress linearly). In case of
large stresses, when the defor-
mations cannot be considered
elastic (the material becomes
“plastic”’—it “yields” or even
crumbles), the dependence of de-
formation on stress is character-
ized not only by linear but also by
nonlinear modula of the medium.

Thus, when we measure the am-
plitude of a second harmonic that
has passed through a nonlinear me-
dium, we thereby determine the
nonlinear modula of this medium
and, therefore, can describe its plas-
ticity, strength, and other important
characteristics.

Now we can understand one of
the most important notions in non-
linear acoustics. When we study
the parameters of solid bodies, we
usually subject them to large
stresses. Special devices exert loads
of tens of thousands of atmo-
spheres. Often, instead of using
bulky and expensive equipment,
we can use a far simpler method. A
sound radiator is attached to the
end face of a rod, and an intense
wave is generated in the sample.
On the other face of the rod, the
nonlinear signal is recorded (for ex-
ample, by measuring the amplitude
of the second harmonic), which
contains the information we seek
about the characteristics of the ma-
terial.

In contrast to linear waves, an
intense wave “remembers” the
properties of the medium through
which it propagates. This is why
nonlinear signals are used to analyze

soils and water, which may be im-
pervious to other types of radiation
but “transparent” to sound.

If an intense sound wave encoun-
ters another wave (signal), it “re-
members” the meeting and its char-
acteristics will change. In other
words, an intense beam serves as a
kind of probe (or antenna). Just imag-
ine: If we just increase the power of
the sound radiated into, say, water,
we get a receiving hydroacoustic
antenna spread over tens or hun-
dreds of meters. The role of the an-
tenna in such a setup is played by
the water column that contains the
acoustic beam—that is, by the space
between the sound generator and
the receiver. Of course, nothing of
this kind is possible with weak
waves. We know that two linear
waves pass freely through one an-
other, creating an interference pat-
tern in the area where they cross.
Leaving this area, each wave travels
on as if it had never encountered the
other.

An intense beam can be not
only a receiving antenna but also a
transmitting antenna. Devices that
radiate sound by means of such an-
tennas are called parametric radia-
tors. What are these devices good
for?

We know that the only kind of
radiation that can travel great dis-
tances underwater is sound. With-
out acoustic communication, the
oceans could not be tamed or their
resources tapped. However, to ob-
tain a narrow beam of directed ul-
trasonic radiation, we need very
large antennas whose reflecting sur-
faces are tens of meters in diameter.
The problem of constructing huge
transmitting antennas can be
avoided by using the nonlinear in-
teraction of acoustic waves. To this
end, two antennas of conventional
size are used, which radiate the in-
tense waves with frequencies f, and
f,- These waves interact before fad-
ing at a distance of, say, 1 km from
the antennas. As a result of this in-
teraction, a new wave is generated
that has a low (differential) fre-
quency f, - f, and is attenuated far
less than the source waves and thus

can travel much farther. Even more
important is the fact that this far-
reaching wave is generated not on
the surface of the antenna (only ul-
trasonic waves with frequencies f,
and f, are generated there), but deep
in the water. Thus the kilometer-
long column of water—the area
where the waves interact—be-
comes a huge transmitting antenna.
We don’t need to build it—it’s al-
ready there!

Parametric radiators are cur-
rently used in geophysics, medi-
cine, and atmospheric research.
However, these antennas are most
widely used in marine research.
They make it possible to study the
relief of the ocean floor as well as
the soil characteristics there. Para-
metric acoustics has also been ap-
plied in archaeology: scientists used
it to search for valuables seized by
Napoleon from the Kremlin in
Moscow and discarded during the
French army’s retreat somewhere
in the marshy, silted lakes near
Smolensk; and in another instance,
it uncovered objects from the first
polar expeditions.

Still another application involves
acoustic locators to find schools of
fish at the surface or near the ocean
floor, in the mouths of rivers, or in
shoals—in other words, where stan-
dard acoustic devices can’t do the
work.

In this article we tried to de-
scribe just a few of the many inter-
esting phenomena that occur in in-
tense acoustic fields. Nonlinear
acoustics is a relatively young sci-
ence—only about forty years old. It
abounds in problems to be studied
by the younger generation of re-
searchers who are interested in
nonlinear physics and its applica-
tions. Q

Quantum articles on waves and
sound:

Kaleidoscope: “Songs That Shat-
ter and Winds That Howl,” January
February, 1994, pp. 32-33.

Roman Vinokur, “The Impor-
tance of Studying the Physics of
Sound Insulation,” November/De-
cember 1995, pp. 18-23.
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real clouds, drift-

ing fog and refined
snow crystals—all are cre-
ated by vapors. Water vapor in the
air plays a big role in determining
the weather. Accordingly, weather
forecasts regularly include observa-
tions of relative humidity.

Vapor is also a con-
cern of such vari-
ous people as

sportsmen
and glaciolo-
gists, design-
ers of steam
boilers and
engines, pilots
and sailors, and
housekeepers
who hang laundry out
to dry—all of them need to know
about the properties and behavior of
vapors. How much do you know
about vapors?

Questions and problems
1. Why does a drop of
water begin to “jump”
after landing on a red-hot
plate?

2. Under what conditions can an
increase in the absolute humidity
of air be accompanied by a de-
crease in its relative humidity?
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summer is the
relative humidity
higher at the same abso-

lute humidity?
4. High air temperatures can be en-
dured rather easily in deserts due to

the low humidity. Why are high
temperatures unbearable at high hu-
midity?

5.In spring, the water content in the
soil around unmelted snowdrifts is
higher than at some distance from
them. Why?

6. It's drizzling on a cold autumn
day, and the laundry is hung to dry.
Will it dry near an open window?
7. Can an aspirator raise boiling wa-

8. How can you convert unsatur-

ated vapor into saturated vapor?
9. When can an increase in the
density of a substance coincide
with a rise in temperature!?

10. A liquid is poured into con-
nected vessels of different di-

ameters. If the wider vessel is

KALEIDOSC

Do you really kr

plugged with a cork, will the lev-

els in the vessels change as a re-

sult?

11. Saturated air-free water vapor is

trapped under the piston in a cylin-

der. Will this vapor respond as an 75
elastic body during compression?
12.. A plastic bottle is filled to -
9/10 of its volume with
boiling water and
plugged with a
cork. Shaking 4
the bottle may
pop the cork. : Why?
13. Why does fog hover after
sunrise in autumn for a longer time
over a river than over soil?

14. Precipitation occurs because
larger drops grow from smaller ones.
How do you explain this phenom-
enon?

Microexperiment

Water is boiling in two identical
teakettles set on identical burners.
The lid of one kettle jumps persis-
tently while that of the other does
not move. Why?



OSCOPE

vapors?

It is interesting
that...
...if Earth’s hy-
drologic cycle stopped, a
layer of water 1.1 m deep
“would be evaporated in a year
from the surface of the oceans.
...if a very clean vapor doesn’t con-
tact liquid, it can become supersatu-
rated vapor when the temperature is

lowered. Such a vapor is used in the
Wilson cloud chamber, designed for
detecting elementary charged par-
ticles.

...the first hair hydrometer

was constructed in 1783 by the

] Swiss geologist and naturalist
Horace Bénédict
de Saussure. In the
same year he pub-
lished a paper in
which he proved
that humid air is less
dense than dry air at
the same tempera-

ture and pressure.

&

Quantum
articles about
vapors:

...in 1880, the
Scottish marine en-
gineer John Aptken
discovered that during the
formation of fog, clouds, and M. Anfimov and A.
rain, water vapor condenses on Chernoutsan, “While the water
microscopic par- evaporates,” July/August 1996, pp.
ticles such as 25-26.

sea-salt, specks
of dust, and so
on. Some modern
methods of artifi-

I. Vorobyov,
“Smoky moun-
tain,” Novem-

ber/December

cially stimulating 1995, pp. 38-40.

rain are based on this g I. Mazin, “An invita-

discovery. v g ] tion to the bathhouse,”
...the modern device for e T September/October 1990,

pp. 20-22.
A. Abrikosov, “The story
of a dewdrop,” September/
October 1992, pp. 34—
38.
A. Buzdin and V.
Sorokin, “Double,
double, toil and
trouble,” May/June
1992, pp. 52-53.

A. Stasenko, “Love and hate in
the molecular world,” November/
December 1994, pp. 10-13.

measuring water vapor, the
infrared hydrometer, can
operate in conditions
when all other de-
vices are virtu-
ally useless.
It compares
two differ-
ent wave-
lengths of infrared radia-
tion that pass through
a layer of air. One wave-
length is absorbed by
water vapor while
the other travels
through it safe and
sound.

ANSWERS, HINTS & SOLUTIONS
ON PAGE 55
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PHYSICS
CONTEST

Up, up and away

by Arthur Eisenkraft and Larry D. Kirkpatrick

E’'S FULL OF HOT
air! We all know
what the expression
means. Empty talk,
unsubstantiated state-
ments, pretentious ver-

Hanc/s do what you re b/d
Br/ng the balloon of the m/nd
That bellies and drags in the wind

/nto /ts narrow shed.

. -——~W////am But/er Yeaz‘s

perature), we can derive
the equation relating the
pressure to the eleva-
tion.

A fluid element is as-
sumed to be at equilib-

biage, and boastful babble
all come to mind when we
hear the expression “full of hot air.”
Where did such a statement origi-
nate? O. Henry once said, “A straw
vote only shows which way the hot
air blows.” What is there about hot
air that would equate it to talking
nonsense? Perhaps the hot-air dia-
tribe is thought of as having no sub-
stance, ready to just float away.

As students of physics, we take a
more substantial look at hot air. We
know that hot air rises and is one
means by which we can have a bal-
loon soar above us. This month, we
will ignore bees, birds, and helium-
filled birthday balloons and let our
minds soar with the hot air that levi-
tates tourists on a Sunday afternoon
or adventurers embarking on a
'round-the-globe expedition.

The hot-air balloon begins to rise
because it is buoyant in the cooler
surrounding air. It rises until the
buoyant force is equal to the weight
of the balloon and the air within it.
To understand the rise and suspen-
sion of the balloon, we must then be
reminded of the grand law of buoy-
ancy, Archimedes’ principle, and the
determination of the density of the
cooler air at different elevations.
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Archimedes, prior to running
through the streets shouting “Eu-
reka!” realized that an object is
buoyed up by a force equal to the
weight of the displaced fluid. An el-
egant proof of this would assume
that a block of water is floating
amongst the rest of the water. The
buoyant force, due to the pressure
difference between the top and bot-
tom of the slab of water, must be
equal to the weight of the water for
the static equilibrium that we ob-
serve. The pressure difference will
be identical if another object re-
places this slab of water. If, however,
this object weighs more than the
water it displaces, it will sink. If it
weighs less than the water it dis-
places, it will rise.

Water is barely compressible,
and the pressure differences will
remain constant regardless of
where the block is placed within
the liquid. The atmosphere is
compressible, and the pressure and
density of the air varies with el-
evation. Assuming that the pres-
sure and the density are propor-
tional to one another (as they
would be for a constant air tem-

rium within a larger fluid.
For equilibrium, the pres-
sure pushing up from the bottom
must equal the pressure pushing
down from the top surface plus the
weight.

PA=(P+dP)A+dW
PA=(P+dP)A+pgAdy
ar__
dy pS.

The pressure decreases with ris-
ing elevation.

Since we are assuming that the

density is proportional to the pres-
sure,

p_LP
Po  To
a _ P
E__Opol)
dpb _ 8Po_ 4
p Py
InL —_8Po
Py By
8o,
P=Ppe P

Art by Tomas Bunk
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With Archimedes’ principle and
the derived dependence of pressure
on elevation, we are now ready to
embark on our journey through this
month’s contest problem. It is
adapted from the International
Physics Olympiad problem given in
Germany in 1982.

A hot-air balloon, when inflated,
has a constant volume V, = 1.10 m?.
The mass of the balloon material is
my =0.187 kg, and its volume is neg-
ligible. The initial temperature of
the air is T, = 20.0°C, and the atmo-
spheric pressure outside the balloon
is Py =1.013 - 10° N/m?. Under these
conditions, the density of the air is
p, = 1.20 kg/m?.

A.To what temperature must the
air in the balloon be heated for the
balloon to begin to float?

B. The balloon is tethered to the
ground, and the air in the balloon is
heated to a steady state temperature
of 110°C. What is the net force on
the balloon when it is released?

C. The balloon is tethered to the
ground, and the air in the balloon is
heated to a steady state temperature
of 110°C and released. The balloon
rises isothermally in the atmo-
sphere, which is assumed to have a
constant temperature of 20°C. De-
termine the height gained by the
balloon under the conditions de-
scribed.

D. The balloon hovers at the
height calculated in part C and then
is pulled from its equilibrium posi-
tion by Ah = 10 m and released. De-
scribe the subsequent motion of the
balloon.

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington, VA 22201-3000 within a
month of receipt of this issue. The
best solutions will be noted in this
space.

Around and around She goes

Three readers sent in different
approaches to the solution of the
first problem in the March/April is-
sue of Quantum. Art Hovey, a
teacher at Amity Regional High
School in Woodbridge, Connecticut,
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stated that when the chip breaks off
the rim of a rotating disk, it exerts
no impulse on the disk, so the angu-
lar momentum (and, thus, the angu-
lar speed) of the disk does not
change. David Heller, his student,
noted that the angular momentum
of the particle is initially mR?w, and

finally mvR. But v = o,R, and the

angular momentum of the particle
doesn’t change. By the conservation
of angular momentum, the angular
momentum of the disk doesn’t
change. Rob Morasco from Hatfield,
Pennsylvania, used a more math-
ematical approach. Conservation of
angular momentum requires

Iy, = (I, - mR*)o; + mR2w,.
Rearranging terms,
(I, - mR*)w, = (I, - mR*)w,.

Therefore, o; = .

The problem in which the ball of
mass m and speed v hits a stick of
mass M and length a proved to be a
bit more difficult. As with all colli-
sion problems, we must conserve
momentum. Conservation of linear
momentum gives us

mv =MV,

where V is the speed of the stick’s
center of mass and the final speed of
the ball is zero. Therefore,

V=—v.
M

Because the ball strikes the stick

near one end and perpendicular to
the stick, the angular momentum of
the ball about the center of mass of
the stick is

Lizmvﬁ.
2

The angular momentum of the stick
about its center of mass is

Li=Io= iMa%o,
12

where o is the stick’s angular speed
about its center of mass.

Conservation of angular momen-
tum then yields

6mv
o= .
Ma

Art Hovey was able to find the
condition on the masses for such a
collision to be possible. We know
that the kinetic energy after the col-
lision cannot exceed the kinetic en-
ergy available before the collision.
Therefore,

1 1 1

—mv?>=MV? +=Iw?
2 2 2

2 2
i) L L e | S
2\ M 2112 Ma
_L e 4m)
2 M
and

M= 4m. (@

p
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Math
M241

Squared and cubed. Find all real
solutions to the equation

(x2 + 100)2 = (x® - 100)3.

M242

Proof perpendicular. Let M be the
point of intersection of the diagonals
of the inscribed quadrilateral ABCD,
where ZAMB is acute. An isosceles
triangle BCK is constructed on the
base BC such that Z/KBC + LAMB
=90°. Prove that KM is perpendicu-
lar to AD.

M243

Scorched earth. A wildfire in
Florida spreads in all directions at
1 km/h. A bulldozer arrives at the
fire’s edge when the fire has burned
a circle of radius 1 km. The bull-
dozer moves at 14 km/h as it makes
a trench that cuts off the fire. Find a
path for the bulldozer such that the
total area burned will be no larger
than (a) 4n km?; (b) 3x km?. (You may
assume that the grader’s path consists
of line segments and arcs of circles.)

M244

Blocky world. The planet Brick is
a rectangular parallelepiped with
edges of 1, 2, and 4 km. The Prince of
Brick built a brick house at the cen-
ter of one of the largest faces. What is
the distance from the house to the far-
thest point on the planet? (The dis-
tance between two points is defined
as the length of the shortest connect-
ing path along the planet’s surface.)

HOW DO YOU
FIGURE?

Ghallenges

M245

Range finder. The real numbers
a, b, and ¢ satisfy the conditions

O<a<b<eg,
a+b+c=7,
abc =9.

Find the range of possible values for
eachof the variables g, b, and c. (Warn-
ing: Our solution involves calculus.)

Physics

Bubble in glycerin. A small air
bubble is in the middle of a long, cy-
lindrical tube filled with glycerin.
When the tube is vertical, the bubble
moves at a constant v, = 1 cm/s.

If the tube begins horizontal and
then is accelerated in the direction
of its length to the speed v = 20 m/s,
at what position will the bubble
stop? Where will the bubble stop if
the tube’s speed is gradually in-
creased to 30 m/s? Where will the
bubble be after the tube decelerates
to zero speed? (A. Andrianov)

P242

Helium under pressure. The de-
pendence of the scaled temperature
T/T, of helium on the pressure p/p,
has the shape of a circle with its cen-
ter at the point (1, 1). The minimum
temperature of helium in this process
is 7. Find the ratio of minimum to
maximum helium atomic concentra-
tion in this process. (V. Pogozhev)

P243

Compound fuse. A lead wire of
diameter d, = 0.3 mm is melted by an

electric current I, = 1.8 A, and another
lead wire (d, = 0.6 mm) melts at the
current I, = 5 A. At what current will
a fuse blow if it is made of two such
wires of the same length connected in
parallel? What current will blow the
fuse if in addition to a single thick
wire it is made of 20 thin wires that
have the same length and are also
connected in parallel? (A. Khodulev)

P244

Magnetic lift. A rigid thin conduct-
ing ring lies on a nonconducting hori-
zontal surface in a homogeneous
magnetic field B, which has horizon-
tal magnetic lines of force. The mass
of the ring is m, and its radius is R.
What current in the ring will cause it
to rise off the surface? (S. Krotov)

P245

X-ray examination. An X-ray
unit consists of a point source S and
a receiver R firmly fixed on a frame.
A thick-walled, cylindrical vessel is
placed between S and R (figure 1).

A
S 10

>SS 0.8

0.6 /
<

0.4

I 0:2

[

& o
-10 1 2 3 4 x(cm)
Figure 1

The plot shows the intensity of the
X-ray radiation, which varies with
the x-coordinate. Is there any sub-
stance absorbing the radiation inside
the cylinder? (A. Andrianov)

ANSWERS, HINTS & SOLUTIONS
ON PAGE 50
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High-speed conservation

O SOLVE PROB-

lems dealing with

bodies moving at

speeds approach-
ing the speed of light,
we need the laws of
conservation of mo-
mentum and energy,
which are well known
in classical mechanics,
but written in a special
form.

Thus, the relativistic
momentum and total
energy of a body with
rest mass m;, moving at
speed v is given by the
formulas:

myv

2
J1- v/ c? /

where c is the speed of
light. These formulas
are true only for par-
ticles whose rest mass
is not zero. The photon—which
moves at the speed of light and has
zero rest mass—has an energy

E = hv
and momentum
p=hv/c,
where h = 6.62 - 103*] - s is Plank’s
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by A. Korzhuyev

constant and v is the frequency of
the photon. Now let’s try our
knowledge in practice.

Problem 1. Two gamma ray are
produced by the annihilation of an
electron and a positron, both of
which were moving slowly. At what
angle do they fly away from each
other? What are their frequencies?

Solution. This annihilation pro-

cess can be considered
with the help of con-
servation of energy
and momentum:

GE+pe—2y.

Since the initial ve-
locities of the particles
are small, conserva-
tion of momentum
yields

0 hv, hv,
c c’
SO
V)=V,

The photons must
leave in opposite direc-
tions (figure 1), be-
cause only in this case
can the total momen-
tum of the particles be
zero after interacting.

Conservation of en-
ergy produces

2 _
2myc* = hv, + hv,,

and taking into ac-
count that v, = v, = v,
we get

mge”

h

Problem 2. A neutral particle
traveling at v = 0.8¢ decayed into
two photons that went in opposite
directions after the event (fig. 2).
What is the ratio of the frequencies
of these quanta?



180°
¥\
T WP i g
hv hv,
c ¢
Figure 1
O
TN e W™ 4
hv, hvy,
Figure 2

Solution. Again we use conserva-
tion of momentum and energy. The
initial momentum of the particle is
equal to the sum of the projections
of the photons’ momenta on the ini-
tial direction of the particle’s mo-
tion
_hv; hv,

\1—V2/C2 c c

The particle’s total energy equals
the total energy of the quanta:

9
mgyc
J1-v?/c?
Upon inserting the value v =0.8¢
into these formulas and multiplying

the left- and right-hand terms of the
first formula by ¢, we get

= th +hV2.

4
gmoc2 = hv, — hv,,

5 ‘
gmoc2 = hv; — hv,.

Adding and subtracting these
equations yields the frequencies of
radiation:

hv,

v
O— c

2T mv

Figure 3

2

3myc
Vl -
2h
m002
V2 =
6h

and the desired ratio

Vi_g
Vs

Problem 3. The disintegration of
a moving neutral particle produced
two photons moving at angles
o, = 30° and o, = 60° to the initial
trajectory of the particle. What was
the speed of the particle?

Solution. In this case conserva-
tion of momentum should be “pro-
jected” onto the horizontal and ver-
tical axes (fig. 3):

\//1— v?/c?
(1)

hv, hv,
=—CO0S0; + —=COS 0y,
& c

hv,

0=—="sino, ~év—zsin0c2. (2)
& c

Conservation of energy yields

2
myc B

Inserting the relationships sin o,
=1/2 and sin o, = V3 /2 into (2), we
get

Vi= VZ\/g.

Plugging this into equations (1) and
(3) results in

MoV — =2hv,,
J1- vZ/c
myc? ~
—_— = hvz(x/3 + 1).
1= #2p?

Now we divide these equations by
one another and get
V3 +1

T

c_
%
Finally,

2¢

V=— =0.73c.
V3 +1

hv,
c
{ /’/’mV
hv,v”
c

Figure 4

Problem 4. The disintegration of
a particle moving at v = 0.8¢ pro-
duces two photons. Find the mini-
mum angle at which these photons
diverge.

Solution. Conservation of energy
and momentum results in (fig. 4)

myc?
o l— w2 [e

2
2
myv | _ [mf . [&T
1= v/ ¢ ¢
B 2h%v,v, cosP

2 4
[}

:h\)l +hV2/

where B = 180°- ¢
Upon inserting v = 0.8¢ and mul-
tiplying the second formula by ¢, we
get
S 2
gmoc =hv, + hv,

%6111%04 = (hvl)2 + (hv2)2

+2h%v,v, coso.

Now we add and subtract 2h%v,v -2
in the last equation:

%m%ﬁ = (hv, + hv,)*

—2h%Vv v, (1-cosa).

Since the total energy of the photons
is constant and equal to (5/3)m,c?,
we have

2 1
2h*v,v,(1 - cos a) = my*c

which can be rearranged to

mic*

l-coso = —.
2h"v|v,

To make the angle o (or the differ-
ence 1 — cos o) as small as possible,
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Figure 5

the product v,v, should be as large
as possible. We know from math
that the product of two numbers
whose sum is constant will be
largest when both factors are equal.
This is exactly our case, because
hv, + hv, = (5/3)m,c?, so v, = v,.

Now we’ll prove this rigorously.
Let’s write the product v,v, (it’s
more convenient to use hv,hv, for
this purpose) as [(5/3)m,c* —hv,|hv,
and examine the maximum of the
function

f(vy)= [gmocz —~ ]1\/2]]1\/2

= gmoczhv2 — B2,

The graph of this function is a pa-
rabola (fig. 5) that peaks at

2

v _5Smye
"6 h
Thus,
5 2 5 5
hv, = —myc® - Zmyc® = = myc?,
1= 3o g Mo 5 Mo

and the desired product is

25 mjc*

=36 3

ViVy

Upon inserting this value into
the expression for (1 — cos o) we
get

l-cosa . =18/25=0.72,
from which we obtain

o_. =arccos 0.28 = 47°,

min

Problem 5. Can a free electron
absorb a photon?

Solution. Again we use conserva-
tion of energy and momentum. Let
the electron be at rest before absorb-
ing a photon and then let it acquire
speed v. Conservation of energy

yields

g

1= v2/c?
and conservation of momentum re-

sults in

myc* +hy =

hv  myv

c \/].— VZ/C2 .

Inserting the expression of hv ob-
tained from the second equation
into the first one, we get

2 mgyve e

y1- v lc?

\/"1—' V2/62

After rearrangements we have

(c-vP=c?-va

This equation has the formal
roots v = ¢ and v = 0. In other words,
the speed of the electron should be
equal either to ¢, which is impos-
sible, or to zero, which doesn’t work,
because in this case the photon’s fre-
quency must be zero.

Well, the theory of relativity isn't
so frightening after all! (@

Erratim

The gunfire racing problem (P232,
May/June 1998) stated: A projectile
was fired horizontally from a moun-
tain at an altitude h = 1 km with a
velocity v = 500 m/s. After the time
t, = 1 s, another shell was fired in
pursuit of the first. What must the
minimum initial velocity of the sec-
ond shell be and at what angle should
it be fired to hit the first shell?

Assuming that the author meant
for the two projectiles to collide in
flight, the answer given is wrong. As
the author’s analysis correctly indi-
cates, the minimum velocity occurs
at the instant just before the two
projectiles hit the ground. For the
two projectiles to collide earlier re-
quires a larger velocity.

The first projectile will hit the
ground in a time T = ,/2h/g
= 100/7 s at a horizontal distance
x = (500 m/s)T = 50,000/7 m from
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its starting point. The second pro-
jectile must reach this same point
inatimet=(T-1s)=93/7s.Con-
sequently, after a time t, the hori-
zontal distance of the second projec-
tile from its starting point must be
given by v, cos oyt = 50,000/7 m.
Similarly, after a time t, the verti-
cal distance of the second projectile
from its starting point must be given
by -1,000 m = —gt?/2 + v, sin o,,t. The
horizontal displacement equation
gives v, cos 0, = 50,000/93 m/s. The
vertical displacement equation gives
v, sinay, = -945.7/93 m/s. Dividing
gives tan o, = -945.7/50,000, or
o, = tan™! (-0.018914). The mini-
mum velocity is then given by

50,000

——— m/s =537.73 m/s.
93cos o,
The author’s answer of 535.1 m/s is
not correct.

The author’s solution has two er-

rors. First, the equation for v, is writ-
ten with a cosine instead of a sine.
This appears to be a typographical
error, because the answer is consis-
tent with the use of the sine func-
tion. The second error is more fun-
damental. In calculating the speed v/,
the author uses the entire time of
flight for the first bullet rather than
this time minus ¢,. Consequently,
the equation for v’ in the solution

should read

i So

|2h

e g

Ve O

Using t, = 1 s and substituting the
recomputed value for v’ in the
author’s solution yields the correct
answer of approximately 537.73 m/s,
which is consistent with the alter-
native solution discussed above.

—Submitted by John W. Hanneken, The
University of Memphis.
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Auxiliary polynomials

by L. D. Kurlyandchik and S. V. Fomin

E CAN REDUCE MANY

problems to calculating the

roots of an algebraic equa-

tion. But sometimes it turns
out that to solve a problem we
must construct a polynomial whose
roots are the numbers that we are
given. In what follows we will see
how such auxiliary polynomials
can help us solve various difficult
problems. Many of these situations
are related to those explored in
Gradus ad Parnassum in the July/
August 1998 Quantum. Later we
will see that there is a very good
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reason for this relationship.

Let u and v be two real numbers.
What quadratic equation are they
the roots of? The simplest way to an-
swer this question is to consider the
polynomial

Plt)=(t-ullt-v)=t*+pt+q.

Its coefficients are given by the fol-
lowing formulas:

p=-u+v),

q=uv. (1)

That is, the coefficients are equal to
the sum of u and v, taken with the

opposite sign, and to the product of
these numbers. (In some parts of the
world, the formulas (1) are referred
to as Vieta’s formulas, after the six-
teenth-century French mathemati-
cian Frangois Viete. For conve-
nience’ sake, we’ll follow suit.] In
school you must have studied two
theorems connected with these for-
mulas:

e If u and v are the roots of a qua-
dratic equation 2 + pt + g = 0, then
formulas (1) hold (Vieta’s theorem);
e The numbers u and v are the
roots of the quadratic equation




t2 - (u + v)t + uv = 0 (the converse
of Vieta’s theorem).

Now we’ll give a few examples
of problems where the converse
theorem proves handy. Let’s start
with a simple problem.

Problem 1. Write down a qua-
dratic equation with integer coeffi-
cients, one of whose roots is 2 + +/3..

Solution. The solution of this
problem, as well as that of many
other problems, is based on the ob-
servation that the quadratic equa-
tion whose leading coefficient is 1
and whose roots are the “conjugate”
numbers a + b~y/d and a - b /d,
where a and b are integers, has inte-
ger coefficients. (For more on conju-
gate numbers, see “Unidentical
twins” by V. N. Vaguten in the No-
vember/December 1997 Quantum.)
This fact is, of course, a direct impli-
cation of formulas (1).

Thus, the roots of the equation
we are looking for are t, = 2 + N3
and t, =2 -+/3, and therefore its co-
efficients are equal to

p=—t;+t,)=—4

and
q=tt,=1

Answer. t2 -4t + 1 = 0.

Problem 2. Does the number
By = V37 = 20 satisfy the inequal-
ity t2+ 9t — 17 > 02

Solution. Consider the quadratic
equation with roots ¢, and ¢, = /37
— o 20

2 +2420t-17=0.

Since 24/20 = /80 <9, we conclude
that

t,2+9t, - 17> ¢> +24/20¢,-17=0

(clearly, t, > 0).

Answer. The number ¢, satisfies
this inequality.

It often proves much easier to cal-
culate the value of a function at
some point if you start by compos-
ing a polynomial that vanishes at
that point. Here’s an example.

Problem 3. Calculate u* - 5u?
+6u% - 5u, whenu =2 + /3.

Solution. Remember the result
of problem 1: u> —4u + 1 =0, or

u? = 4u - 1. Using this relation, we
can express 1° and u* as linear func-
tions of u:

w=v?u=4u-1lju=4u*-u
=4{4u-1)-u=15u-4;

u* = vdu = (15u - 4)u = 151> - 4u
= 15(4u-1)-4u = 56u - 15.

And thus,

u* - 5183 + 6u% - 5u =56u-15
-5(15u~4) + 6(4u—1)-5u = -1.

Answer. —1.

Taking this example for the
model, we can represent the value of
any polynomial with integer coeffi-
cients at a point u = a + b/d in the
form ku + I (here a, b, d, k, and ] are
integers).

Problem 4. Demonstrate that the
number (7 + /4813 + (7 — /48 )13 is an
integer and is divisible by 14.

Solution. The numbers 1 = 7 + /48
and v = 7 — /48 are the roots of the
square trinomial 2 — 14t + 1. Using
the formulas u? = 14u - 1 and
v2 = 14v -1, we obtain the following
“recursive relations” for the values
a,=u"+ vt

ag=2,
a,=u+v=14,
a, =u*+vt=(l4u-1)+(l4v - 1)

= l4a, - a,,
a;=ud+v®=ulldu-1)+v(14v - 1)

=14a,-a,

a, = 4 v
=u?Yl4u-1)+v?-l4v -1)
= 14&111_1 —d,_o-

The fact that all the numbers a,
are integers follows directly from
these formulas. In addition, we can
show that for odd n, a, is divisible by
14. We prove the latter statement by
inductiononn:If a,_, is divisible by
14, then the last formula implies
that a, is also divisible by 14.

Problem 5. Calculate the value of
ud + 1/ud ifu=+2+1.

(Answers and hints for problems
5, 10, 13, and the exercises can be
found on page 54.)

Vieta’s formulas for polynomials
of arbitrary degree are obtained just
as they are for quadratic polynomi-
als. We write

Plt) = (t —x)[t - x,)-... {t - x )
=+t a2+ va,

where x,, x,,..., x, are its roots. We
remove parentheses, collect like
terms, and set equal the coefficients
of equal powers of ¢ on both sides.
Let’s write these formulas explic-
itly for a third degree polynomial

with roots x, y, and z:

P(t) = (t-x)(t -yt - 2]
=t3+pt2+qt+r,

p=-X-y-2z
q =Xy +yZ+ ZX, (2)
r=—Xyz.

Now we proceed to the most in-
teresting problems illustrating the
advantages of employing auxiliary
polynomials. In all of these ex-
amples we consider the polynomials
constructed for a set of three or more
roots.

Problem 6. The numbers x, y, and
z satisfy the relation

X+yV+z=4q,
I/x+ 1)y +1/z=1/a

Prove that at least one of these num-
bers must be equal to a.

Solution. Let’s use formulas (2).
We obtain

p=—(x+y+2z=-q,
qg=xyz(l/x+ 1]y + 1/z)
= xyz/a = -r/q,

and thus

Pt) =3 —at? —(r/a)t + 1
=(t—a)(t®-1/a).

So, one of the roots of the polyno-
mial P(t) is equal to a. And therefore,
one of the numbers x, y, or z must
be equal to a.

Problem 7. The sum of three in-
tegers u, v, and w vanishes. Prove
that the number 2u* + 2v* + 2wt is a
square of an integer.

Solution. Let Pt) =3 + pt2 + gt + 1
be a polynomial with roots 11, v, and
w. According to Vieta’s theorem,

p=—{u+v+w)=0.
Therefore

w4+ qu+r=0,
V+gv+r=0,
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w? + gw+r=0.

We want to obtain the expression
given in the problem, so we multi-
ply these formulas by 2u, 2v, and
2w, respectively, and add them. We
get

2t + 2 4 2w 4+ gl + vE e W) =0

(we've used the condition u + v+ w
= 0). But

w2+ view?=(u+v+wp
- 2xy + yz + zx) = -2q.

Therefore
2u* + 2v* + 2wt = (2g)2.

A similar technique works for the
following problem, which often ap-
pears in mathematical Olympiads.

Problem 8. Decompose the fol-
lowing polynomial in x, y, and z

x3+y° + 2% - 3xyz

into the product of two other poly-
nomials.

Solution. Consider the polyno-
mial P(t) = t3 + pt> + gt + r with roots
x, y, and z (that is, P(x) = 0, P(y) = O,
P(z] = 0). Let’s add the corresponding
equalities:

Xepxt+gx+r=0,
y+py*+qy+1r=0,
2+p22+qz+r=0.
Using Vieta’s formulas (2) and the
identity
X2+y?+ 2= (x+y+2z)P?

- 2xy + yz + zx) = p?> - 2q,
which we’ve used in the previous
problem, we obtain
X+ +28+ppt-2q)-qp+3r=0,

and thus

X+ +28-3xyz=x3+y3+23+3r

= -plp*-3q)

=(x+y+z)xt+yr+e2?

- Xy - yZ — zx).

Remark. The quantity

X2+ 422 xy-yz-zx
is nonnegative (since
=y + [y - 2P+ [x = 2P 2 0]

Thus the identity we've proved im-
plies the inequality
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3 Naoe, (3)

which connects the arithmetic and
geometric means of three nonnega-
tive numbers. It’s sufficient to set
x=%a,y=2%b,andz = ¥c in in-
equality (3).

Now let’s show how auxiliary
polynomials help solve systems of
equations.

Problem 9. Solve the system of
equations

X+y+z=2
X2+y2+22:14

X3+y3+23=20.

Solution. Continuing with the
methods we’ve developed, we start
by considering the following polyno-
mial:

Pt) = (t - x|t - ylt - 2)
=t +ptl+qt+r.

According to Vieta’s theorem,
p=—(x+y+z)=-2,
q=Xxy+yz+zx
(X+y+z)2 —(X2 +y? +zz)
2

To calculate the coefficient r, we
multiply the equations of the sys-
tem by ¢, p, and 1, respectively, and
add them. Since P(x] = P(y) = P(z) = 0,
we obtain

3r=2q + 14p + 20
=-10-28 + 20 = -18.

Consequently, r = 6 and
P(t) = t3 -2t2 -5t + 6.

We can see that the number 1 is a
root of this polynomial (we invite
the reader to check this). Now we
can factor P(t):

Plt) = (3 -t2) - (t* - t) - (6t - 6)
=(t-1)[t2-t-06).

Therefore, its roots are 1, -2, and 3.
Answer. (1, -2, 3); (1, 3, -2);
(_21 1/ 3)/ (_2/ 3/ 1)/ (3/ 1/ _2‘)7
(3, -2, 1).
Problem 10. Solve the system of
equations

xyz=1
X+y+2z=Xy+yz+2zX
2 +yd 423 =738.

The method that we consider
here proves efficient in many prob-
lems involving inequalities. Here
are several examples.

Problem 11. The numbers u, v, w,
x, v, and z satisfy the following re-
lations:

X+y+Z=U+V+W,
XyzZ = uvw,
O<u<sx<y<z<w,usviw.

Provethatu=x,v=y, w=2z
Solution. Consider the two poly-
nomials

Pt) = (t - x|t -yt - 2)
=3+ pt?+ gt +1,

and
Q(t) = (t - ul(t - v)(t — W)
=t3+pt2+kt+r

(according to Vieta’s theorem, the
constant terms and the coefficients
at t? of these polynomials must be
equal). Set R(u) = P(t) - Q(t) = (g - k)t.
Then

R(u) = Plu) = (u-x)u-y)u-z)<0.

On the other hand, R(t) = (g - k),
and thus g - k < 0. Similarly,

R{w) = Plw] = (w—x)w-y|lw-2] 20,

and therefore g - k 2 0. Thus, we
conclude that g = k, and the polyno-
mials P(t) and Q(t) are equal. So, the
sets of their roots coincide. We fin-
ish the proof by taking into consid-
eration the inequalities given in the
problem statement.

Problem 12. (This problem was
proposed to the participants of the
XXV International Mathematical
Olympiad (1984) in Prague.) Prove
that the following inequalities hold
for all nonnegative x, y, and z such
thatx+y +2z=1:

0<xy+yz+zx-2xyz<7/27.
Solution. It is not difficult to
prove the first (left-hand) inequality:
XY + yZ + zX — 2XyZ
=xy(l -z} +yz{1 -x) + zx 2 0.



To prove the second inequality, let’s
consider the polynomial
P(t) = (t - x)[t - y)(t - 2]
-2+ qt+r,
where g = xy + yz + zx, r = —xyz. Let’s
rewrite the inequality as follows:

q+2r<7/27.
Since
1 1 1 1 1
Pl=|=—+-g+r=—-+—-(q+2
(2) gt atr="g+ylar)

it is enough to demonstrate that
P(1/2) € 1/216. If none of the num-
bers x, y, and z exceed 1/2, then, by
the arithmetic-geometric mean in-
equality (3), we have

LSS

And if one of these numbers is
greater than 1/2 (there can only be

one such number, of course), then

P L = l—X l—y (l—z <0.
2) 2 2 72
We conclude our article with sev-
eral problems involving polynomi-
als with degrees greater than three.

Problem 13. Solve the system of
equations

Xy +Xy+...+Xx,=n

2, 2 2 _
X] +X)+...+Xx,=n

3, .3 3 _
le +Xy+...+X, =1

Lxl+\1++xq =n

(here x,, x,,..., x, are regarded as
complex numbers).

An attentive reader might have
noticed that all of the problems
we've considered dealt with so-called
“symmetric polynomials”: the same
sorts of polynomials discussed in
Gradus ad Parnassum in the three
previous issues of Quantum.

Exercises.
1. Prove that ¢% = 13 - 21¢ if
o= (1/2)(1-~5).

2. The sum of the lengths of the
edges of a rectangular parallelepiped
is 96 cm, its surface area is 286 cm?,
and its volume is 120 cm?. Calculate
the lengths of its edges.

3. Solve the system of equations
x+y+z=1
x>+y?+22=3
L +y’ 2 =1

4. Factor the polynomial in the
form of the product:

(x-yP +(y-2zP+(z-xP.

5. The positive numbers x, y, and
z satisfy the inequalities

xyz > 1,
x+y+z<l/x+1/y+1/z

Show that one and only one of these

numbers is less than 1. (@
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IN THE LAB

Magnetic fieldwork

N PHYSICS COURSES, STU-

dents learn the methods that al-

low us to measure the energy of

electric field U,. For example,
we can discharge a capacitor of ca-
pacitance C initially charged to a
voltage V through a resistor R and
a microammeter. By plotting the
graph of the dependence of elec-
tric power P on time, we can de-
termine the amount of heat Q dis-
sipated in the resistor during the
discharge of the capacitor, which
is equal to the area under the
curve. According to the conserva-
tion of energy, this amount of
heat is determined by the energy

stored in the capacitor’s electric
field

However, students are not usu-
ally shown how the energy stored
in a magnetic field is measured.
We will try to fill in this gap. It is
known that a current-carrying
wire generates a magnetic field
whose energy is determined by the
current I and the inductance L of
the wire:

This formula can be obtained in
the simplest way by analogy be-
tween the phenomena of inertia and
self-inductance. Inertia dictates that
a body cannot immediately gain a
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certain value of velocity when af-
fected by a force; its velocity in-
creases gradually. In the same way,
closing a circuit cannot produce an
immediate increase in current; self-
inductance causes it to grow gradu-
ally also.

In electrodynamics the quantity
that is analogous to the mechanical
velocity v is the current I, which
describes the motion of electric
charges. The analogue of the mass
m 1is the (self-] inductance L, since
L is the value that determines the
rate of change of the electric cur-
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rent variation. Therefore, the en-
ergy of a magnetic field should be
analogous to the kinetic energy of
the translational motion of a mov-
ing body mv?/2—that is, LI>/2. A
more rigorous derivation of this for-
mula is based on calculating the
work of the self-induced emf during
the change of electric current in the
circuit. Try this derivation on your
own.

This theoretical result can be
tested experimentally. The energy
of a magnetic field can be found
from the amount of dissipated heat.
The experimental design is as fol-
lows: Self-induced current in the
electric circuit (figure 1) results in
the dissipation of heat in the resis-
tance R;, and the amount of dissi-
pated energy is equal to the loss of
magnetic field energy. When the
circuit is closed, the current travels
only across the coil with induc-
tance L, since the diode D is con-
nected in reverse with respect to
the polarity of the battery. When
the circuit is open, the current
passes through the resistance, dis-
sipating heat. .

The amount of dissipated heat is
measured by a thermoscope (figure
2), which is made of a test tube that
contains a heating coil (our resistor
R,) and a capillary tube with a col-
umn of liquid. When current passes
through the heating coil, it warms
the air in the test tube and therefore
displaces the column some distance
Ax. The amount of heat obtained by
the air in the test tube is determined



by the formula
Q = cmAT,

where m is the mass of air in the
tube, c is the specific heat of air, and
AT is the change in temperature,
which can be found from the ideal
gas law. As heating takes place at
constant pressure P, the tempera-
ture change is related to the change
of volume AV according to the for-
mula

PAV = 2 RAT,
M

where M is the molar mass of air
and R is the gas constant. We also
have

nd?

AV = SAx = = Ax,

where d is the diameter of the cap-
illary tube. Inserting the tempera-

ture increment determined by this
formula into the equation for Q, we
get

_ Prnd 2AxcM

< 4R

Thus, the amount of heat dissi-
pated in the thermoscope is directly
proportional to the displacement Ax
of the liquid column.

We must now recall that the in-
ductance coil is made of wire and
thus also has a resistance R _. There-
fore, the amount of heat obtained
by the air in the test tube is more
correctly determined by the for-
mula

Q= UmRh
R, +R,’

which shows that the energy of the
magnetic field U_ is also directly
proportional to the displacement Ax
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of the liquid column in the capillary
tube of the thermoscope.

In our experiments we used diode
D226B, a choke coil with 3600
turns, and a core (which can be
found in a school lab). The heating
coil R, was made of constantan wire
0.05 mm in diameter and 35-40 cm
in length. The thermoscope (figure
2), which measures heat energy,
consists of a test tube (1), rubber
stopper (2), copper wires (3), T-tube
(4), the capillary tube (from an alco-
hol thermometer) with liquid col-
umn (5), a scale (6], constantan spi-
ral (7), and syringe (8) (the syringe is
needed for adjusting the position of
the liquid column in the capillary
tube).

The experiment should be re-
peated several times with different
values of the current I in the induc-
tion coil (that is, with various values
of the initial stored magnetic en-
ergy|). The results of this experiment
are given in figure 3.

The plot of the displacement Ax
versus the square of the current I*
(figure 4), which determines the en-
ergy of the magnetic field, shows
that the displacement is almost di-
rectly proportional to the energy of
the magnetic field, which corre-
sponds to our previous theoretical
reasoning.

Repeating this experiment with
different induction coils shows that
the displacement Ax of the liquid
column is directly proportional to
the inductance [ if the strength of
the current is the same in all tests.
Now we only need to calibrate our
device using a coil with a known in-
ductance to finish our homemade
magnetometer. (o]

Quantum articles about magnetic
fields:

Kaleidoscope: “Electromagnetic
induction,” March/April 1991, pp.
32-33.

A. Mitrofanov, “Can you see the
magnetic field?” July/August 1997,
pp. 18-22.

A. Stasenko, “Magnets, charges, and
planets,” May/June 1997, pp. 42-45.

J. Wylie, “Magnetic monopoly,”
May/June 1995, pp. 4-9.
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HEN WE AIM A CAMERA

and bring the picture into

sharp focus, we are position-

ing the optical image exactly
on the emulsion layer of the film. To
focus a movie at the cinema, the
projectionist must make the image
coincident with the plane of the
screen. However, the concept of
definition (sharpness) becomes
somewhat unfocused when no
screen is needed for observation (for
example, when an object is regarded
with the unaided eye).

Let’s try a simple experiment.
Look out the window. The distant
objects appear clear. Now look at
the objects located several meters
from you. The definition (sharp-
ness) is also high. Moreover, when
reading this page, you have a sharp
image of the text as well! This is
possible because your eyes are au-
tomatically adjusted for sharpness.
The adjustment is performed by
your brain with the help of ciliary
muscles that deform the pliable

lens

Figure 1. Formation of an image on
the retina of an eye. Shown are the
object O, lens, and retina R.
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In focus

by A. Dozorov

crystalline lenses in your eyes, a
process known as accommodation.
As a result, the optical image is
made to lie on the retina (the bio-
logical “screen”), and your vision is
clear (fig. 1).

In other words, although the dis-
tance d to the object varies, the dis-
tance d’ between the lens and the im-
age (retina) doesn’t change. This is
possible only when the focal length f
of the crystalline lens varies accord-
ing to the lens formula:

1 1 1
_+_:_,
df
or
1 1
Zp =P
dl

where P = 1/fis the optical power of
the lens. The unit of optical power
is the diopter when the focal length
is given in meters.

When an eye views a distant ob-
ject (1/d — 0), the accommodation
muscles are virtually at rest. In this
case, f=d and P = 1/d’. Usually the
distance d’ between the crystalline
lens and the retina is about 3 cm, so
f=3cm and P = 33 diopters. When
an object approaches the eye, the
accommodation muscles start to
work: They decrease the focal length
of the lens according to the lens for-
mula; the lens becomes more con-
vex. When an object is placed at the
distance of most comfortable vision
(about 25 c¢m), the optical power of
the lens is 37 diopters.

A further decrease of the distance
between the eyes and an object over-
strains the accommodation muscles.
They can’t work properly, and the
image is no longer focused on the
retina and becomes blurred. If the
accommodation muscles are rather
strong, the optical power can be en-
hanced up to 43 diopters to see an
object from a distance of only 10
cm. In this case the smallest details
can be viewed best, but the eyes get
tired very quickly. Thus, the dis-
tance of comfortable vision corre-
sponds to the optimal case, when
the small details of an object can be
viewed quite clearly without over-
straining the accommodation
muscles.

Now let’s consider the case when
the eye is assisted by a system of
lenses—say, by a microscope. The
optical system of a microscope cre-
ates a magnified virtual image A’B’
of an object AB (fig. 2]. Sometimes
when looking at an object through a
microscope, we cannot see it clearly

ocular

objective

Figure 2. The optical system of a
microscope. The magnified and inverted
virtual image A’B’ of the object AB is
viewed by observer’s eye.




(its definition is low). Why can’t the
eye produce a clear image in this
case? And what happens when we
adjust the microscope for sharpness?
What do we do by shifting the
microscope’s ocular lens?

The point is that the virtual im-
age is formed by the system of lenses
too close to the eye, so either the eye
or the image should be moved to
meet the requirements of the ac-
commodation muscles. These con-
ditions are known—the image
should be positioned at the distance
of most comfortable vision. If we
simply move our eye away from the
ocular lens, most of the light rays
from the image will not hit the eye,
and the projection on the retina will
be degraded both in scope and
brightness. Therefore, it is far better
to shift the image rather than the
eye. This can be done easily by
changing the distance between the
objective and ocular lenses. This is
just what we do when adjusting a
system of lenses for sharpness.

Until now we have tacitly sup-
posed that the object is planar. In
reality, most objects are three-di-
mensional, but their images in any
optical system are planar.

Let’s draw the images of points A4,
B, and C of the same object that are
located at different distances from
the lens (fig. 3). Each image lies in a
different plane. If the screen is posi-
tioned so the image of point B is un-
blurred, the images of points A and
C will appear not as points but

Figure 3. The effect of beam width on
the depth of focus. The narrower beams
provide higher definition of the images
of the points A and C.

rather as disks known as “circles of
confusion.” The size of the circle of
confusion is related to the size of the
lens: the smaller the lens’s diameter,
the less blurred are the images A’
and C’. Therefore, narrow light
beams are the best tools for focusing
the images of points that are at dif-
ferent distances from the lens. In
other words, decreasing the diam-
eter of the light beam (aperture) im-
proves the depth of focus. What does
this mean?

When a person views a disk with
unaided eyes, the disk is perceived
as a point (its image is clear) if the
angular magnitude of the disk is
about 1" = 3 - 10~ rad. Usually we
observe an object from the most
comfortable distance I, = 25 cm. In
this case, the maximum diameter of
the circle is

2r=I tan o = lo=75- 10~ cm
=0.075 mm.

Let points A and C (fig. 3) be pro-
jected onto the screen as circles of
confusion of the same radius r. In
this case, the geometrical range of
sharp images (the distance between
the planes on which points A and C
can be projected as points rather
than circles of confusion) is equal to

2r] _ Lljo
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where L is the distance between the
lens and the object and D, is the
lens’s diameter. This value is re-
ferred to as the depth of focus (not to
be confused with the depth of field).
The formula shows that the depth of
focus is inversely proportional to the
width of the beam.

Since the different points of the
object correspond to different circles
of confusion in the image, it is im-
portant that these circles do not
overlap. If the adjacent circles do not
overlap, they are perceived as sepa-
rate entities. In this case, the optical
system is said to resolve these two
points. On the contrary, when the
circles are superimposed, the result-
ing image consists of a single spot,
or in other words, the points are not
resolved by the system. A decrease

in the lens’s diameter leads to
smaller circles of confusion and thus
to an increase in resolving power. If
the lens’s diameter is large, the re-
solving power becomes low, and in-
stead of a sharp image we get a
blurred spot. Thus, minimizing ap-
erture (beam width) is very impor-
tant for obtaining a sharp image of
an object.

In any optical system the light
beam is limited in diameter, by lens
mounts or special diaphragms of
variable diameter. In the eye, the
role of such a diaphragm is played by
the iris, which has an orifice of vari-
able diameter, the pupil.

However, there is another side of
the coin: Minimizing the aperture
results in a decrease in the lumi-
nous flux coming into the optical
system. Therefore, the image is
dimmer. Take a common camera as
an example. In many cases, people
photograph distant objects, so the
corresponding images lie exactly in
the focal plane of the objective. In
this case, image illumination—the
ratio of luminous flux to image
area—becomes proportional to the
square of the ratio of the diameter
of the objective to its focal length
(check this on your own). The ratio
of the diameter of the objective to
the focal length is known as the f
number.

Therefore, an increase in the
depth of focus leads to a decrease in
the brightness of the image. High-
performance objective lenses pro-
vide bright images with high defini-
tion.

In closing we must note that we
have considered the problem of
depth of focus and resolving power
only within the framework of geo-
metrical optics. In reality, such phe-
nomena as light diffraction, defects
of optical systems, and chemical
properties of the light-sensitive layer
also play significant roles. (@

Quantum articles about art and the
depth of photography:

M. L. Biermann, “Clarity, real-
ity, and the art of Photography,”
September/October 1995, pp. 26—
3l.

QUANTUM/AT THE BLACKBOARD 111 49




Math
M241

If x is real, it must be nonnega-
tive. In fact, since the left side of the
given equation is positive, x> > 100.
Thus we can transform the given
equation to

—_—_

X = \;’\f(x<3 —100)3 ~100.

The equation has obtained the form
x = fiflx)), where f(x)=+x°-100, a
monotonically increasing function.
For such functions, the equations
x = f{f(x]) and x = f{x) are equivalent
(we will prove this later). Thus we
obtain the equation x = /x* =100 or
x3 — x>~ 100 = 0. The left-hand side
of this equation can be factored. We
can write the equation as

(x® - 125) - (x2 - 25) = 0,
and therefore as

(x-5)x2+4x+20)=0

(by factoring the difference of two
squares and of two cubes). Thus
both this equation and the original
one have the unique real solution
=1 9,

Let us now prove the auxiliary
proposition. Consider the two equa-
tions

x = fif{x]) (1)
and
x = f[x], (2)

where f(x) is a monotonically in-
creasing function. We can see that
any root of the second equation is
also a root of the first equation (for
this to be true, monotonicity is not
required). We will show that a root
of the first equation is also a root of
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the second. Let x,, be a root of equa-
tion (1). Assume that x, does not
satisfy equation (2). Then, either
X, > flxg) or x; < fix,). Let x;, > flx,).
Because of the monotonicity of f{x),
we have

X > f(Xo) > ﬂf(Xo})/

which contradicts the assumption
that x, is a root of equation (1). A
similar argument works if x; < f(x,).

M242

Let’s prove that K is the center of
the circle circumscribed about tri-
angle BMC. Indeed,

ZBKC = 180° - 2£KBC
~ 180° - 2(90° — ZBMA|
- 2/BMA = 360° - 2/BMC.

Since ZBMC is obtuse, this means
that K is the center of the circle cir-
cumscribed about triangle BMC. Let
P be the point of intersection of KM
and AD (see fig. 1). Since K is the
center of the circle through B, M,
and C, we have ZMBC = ¥4 Z/MKC.
Also,

ZAMP = ZKMC = 90° - ZMKC
=90° - ZMBC = 90° — ZMAP

(the last because ZMBC and ZMAP
intercept the same arc on circle
ABCD. Examining triangle AMP,
we find that ZAPM = 90°).

K

Figure 1
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Part (a): See figure 2. From its
starting point A, which is 1 km from
the center of the circle of fire, the
bulldozer can go 1 km along a radius
of the circle and then goes along the
circle of radius 2 km with its center
at O. The total route length is 1 + 4%
< 14 km. This means that the fire
would not be able to travel 1 km in
this time, so a circle with an area of
41 km? will be burned.

Part (b): See figure 3. From its
starting point at A, the bulldozer can
g0 0.5 km along a radius of the circle
of fire to a point B and then along arc
BC (of the circle with radius of 1.5
km centered at O) with a central
angle of 4n/3. Then it can proceed
along radius CD |(of the circle with
radius 2 centered at O) for 0.5 km,
then along arc DE (of the same
circle) with a central angle of 2r/3.
It can complete its route by travel-
ing along arc EF of the circle cen-
tered at B with radius 0.5 km (where
F lies on the circle centered at O
with radius 1.5 km).

In order to prove that the route
described cuts off the fire, we can

Figure 2

Figure 3




prove that the fire cannot travel
more than 0.5 km while the bull-
dozer travels from A to C, and it can-
not travel more than 1 km before the
bulldozer completes its route. This
is equivalent to proving that the
length of the route from A to C is
not greater than 7, and the length
from A to Fis not greater than 14.
The length of the route from A to F
is not greater than 14. The length of
the route from A to C is

O.5+i7£-§<7.
3 2

To estimate the length of the path
from A to F, we must show that
ZEBF < 21/3. To see this, note that
triangle OFB is isosceles. If BF
were equal to 1, triangle OFB would
be equilateral, and ZEBF would be
21t/3. Since BF = 0.5 < 1, we see that
Z/FBO > 1/3, so £EBF < 21/3.

Now we can assert that the
length of the path from A to F is

05+ 3.3 05+2% 9
32 3
12814
3 2

Let us evaluate the area S en-
closed by the bulldozer:

2 )
S<%n§ +l1122+l7tl
3 \2 3 3 \2

18+16+1
T—————<
12

3m.
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Figure 4 shows a rectangular paral-
lelepiped ABCDA,B,C,D,, where
AB=2,BC=4,and AA, = 1. Let P be
the center of the face ABCD (fig. 4,
where the Prince’s house is situated.
Let’s find a point on the segment con-
necting the midpoints of the small
sides of the opposite face, such that
the shortest path from P to this point
passing through the edges BC and
B,C, is equal to the shortest path pass-
ing through the edges AB and A B, .
Let this point, M, be situated at a dis-
tance x from the center of the face
A,B,C,D,. We claim that no point on
Brick is farther from P than M.

First let us find the shortest dis-
tance from P to M. Figure 5 shows
two developments of the parallelepi-
ped. From them, we obtain the equa-
tion

5-x=+9+x%,

from which we find that x = 1.6. For

D A
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this x, the length of each of the paths
under consideration (from P to M)
equals 3.4.

We must now prove that any path
from P to M is equal to 3.4; it is suf-
ficient to prove that any path from
P to M that crosses BB, (or AA ) is
longer than 3.4. It is easy to see that
any path that crosses the edge AB
cannot be shorter than 3.4. Any path
that goes through BC and BB, has
the length 32 +2.4% > 3.4 (fig. 6).
Thus no path from P to M is shorter
than 3.4.

Now we must show that no other
point on this face is closer to P. To
prove this, it is sufficient to consider
only those paths that cross the edges
BC and B,C,, and paths that cross the
edges AB and A, B,, as well as paths
that cross opposite pairs of edges. The
corresponding four circles of radius
3.4 cover the entire face A B,C,D,
(fig. 7). The fact that the distance to
any point on the other four faces from
P is less than 3.4 is fairly evident. In-
deed, the vertices of these faces that
are also the vertices of the face
A,B,C\D, are farthest from P. Thus,
the distance from the Prince of
Brick’s house to the farthest point on
the planet is 3.4.

M245

Consider the polynomial
Plx] = [x - a)(x - b)(x - c]
=x-7x2+px-9,

where g = ab + bc + ca. The roots of
this polynomial are a, b, and c. From
the equation P(x) = 0, we obtain

q=-x*+7x+9/x.

Plot this function for x > 0 (fig. 8).
The variable ¢ may take only those

yw \
15 \ o
57/4 e
1 3l/2 3 X
Figure 8
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values for which the lines y = g in-
tersect the curve at three points
with abscissas a, b, and ¢ (two of
them may coincide, in which case
the corresponding line is tangent
to the curve). Differentiating, we
have
q =-2x+7-9/x%

Find the roots of this derivative. We
have the equation

2x3-7x*+9=0,
or
(x + 1)(2x> - 9x + 9) = 0.

Since we are interested only in
positive values of x, we obtain
x, =3/2 and x, = 3. The original func-
tion ¢(x) has a minimum at the
point x, = 3/2 that is equal to 57/4,
and ¢(x) has a maximum at the
point x, = 3 that equals 15. The
line g = 57/4 touches our curve at
the point (3/2, 57/4) and intersects
it at the point (4, 57/4). This inter-
section point can be found from
the equation

—x%+7x +9/x = 57/4,
which can be transformed to
(2x -3} x-4)=0.

The line g = 15 touches the curve
at the point (3, 15) and intersects it
at the point (1, 15). This intersection
point can be found from the equa-
tion

x>+ 7x + 9/x = 15,
which can be transformed to
(x-32(x-1)=0.

Thus, we obtain the constraints
on the numbers g, b, and c:

1<a<3/2,
3/22bx3,
3<c<4,

The reader can check that all
these values are indeed possible.

Physics

Glycerin is a very viscous liquid, so
we can assume the bubble’s speed
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relative to the tube (that is, in the
dynamic frame of reference) is at any
moment proportional to the accelera-
tion of the tube (and the bubble!) rela-
tive to Earth, because the force of vis-
cous friction is proportional to the
relative speed. Taking into account
the relationship between the accel-
eration, speed, and displacement of a
point, we can say that the displace-
ment of the bubble relative to the
tube is related to its speed (in this
frame of reference) in the same way
as the tube’s speed is related to its ac-
celeration in the lab system.

The motion of the bubble in the
vertical tube is just the same as in the
horizontal tube, provided the latter is
moved with a constant acceleration
of a = g= 10 m/s%. Remember that the
bubble’s velocity has the same direc-
tion as the acceleration, because glyc-
erin is lighter than water. We have
the following data: During the first
second of its motion, the tube ac-
quires a speed of 10 m/s and an accel-
eration of 10 m/s?, and the bubble
will be displaced 1 cm. Thus, the
speed of 10 m/s corresponds toa 1 cm
shift of the bubble. Accordingly,
when the tube gains a velocity of
20 m/s, the bubble will be 2 cm from
its initial position. When the tube’s
speed is further increased to 30 m/s,
the bubble will move 1 cm more, but
when the tube is stopped, the bubble
will assume its initial position. It
seems that the tube and bubble oper-
ate like a measuring device. What
does it measure?

P242

According to the equation P = nkT,
the concentration n of helium atoms
is determined by its temperature T
and pressure P (k is the Boltzmann
constant). Therefore, a line passing
through the origin of the tempera-
ture-pressure coordinates corre-
sponds to a larger concentration of
atoms if it is drawn at a smaller
angle to the P-axis. Accordingly, in
the process shown in figure 9, the
maximum concentration is achieved
at point B and the minimum con-
centration at point A (the figure is
drawn in the reduced coordinates
T =T/T,and 8 = P/P,). The figure

T
A
o> C
B i
r T/ ‘
m # : B
\B
O 1 5
Figure 9
shows that
. _ Py _ P, cotf
max kTB kTO 7

where § is the inclination of the tan-
gent BO to the §-axis on the reduced
diagram. Since AACO = ABCO, the
angle between the tangent AO and
the t-axis on the reduced diagram is
also B, so

P, Iytanf
kT, kT,

Hmax -

Therefore, the concentration ratio is

n .
min _ tanZ B
max

If we take into account that the
minimum reduced temperature
1., = T,,/T, of helium and the radius
r of the circle corresponding to the
given process are bound by the equa-
tionr=1-1_, we get sin o0 = 1/4/2,
because ACBO is a right triangle
and its hypotenuse OC = /2. The
figure shows that o + B = /4, from
which we obtain

N T
—min _ ¢an?B = tanz(— - ocj
nmax 4

1-sin2o

- 1+sin2o

_(l-tan2a 2
1+ tan2o
1-ry2-1*

14142 - r?
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At first glance, the problem is
trivial. The thin wire is capable of
carrying electric current up to
I, = 1.8 A, while the maximum cur-
rent of the thick wireis I, =5 A. As
the currents are summed for paral-
lel connections, the maximum cur-
rent of the combined fuse should be
I, +1, = 6.8 A.However, this reason-
ing is based on the false premise that
the total current of 6.8 A will be dis-
tributed as 1.8 A and 5 A between
the thin and thick wires, respec-
tively. In reality, the distribution
will be quite different, since it is
determined by the resistances of the
wires and not by their maximum
currents. Therefore, if the maxi-
mum current flows through one
wire, the current in the other wire
will be less than the maximum cur-
rent of that wire. Therefore, the to-
tal current will be less than 6.8 A.

The first step of the correct solu-
tion is to determine which of the
wires will melt first when current in
the circuit is gradually increased. In
a parallel connection, the voltage is
the same across both wires. Thus,
the wire with the smaller value of
the maximum voltage will be blown
first. Let’s find the ratio of these
maximum voltages. The length of
the wires is denoted by I and the re-
sistivity of lead is denoted by p,. The
resistance of the first wire and its
maximum voltage are

R = plz
nd;
4
and
Vi=RI, = L]l,
nd}?
4

respectively. For the second wire,
the resistance and maximum volt-
age are:

pl
R =
? nd;

4

and

_pll,
nd?
4

Vs

The voltage ratio we are looking for is

vi_Ld
Vy I,d}

Plugging the numerical values into
this equation yields V,/V, > 1. Thus
V, < V,, which means that the sec-
ond (thicker!) wire will blow first. At
this moment it carries the maxi-
mum current [, =5 A while the cur-
rent in the first wire is only

’_ IZRZ _ Ildli

I = =221 _125A.
Rl dl_

Therefore, the total maximum cur-
rent of the combined “fuse” will be

I, +1,=625A.

Immediately after the thick wire
blows, all the current will flow
through the thin wire, and it will
blow as well.

The second case is even more in-
teresting. When the thick wire
blows, each thin wire will carry the
current I{, so the total current in the
“fuse” will be

I/, =20I +I, = 30 A.

Still this is not the answer to the
problem: The fuse will continue to
work with only the thin wires! In
contrast to the first case, the current

I}, will be equally distributed
among all 20 wires, and every indi-
vidual current will be less than the
maximum current. Therefore, the
fuse will work until the total current

rises to the value

I;,, =201, =36 A.

P244

Let’s consider the ring as it lies
horizontally (figure 10 gives the top
view of the ring). We chose two
small elements of length Al located
at points C and D symmetrical to

the ring’s diameter AB. The first el-
ement is affected by the downward
vertical force

AF, = BIAl sin o = BIAx,

where Ax is the projection of Al on
the diameter AB. The second ele-
ment is affected by the upward force

AF, = BIAI sin o. = BIAx.

These forces are equal in value and
opposite in direction, so they form a
force couple that produces a torque
relative to the AB axis:

At = AF,1, = BIAx], = BIAS,

CD

where AS is the area of the dashed
region.

Now we divide the ring into the
analogous pairs of small segments
symmetrical to diameter AB. We
find that a thin conducting ring car-
rying a current [ located in a hori-
zontal magnetic field B will be af-
fected by the torque

T = BIS = BInR?

magn
due to the magnetic forces. This
torque tries to turn the ring around
the horizontal axis AB.

When the ring almost begins to
rise, two forces will oppose its rota-
tion: the downward vertical force of
gravity mg applied at the ring’s cen-
ter and the upward normal force N
applied at the supporting point of
the ring. As the ring is still at equi-
librium,

mg- N =0, or N =mg,

so the mechanical forces develop a
force couple of their own, which
produces the torque

T = mgR.

mech

At equilibrium, the total torque of
all forces—that is, the sum of mag-

Figure 10
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netic and mechanical torques—is
equal to zero:

M =0,

magn mech

or
BInR? - mgR =0,

which yields the value of the electric
current we are looking for:

_m§
nBR’

P245

The plot in figure 11 shows that
the cylinder’s wall is 1 cm thick and
its outer diameter is d = 4 cm. To
solve the problem, we can just com-
pare the intensity of radiation in the
middle of the cylinder at x = 2 cm
(here the ray passes through the
cylinder’s contents and two opposite
parts of its wall with a total thick-
ness of 2 cm) with the intensity of
the radiation where the total thick-
ness of the pierced metal is also
2 cm. If these values are identical,
then the cylinder is empty.

The geometry (figure 12) yields

rr=h*+(r-xp

where r=d/2 =2 cmand h =1 cm.
Thus,

x; =2-+/3=028cm,

x,=2++3=372cm.

The plot shows that at x = 2 cm

A
S 10

X, < 0.8
0.6
-
0.4
; 0.2
D R

0 [
Figure 11

[
T~

-10 1 2 3 4 x(cm)

Figure 12
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the intensity is 0.4 units, and at
x =x, and x = x, it is about 0.5 units,
which is somewhat larger. There-
fore, the cylinder is not empty.

Brainteasers

B241

Sam is indeed correct. It is easy to
find three numbers that satisfy the
equation if you note that 365 is the
number of days in a year (not a leap
year), and 28, 30, and 31 are the pos-
sible numbers of days in a month.
Thus, x=1,y =4, z=7 is a solution.

B242

First we simultaneously light one
piece of fuse at both ends and the
second piece at one end. The first
piece will burn in 30 seconds. As
soon as it finishes burning, we light
the second piece of fuse at its other
end. The second fuse will burn for
15 more seconds, which completes
the 45 seconds. We invite the reader
to check that a variable rate of burn-
ing along each fuse makes no differ-
ence.

B243

To maximize the seven-digit
number formed by dropping the
commas, we would like to have as
many 9’s as possible as its leftmost
digits. It is not difficult to see that
four 9’s are not possible: No matter
how the remaining three digits are
distributed to form two (positive) in-
tegers, the difference between them
will be too small to yield the re-
quired arithmetic progression.

So we must try three 9’s. Let the
seven-digit number be 999ABCD
(where juxtaposition of letters indi-
cates place value). An argument
similar to the one above will show
that the third number must have a
single digit, so that the arithmetic
progression is 999, ABC, D. Then it
follows that D = 2(ABC) — 999, and
we want to maximize ABC. Itis not
hard to see that a maximal D will
yield a maximal ABC, so we try
D =9. We quickly find the required
sequence: 999, 504, 9.

1 2 67
14’“?3; 4 58 9
13712 11 10

Figure 13. The solid lines indicate
the cuts; the dotted lines the folds.

14 1 ¥
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3 416 S
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A13 |
12, ' 11

Figure 14. The bold line depicts the
border of one of the parts.
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A solution is illustrated in figures
13 and 14.

B245

The answer is given in figure 15.

Aunxiliary polynomias

Problems.

5. Answer: u® + 1/u® = 1154.
Hint. The number u = 1 + /2 is
a root of the quadratic equation
t2 -2t — 1, whose other root can be
written as —1/u. Thus we find that

u-1ju=2,
u? + 1/u=6,
u* + 1/u* = 34,
u® + 1/ud = 1154.

10. Answer: (1,2, 1/2); (1, 1/2, 2);




(1/2/ 1/ 2)/ (1/2/ 2‘/ 1)/ (2‘/ ]-/ 1/2‘)/
(2, 1, 1/2). Hint. If we set

X+y+z=a,
we get
P(t) = [t - x|t - ylft - 2)
=t3—at?+at-1
=(t=1)t2+t+1-at)

So, one of the variables is equal to 1.
Now it is possible to solve the sys-
tem by direct calculation.

13. Answer: x; =x,=... =x, =1
Hint. Set
-1
Plt)=t"+at" '+, +a,_t+a,
=(t-x)(t-x))... {t-x);

then

0=Plx,) + Plx,)+... +P[x)
=n+na+... +na, ,+na,=nP(l),

and thus, one of the numbers (for
example, x,] is equal to 1. Now we
obtain similar systems for x,, ..., x,,
and so on.

Exercises.

1. Hint:
q)l + q)_ I= O/
0*=(1—0P=1-20+(1-0]=2-30,
08 =4 - 120 + 902 =13 — 210.

2. Answer: 1 cm, 8 cm, 15 cm.
Hint: If x, y, and z are the three dif-
ferent lengths of the edges of the par-
allelepiped, then

4{x + v+ z) = 96,
2xy + yz + zx) = 286,
xyz = 120.

That is, these are the roots of the
equation

t3 - 2412 + 143t - 120 = 0.

By inspection, 1 is a root, and the
other roots can be obtained using
standard methods.

3. Answer: (1, 1, -1J; (1, -1, 1};
(-1, 1, 1). Hint: The first and the sec-
ond equations, coupled with Vieta’s
formulas, imply that x, y, z are the
roots of the equation

B-t2-t+r=0
(since
Xy +yz+2zX
2 ’
(x+y+z) -x*-y* -2’

= =-1.
2

Thus, as in problems 3 and 4 we get
t2=(3-1)t2—(2 1)t -2r

for t = x, y, z. Adding these relations

and using the third equation of the

original system, we find that r = 1.

That is, x, y, and z are the roots of
the polynomial

B-tr—t+1=(t-12t+1).
4, Answer:

Slx ~y)ly - z)z - x|
X (x2 + V2 + 22— xy — yz - zx).

Hint: Consider a polynomial with
the roots

u=x-y,
V=y_z/
W=2Z-X

7

and proceed as in problem 8, taking
into consideration that u + v+ w=0.
5. Hint: If

Plt) = (t - x)t -yt - 2)
=t +pt+qt+r,

then
-r> 1, -p < q/(-1).

Taking t = 1, we get

Pl)=1+p+qg+r>1l+p+pr+r
={1+p)l+1)>0.

That is, (1 - x)(1 —y)(1 -z) > 0.

Kaleidoscope

1. A vapor layer forms around the
drop on the red-hot plate, tossing the
drop upward.

2. When the temperature is rising.

3. At the time when air tempera-
ture is lowest (usually around 5 A.m.).

4. Evaporating perspiration effec-
tively cools the body in a desert, but
humid air hinders evaporation,
which means that the body can eas-
ily overheat.

5. The temperature is lower near

the snowdrifts, so the relative hu-
midity of air is higher there. As a
result, water evaporation proceeds
at a low rate, and even condensation
is possible.

6. The pressure of saturated vapor
in the open air is much lower than
that in the room, because the air
temperature in the room is higher.
When the window is open, vapor
rapidly leaves the room, and there-
fore the linen will dry quickly.

7. No, it can’t, because instead of
rarefied air there will be vapor at a
pressure equal to atmospheric pres-
sure.

8. By compression, cooling, or both.

9. It is possible for a saturated
vapor over a liquid.

10. Yes, they will. The level will
rise in the narrow vessel. Vapor
drainage from the wide vessel will be
stopped, so the vapor in it will be
saturated and its pressure will exceed
the pressure in the narrow vessel.

11. No, it will not. The vapor will
condense during compression and
its pressure will not change.

12. Shaking increases the surface
of evaporation, which results in
higher vapor pressure.

13. The absolute humidity is
higher over the river than over the
soil.

14. The vapor, which is not satu-
rated for a small drop, will be super-
saturated for larger drops. Molecule
B (figure 16), which enters the liquid
when its surface is flat, will remain
in the vapor phase in the case of a
curved surface.

Microexperiment

The lid doesn’t jump on the kettle
that contains less water and where
vapor is drained via the spout. The
other kettle is filled with a larger
amount of water, so vapor collects
just below the lid and periodically
lifts the lid to escape.

(m] Al 50 | 70| 90 | 110 | 140 | 180 | 230 | 290 | 350
( nAfn) 1 2 3 4 7 11| 16 | 28 | 41
Figure 16
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HAPPENINGS

Fire and ice: The 1998
International Physics Olympiad

AST JULY 2-10, 266 HIGHLY

motivated students from 56

countries met in Reykjavik, Ice-

land, for the 29th International
Physics Olympiad (IPO). Reykjavik
means “smoky waters,” so named
because of its numerous hot springs.
The air is clean and invigorating in
its summer coolness. In summer the
Sun dips only slightly under the ho-
rizon of Reykjavik harbor after mid-
night, preserving bright twilight
until it emerges over the summit of
Mt. Esja before 4 a.m. The geologic
creation of Iceland continues in the
work of over 200 volcanoes and the
Mid-Atlantic Ridge, which passes
through the island. Iceland is home
to Vatnajokull, the largest glacier in
Europe.

The IPO opening ceremonies
were held July 3 at the University of
Iceland. Folk music was provided by
the Hamrahlid Choir, three dozen
young people dressed in traditional
Icelandic costume. In Icelandic, they
sang

Come and be joyful

I will dance merrily with my
sweetheart.

May God let us drink from the
goblet of joy.

“Who can worry about the future
with such wonderful people around?”
asked the master of ceremonies,
Gudrun Pétursdottir.

The five U.S. Physics Team mem-
bers in Reykjavik were Elizabeth
Scott of Houston, Tex.; Lisa Carlivati
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of Reston, Va.; Andrew Lin of
Wallingford, Conn.; Michael Lipatov
of New York, N.Y; and Peter Onyisi
of Arlington, Va. Team coaches
Dwight E. Neuenschwander of
Southern Nazarene University in
Bethany, Oklahoma, and Mary
Mogge of California Polytechnic Uni-
versity in Pomona, California, ac-
companied the team.

The participants enjoyed Icelan-
dic hospitality as all students and
coaches were invited into the
homes of local families one evening
during the week. A nation’s great-
est resource is its people, and Ice-

land is richly blessed despite its
small numbers.

The exam

On July 4 the students took the
five-hour theoretical portion of the
1998 Physics Olympiad. In Problem
1 they explored the mechanics of a
hexagonal prism rolling down an
inclined plane. In Problem 2 the
pressure beneath an ice cap was de-
termined, and the students pre-
dicted the slumping of the surface
that results after a conical intrusion
of lava melts a cavity beneath the
ice. A presentation later in the week

Members of the U.S. Physics Team pose in front of the White House during

their visit to Washington, D.C.

<
b
2
g




by Magnts Tumi Gudmundsson of
the University of Iceland Geo-
physics Department, describing
the volcanic eruption beneath the
Vatnajokull Glacier in 1996, re-
vealed how realistic this simple geo-
physics model can be! For Problem
3 the students used 1994 astrophysi-
cal data reporting an apparent
superluminal motion of a jet of mat-
ter in a galactic radio source. After
leading the students into implica-
tions of the paradox, the problem
statement suggested its resolution
by having the students recalibrate
the distance to the source using the
relativistic Doppler shift.

On July 5, between the Theoretical
and Practical Exams, the students
enjoyed an excursion. Michael
Lipatov was moved by the landscape:

We visited the place where a
thousand years ago the first
Althingi convened in the hills of
Iceland. The waterfalls, the
moss-covered cliffs, the incred-
ible history of the place made me
feel like never before. The land of
the Vikings, their language, their
descendants, their history were
all around me. It is a fierce land,
for people of courage.

In Problem 1 of the experimental
exam, the students investigated the
attenuation of a magnetic field by
various thicknesses of aluminum
foil, including the frequency depen-
dence of the attenuation coefficient.
Problem 2 asked the students to
measure the self-inductance of two
coils, then link them like a trans-
former to determine mutual induc-
tance and the magnetic susceptibil-
ity of the core material.

Team USA emerged from the
scoring with Honorable Mentions
for Lisa Carlivati and Michael
Lipatov, a bronze medal for Peter
Onyisi, and a silver medal for An-
drew Lin. We are very proud of all 25
members of the 1998 U.S. Physics
Team and their five representatives.
Their places on the team were hon-
orably earned from 1,100 teacher-
nominated students from across the
United States, and the five repre-
sented their country admirably.

U.S. Physics Team representatives in Reykjavik. From left to right: Elizabeth
Scott, coach Dwight E. Neuenschwander, Lisa Carlivati, Andrew Lin, Michael
Lipatov, coach Mary Mogge, and Peter Onyisi.

In the competition there were 11
gold and 15 silver medals presented,
down from recent years. Five gold
medals went to China, and three
golds and two silvers went to Russia.
Iran won one gold, three silvers, and
a bronze; Vietnam took one gold and
four bronzes; Hungary earned five
bronze medals; and Germany bagged
four bronzes. India team delivered an
impressive performance in its first
IPO, with one silver and one bronze.

Lisa Carlivati, in an e-mail mes-
sage to the other 20 members of
Team USA after the competition,
reflected on her experience:

We had a wonderful time in Ice-
land. ... I'want to take this chance
to thank everybody again for all
your help throughout this experi-
ence. I never would have done half
as well if I had never met you
guys. You are the best. Iceland
was great. We walked on a glacier,
we saw the Atlantic from the
other end, we met all sorts of
people. . . . It was a lot of fun.

Amazing grace

In the closing ceremony on July 9,
P6runn Ragnarsdottir of Islandbanki,
a sponsor of IPO ‘98, reflected on the
reasons for supporting a Physics
Olympiad: It forms “the best way to

open our dreams to tomorrow. . . .
Young people carry the future.” The
1998 IPO General Manager, Vidar
Agustsson, noted that “Life is not
only a competition—it’s living and
enjoying [thunderous applause].
Your knowledge can never be taken
away. The memories you gathered
here will form a lasting treasure.”
The immeasurable worth of this
treasure was revealed at the final
banquet, held in the village of
Hveragerdi, located one hour east of
Reykjavik. After dinner the stage
was opened to any student wishing
to perform. Their abilities beyond
physics were amazing. For example,
Saikal Guha of India performed with
incredible skill on the violin the dif-
ficult raga “Mishra Bhairarn,”
which evokes morning in India.
This was also a moment for
miracles. Stepping to the stage,
Yuan Liu from the People’s Repub-
lic of China announced, “This is a
song of China, called ‘Good Wish.””
As she was joined by her teammates
and by the team from Taiwan, she
said, “We are all Chinese here.” Stu-
dents from Yugoslavia performed
arm-in-arm with students from
Croatia. A group of 20 students from
countries of the former Soviet
Union (including our Michael, who
speaks fluent Russian) performed a
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Russian song together. The Roma-
nians led an enthusiastic sing-along
rendition of “We Are the World”
that involved the entire audience.
Toward the end of the evening,
the American students organized an
ensemble to sing three verses of the
hymn “Amazing Grace.” Michael:

“Amazing Grace” was sung by
teams of the USA, Sweden, Por-
tugal, New Zealand, Belgium,
and many others off the stage. I
felt like it was the finest moment
of my life. It certainly concluded

one of the most amazing adven-
tures that has happened to me.

Following the banquet here in the
land of fire and ice, we boarded the
bus at 1:00 a.m., under a sky still
bright with the midnight Sun. But
the brightest light of all shines in the
eyes—and the futures—of these 266
Olympiad competitors and the thou-
sands of peers they represent. They
are the world. May they always be
touched by an amazing grace!

Takk fyrir, og vertu seell! (Fare-
well, till we meet again!) (@)

Dwight E. Neuenschwander is the aca-
demic director of the U.S. Physics Team
and the director of the Society of Phys-
ics Students at the American Institute
of Physics in College Park, Maryland,
and a professor in the Department of
Physics at Southern Nazarene Univer-
sity in Bethany, Oklahoma.

Thanks to Team USA’s training camp
coaches: Mary Mogge, California Polytechnic
University; Leaf Turner, Los Alamos Na-
tional Laboratory; Jennifer Catelli and Apriel
Hodari, University of Maryland-College
Park; Kate Kevern, Arizona State University;
Chris Norris (1995 U.S. Physics Team mem-
ber), University of California-Berkeley.

IMO resuits

An American team of six high
school students placed third out of
76 countries at the 39th Interna-
tional Mathematical Olympiad
(IMO), held in Taipei, Taiwan, July
10-21, 1998. Out of a possible 252
points, the American team scored
186. Iran took first place with 211
points, and Bulgaria secured second
place with 195 points. The remain-
ing top nine teams were, respec-
tively, Hungary (186), Taiwan (184,
Russia (175), India (174), Ukraine
(166), Vietnam (158), Yugoslavia
(156), Romania (155), and Korea
(154).

The American team members
were Reid Barton (Arlington, Massa-
chusetts)—gold medalist, Gabriel
Carroll (Oakland, California)—gold
medalist, Sasha Schwartz (Radnor,
Pennsylvania)—gold medalist, Kevin
Lacker (Cincinnati, Ohio)—silver
medalist, Paul Valiant (Milton, Mas-
sachusetts)—silver medalist, and
Melanie Wood (Indianapolis, Indi-
ana)—silver medalist.

Titu Andreescu of the Illinois
Math and Science Academy was the
team’s Head Coach and Leader. “We
had a very young and ambitious
team this year .... Our team success-
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fully defended its position among
the IMO powerhouses. Competing
against 413 students from around
the world, all USA team members
achieved gold or silver medals,”
Andreescu said. The team was also
accompanied by Elgin Johnson of
Iowa State University and Walter E.
Mineka of the University of Ne-
braska-Lincoln.

Team USA was chosen from the
top performers at the USA Math-
ematical Olympiad, held this past
April. The selected team members
then participated in a summer pro-
gram to prepare for the IMO. Said
Andreescu, “We conducted an in-
tensive four-week training program
preceding the competition and our
hard work paid off one more time.”
The University of Nebraska-Lin-
coln hosted this year's Mathemati-
cal Olympiad Summer Program.

Here’s a problem from this year’s
IMO: “In a competition, there are a
contestants and b judges, where b is
an odd integer greater than or equal
to 3. Each judge rates each contes-
tant as either “pass” or “fail.” Sup-
pose k is a number such that, for any
two judges, their ratings coincide for
at most k contestants. Prove that k
divided by a is greater than or equal
to (b — 1) divided by 2b.”

CyherTeaser

The September/October Cyber-
Teaser (brainteaser B242 in this is-
sue) lit a fuse for some of you. Judg-
ing from the number of correct
entries, most of you puzzle-solvers
have no problem telling time with
pieces of fuse. Here are the first 10
people who submitted a correct an-
swer electronically:

Bruno Konder (Rio de Janeiro, Brazil)
Leo Borovskiy (Brooklyn, New York)
Jim Nastos (Waterloo, Ontario)
Karl Chen (San Jose, California)
John Beam (Bellaire, Texas)

Jack Merrin (Las Vegas, Nevada)
Worawat Meevasana (Santa Barbara,
California)

H. Scott Wiley (Weslaco, Texas)
Nick Baxter (Hillsborough, California)
Liam Hardy (Union City, California)

Each winner will receive a free
copy of the September/October is-
sue and a Quantum button. Every-
one who submitted a correct answer
in the allotted time was eligible to
win a copy of Quantum Quanda-
ries, a collection of the first 100
Quantum brainteasers.

Hankering for a prize of your own?
Then go to www.nsta.org/quantum
and click on the Contest button. [@®
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MUSINGS

The danger of Italian restauran

by David Arns

ne bright afternoon in the spring of the year,
I took out my family to eat;
With such an enormous selection of spots,
Choosing was not a small feat.

At last we decided: Italian it was,

And the restaurant had opened just recently;
We decided to go in and give it a shot,

And see if they fixed their food decently.

Once seated and reading the menu, I froze:
“Surely,” I thought, “This can’t be!”

I looked around, wild-eyed, at customers’ plates,
Resisting a strong urge to flee.

Two items I'd seen on the menu, I knew,
If combined, would be terribly deadly.

I desperately tried to settle my breathing,
And force my wild heart to beat steadily.

The danger, you see, is most serious indeed,
For the eater and others as well:

Enormous explosions, with high radiation,
Could a knowledge of science foretell.

Explosions so big they could flatten a town—
Reduce it to smoldering crater—

Its molten-glass sides just a hint of the heat
That won’t cool until days or weeks later.

“Don’t these people know physics?” I thought in my grief,

While pond’ring the coming destruction—
The cooks just plowed on and obliviously worked,
Maintaining their rate of production—

“These people can’t see that the energy flash
Will be a deathblow to the nation!”

For, of course, mixing pasta and antipasta
Would result in complete annihilation!

David Arns is a graphics software documentation engineer for Hewlett-Packard in Fort Collins, Colorado, and also
operates a small business designing and creating web sites. In his spare time he dabbles in poetry on scientific themes.
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Art by Mark Brenneman

COWCULATIONS

~ Hy Zapper

by Dr. Mu

ELCOME BACK TO COWCULATIONS, THE

column devoted to problems best solved with a

computer algorithm. Black flies are the “swarm”

enemy of all cows. These pesky critters attack
us unmercifully and can really get under our skin. Qur
ancestors, who must have suffered from the same prob-
lem, evolved a flexible defensive weapon and, so we
wouldn’t lose it, attached it to our rear.

Farmer Paul keeps the flies inside the barn under
control by taking advantage of their stupidity. He built
a dimly lit vestibule entrance of two cow lengths where
we enter the barn. Near the middle of this space he
placed a blanket low enough that we have to duck our
heads when we enter. The flies on our head, neck, and
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back are swept off as we pass through. They buzz around
in the dimness until they spot a bright slit overhead, fly
up through it, and find themselves in a closed empty
room full of windows. They don’t have the brains to go
back into the darkness to save themselves, and they
eventually fly themselves to death against a window
looking for an escape. Farmer Paul sweeps them up by
the bushel basketful.

But in the pastures, where we love to spend our sum-
mer days, the fly problem has gotten out of control. In an
effort to rid this space of the flies for good, Farmer Paul
has built his very own Fly Zapper. It’s an electronic jolt
generator mounted on an ultralight plane, which I fly over
the fields. When the zap button is pushed, a polyhedron

,f?'\_
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shaped death charge rains down to earth. Any fly near a
lattice point inside this polyhedron is toast. (Lattice
points are points {x, y, z} with integer values.)

Let’s do the math. Farmer Paul farms 173 acres of
land laid out in a square, 12,000 yards to a side. He
places an attracter at each of the four corners of the farm.
The Fly Zapper, flying over the land, releases its charge
at the zap location {z, g, p}, to the nearest yard. (For this
discussion, the unit of length will always be the yard.)
A polyhedron is formed by joining the zap point to each
of the four corners of the farm. This is illustrated in
Mathematica as follows. Place one corner of the farm
at {0, 0, 0} and the other corners at {0, 12000, 0}; {12000,
12000, 0}; and {12000, 0, 0}.”

side = 12000; (*length of one side of the
farm in yards*)

zap = {6000, 9000, 10000}; (*zap point
above farm¥*)

polyhedron = Line[{{0, 0, 0}, {0, side, 0},
{side, side, 0}, {side, 0, 0}, {0, 0, 0},
zap, {0, side, 0}, {side, side, 0}, zap,
{side, 0, 0}}1;

Show [Graphics3D[polyhedron], Boxed ->

False]

Below is the set of 1,665 zapped flies within a poly-
hedron with base size of 20 and zap point {12, 12, 14].

20

This suggests a problem, which, you guessed it, is
your next Challenge Outta Wisconsin.

COW 12

How many flies can be zapped above Farmer Paul’s
land with a single jolt from a Fly Zapper at the zap point
{6000, 9000, 10000}, assuming the square base has sides
of length = 12000. Write a program that will accept any
zap point {z, a, p} of positive integers and any base of
positive integer length and have it cowculate the num-
ber of lattice points inside the polyhedron formed by the
square base and the zap point. Don’t include any flies
on the surface of the polyhedron.

Black flies are swarming in the sky.

Load up your charge and let her fly.

Find a point to zap them all.

And count the bodies as they fall.

When you're done, come back to earth.

You've zapped this COW for all it’s worth.
—Dr. Mu

Solution to COW10

In COW10 you were asked to write a program that
finds the shortest path around the herd and
cowculate its length. Recall our construction of a
random herd.

cow := {Random[], Random[]}
cows = Table[cow, {40}];
herd = {PointSize[ .02], Point/@ cows};

Show[Graphics[herd]l];
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A function to measure the length of a path was pro-

vided.

pathlenth[path_] := (Apply[Plus,
Map[\s“'#.# &, path - RotateRight[pathl]l])

I also constructed a simple closed path around the
herd based on the centroid of the cows. The path was
ordered based on the polar angle of each cow with the
centroid.

anglel[a_, b ] := Apply[ArcTan, (b - a)]

centroid = Apply[Plus, cows] /Length[cows];

cows = Sort[cows, (angle[centroid, #1]
<= angle[centroid, #2])&]:;

route = Line[Join[cows, {First[cowsl}]1];

Print[“Simple closed path length = “,
pathlength[cows]]

pl = Show[Graphics[{route, herd}]]
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Simple closed path length = 6.28958

The key to finding the shortest route around the herd
is to skip all cows that live at a right turn as you travel
around the simple closed curve in a counterclockwise
direction. Suppose that on the simple closed path you
identify three consecutive cows; u, v, and w. It can be
shown by elementary vector analysis that cow v lives
on a right turn if the determinant of

vV—u

wW-v
is negative and on a left turn if it is positive. So we
use this fact to define a test for a left turn at v.

leftturnf{u_, w_}1]

w - u}] >= 0

v_, := Det[{v - u,

The heart of the Mathematica solution is to con-
sider all triplets of consecutive cows, delete the ones
who live on right turns, and repeat this process until
there is no longer any change in the number of cows on
the path. We begin by defining a takeOutRightTurns
function.

takeOutRightTurns [cows_]
[Join[cows, Takel[cows,
leftturn[#]&] /. {x ,

:= Select[Partition
211, 3, 11,
Y., z2_} >y

Now watch what happens when we apply this func-
tion to the cows on the original simple closed path.

cows = takeOutRightTurns|[cows];

route = Line[Join[cows, {First[cowsl}]1]:

Print[“Simple closed path length = “,
pathlength[cows]]

p2 = Show[Graphics|[{route, herd}]]

Simple closed path length = 3.73923
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We see that our first iteration has deleted many right
turns but has developed some new ones in the process.
So we simply takeOutRightTurns again.

cows = takeOutRightTurns[cows];

route = Line[Join[cows, {Firstl[cows]}1l]:

Print [“Simple closed path length = “,
pathlength[cows]]

p3 = Show[Graphics[{route, herd}]]

Simple closed path length = 3.07379

We're not rid of all right turns yet, so we continue.

cows = takeOutRightTurns[cows];

route = Line[Join[cows, {Firstlcowsl}l];

Print[“Simple closed path length = “,
pathlength[cows]],

p4 = Show[Graphics[{route, herd}]]

3.04932

Simple closed path length =

After three iterations, we have a path with only left
turns remaining, and this is the shortest path around the
herd. Putting the stages all together, we see the evolu-
tion of the solution.

Show[GraphicsArray[{{pl, p2}, {p3, p4}}11;




There is a simple way to go directly from the simple
closed curve to shortest path by iterating the
takeOutRightTurns function via Mathematica using
the FixedPoint function. This function applies the
takeOutRightTurns function to the cows until the
length of the path no longer changes.

Index of Advertisers
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shortestPath =
FixedPoint [takeOutRightTurns, cows,
SameTest -> (Length[#1l] == Length[#2]&)];

METROLOGIC’ EDUCATIONAL LASERS

And finally .

Send in your solutions to COW 12, in any language,
to drmu@cs.uwp.edu. Past Mathematica solutions are
available on the Internet at http://usaco.uwp.edu/
cowculations.

If you like to zap the competition while programming
a computer in C/C++ or Pascal, stop by the USA Com-
puting Olympiad web site at http://usaco.uwp.edu. The
1998 USA Team of Matt Craighead, Tom Do, Adrian
Sox, and Alex Wissner-Gross has just returned from the
10th International Olympiad in Informatics held in
Setubal, Portugal, September 5-12, 1998. Check out the
links to IOT’ 98 and see how over 60 teams from around
the world fared in this international programming com-
petition for precollege students. It could be the chal-
lenge you've been waiting for—if you've got the right
stutf.
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Barry Cipra
Praise for volumes 1, 2 and 3 of What's Happening

Stylish format ... largely accessible to laymen ... This publi
cation is one of the snappier examples of a growing
from scientific societies seeking to increase public under-
standing of their work and its societal valie.
—Science & Government Report

Another choice of new exciting developments in mathe-
matics. These volumes really deserve a large audience,
students as well as researchers will be fascinated by
the insights and overviews presented.
—Zentralblatt fiir Mathematik

The topics chosen and the lively writing fill a
notorious gap—to make the ideas, concepts and
beauty of mathematics more visible for the
general public ... well-illustrated ...
Congratulations to Barry Cipra.
—Zentralblatt fiir Mathematik

This volume is fourth in the much-acclaimed AMS

ies What's Happening in the Mathematical Sciences. The
e and in-depth coverage of some of the most
happenings” in mathematics today make

this publication a delightful and intriguing read acces-
sible to a wide audience. High school students,
professors, researchers, engineers, statisticians,
computer scientists—anyone with an interest in mathe-
matics—will find captivating material in this book. As
the 20th century draws to a close, What's Happening
presents the state of modern mathematics and its
worldwide significance in a timely and enduring
fashion.

Featured articles include ...

e “From Wired to Weird”, on advances that are encour-
aging research in quantum computation.

e “A Prime Case of Chaos”, on new connections between
number theory and theoretical physics.

* “Beetlemania: Chaos in Ecology”, on new evidence for
chaotic dynamics in an actual population.

* “A Blue-Letter Day for Computer Chess”, on the mathe-
matics underlying Deep Blue’s victory over Garry
Kasparov, and much more!
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List $14; Order code HAPPENING /4Q89
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[ IAS/PARK CEEX Hyperbolic Equations and Model Categories
- : Frequency Interactions Mark Hovey, Wesleyan University, Middletown, CT

HyPefb;’:;‘g Luis Caffarelli and Weinan E, Courant Institute, New York  Model categories are a tool for inverting certain maps in a category
Eq“%?é’(;‘\fe ey University, New York, Editors in a controllable manner. As such, they are useful in diverse areas

of mathematics. The list of such areas is continually growing.

Interactions The research topic for this IAS/PCMS Summer Session was nonlinear : : ' -
i Gattaretl] wave phenomena. Mathematicians from the more theoretical areas of  This book is a comprehensive study of the relationship between a

Editors PDEs were brought together with those involved in applications. The  Model category and its homotopy category. The author develops

goal was to share ideas, knowledge, and perspectives. the theory of model categories, giving a careful development of the

. e ‘ , main examples.
How waves, or ‘frequencies’, interact in nonlinear phenomena has

been a central issue in many of the recent developments in pure The bogk requires little from the reader beyond standard ftrst-year
and applied analysis. algebraic topology, some category theory and set theory, making it
accessible to graduate students.

Mathematical Surveys and Monographs; 1999; 207 pages; Hardcover:
ISBN 0-8218-1359-5; List $54; Individual member $32; Order code
SURV-HOVEYI89

Included in this volume are write-ups of the ‘general methods and
tools” courses held by Jeff Rauch (on geometric optics) and Ingrid
Daubechies (on wavelets).

Also included are specialized articles such as “Nonlinear .

Th Schrédinger Equations” by Jean Bourgain, “Waves and Transport” The Book of Involutions

f e Book by George Papanicolaou and Leonid Ryzhi, and ‘Stability and Max-Albert Knus, Eidgendssische Technische Hochschule,
0 lnvolut,OnS Instability of an Ideal Fluid” by Susan Friedlander. Ziirich, Switzerland, Alexander Merkurjev, University of
1AS/Park City Mathemg!ics Series, Volume 5; 1999; 466 pages; Hardcover: California, Los Angeles, Markus Rost, Universitit at
ISBN 0-8218-0592-4; List $69; All AMS members $55; Order code PCMS/5189 Regensburg, Germany, and Jean-Pierre Tignol, Université
Classical Galois Theory Calztho//que de Llouva/n, L?yva/n la-Neuve, Belgium ‘

. This monograph is an exposition of the theory of central simple

with Examples algebras with involution, in relation to linear algebraic groups. It
Lisl Gaal provides the algebra-theoretic foundations for much of the recent

. . L work on linear algebraic groups over arbitrary fields. Involutions are
This book is strongly recommended to beginning graduate stOeNts ey as twisted versions of bilinear forms, leading to new devel-
who already have some background in abstract algebra ... The

. v , opments in the algebraic theory of quadratic forms. In addition to
ggirg“mber of partially or fully solved examples fs its special classical groups, phenomena related to triality are also discussed,

—Mathematical Reviews as well as groups of type F, or G, arising from exceptional Jordan or
composition algebras. Several results and notions appear here for
the first time, notably the discriminant algebra of an algebra with
—American Mathematical Monthly unitary involution and the algebra-theoretic counterpart to linear
AMS Chelsea Publishing; 1998: 248 pages: Hardcover: (SBN 0-6218-1375.7.  9roups of type D

List $29: All AMS members $26; Order code CHEL/268.H189 Colloguium Publications, Volume 44; 1998: 593 pages: Hardcover; ISBN
0-8218-0904-0; List $69; All AMS members $55; Order code COLL/44189

Prospects in Mathematics
Partial Differential Equations Invited Talks on the Occasion of the
P. R. Garabedian 250th Anniversary of Princeton University

AMS Chelsea Publishing; 1998; 672 pages; Hardcover; ISBN 0-8218-1377-3: Hugo Rossi. Mathematical Sciences Research /nsm‘ute’
List $45; All AMS members $41; Order code CHEL/325.HI89 Berkeley, Ed'itor

Max-Abert ki
s
Alexandes Merkuney
Markus Rost
Jean-Pierre Tigngs

Excellent for undergraduate independent study since it demands
reader participation.

Mirror

Recommendead Text In ce!ebration of Princeton Uni\{ersity‘s 25ch ar}niversary, tvhe math-
ematics department held a conference entitled “Prospects in
Partial Differential Equations Mathematics”. The purpose of the conference was to speculate on

L e future directions of research in mathematics.
Lawrence C. Evans, University of California, Berkeley - - - -
The volume contains 11 articles by leading mathematicians, based

This text givves a compreherjsivg survey of modprn technique§ in on talks at the conference. It provides a guide to some of the most
the theoretical study of partial differential equations (PDEs) with significant mathematical work of this decade.

particular emphasis on nonlinear equations. The exposition is 1999: 154 pages: Hardcover: ISBN 0-8218-0975-X: List $29: All AMS
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2) theory for linear partial differential equations, and 8 theory for

nonlinear partial differential equations. Mirror Symmetry |
The author summarizes the relevant mathematics required to Shing-Tung Yau, Harvard University, Cambridge, MA, Editor
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calculus-type estimates within the context of Sobolev spaces. e b B e s
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