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GALLERY C

Saint Lucy lc.1625-1630) b1 Francisco cle Zr-rrbarin

II CCORDING TO LEGEND, SAINT LUCY PLUCKED OUT
H h", o*r, eyes and sent them to a Roman suitor a{ter he had
insisted that her beauty allowed him no peace. This act of de-
votion so moved the suitor that he converted to Christianity.
Later, Lttcy's eyesight was miraculously restored one day
during prayer.

The young saint's connection with eyes may have origi-
nated from the Latin source for her narrre, Lux, or "light,"
which is inextricably linked with vision. So, if you're having
eyesight troubles, you should see an optometrist, but you may
also want to remember December 13, Saint Lucy's feast day.
For a focused discussion o{ eyesight and light, turn to page 48.
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FRONT MATTER

Stitlllll(S: The urol'lds a cliclr attuay

Pros and con-texts

HE NATIONAL SCIENCE
Education Standar ds (NSES)
have been out for about three
years now. Have we made

progress? I think most will say the
jury is still out. Most will also argue
that the slow progress is more re-
lated to people's reluctance to
change than any basic flaws in the
document. The NSES call for every-
body to get a basic science-literacy
education. They also outline how
this should happen, with less em-
phasis on memorizing long lists of
meaningless science factoids and
more emphasis on inquiry-based in-
struction.

The advent of the NSES woke up
an old whipping boy in education-
textbooks. Over the past three years,
there has been a lot of talk about the
decline in the quality of textbooks.
The criticisms center on the propa-
gation of pooriy connected factoids
in textbooks, the lack of a true in-
quiry-based learning environment,
and in some cases, the inclusion of
f actually incorrect inf ormation.

Unfortunately, there has been
less discussion on what brought
about this decline and what might
be done to remedy the situation. I'd
like to take a politically incorrect
stance and suggest we spend less
time bashing textbooks and more
time working to provide more ap-
propriate educational resources and,
as a consequence/ a more complete
learning experience.

The challenge starts by first ask-
ing, What is the textbook's role in

education? Is it the sole source of the
education o{ the learner? Of course
not. If not, then what can it do best
and what should we leave to other
sources?

I believe that textbooks, at best,
are a structured presentation of
knowledge. (This characteristic
gives fuel to the critics that stress
the importance of having textbooks
with the coffect facts.) Textbooks,
however, are also very static. Once
the printer's ink hits the page, the
letters and numbers are fixed. So, as
a technology, the textbook repre-
sents the structure of knowledge.
The World Wide Web, on the other
hand, is anything but static. It also
has little (knowledge) structure and
is so clearly unfiltered that one has
to be on constant guard about the
" facts."

The National Science Teachers
Association (NSTA) is launching a
new project that will blend the
strengths of the two technologies-
textbooks and the Web-into a more
responsive learning tool. NSTA
will partner with textbook pub-
lishers to place symbols in specific
spots within science textbooks. A
sciLINK signals a launch point from
the textbook location to page-spe-
cific enrichment paths within cyber-
space. Each saLINK will take learn-
ers to the same initial web address
(www.sciLINKS.org). From there,
users will take a cyberpath specific
to the location in their textbook.
Because the cyberpaths are keyed to
the location in that specific text-

book, they provide information and
experiences rclcvirnt to the subject
lnattcr ancl the learner's lcvc1.

All -scjLINKS and rclated cyber-
paths will be the result of a focr-rsed
search by tearns of professionals.
The proccss of determining thc
sciLINKS sites begins r,r,rth curricu-
lurn-enhanceflrent proclucers \ teilrr]s
of professiortals frotn urtir o.rtrus,
federal agcncics, and nonprotlt rl.:rr-
ciations) iclentifying possible lir-rks
for consideration by grac'le-sf ecrirc
NSTA tcachcr committees Tl-rese
corrnrittees, r,r orl<irtg in c,,nccIt
with the NSTA staff, wr1l e*stablish
the cyherpaths for thc l-rartrcil.;rting
publishers.

To capitalize on the Internet's
continnons flow of new ancl ercrting
resoLrrces ancl inforrlation, the
NSTA staii rr-ill rcview and update
the cr-berp;rrhs dai1y. Today's late-
l'rr.'al<rrti l)c\r - 1.p.i.11c Il( )nl rr Mars
cXp]1r1,111,'n lI \\1.'n (,t':t iltlti,rt'nu-
tritron stuclr- can bc incLr,rde cl rn rhe
appropriate c1-berpaths tolrrorro\v.
The r'esult is a proiound change in
the role oi textbooks in America's
classrooms.

Now, here's the challenge: If
sciLINKS is part of the future of
textbooks, what other creativc
new curriculum tools can wc cre-
zrte for the twenty-first-ccntury
learner? Scnd your ide:rs to me at
gwheeler@nsta. org.

Gerald F. Wheeler is Exectttitte Di-
rectc)r of tlte N atictnal Science
Tettcher s As sctcitrt ictn.
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ten in colloquial English andat a
level appropriate for Quantum's
target readership of high school
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tlexihle rulyhedral surlaces

Bending the rules with Euler, Cauchy, and Brrcard

by V. A. Alexandrov

HE TOPIC OF POLYHEDRAL
surfaces has traditionally played
a central role in the study of
solid geometry. Moreover, this

topic can suggest many problems to
anyone who wants to attain a deeper
knowledge of the subject. For in-
stance/ we can start with the follow-
ing list of problems:

(1) Find the lengths of the edges of
the regular polyhedrons (tetrahe-
dron, cube, octahedron, icosahe-
dron, and dodecahedron) circum-
scribed about (or inscribed in) a

sphere of a given radius.
(2) Prove Euler's theorem, which

states that the following identity
holds for any conYex polyhedron:

V-E+F=2,
where V, E, arrd F are, respectively,
the numbers of vertices, edges, and
faces of the polyhedron.

(3) Use Euler's theorem to prove
that the list of regular polyhedrons
given in question (1) is complete.

(4) Prove Cauchy's theorem,
which states that two convex/
closed polyhedral surfaces whose
corresponding faces are congruent
and whose faces adjoin each other in
the same way ate congruent.

Problem (1) doesn't go beyond the
traditional classroom material. Prob-
lems (2) and (3) are not usually in-

cluded in mathematics courscs l...rr
they are quite accessiblc tr, .lnlrrnc
who wants to learn morc abolLt .ohtl
EJeometry. The rnclst difiicr-r1r L.rtrbLr-rl
in the list is problcm (4). Ii r,ru .iri e a-

gcr to know how Cauchr's ti-rc.rrem
is provcd, see the article begir-u.ring or-r

page 13.

In this article r,'.c rrrli .lscuss
somr: qllestions cor-Lr-rected wrth
Cauchy's theorem. -\lore specifi-
cally, we'll shor,r', Lr:lrrS:l e()untcr-
cxample, that the theorem can't tre
extended to noncon\-cr po11 hedrons

{an amazing fact that hacl remained
unclear for rlore th;rn 150 years,
since Cauchy pror-ec1 his theorem in
1813). But beiorc rre proceed, let's
make sorne defir-ritions.

Apolyhedral sufiitce is any surfacc
in three-dirttett>i,,ttal 5facc Consisti rtS

of a finite number of polygons. We
call thcse pol1.gons f aces of the sur-
facc, and their sides we call edges.We
assumc that every edge belongs to no
more than nvo different faces of the
surface. And lf every edge belongs to
two {aces of the surface, then we sa\
that the surface rs closed. A goocl er-
ample of a closed polyhedral suri;rcr-
is the surface of a cube {if we rcrnr,r e

e face from it, the rcmaining f.rrr r-
not a closed polyhcdral suriace. \\-e
should stress that it's crrnr cnrtnr ro
also ccrnsider scll-inler\c( lilra 'u1-

f aces, whose faces may have com-
mon points other than the vertices of
the surface and the points lying on its
edges.

We assume that it is prohibited to
change the shape and size of any face
(that is, we imagine that the faces
are made of a solid matter). How-
ever, it's permissible to change the
dihedral angles between the faces, as
if the faces were connected by
hinges. We call a polyhedral surface
flexible iJ it is possible to change its
shape by means of a continuous de-
formation of its dihedral angles.
Cleatly, the lnonclosed) polyhedral
surface consisting of two triangles
connected along one edge is flexible.

The rest of our article will discuss
the question of u,hether or not
closed, flexible pol;-hedral surfaces
(without selt-intersectionsl erist.

We sa; that a polyhedral surtace is
convex ii it is the boundary of a con-
vex set of points. [A set 6f points is
conlrex it *y line segrnent connect-
ilg two of its points is contained
within the set.) Cauchy's theorem
implies that no closed, convex poly-
hedral surface is flexible.

In 1897 the French mathemati-
cian R. Bricard described a1l possible
flexible octahedrons. According to
Cauchy's theorem, none of them
can be convex. It has become a tra-

srPrrll,lBtR/0cT0BrR r gg8



Figure 1

dition to divide all flexible octahe-
drons, also known as Bricard's octa-
hedrons, into three types. In this ar-
ticle we'l1 consider only one type.

First we'I1 explain how to as-
semble a cardboard model of this
octahedron. Copy the figure com-
posed of six triangles shown in fig-
ure 1 on a sheet of cardboard. FIere
the letters a, b, c, and d denote the
lengths of the corresponding edges.
For example, it is convenient to
make a : 12, b : 10, c: 5, and d = ll.
(The reader should check that these
are in fact possible lengths for the
polyhedron's edges.) Cut along the
solid lines, then fold along the dot-
ted lines as follows. Fold the two tri-
angle flaps (one of whose sides has
length c) on the left of the figure to-
ward yourself and glue them to-
gether along the side of length c.
Fold two similar triangle flaps on
the right of the figure in the other
direction and glue them together
along the side of length c. You will
obtain the nonconvex, nonclosed
polyhedral surface P shown in fig-
ure 2. Solid lines in this figure rep-
resent the visible edges of the sur-
face, and the dotted lines represent
the edges screened by the faces.
The edges AE, ED, DF, and FA
make up the border of this sur{ace,
and each of them adjoins only one
face of the surface P.

The polyhedral surface P is clearly
flexible: If we fix the position of tri-
angle BCE in space, we can move
point F in the directions shown by the
arrows in figure 2. The positions of
poiqts A ar-d D will also vary, but
most important, the distance be-
tween them will remain constanr.

To make sure that this is so, let's
consider the dihedral angle S with

edge EF, whose facets are the half
plane s, passing through B and the
half plane s, passing through C. Let's
rotate the half plane s, about EF so
that the new half plane t, contains
pointA. That is, we rotate it toward
the viewer through an angle equal to
the dihedral angle at edge EF oftet-
rahedron BAEF. Similarly, let's ro-
tate the half plane s, about the line
EF so that the new half plane tzcon-
tains D. To do so we rotate it away
from the viewer through an angle
equal to the dihedral angle at edge
EF of the tetrahedron CDEF. But, re-
gardless of the position of point F,
these tetrahedrons have equal coffe-
sponding edges (see fig,. 21, and thus
they are congruent. In particular,
their dihedral angles at the edge EF
are equal. Therefore, the dihedral
angle Tformed by half planes t, and
t, is equal to the dihedral angle S.

So, we see that in tetrahedrons
BCEF and ADEF, we can point out
five pairs of equal corresponding
edges (BE : AF, BF = AE, CF : DE,
CE : DF, and EF is their common
edge) and a pair of equal dihedral
angles, S and 7, opposing their sixth
edges (BC and AD, respectively).
Thus, tetrahedrons BCEF andADEF
are congruent/ and therefore
AD : BC : d for all possible posi-
tions of vertex I.

Since AD has a constant length
independent of the position of F, we
conclude that we can attach two
imaginary cardboard triangles ADE
ard ADF to the surface P such that
the resulting closed polyhedral sur-
face Q will remain flexible. Of
course/ this procedure can be carried
out only in our imagination, because

E

it results in self-intersections. For
example, faces ADE and BCE will
intersect eac,h other along a line that
is not an edge of the surface Q.
When we start shifting vertex F, this
line changes its position on each of
the faces ADE and BCE. And it's
impossible to imitate this process in
a cardboard model.

So it is this surface Q that is one
of Bricard's octahedrons. Like the
usual octahedron, it has 6 vertices'
(A, B, C, D, E, and Fl, 12 edges (AB,
AD, AE, AF, BC, BE, BF, CD, CE,
CF, DE, and DF) and 8 faces (ABE,
ABF, BCE, BCF, CDE, CDF, ADE,
and ADF). Nonetheless, unlike the
usual octahedron, Bricard's is flex-
ible, nonconvex, and self-intersect-
ing. Now we're going to modify this
construction so that the self-inter-
sections vanish.

Slellent $urlare
We will start by gluing together

two congruent copies P, and P, of the
polyhedral surface P in a certain way.
We'll denote the vertic.es of the sur-
Iace P, by the letters we've used for
the corresponding vertices of P, but
with the index 1. We'il employ simi-
lar notation for Pr.

Now draw on cardboard the quad-
rtlateral, consisting of two congruent
triangles shown at the top of figure
3. Here the letters a and e denote, as
before, the lengths of the corre-
sponding sides. If above you've cho-
Sefl d : I 2, now it is convenient to
take e = 17. Cut this figure from the
cardboard along the solid lines and
fold it along the dotted 1ine. You will
obtain the nonclosed polyhedral sur-
face, which we'll call R, shown in
figure 3.

Fix the position of the surface R
in space such that the distance be-
tween I and Nis equal to d. In other
words, in what follows, we won't
change the value of the dihedral
angle at edge KM of the surface R.

Superimpose points K and E' Al
and L, and D, and N, and glue sur-
faces P, and R along the edges ArE,
and KL and along the edges E,D, and
KN(fig. 4). It is clear that we can still
shift vertex F, as we did before, even
though the position of the surface RFigure 2
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Figure 3

is fixed (because the constant dis-
tance between points A and D does
not deny Bricard's octahedron the
ability to twist, and P, is just a part
of this octahedron). Moreover, point
F, can move freely along the circle
that lies in the plane perpendicular
to segment ArD, and whose center
lies in the middle o{ this segment.
The faces of surfaces R and P, will
not change their shape; only certain
dihedral angles will vary.

In a similar wayt superimpose
points E, and M, Dz and L, and A,
and N and glue surfaces P, and R

along edges ArBrand MN and along
edges DrE, and LM (fig. a). We see

that point F, can move along the
same circle that point F, can move
along. Therefore, if we have given an
arbrtrary shape to surface P, (that is,
if we have fixed the position of ver-
tex F, on the aforementioned circle)
we can twist surface P, (preservins
the shape of its faces, of course), so

that vertex F, coincides with Fr. But

E2

ct cz

^llnz.

then edges A,F, ancl DrF, will match
Lrp, as will edges D,F, :rnc1 ArFr, and
we'll obtain a closed polyheclral sur-
face that is flexible bccause \\-e \\'ere
free when we chose the positrot-t ot
F, (or F, which rs the s:rme', This
polyhedral surface rs callec'l 5re riel -s

polyhedral surface.It has only nine
vertices, which is jr-rst one vertex
more than a cube has. (It is help-
fu1 to make triangle KLM transpar-
cnt: You will see what is going trn
inside Steffen's surface when you
twist it. )

Now let's tliscuss solne propclties
of flexible polyhedral surfaces. Every
closed polyhedral surface without
sclf-intersections bounds a body in
three-climensional space, and the vol-
ume of this body is finitc. The so-

called bellows conjecture sa1,s 15r, -

the surface is flexible, the volume of
this body remains constant rr,hen the
sttt'face twists. This contcctLtlc ap-
pcared in 1978 as a result oi rnr.csti-
gations of the first cxarnples oi closcd,

Figure 5

flexible polyhec1r a1 surfaces without
self-interscctions invented by R.
Connel1y. In 1995 the Russian math-
ematician I. H. Sabitov proved this
conjecturc. JLrtt itnagirte: Ste[[en's
surfacc u,ould be flexible even if it
were hermetically sealcd and filled
with an incompressible licluid!

A n;ltural question arises: Are
there any other cluantities that
characterize a polyhedral suriacc
and remain constant when the sur-
facc is twisted? A trivial example
of such a cluantity is the area of the
sur{ace. Another, more significant
example is given by the following
construction.

Let's define the interior dihedral
angle at an edge of a closecl polyhe-
dral surface as the angular measlrre

of the diheclral anglc zrt this eclge,
mcasurecl from the sidc where the
bocly. of finite volurne boundecl by
thc suriace lies inotc that it can be

Sreatcr than 1S0''. \lu1tlp1v the
length Lrt ;111 -rlgi oi a pell'hgc11.1
slrriircc br thc lalitu- oi the intcrittr
drhedral angle at thr. ciEr ;rllli :11n1

thc pr',,.luct. Irrl all ..1-.-. T1l, i.-
sulting number is ca1ic.1 rhc :r.r,,-ir
curvatLlre of the polyheclral slLrtace.
The American rnathematician R.
Alexander established in 1985 that
the mean curvature of a closed, flex-
ible polyhedral surface does not vary
when the surface is twisted.

Real-world a[llhaliolt$?
Here we rnust confess th:rt no

practical applications h:rle been
fuurtd in thc 20 yeal s \ilt.r ttrtet est
in the subjcct of closecl, iLcrrble sur-
faces was revived. Brtt rr e r-t-tustn't
despair, for it has oftcn ir.rl.pened in
the history of scienct ih.rt the first
practical applicatron. ,: :ome phe-
nomenon were iourj ,-,n1y many
years after it had bcc:: ::-Leoretically
established. Fot tn:t;'-:r;. urore than
50 years elapseci L';:-,'.-:er th.e theo-
retical discoi crr : - - -:: 'r'r'lagnetic
waves and thc tlrs: :...;r.- broadcast.

And, altholLgh r',-. -: :r i \-et know
any real nLlnrrlr, ,., ..-::-rcations of
this theorr . \\ i a,::- -: ,rrt out one
very prollrlsrni j-r.::- -: ,t thought.
Modcilr,l.u.Il..-r-.. -).1.-..,11.r\ txany
properties r.t drite r.t:t :,-::!.1nces by
the georltiric stilla:-.:r,-ri their
molecr-r1cs. -\ tlolc; *,. .an be
r icrr'.J .i- .r l, lr-lt..ir' :r '.. -- t -]tuttts
iit its vertices and rrhLrs. i.lics cor-
1s.p,'Dtl t,, tlrc intsIJI,'ttti. .. ,lll'lcC-

tions in the mo1ecu1e. And rr hile
the drstances beilr,een the ator-t-rs

cannot vary, thcre is nothrng prc-
\ienting the dihedral angles benr,een
the faces of this polyhedron from
changing.

So, we can imagine a substance
whose moleculcs have the form of a

flexible sur{ace. The chemical and
physical properties of this substance
would clrange as tlre form of its
molecules changed! No such sub-
stances have yet bcen found. But
who knows what might happen in

M

eFigure 4
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RiUidily ol Golttter pulyhedl'nlt$

The inflexible findings of Cauchy and Euler

by N. P. Dolbilin

I N THE PRECEDINC ARTICLE,
I o"grrrrrrrg on page +/ we learneo
I ho* to construct a ilexible poly-
I h"dro,",. Here we examine why a

flexible polyhedron must be convex.
Anyone who has ever made, or

simply held, a paper model o{ a con-
vex polyhedron probably noticed
that it was not flexible and might
have wondered *hy not.
Those who wondered may
have intuitively reasoned
that the rigidity of the
model is not iust a

matter of chance
but rather is
predeter-
mined by
some ln-
tricate
hid-

den relationships among the faces
of the polyhedron.

The question of the rigidity of a
polyhedron is an old geometrical
problem, and, as it turned out, quite
a difficult one. It was finally solved
only about 20years ago, and the first
step to its solution was made in
1813 by the outstanding French

mathematician Augustin-Louis
Car:ch,v, an alumnus of the famous
Ecole Polytechnique in Paris, who
rras then only 23 years old.1

Cauchy graduated from the Ecole
Polytechnique in I807, and accord-
ing to the well-known German
mathematician Felix Klein, "one
can put him for his wonderful

achievements in various
branches of mathematics on al-
most the same plane as

Gauss." This high estimate of
Cauchy's work hoicls par-
ticLrlar significlncL', (iItcc
competition betrrcen
French and German rlath-
ematicians was generally
very sharp, and acknowl-
edgments by each party
of its counterpart's mer-
1ts \fere scant

The resr-rlts that
brought Cauchy iame
as a great matherla-
tlcian are concerned,

foremost, with the cal-
culus, algebra, math-

ematical physics, and me-

lIor an account of the
founding of the Ecole Polytech-

nique, see "Revolutionary Teaching"
on page 26 of the March/April 1998

Quantum.
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chanics. His work on geometry
would perhaps remain lost in
his vast scientific legacy,
which fills.25 huge vol-
umes/ if not for his pa-
per "On polygons and
polytopes," published
in the lournal de l'Ecole
Polytechnique in 1813.

Cauchy's

llllique]lss$ tlleomm
Cauchy's paper on poly-

gons explores the following
natural question: To what ex-
tent do the faces of a polyhe-
dron and the order in which I

they adjoin each other deter-
mine the shape of the polyhe-
dron? Let's give an example to
explain the purpose of this ques-
tion. Consider two polyhedrons: a
tower with a four-slope "roof" on a
cubical foundation and another
tower made of the same faces but
with the "roof" pushed into it (figs.
I and2l.

It's clear that these two polyhe-
drons are not congruent/ even
though they are made of correspond-
ing congruent polygonal faces that
abut each other in the same manner.
Cauchy demonstrated that nothing
of this sort can happen when both
polyhedrons are convex.

Figure 1

Cauchy's theorem: Two convex
polyhedrons whose corresponding
faces are congruent and adjoin each
other in the same way are also con-
gruent.

The Russian academician A. D.
Alexandrov called the main idea of
this theorem's proof "one of the
most brilliant arguments ever to ap-
pear in geometry." In time, this
beautiful argument has become a
common method used to prove
other uniqueness theorems.

tuler's cottisclum
The question of whether the

shape of a poiyhedron was deter-
mined in a unique way by its faces
or if the surface could somehow
vary despite its faces remaining un-
changed had attracted mathemati-
cians' attention long before
Cauchy. Indeed, the great Euler
himself pondered the problem of
uniclueness.

In1766 Euler made the following
conjecture: "A closed spatial figure
does not admit variation unless it is
torn." What Euler called a "closed

spa-
tial

figure" is
nowadays

calied a closed
surface. Thus,

Euler's conjecture
was concerned not

just with polyhedral
surfaces. But, in the case

of polyhedrons, it seemed
cluite correct

Simple rulytoEs
Before we proceed, let's claify

some notions. Let's define polytope
(or polyhedron) as the surface com-
posed of polygons and not the body
bounded by it. We will also assume
that our polytope is made of a finite
number of polygonal faces such that
to each edge of each face exactly one
other face is attached. (It is difficult
to give a strict mathematical defini-
tion of a polytope that would em-
brace convex and nonconvex poly-
topes, so we will not attempt this.)
Polytopes that comply with the last
condition are referred to as closed.
This definition is a natural one. A11
the polytopes that we encounter jn
school (prisms, pyramids, regular
polyhedrons) are closed. An open
cardboard box is not closed, but a
closed box, of course, is.

We will also assume that our
polytopes are topological spheres. A
topological sphere is trny surface
that can be compared to a deflated
soccer ball. In other words, if our
polytope was made of rubber, we
would be able to transform it into a
sphere without cutting and pasting.
Let's agree to call such polytopes
simple. All convex polytopes are
simple, as are both polytopes in fig-
ures 1 and}. Figure 3 shows an ex-
ample of a toroidaT polytope, which
is not simple.

Figure 2 Figure 3
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Sometimes a polytope is so badly
"tangled" that it is difficult to un-
derstand whether or not it is simple.
Thus, it's remarkable that we can
determine whether or not a polytope
is simple evenwhen simplyviewing
it causes confusion. Suppose some-
one tells you the numbers of verti-
ces V, of edges E, and of faces F of a
polytope X. Then you can calculate
the number Q(X) defined by the for-
mula

AXI:v-E+F.
This number Q(X) is called the
Eulu characteristic o{ the poly-
tope X. This number indicates
whether or not X is simple: The
polytope X is simple if and only if
its Euler characteristic is equal to
2. The Euler characteristic of non-
simple polytopes does not exceed
0. In particular, the Euler charac-
teristic of toroidal polytopes (fig. 3)
is zero (we invite the reader to
check this).

tloilihillly ol polylopes

Imagine a polytope made of sev-
eral cardboard polygons attached
to each other by adhesive tape (of
course/ it will be finite, closed, and
simple). Clearly, since all the con-
nections are flexible, it would be
possible to rotate any two {aces
about their common edge and thus
change the dihedral angle between
them ... if there were no other
faces.

And when all the faces are con-
nected to form a polytope, we can
ask if it is possible to change the
shape of the polytope continuously
so that all its faces remain un-
changed while the dihedral angles
between them vary. If this can hap-
pen, we call the polytope flexible;
otherwise we call it ilgid.

Thus, any deformation of a

polytope, if it exists, is related to the
flexibility of its dihedral angles.
Moreover, although each pair of ad-
joining faces is free to choose the
value of the dihedral angle that it
forms, it seems quite possible that it
loses this freedom in the presence of
the other faces. It seems possible
that Euler based his conjecture on

the rigidity of closed polytopes on
"plausible reasonings" of this sort.

The article on page 4 shows that
Euler was not right. For, although it
was proved inl975 that "almost all"
polyhedrons are rigid, almost all is
not all, and the previous article gave
an example of a flexible polytope.
The first example of a flexible poly-
hedron was proposed only in I97B
by the American mathematician R.
Connelly.

By the way, it is more difficult
than it might seem to find such a
polytope. For instance, a bellows
does not give the necessary ex-
ample, because its ability to change
its form is due to the elasticity of
the material and not to its geo-
metrical structure. In effect, if a

bellows were made in the form of a
flexible polytope, it would be use-
less, for every such polytope main-
tains a constant volume in the pro-
cess of deformation. (This is the
statement of the bellows coniec-
ture,provedinL995 by the Russian
mathematician I. H. Sabitov. In
fact, Sabitov proved an analogue of
FIeron's formula {or polytopes,
which expresses the volume of the
polytope in terms of the lengths of
its edges and the areas of its faces.
This is a remarkable result. Note,
for example, that there can be no
analogue of Heron's formula in two
dimensions for polygons of more
than three sides: Their areas are not
determined solely by the lengths of
their sides.)

Note that Cauchy's theorem im-
plies that flexible polytopes mrlst
be nonconvex. Clearly, the flexibil-
ity of a polytope means that there
can be other polytopes made of the
same faces in the same order that
are different from the original
polytope because their dihedral
angles are siightly different. At the
same time, if the original polytope
is convex, then the other one,
whose dihedral angles are slightly
different, must also be convex. But
if our original flexible polyhedron
were convex/ then we could
change its dihedral angles by a suf-
ficiently small amount that it
would form a new convex polyhe-

dron, and this is in direct contra-
diction to Cauchy's theorem,
which states that such polytopes
should be congruent.

Now we proceed to the main
ideas of the proof of Cauchy's theo-
rem.

Cauchy$ hmma m mltttett polyuolt$

To prove Cauchy's theorem, we
first look more closely at some prop-
erties of polygons. It is no coinci-
dence that the word polygon is in
the title of Cauchy's work on poly-
hedrons. Imagine a plane polygon
made of rods with hinges at the
ends. In the case of a triangle, the
lengths of the rods determine the
angles between them (the "SSS" cri-
terion of congruence for triangles),
and the construction is rigid. This
tamlliar geometrical fact finds nu-
merous applications in our everyday
life: All constructions made of rods
that must bear heav; loads (bridge
girders, arms of cranes, roofs, and so

on) contain rriangutar elements for
the sake of rigidity-

I{ the nu:nber of sides of a polygon
is greater than three, then its angles
can't be dslerminedbythe lengths of
its sides, and thrrs the polygon isn't
determiaed by them, either. How-
ever, Cauchy notd one fact about
such pol-l.gons that came in handy
when he prored his theorem.

Let A : ArAr---A- and B : B rB,
... Bo be corrYex n-gors such that
AtAr:878,, ---, A.-l4o : Bn-tBn,
A,Ar: BrBr- Tse will ascribe the
signs "+" or "-" to all vertices A,
of the tirst polygon, depending on
rrrhether lA, > lB, ot lAi < lBi.
Ii lA, : lB, rt=e do rrot assign
anything to the Yertex A, (we
will call such vertices "un-
marked"i- Betore we formulate
Cauchy's lemma, let's prove the
{ollowing:

If,rnma 1: Consider two convex
polygons with congruent corre-
sponding sides, some of whose
angles are not congruellt. Then the
difference of the corresponding
angles must change its sign at least
four times as we go around the bor-
ders of the two polygons.

It is not hard to see that the num-
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ber of alternations must be even and
nonzero. Thus, it is enough to show
that it isn't equal to 2, which is the
main idea of. the proof.

Suppose that the number of al-
ternations is two. Then polygon A
splits into two broken lines: Some
of the vertices of the first broken
line ArA, _ r... A,are marl<ed with
the sign " +" , and there are no ver-
tices marked by "-" itr it. The
other broken line, A,A, * r ... Ai,
contains some vertices marked by
"-", and none of its vertices are
marked with "+" (fig. a).

Therefore, it is possible to obtain
the broken line A1, *, ... A, from the
corresponding broken line B,B, * , . ..

B, of polygon B by increasing some
of the angles of the latter. It seems
clear that the length of the segment
that connects the beginning and the
end of the broken line must increase
during this operation-that is, Ay4,
, B,B i.(The strict proof of this state-
ment is rather cumbersome, and we
will omit it.)

On the other hand, the second
broken line A74,,* r... Arof polygon
A is obtained from the correspond-
ing broken line B,B, _ , ... B,of poly-
gon B if we decrease some of the
angles of the latter. The segment
connecting the ends of the broken
line will become shorter. Therefore,
we conclude that A,Ai.8,8,. These
two inequalities contradict each
other, and so the original assump-
tion that there are exactly two alter-
nations of sign is wrong. Thus, the
number of alternations is greater
than or equal to four.

Attt

A,r,_\,r\
\ )Ai
\/

Figure 5

Now that it is proven, we'll use
lemma I to prove Cauchy's theo-
rem, although we'll have to change
its setting slightly so that it deals
with convex polygons on a sphere.
The statement and proof of this
variation of lemma 1 will remain
the same, but we must explain the
corresponding definitions.

The definition of a spherical
polygon is quite similar to the defi-
nition of a planar polygon. We just
have to keep several things in mind.
First, a side of a spherical polygon
is an arc of a great circle, and the
length of a side is the length of the
corresponding arc. Second, an angle
of a spherical polygon is the angle
between the tangents drawn to the
sides (arcs) at the point of intersec-
tion (that is, at the vertex of the
polygon). We can see that this angle
is equal to the linear measure of
the dihedral angle between the
planes of the corresponding great
circles (fig. 5). Third, we call a

spherical polygon convex if it lies
completely in one of the two hemi-
spheres into which the sphere is
divided by a great circle containing
one o{ its sides.

Gauclty$ lnailt lelnlna
Suppose that there are two non-

congruent polyhedrons that comply
with the conditions of Cauchy's
theorem. Then we will be able to
point out pairs of corresponding un-
equal dihedral angles in them. We'1l
mark each edge of one of these poly-
hedrons with a " +" if the dihedral
angle at this edge is greater than the
corresponding dihedral angle in the
other polyhedron, or a "-" if it is
less. Of course/ it can happen that
some of the edges will remain un-

marked, since there might be equal
corresponding dihedral angles.

Let's choose a vertex O of the
polyhedron that is an endpoint of
some of the marked edges, and draw
a sphere S with a small radius, cen-
tered at O. By "small radius," we
mean that it is so small that the
sphere S does not intersect any edges
of the polyhedron except {or those
with endpoints at O. Each such
edge intersects the sphere exactly
once, and these intersections de-
termine a convex spherical poly-
gon M whose angles are equal to
the corresponding dihedral angles
of the polyhedron.

Now if we draw another sphere S'
with the same radius and center at
the corresponding vertex O' of the
other polyhedron, we obtain another
polygon M, on it. The sides of poly-
gon M are equal to the correspond-
ing sides of polygon M. This equal-
ity follows directly from the
conditions of the theorem: In the
corresponding vertices of the poly-
gons/ corresponding congruent f aces
are adjacent.

Now it's time to use lemma 1.

We suppose that Cauchy's unique-
ness theorem is not valid. Therefore,
there must be at least one edge
marked with either "+" or "-".Ap-
ptrying lemma 1 to polygons M and
M, we see that if there is a marked
edge at the vertex, then there must
be at least four alternations of the
signs assigned to the edges around
the vertex.

It may seem that there is still a

long way to go from this simple ob-
servation to the complete proof of
the theorem. But here Cauchy found
an original idea that made the rest of
the proof just a matter of technique.
It turns out that the following state-
ment holds.

Lemma 2. Let some of the edges
of a closed/ convex polytope be
marked with a " +" ot "-". Consider
al1 the vertices of the polytope such
that at least one of the edges with
endpoints at these vertices is
marked. Then there must be a .ver-

tex among them with fewer than
four altemations of signs assigned to
the edges around it.Figure 4
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Figure

For instance, figure 6 represents
an octahedron that has two vertices
for which the number of alterna-
tions of sign is equal to two.

The underlying idea of the proof
of the main lemma is clearest in the
particular case when every edge
bears a sign. Suppose that this is
true. As before, let V be the number
of vertices of the polytope, E the
number of edges, F the number of
faces, and N the total number of al-
ternations of sign around all the ver-
tices. To prove lemma2, it's enough
to show that N < 4V.

We will follow Cauchy's reason-
ing and prove a stronger inequality:
N< 4y- B.

It is easy to see that the total
number of alternations of sign
around all the vertices is equal to
the total number of alternations
of sign that one can count by go-
ing along the edges of all faces. In-
deed, each pair of adjacent verti-
ces with endpoints at one vertex is
also a pair of adjacent vertices in
the border of the corresponding
face (fig,.7l.

Let Fn denote the number of n-
gonal faces of the polytope n < 3.
Then

F : Fr+ Fo+ Fu+ Fu + .... (1)

Now the number of sign alterna-
tions along the border of an n-gon is
less than or equal to n, and when n
is odd, it's not gteater than n - l.
Therefore,

N< 2F3 + 4Fo+ 4Fu

+ 6Fo+ 6Fr+ .... 12)

Since every edgebelongs to two faces,

2E:3F3+ 4Fo+ 5Fr+ 6Fu+ .... (3)

Let's rewrite Eu1er's formula in the

Figure 7

following form:

4V 8:48 4F. (4)

Substituting the expressions from
equations (1) and (3J for F and E in
equation {4), we obtain

4V -8:2{3Fr + 4Fo+ 5F.+...)
-)t)F -)F -)F + l

.\.,]LJ)lltti

:)F,-4F,+6F-+.... {51

The coefficient of {, in ecpration (5)

is cqual to 2ln - 2) and thus, if n > 3,
it is not less than the corrcspond-
ing factor in (2), which docs not
exceed l. Therefore, equations (2)

and (.t1 imply the necessary in-
ecluality: l/ < 4Y - 8.

(In the general case, when it rnay
happen that some of the eclges are
unmarked, the proof is complicated
by unimportant technical details,
and we will ornit them.)

Note that in our proof of lernma
2 we haven't used the convexity of
the closed polytopes: This lcmma
holds for arl"rltrary closed polyhe-
drons. We trsed this assumption
only to satisfy the conditions of
lemma 1.

Let's re{ormulate our finai con-
clusion. If Cauchy's theorem were
incorrect, then, according to lemma
1, we would obtain a set of signs as-

srgned to cach cdgc that woulcl br-

irnpossible according to lemma L
This is the main idea of the prooi ot
Cauchy's theorem.

Ahxandl'ou3 suflichncy l[eorsln
When Cauchy's paper 0n polr qi-,n.

was published, its author's interests
were already very far irorn thi: L.riincl-r

of mathematics. Horr-e\-er, rran\
other mathematlclans studietl srmilar
cluestions. For example, lrran\- pro-
found rcsults in this iicld lvcrc ob-

Figure B

tained by the Russian mathematician
A. D. Alexandrov and his students. In
1939 Alexandrov proved a thcorcm
that gives necessary conditions for
determining the development of a
convex polyhcdron.

Rotrghly, a developntent oi a

polyhedron is a polygon obtained
by cutting the surface of the poly-
hedron so that its faces can be
sprcad out flat on a planc, For in-
stance, figure 8 shou,s the standard
development of a cr-rbe . It is rnuch
more difficult to unclerstand that
the polygon shou'n in iigure 9a is
also a development of ;r cube. The
letters assigned to rh. \-ertices in
figure 9a detennirLc :he sides that
must be glr-recl tr){.rh-r 1fig.9b).
Let's note that thc p,,,.r-gons of the
development dtr r,,r nlcessarily co-
incide with tht i:r.s oi the corre-
sponding poh't,-':.. 1i can happen
that a face con.r.ls . ,: ,-rne or several
pieces oi ditf .:.:r: :'-,ir-gons from
the deveLr,piri-:r:. \irte also that
not e \-el-!- 1,-ili=\ ,,t the clevelop-
llent 1-I1 Li:1: a,'lrJiJ- rr ith a vertex
uf th. :' -.: p. -,11-lu rcttiCes
rtritr: .'- :.*.i-n rn.rJ. an edge or
a iaa- , : ::1. p|ir-tope.

C l:sri;r ;in arLritrary develop-
1-nc:r: Teke ser eral convex paper
p -', : ns anrl note rvhrch sides of
i-rc>c lLrl\'{r,ns should be glued to-
r.:il-r Oi cor-trse, \\-e ltfust see tltat
:ir.,-riih: ot the correspontlng
s- j.. :tr .,ila., Thcn Slr-rc the pttlr -

i,.'r1: :, 'ic.hiI i,.-) i,-ll1-n the poil-topc
r.r.t: :.-r.i 1':-;-. I-. t1,'peJ,notc that rt
rs pcm-irssr'irle to iold the polygons of
tl-rc .lcr eloprnent). A natural ques-
tion arrses: Which developments
can in this way produce a convex
p,rl; hcdronl The following, two con-
ditrons are necessary for this:
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Figure 9

(I) The development must comply
with Euler's formula (V - E + F : 21.
(II) The sum of the plane angles
around each vertex in the process of
gluing must not exceed 360o.

The idea of Alexandrov's theorem
is strikingly simple: Conditions (I)
and (II) are not iust necessary, but
also sufficient, for determining the
development to be that of a convex
polygon (although it can happen that
we will have to fold the interior of
some polygons of the development).

Later Alexandrov developed the
ideas that underlie this theorem into
a whole new theory: the internal
geometry of convex surfaces-one of
the most important branches of
modern geometry.

Let's look againatfigure 9a. Even
if we didn't see figure 9b, we would
still be able to say that this develop-
ment can be glued into a convex
polytope just by checking the condi-
tions of Alexandrov's theorem for it.
How many different convex polyhe-
drons can we obtain from one devel-
opment? Since the faces of such
polytopes are not determined in a
unique way, Cauchy's theorem

lOlovianishnikov was a winner of
the First Soviet Mathematical
Olympiad lL934l. The events of the
next decade {requently left their mark
on the difficult lives of talented young
people. ln I94l Olovianishnikov
graduated from Leningrad University
and became a postgraduate student
there. His scientific advisor was A. D.
Alexandrov. World War II soon began,
he volunteered to go to the front, and
in autumn 1941 he was wounded. In
the hospital he wrote his work
generalizing Cauchy's theorem. He
returned to the front and died in
December l94l in a furious battle in
the Leningrad suburbs.

"lm
b

can't be used to answer this ques-
tion. So, Alexandrov proved another
theorem that on one hand strength-
ened Cauchy's theorem and on the
other made his own theorem more
complete: If it is possible to glue a
development into a convex poly-
tope, then this polytope is uniquely
determined.

Moreover, it is impossible to glue
this development onto any other con-
vex surface at all-not only polyhe-
dral but even curvilinear. This
supplement to Alexandrov's theorem
was proved in 1942 by his young pu-
pi1 S. P. Olovianishnikov.l

The most complete generalization of
Cauchy's theorem, which would in-
clude arbitrary surfaces (and not just
polyhedrons), remained unsolved for
a long time. Consider an arbitrary sur-
face made of a thin, flexible, but non-
stretchable material. Is it possible to
retain the convexity and transform it
into a different surface? If the original
surface is a convex polytope, then we
can't do it. This is a particular case of
Cauchy-Alexandrov-Olovianishnikov's
uniqueness theorem.

The final generalization of
Cauchy's theorem that would in-
clude the case of arbitrary surfaces
was given in 1949 by the geometer A.
V. Pogorelov, another student of
Alexandrov. Pogorelov showed that
no closed, convex surface is deform-
able if the surfaces that appear in the
process of deformation must be con-
vex. Pogorelov's uniqueness theo-
rem, along with Alexandrov's suffi-
ciency theorem, are outstanding
achievements in geometry.

Many interesting related prob-
lems await the researcher. Some of
them can be very simply {ormu-
lated. For example, the problem of

regular development: Is it true that
for every convex polytope one can
find a,way to cut it along its edges
(none of its faces must be touched)
so that the remaining surface can be
developed, without self-intersec-
tions, into aplanar region?

The problem is that each polyhe-
dron has many different develop-
ments. Some of them are the results
of cutting along the edges of the
polytope without touching its faces.
An example of a development of this
sort is given in figure B (such devel-
opments are called edgewisel. Let's
c,all a edgewise development of a
polytope regular if it consists of a
single planar domain such that none
of the faces of the poiytope overlap.
For instance, aii edgewise develop-
ments of a tetrahedron are regular,
but there are polytopes with as little
as five faces, some of whose edge-
wise developments are not regular.
For instance, take a truncated, regu-
lar triangular pyramid such that one
of the planar angles in its laterai
faces is greater than 100' (see prob-
lem M219 in the November/De-
cember 1997 Quantum). Therc are
both reguiar and irregular edgewise
developments of this polyhedron
(fig. 10). So, the problem is: Does

CC

Figure 10

every convex polyhedron have a
regular (edgewise) development?

To conclude, let's note that all
the theorems mentioned herern
were proved by mathematicians
who were younger than 30 years o1d.
Mathematics advances by the eiforts
of youth. New ideas, as a rvell-
known mathematician said, are
born in tire heads of young georn-
eters, but the old folks are still r-rse-

{ul as "midwives." O
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UUhy dont ilanes lly urilh cals and doUs?

An uplifting conversation in a downpour

by S. K. Betyaev

NE WET AUTUMN NICHT
while my friend and I waited in
the airport for our flight, we fig-
ured out for ourselves why

planes can't fly in bad weather. It
took us the better part of a day, but
we did it. I even wrote down our ad-
venture for posterity.

"Flight number 429 delayed due
to weather conditions," said the
voice on the loudspeaker. It was
raining cats and dogs, and the
streetlights were blurred in the
dense air.

"Why are flights delayed in this
weather?." I thought out loud. "The
thunder and lightning are gone,
wing icing doesn't happen in warm
weather, and modern navigation
devices can control flights even in
zero visibility."

" -Nha! I know *try," I said after a

long silence. "Airplane propellers
aren't designed to work at such high
humidity."

"Maybe you're an expert in propel-
lers," my friend replied, "but ours is
a iet plane. It isn't seriously affected
by a little water in the engine."

"Then what's wrong? Is rainy
weather just a pretext for other rea-
sons? "

"Don't jump to conclusions. Let's
draw how an airstream containing

water droplets flows around arn irir-
foil."

Having tnoved his cup of crrtlri
aside, my {riend took a sheet oi pa-

per and some colored pens an.1
quickly drew a sketch (fig. 1). Then

Figure 1

he said, "Let's consider the flight
from the plane's frame of reference.
In this dynamic frame of reference,
the wing is at rest and the airstream
with water droplets is incident to it.
At large distances from the wing,
the speed of the air{low equals the
plane's speed from a ground-based
frame of reference."

"What about the force of grav-
ity?" I asked, looking at the sketch.

"It doesn't matter here. From the
runway to the top of the rain clouds,
the average speed of modern passen-
ger planes is about 70 m/s. The
speed of uniformly falling rain drops

is only I0 m,s- Therefore, we can
neglect the force oi gravity."

"Therho$- fu the droplets hit the
rl-ingl"

"'Well, let's consider this process.
Among the rraiectories of moving
'water particles, tn-o are tangent to
the boundarr of the airfoil in our
sketch [tig- f ]: "l-BD alLd A' B' D' . The
traiectories rh.*t tlort- atrove ABD or
belorr- A'HU rJo not hit the wing.
The region colored red will be'dry'
because rain&ops don't land there.
By contrast, the site BCB' is con-
tinuously bonuharded by drops. Each
tirne a drop hits the rvilg, the drop's
momennrm changes, which means
that it is attected by' a {orce due to
the rttng- Therefore, a {orce of the
same magrritude acts on the wing
due to the drop- As you can see, this
force is directed opposite to the
plane's velocity. This is,how extra
resistance is generated."

"So this force is the reason flights
21s grncelled during a heavy ra1t17."

"You're rushing ahe ad agaim," my
friend cautioned. "Let's estimate
this {orce. Meteorologists know that
the heaviest rains ate characterized
by droplets with diameter d= 2 mm
and density pa=2 g/m3. First, let's
assume that the droplets don't devi-
ate from their initial traiectories/ so

;g
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tlre lrnes ABD ar d A'B'D'remirin
straight." (My friencl drew the
sketch in figure 2.)

Figure 2

"In a unit of time the wing is hit
by vSn number of droplets. Here S is
the largest cross-sectional area of the
airfoil perpendicular to the velocity
(that is, it is the area of cross-section
BB') and n: palm is the number of
droplets in a unit volume. Provided
that each droplet of mass m loses all
its velocity in an inelastic collision
with the wing, it imparts a momen-
turrl mv to the wing. Thus, all the
incident droplets impart a momen-
tum of approximately vSnmv per
unit time to the wing. By definition,
this value is the force affecting the
wing. It acts opposite to the direc-
tion of flight. Therefore, the air resis-
tance is supplemented by a ram
force F originating from the incident
droplets, which is about p6Sv2.

The same formula is valid for the
ram force of the droplet-free air, but
in this case it deals with the density
of air p,: F, = p,Sv2. In standard con-
ditions, p, = 1300 g/m3. Thus, the ra-
tio of ram forces resulting from water
droplets and air molecules will be
about F/F, = 

pa/pr = lO4 ."
"From these estimations we can

see that the contribution of water
droplets to the total ram force is very
small. It is actually even smaller than
what we've estimated, because the
trajectories of the droplets near the
wing deviate from the straight lines
I've drawn, and the wing will not col-
lide with every droplet aimedfrom in-
finity to the cross-sectional area S (as

drawn in our sketch [fig. 1])."

"The rain can't impede the flight,
then. So what's doing it?" I said, try-
ing to guide the conversation back
to our problematic flight.

"Be patient, my friend! You're

18

right. Collisions with water droplets
don't hinder a flight. However, thcre
is another force involvccl-the drag
tangential to the wing's surfacc.
Let's conslder this force in detarl.
Clearly, the wing will be wet in
rainy weather. This mcans that in
heavy rain the wing will be sur-
roundecl by water, not air. In wet
weathcr we can expcct a profound
increase in the resistance (draS)
force." My friend tlre w I witrg cov-
ered with a film of water (fig. 3J.

Figure 3

"But," I rejoined, "don't all ma-
chines, including planes, have extra
power to cope with such problems? "

"That's true. But how much
power is needed to overcome this
additional drag? Let's do more esti-
mations based on some new assump-
tions. It's natural to suppose that the
speed of all water particies inside the
film of water is not the same: It is
zero atthe wing's surface (here water
'sticks' to the wing), and it increases
with the distance from the wing.

This behavior of the speed is ex-
plained by the forces of viscous fric-
tion in a moving liquid: Every thin
layer of a moving liquid is affected
both by the lower adjacent layer (1o-

cated closer to the wing), where the
visc,ous force is directed against the
flow, and by the upper adjacent
layer, where the viscous force is di-
rected along the flow. When the vis-
cosity of a liquid is low, the speed
will reach its steady-state value vo at
a.very small distance from the wing.
In other words, the viscous forces
are important only in the thin
boundary layer adjacent to the wing.
Let's suppose that these very condi-
tions are valid in our case." With
this, my friend drew the sketch
shown in figure 4.

Figure 4

At this critical point I heard an
announcement about our flight. We
had been so engrossed in conversa-
tion that we didn't notice that the
rain had almost stopped. Everybody
around us was moving; it was not a

time for scientific explication.
When we were comfortably seated
in the plane, I resumed the conver-
sation.

"Let's clarify the wetness prob-
lem. You had stopped at the bound-
ary layer."

"Oh, yes. Let's suppose that this
boundary layer 'transmits' the force
of the incoming flow to the wing,
thereby producing the extra resis-
tance. Then we can estimate the
value of this resistance. We are in-
terested in the force that acts tan-
gential to the wing's surface. This
force acting on a unit area is referred
to as specific drag.

"It should be independent of
speed," I guessed, "because by the
condition of sticking, speed is zero
at y :0. Then what does specific
drag depend on?"

"The answer to your cluestion
was given by Sir Isaac Newton in
hrs fuincipia Mathematica: Spe-
cific drag t is determined by the
first derivative of the velocity v(y)
taken along the normal to the sur-
face-that is, dvldy. Friction is di-
rectly proportional to this deriva-
tive:

dvt=! 
dr,

where the proportionality factor trr is
known as the dynamic coefficient of
viscosity. This formula proved vi-
able over a large range of values.
Media that obey this relationship are
called Newtonian. The media we're
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interested in (air and water) are
Newtonian."

"Let's say that this reasoning is
correct. But, we/ve just substituted
one unknown value t by another
ldvldy), so we haven't gotten any-
where."

"That's true. However, Newton's
formula provides only a physica.l
explanation of drag. The next step in
finding the forces affecting the wing
was made by the founder of bound-
arylayer theory, a German hydrody-
namicist named Ludwig Prandtl. In
the boundary layer the action of fric-
tional forces is essential, so it is
natural to suppose that these forces
decelerate the liquid. For the ele-
ment shown in figure 4 it can be for-
mulated as

dv
ffl --:- e IS,

dt
OI

^dv dv
Pdsdr *[drt, (1)

where 6 is the characteristic thick-
ness of the boundary layer, s the area
of the element's base, m : p6s its
mass, and dvldt the absolute value
of the acceleration.

"But we've just added to the un-
known values with the newcomer
dvf dt ..."

" Actually, there's another one:
The thickness of boundary layer 6

is not a given parameter either.
However, Prandtl could obtain an
estimate for it. Let's follow his rea-
soning. Since equation (1) is an ap-
proximation, which means equal-
ity to an order of magnitude only,
the first derivative can be replaced
by the corresponding ratio. Thus,
instead oI dvldy we can write vo/6.
The ecluality dvldy : vol6 will be
correct only when the speed profile
in the boundary layer is linear:
v : voyl6.In all other cases this for-
mula is only an approximation, as
is the original equation (1). Now
let's estimate the value of dvldt.
The characteristic Iength where
the boundary layer exists equals
the span of the airfoil 1o (the seg-
ment CO in figure 1). Therefore,
we can suppose

dv*v02.
dt lo

Canceling s from both terms of
equation (1) and inserting the values
of dvldy and dv/dt, we get

-lpoyo _ ,, 
yo

lo '5'

from which we get

where the value Re : pvolo/p is
calied the Reynolds number. It's
named after the English hydrody-
namicist Osborne Reynolds, who
was the first to discover the role of
this dimensionless value in deter-
mining the type of flow. A liquid is
considered low-viscosity if its Re is
1arge. On the other hand, a liquid is
high-viscosity when its Re is small.
As we said before, the boundary
iayer is formed only in a low-viscos-
ity liquid. In aviation, the range of
Re numbers is 106- 108.

"Well, now the question on 6 is
clarified," I said after a pause, "but
what we're interested in is t, not 6.

It's the value of r that says whether
or not the engine can develop the
necessary thrust in wet weather."

"We can easily solve this problem
with the help of equation {2) and by
calculating the specific drag. At the
bottom of the boundary layer we
have

.*flo*U,'oP.i.
dlo

"A similar relationship is valid
for dry air flow. The respectiye'air'
values will be marked with the
lower index value 1:

_ -[r1y0rr 
!

.,, * 

-Ret2,
r0

where Re, : p1v6116/F,. To deter-

mine by wh at factor the drag force is
increased in rainy weather, let's con-
sider the rutio xf xt. Taking into ac-
count the relationships between the
quantities that determine t and tr,
we get

"The values of p, p, p, and F1 can
be found in a textbook. But how can
we determine the value of vof vor?"

"We can do it with the help of
Bernoulli's equation. It provides the
relationship between the velocity of
fluid particles and pressure. In our
case, the air flowing over the wing
virtually moves in a horizontal
plane, so the Bernoulli equation
looks like this:

1n
P+r?v'=const.

"It's not difficult to deduce this
equation. Let's suppose that pres-
sure varies in the direction of flow as
p(x) = kx + const." (My friend drew
the plot shown in figure 5.) "Outside

Figure 5

the boundary layer of a flow of fluid
we considcr a small parallelepipecl
with lcngth AJ and lateral face area
As. The left facc of the paralleleprpetl
is af{cctcd by the force P,As, ancl thc
right {ace by the force P,As. The to-
tal force affecting the rnirl<cJ p.rr.r1-

lelepiped is

113
r Ip)]l p )'Iu,, )]
t-ip, ,[r!.,J t,rJ

I

s * f tL'l'
lprn/

1

6-/oRc f (2)

p = P1As - PrAs = (P, - P, )r_r.

AD
P. = P, + 

tt' 
\/.

LlI
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r=-!laJ,rr=-dPor.dx dx

whereAV: A.lAs is thevolume of the
parallelepiped. The work perf ormed
by moving the parallelepiped aiong
the x-axis is determined by

ira".
J

When the transition is made from
pointx:atopointx:bt

"On the other hand, this work
is equal to the change in the
parallelepiped's kinetic energy
W: Ka- Kolhere we neglect the
work of frictional forces):

from which we get

-u7-rLP,*p;=Pa+pi,
or

I

P+o' =const.,Z

"Well that's settled," I said. "It's
clear how to deduce Bernoulli's
equation. Still, how can we deter-
mine vofvor?"

"With the same equation. It's
valid for both liquid and gaseous
flows. As we did before, mark the
value with respect to air with the
index value of 1. Thus, for the water
film formed on the wing's surface
we have

|)
tr'

P+P:-=coflStr,2

and for the air flow
|)

4+P,1=constr., ,,2

To compare v andvr, we need a re-
lationship between constr/ P, and P'

"Remember that by comparing
the ram forces for flights in dry and

wet we:rther, we cliscover that they
are virtr-rally iclenticzrl. This means
that the pressllre at point C [in fig-
urc 1] can bc considcrcd identical in
both cases. The speecls of licluid ancl
air particles lt this point lre zcro.
Taking this into zlccount, we can
write the following fomrula for liq-
rrid flt,wing aroLrncl a r,r irrg:

)\/-
P+P - =P.,)

And for the air flow, we have

,'iP,+P, r =f
Thercfore,

^ ,'r - 'if-pl=f-prt

"Now 1et's settle the question of
P and P,. The selectecl paralleiepiped
rroves rvith the ilow virtually in the
horrzontal drrection. That is, its ver-
trcal velocity is zero. Thus, the
iorces acting on it frorn above and
bclow are equa1. Howcvcr, in both
cases (with and without the water
fihn) the force which acts frorrl
above is the pressure acting {rom the
'outcr' air f1ow. Thus, both 'air' and
'liquid' parallelepipeds are aifected
frorn below by identical forces.
Therefore, the existence of a thin
water film doesn't a{fect the vertical
clistribution of prcssure, and the val-
ues of pressr-rre are equal in the same
cross-section of water and air flow:
l)_l)
' -'I'

"Now I scc," I intcrrupted my
fricnd. "It {ollows from the condi-
tion P: Pl that

prt - p,r?
))

Therefore

Fina11y, we inferred that when the
rain is ruther heavy, the drag force af-
fecting the wing is increased by a

factor of

The voice on the loudspeaker in-
formed us that our plane had landed.
I put in my pocket the notes my
friend had given me.

At home I looked in some refer-
ence books and found all the neces-
sary values of density and dynamic
viscosity for water and air. Plugging
them into the last formula, I got
xlxt = 1.5. Therefore, an "all-
weather" plane must have an extra
thrust force of 50 percent compared
with a normal aucra{t. This is why
planes don't fly when it's raining
cats and dogs.

We obtained this estimate by
supposing that there is an aqueous
boundary layer on the wing's sur-
face surrounded by air. A question
comes to mind: What thrust force
should an engine have to propel an
airplane in a continuous flow of
water? I chailenge you to solve the
problem on your own. Here's the
answer: To transform an airplane
into a submarine, the power of its
engine should be increased by afac-
tor of

Quantum articles on fluid me-
chanics:

S. Betyaev, "Hydroparadoxes,"
|uly/August 1998, 20-24.

L. Guryashkin and A. Stasenko,
"The history of afall," March/April
1995, 10-15.

S. Kuzmin, "Spinning in a jet
stream, " September/October 199 4,
49-52.

L. Leonovich, "Fluids and gases

on the mover" lanuaryfFebruary
t996,28-29.

A. Mitrofanov, "Against the cur-
reflt," May llrne I99 6, 22-29 .

|. Raskin, "Foiled by the Coanda
effect," I anuary lF ebruary 199 4, 5-l l.

H. Schreiber, " A viscous river
runs through it," November/De-
cember 1995,43-46.

A. Stasenko, "Whirlwinds overthe
nrrrway," |uly/August 1997, 36-39.

I. Vorobyov, "Anopies and bot-
tom-flowing streams," |uly/August
t995, 45-47.
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BRAINTEASERS

Justlurlhglunol il!

8241
Natwal trio. Sam says he knows three natural numbers x, y, and z that
satisfy the equation2Sx + 30y + 3Iz = 365.Is he right?

8242
Short fuse. You have two pieces of fuse, each of which burns in 1

minute. Use these pieces of fuse to time 45 seconds. You may not use
scissors, and the rate of burning rrray vary along the fuse.

is cut from a 5 x 5 grid. Cut the
that they can be folded into a cube

8243
Disappeailng commas. A student wrote three natural numbers on the
blackboard that are consecutive elements of an arithmetic progression.
Then he erased the commas between them, creating a seven-digit
number. What is the maximum possible value of this number?

8244
Cube assembly. The central square
resuiting figure into two parts such
with an edge length of 2 squares.

8245
Retreating rcflection. Once my son and I rowed aboat on a lake. The
forest was reflected beautifully in the calm surface of the water. My son
said, "Let's sail over the reflection. I want to see it under my feet!" We
tried to do so but failed: The reflection always "rafi away." Why?

ANSWERS, HINTS & SOLUTIOIVS ON PAGE 54
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tuclidean colnplicaliolt$

may not remain valid as we travel further afield

by l. Sabitov

What's true locally according to Euclid

HE CEOMETRY WE STUDY
at school is called Euclidean in
honor of the ancient Greek
who used the axiomatic

method to systematize this science.
Among the axioms formulated by
Euclid in his Elements, the fifth
postulate-the p ar allel po stulate-
has become the best known. Essen-
tially this postulate states that for
any point not on a given line, there
is a unique line passing through the
given point that is parallel to the
given line. In the Elements, this
postulate was formulated in a dif-
ferent, though equivalent, way: If a
line intersects two other lines and
forms interior angles on one side of
the line whose sum is less than two
right angles, then these two lines
meet at the side where the sum of
the angles is Jass than two right
angles.

FigUfe 1 . In the figure, if za + Zb < 180,
then lines m and nwill intersect to the
right of line 1.

Figure 2, In Euckdean, Lobachevskian,
and Riemannian geometries, diff er ent
parallel axioms arc used.

However, Euclidean geometry is
not the only logical1y possible one:
non-Euclidean geometries exist in
which the para1lel axiom is quite
different. If we start with a line, and
a point not on it, we can make di{fer-
ent assumptions about the existence
of lines parallel to the given line and
passing through the given point. As-
suming that there are at least two
such lines leads to the geometry
named after the great Russian math-
ematician N. I. Lobachevsky.l Yet

lYou can read the instructive and
dramatic story o{ the discovery of non-
Euclidean geometry, in which K. F.
Gauss and |. Bolyai took part in
addition to Lobachevsky, in the
November/December 1992 issue of
Quantum ("The Dark Power of
Conventional Wisdom" by A. D.
Alexandrov).

one parnllel

many parallels

no pttallels

-
How many parullels!

Figure 3. In a linited pat of the
space, we cannot tell immediately
which of the parallel axioms is vakd.

another axiom-that thete are no
lines passing through a given poinl"
not on a given line that do not meet
this given line-leads to Rieman-
nian (or elliptical) geometry (see fig-
ure 21.

Which of these three logically
possible geometries-Euclidean,
Lobachevskian, or Riemannian-is
true in our real physical world?

It's not easy to come up with a
quick answer to this question. It's not
clear how the parallel axiom can be
verified experimentally. The fact is,
we can extend a line inJinitely long
only theoretically. In practice, even
the best telescopes can reach only a
limited part of the Universe. More-
over/ as we can see from figure 3,
many lines in the given plane pass
through the given point and do not
meet the given line within the do-
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main available for observation (even

i{ the fiith postulate is valid).
So-how can we verify the paral-

lel axiom?

I[e mnnenstolte ol ueolnotry?
It turns out that it is possible, in

principle, to verify the parallel
axiom. This axiom is equivalent to '

the proposition that the sum of the
angles of any triangle is 180 de-
gtees;2 in Lobachevskian geometry,
this sum is less than 180". Gauss
tried to use geodetic measurements
to calculate the sum of the angles of
a triangle formed by three summits
in the Hartz Mountains {Brocken,
Hohenhagen, and Inselberg) located
about 100 km from one another.
Lobachevsky, on the other hand,
chose cosmic distances for his calcu-
lations: he measured the sum of the
angles of the triangle formed by the
Earth, the Sun, and Sirius, the
brightest star in the northern skies.
But in both experiments the devia-
tion from 180o turned out to be less
than the possible error of the mea-
surements/ so no definite conclu-
sion about the geometry of the real
world could be drawn.

However, let's assume that some
observer has managed to establish
with faultless accuracy that the sum
of the angles of a triangle is 180".
Does this mean that the geometry of
our world is Euclidean?

The answer is yes if we agree that
Legendre's theorem is valid (see

footnote 2). However, this theorem
is proved by means of other Euclid-
ean axioms. The question is, are
these other axioms valid in the real
world? For example, how can we be
sure that two lines that intersect on
a sheet of paper never meet again in
real space, if they are extended to an
arbitrary distance? We need to be
equally demanding with all of
Euclid's axioms-we won't assume
in advance that if an axiom is true
within a limited domain, it's also
true in all of space.

2Moreover, the French mathema-
tician A. Legendre proved that the
parallel axiom is true if there exists 4,
Teast one triangle the sum of whose
angles is equal to 180'.

So we arrive at the following
question: assuming that Euclid's
axioms are true "locally" every-
where in "real space"-that is,
within the reach of our instruments
(wherever the observer is situated);
is it true thatreal space is Euclidean
on the whole? In other words, is all
of Euclidean three-dimensional
space an adequate model of all of
physical space? This important (in
essence/ cosmological) question is
open to a purely mathematical for-
mulation, which will be the focus of
this article.

Shmlnonl olfie pl'ohlem

Let all the propositions of Eu-
clidean geometry be valid in the
neighborhood of every point in
space (say, in a sphere whose cen-
ter is this point). Naturally these
propositions must be formulated
in such a way that they make
sense inside the sphere-for ex-
ample, the parallel axiom must be
replaced with the proposition that
the sum of the angles of a triangle
equals 180o, and so on. What can
we say about the geometry of
space as a whole?

A space that is Euclidean in a

neighborhood of every point is
called localLy Euclidean.

Here is a mathematically more
correct definition of locally Euclid-
ean space. Two setsA arrdA' in each
of which the distance between every
pair of points is defined are called
isometilc (from the Greek words
rooo, which means equal, and
ptrpov/ which means measure or
length) if there exists a one-to-one
correspondence between their
points that preserves distance. This
means that the distance labl is equal
to la'b'l for any points a, b e A t[ a'
and b'are the corresponding points
from A'. A space is called locally
Euclidean if a distance is defined
between every two points in it, and
if each point has a neighborhood
that is isometric to a sphere in ordi-
nary Euclidean space.

In this article it won't be possible
to examine locally Euclidean three-
dimensional spaces. We'll restrict
ourselves to locally Euclidean two-

Figure 4. mfinite cylinder.

dimensional spaces. Such spaces
will be called locally Euclidean
planes. Our problem can be formu-
lated as follows. How do locally Eu-
clidean planes look in the whole of
space?

Ihe cylittdol' altd its ileuelomettl
The Euclidean plane itself is

naturally the simplest example of a
locally Euclidean plane. We won't
dwell on this case, but move on to
another rather simple example-the
infinite cylindrical su{ace, or just
t1ne cylinder. Figure 4 shows this
surface as the set of all points of
horizontal lines (generators) passing
through all possible points of the
unit circle Co (directrix) lying in the
vertical plane u.

F{owever, we don't have any "ge-
omefry" on the cylinder yet. We
must define a distance between
points, determine what is meant by
"straight lines" on the cylinder, and
so on. To introduce these defini-
tions, we cut the cylinder C along
one of its generators and develop it
onto the coordinate plane Oxy as an
infinite strip fI whose points (x, y)
satisfy the inequality 0 S y < 2x lsee
figure 5). We will assume that the

Figure 5. rhe cylinder (a ribbon with
Lwo sides idenLified) is localLy Euclidean.
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plane strip II with its edges "glued
together" (that is, if all pairs of
points lb, 0l and (b, Znl are consid-
ered identipal) defines the geometry
on the cylinder. Mathematicians say
that we identify the pairs of points
of the forrn (b, 0) and (b, Znl lor all b
and consider the geometry on the
strip II using this identification.

Let's verify that this geometry on
the cylinder is 1ocally Euclidean. Con-
sider an arbitrary point A(x, y) e II.
If the point A : A, is not on the edge
of the strip (fig. 5), everything is
clear. Consider a circle of a radius z
less than the distance frorn A to the
nearest edge. This circle is entirely
in the strip II and, naturally, is an or-
dinary Euclidean circle. If the point
A: Arrs on the edge of the strip (fig.
5), then its coordinates are of the
Iorn (b, Ol = lb, 2n).In this case,
the union of two unit semicircles
(g1ued together!) with the centers
at the points (b, Ol and (b,2n) carr
be considered a circular neighbor-
hood of this point A : Ar.Since
the semicircles are glued on their
diameters Ml,I = M'N', we obtain
an ordinary Euclidean unit circle
after the gluing.

On the cylinder C, it would be
natural to define the distance be-
tween two points as the length of
the shortest line connecting these
points and lying on C. We could de-
velop another geometry on this ba-
sis. An alert reader might ask
whether this geometry coincides
with the geometry of the strip lI
with identified edges. It turns out
that it does. However, the proof of
this fact, which is related to what is
called differential geometry, is be-
yond the scope of this article.

0eomeny on fie rylindel'
We've established that the geom-

etry of the cylinder is locally Euclid-
ean. How does the geometry of the
cylinder (that is, of the strip II whose
edges are identified) look in the
larger context? How is "distance"
on the cylinder measured? What are
its "straight lines"? Which axioms
are valid?

Before answering these questions,
let's consider a tathet unusual ex-

Figure 6. rtte shofiest distance
betweenpoints A and C is IAK'I + lKCl.

ample. Think of a kingdom with
two parallel roads, with rest stops 1o-

cated at short intervals along these
roads (there may be other roads in
the kingdom as well). The rest stops
that are opposite one another on dif-
ferent roads are connected by tele-
phone lines, but there is no tele-
phone communication between
adjoining rest stops on the same
road. Set the distance between two
points equal to the minimal time
needed to transmit a message be-
tween these points. Suppose we
want to get a message from point A
to point B somewhere in the king-
dom. While there may be a road
from A to B, a courier may do better
to run not directly from A to B, but
toward the nearest telephone booth
(and perhaps even in the opposite di-
rection).

The same unusual distance exists
on our strip with identified edges. In-
deed, consider the points A, B, and C
on the strip lI (see fig. 6). For two
points A and B whose y-coordinates
yaandyrdi{fer by less than half of the
width of the strip II, the distance is
the usual one-that is, the length of
the segment AB. However, for points
A alad B for which lye- ycl > n, the
distance is equal to IAK'I + lKCl,
where A' is obtained from A by
translation upward by the vector
Trt oflength zfr, Kis the point of
intersection of the segment CA'
with the edge of the strip, and, Xfl
: -TR (fig. 5). In the language of the
telephone example, it's more advan-
tageous to send a courier from C to
K, then transmit the message in-
stantly to K'over the phone, and
then send it with another courier
along the segment KAto point A.

Problem 1. Prove that the dis-
tance from point A(xo, Jz4) to point
B(xs, ys) in a strip with identified
edges is given by the formula

IABI=

(r, -rr)' *(y^_ yr')'

if ]ra - y ul< n,

l{
\ tK,' \r:i-) '.r^4

T.

/ .y 7 '..,"/.
b

Fi g ure7. Three t.t,trtes ctl' " strttlght
lines" on tlte c.s,lincler: the spiral line ST,
the staight line RL. ancl thi ctucle MN.

/', x tt, !
)/

I : l"t

,(r,, -rri.P^+ -, i
iflla-ynl>x

"Straight lines," as well as dis-
tances/ are peculiar in our geometry.
They can be of three kinds (see fig.
7al. First, any ordinary line parallel
to the edges of the strip is a straight
line. Second/ any segment connect-
ing the edges with the identified
endpoints that is perpendicular to
the edges is a "straight line." Third,
the set of oblique parallel segments,
such as that shown in figure 7a, is a
"straight line." On the cylinder,
these three kinds of straight lines are
generators o{ the cylinder, circles
parailel to the directrix, and spiral
1ines, respectively (see fig. 7b).

As for the axioms, notice that the
parallel axiom holds in the larger
context (that is, on the entire sur-
face)l

Problem 2. Find the unique
"straight lines" that arc parallel to
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the "straight lines" KL, MN, and ST
passing through point A in figures 7a
and 7b.

But now other Euclidean axioms
are violated-even the ax-rom stating
that there is a unique line passing
through two points. For example,
the red (spiral) "straight line" meets
the black line (generator) infinitely
many times (fig. 7)!

Problem 3. Describe all pairs of
points on the cylinder through
which only one straight line passes.

However, these examples don't
exhaust the peculiar properties of
cylindrical geometry. You probably
have already noticed that the
"straight lines" on the cylinder that
are parallel to the directrix are
bounded: the maximum distance
between points on such a line is
equal to rc.

Problem 4. Give examples that
show that a straight line segment is
not always the shortest route be-
tween its endpoints/ a slanting
line can sometimes be shorter
than the perpendicular, andthat the
Pythagorean theorem is not always
true. Determine what attgvvgldt-a
set of points equidistant from a
given point-looks like as the radius
of the circle increases.

We see that the local validity of
all axioms of Euclidean geometry/
and even the validity of the parallel
axiom in the larger context/ doesn't
ensure that aworld with this geom-
etry is an infinite plane. Such a
world can be structured as an infi-
nite cylinder and, as we will now
see/ as other geometrical structures.

The llattot'tt$
Let a rectangle T with vertices A/

B, C, D be given in the plane Oxy
({ig. 8). LetAB have length 2b andlet
CD have length 2a. Let's identify
the side AB with the side CD such
that A is identified with D and B is
identified with C. Next we identify
the side BC with the side AD such
that B is identified with A and C is
identified with D. (with such an
identification, all the vertices of T
are merged into one point.) We de-
fine the distance between two
points of the rectangle as the length

Figure B. rhellattorus is a "glued"
ructangle. The shortest distance between
points MandNrs lMlVI,l+ lM',N|.

of the shortest path between these
points, taking into account the iden-
tifications made.

We introduce a coordinate sys-
tem as shown in figure 9, with the
origin at the center of the rect-
angle. Let's calcul ate, for example,
the "distance" between the points
Ml-T+ a, t/+bl and N( 3/+a, bl (fig. B).

First, notice that the segment MM,
where N(3/+a, -bl, is shorter than
MN. Therefore/ we must look for the
shortest path from M to N among
the paths that connect M with M
(since M and N are considered one
and the same point). The region to
the right of segment AB is identical,
under our construction, to the re-
gion to the right of segment BC. Set-
ting the strip a < x < 2a, -b < y < b
against side DC (fig. B), we can see

that any other path horn M to M,
including the segment MM, is
longer than the segment M'M. Thus
the shortest path from M to N is the
union of the segments MM, and
M rN', and the "distance" between

M and,N is l@12)2 +12u1+)2 .

Figure 9. Two "sftaightlines" (red
ond blue) ctn Lhe tonts.

Problem 5. (a) Give examples of
pairs of points with the distance
tra2 +b2 between them. (b) Prove
that the distance between any two
points cannot be greater than

^la2 
+b2. (c) Prove that for any

given point there exists a unique
point that rs at adistance "tE;P
from it.

The rectangle 7 whose pairs of
opposite sides are identified, result-
ing in the rule for calculating dis-
tances described above, is called the
flat torus.

"straight lines" on the flat torus
are defined in the same way as on
the strip II, which is a model of the
cylinder. Figure 9 shows two
"straight lines": the red closed
"straight line" AC consists of one
Euclidean segment, the blue "straight
line" consists of many segments-
... Mtl = MolM2(: MrlM4(: Mrl...-
and it may possibly close when ex-
tended further.

Problem 6. Prove that a "straight
line" on the flat torus is closed if and
only if the number (a taln allb is ru-
tional, where tan u is the slope (with
respect to the axis Ox) of the seg-
ments in T that constitute this line.

We assert that the geometry of
the flat torus thus constructed is
locally Euclidean. Indeed, any in-
terior point of the rectangle 7 has
a small neighborhood in which all
objects and rules for measurement
that were introduced for the flat
torus are the same as in Euclidean
geometry. For a point M, on the
boundary, the proo{ can be gleaned
from figure 8. For the vertices, this
is evident from the same figure: all
neighborhoods of the four identi-
fied vertices have been carried to
one point via the identification
rule, and the geometry around this
point turns out to be the geometry
of the Euclidean circle.

Thus the flat torus provides an-
other example of a locally Euclidean
world. Here, as in the case of the
cylinder, the fifth postulate is valid
in the larger context. However, the
structure of the torus in this larger
context differs from that of the ordi-
nary plane and the cylinder.
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Figure 1O. tn\inite tvtobius suip.

Problem T.Prove that there are no
arbitrarlly long distances on the flat
torus/ although arbitrarily long
straight lines do exist. Analyze the
shape of the " circle" on the flat
torus as its radius increases.

The flat torus is different from the
cylinder in another important way.
In gluing the strip II to create a cyl-
inder, the lengths of curves in II are
preserved. The flat torus, however,
cannot be represented as a surface in
three-dimensional space with the
lengths of all its curves preserved.
However, this difference is called an
external differcnce, since it becomes
clear only when we try to relate the
geometry of the strip II or the rect-
angle 7 with the geometry of a sur-
face in a space that is external to
them. If we assume that the rect-
angle 7 is made of rubber and allow
it to be extended, it's possible to
make a torus out of it.

TIE irliltim tultilius sFh
Let's take another look at the in-

finite strip fI, a 3 y Ab, * < x < +6,
but this time we identify the edges
of fI according to the following rule:
the point (x, al is identified with the
point (-x, b) lthat is, the line y: b is
first mirror-reflected about the axis
Oy and then is identified with the
line y = a). The definitions of "dis-
tarrce" and "straight line" are simi-
1ar to those for the cylinder and flat
torus. The locally Euclidean plane
constructed in this way is called the
infinite Mobius strip (the ordinary
Mobius strip is apaft of the infinite
one and is obtained by gluing a finite
vertical strip such as the shaded one
in figure 10). Figure 11 shows three
"straight lines": the black one,

which is closed; the blue one, which
is paral1e1 to the edge of the strip tI;
and the red one, which is slanted and
consists of an in{inite number of Eu-
clidean segments. Using point B as

an example (fig. 10), we can see how
the identification rule generates a
Euclidean geometry in the neighbor-
hood of an edge point of II.

Problem 8. Analyze the geometry
of the infinite Mobius strip. Prove
that each slanted line intersects it-
self an infinite number of times. Is
the fifth postulate valid in the larger
context? What do circles look like?

ThB llnllftilt holtls
Let's return to the rectangle in fig-

ure 8. We'llintroduce the following
rule of identification: the side AD is
identified with BC with the order of
the points preserved-that is, the
point(-a, y) e AD is identifiedwith
the point (a, y) . BC. The sideAB is
identified with CD with the order of
the points reversed-that is, the
point (x, *b) e AB is identified with
the point l-r, b) e CD.In particular,
all the vertices are considered one
point. "Straight lines" and the rules
for measuring "distances" ate the
same as before. Again, it can be veri-
{ied that in a neighborhood of each
point, we obtain a Euclidean geom-
etry (perform this verification for a
neighborhood of the rectangle's ver-
tex). This model of locally Euclidean
geometry is called theflat one-sided
torus or the flat Klein bottle,

Problem 9. Analyze the geometry
of the flat Klein bottle.

As with the flat torus, the Klein
bottle cannot be placed into three-
dimensional space without distort-
ing distances. Moreover, it can be

Figure 11 . Straightlines on the
infinite Mdbius suip: black (vertical),
blue (MN), and red (A'B).

Figure 12. Amodelof theKlein
bottla (with s elf-inter section).

placed into that space only with self-
intersections/ even if we allow
stretching and compressing (with-
out breaks). A model of the Klein
bottle with self-intersection is
shown in figure 12.

tuclidealt tltorld$
Theprinciple of "equal demands"

on all axioms has certainly justified
itself. We found that the Euclidean
geometry of the plane is not based
exclusively on the parallel axiom,
but that other axioms help deter-
mine its properties. Moreover, it
turns out that even i{ a neighbor-
hood of every point is Euclidean and
the fifth postulate holds in the larger
context/ this doesn't necessarily
mean that the space is Euclidean on
the whole (the cylinder and flat
torus provide examples). Thus if the
geometry turns out to be Euclidean
in all the separately examined parts
of space, the Universe on the whole
is not necessarily so simple as the
two-dimensional piane or three-di-
mensional space.

In higher geometries, it is proved
that there are no complete locally
Euclidean "worlds" other than the
five examples mentioned above-
the plane, cylinder, flat torus, infi-
nite Mobius strip, and flat Klein
bottie. (Roughly speaking, " corrr-
pleteness" means that every
"straight line" can be extended infi-
nitely, even if only along itself.)

As for three-dimensional locally
Euclidean spaces/ there are 18 types.
Here we mention only one example:
the layer of space between two par-
allel planes identified at points that
are symrnetric about the middle
plane in the layer. O
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Sound potnlel'

The nature and uses of intense acoustic waves

by O. V. Rudenko and V. O. Cherkezyan

TOP!" ORDERED THE
captain. and the submailne
stood still at once. "Aim! ...
Sound!"

In the first minute nothing
changed in the cruiser's outline. The
ultr asonic gun operuted at point five
of its power. Then suddenly... the
underwatu part of the uuisu amid-
ships began to suetch and tear apafi
lika clay. One minute after the com-
mencement of the ultrasonic at-
tack, the middle of the ship's side
facing the submarine suddenly was
compressed, and sevetal seconds
later cracked lika a giant bubble,
and a formidable stream of water
bust into the holds, engine room,
and ammunition rcoms.

This is a passage from the once
popular science fiction novel of G.
Adamov The Mystery of Two
Oceans. The personages of this
novel circumnavigate the world
aboard the experimental submarine
Pioneer-amiracle of military tech-
nology. Both submarine and scuba
divers were equipped with ultra-
sonic guns, which many times
helped them in critical moments.
With the help of powerful ultrasonic
waves the aquanauts tried to destroy
the rock blocking the exit from an
undersea cave, they killed a huge

sperm whale, which almost sunk
the whalers who harpooned it;
moreover/ they destroyed a hostile
cruiser and even the fantastic ma-
rine monsters that kidnapped one of
the sailors.

You may think these details su-
perfluous, but remember that this
novel was published just before
World War II, and at that time one
could think that ultrasonic arms
were possible and could be produced
after solving some technical prob-
lems. However. . .

In this article we consider some
problems of ultrasound physics and,
in particular, we'll show why pow-
erful acoustic waves cannot be used
as a military weapon. So Adamov's
novel is pure fancy, at least at this
point. By contrast, the list ot "peace-
ful" applications of ultrasonic waves
is cluite impressive: ultrasonic imag-
ing, parametric radiators and anten-
nas, ultrasonic surface cleaning,
hole drilling, and kidney stone
therapy, to name just a few.

In recent decades great advances
have been made in our understand-
ing of Iarge-amplitude waves in gen-
eral and ultrasonic waves in particu-
lar. What do we know about such
waves today?

Previously, Quantum described

some interesting phenomena associ-
ated with large waves on the ocean
surface.l Let's recall what was said
there: The effects that accompany
only waves that arc intense enough
and depend on thefu amplitude are
called nonlinear. There is a field of
science, nonlinear wave physics,
that studies these phenomena. The
subfield of physics that studies in-
tense acoustic waves is called "non-
linear acoustics." This science plays
a particular role in physics due to
the large vanety of phenomena un-
der investigation. Nonlinear waves
are generated in fluids, solidbodies,
and plasmas. They exist in nature in
the atmosphere/ ocean/ soil, and also
in space objects. Examples include
thunder, seismic waves from earth-
quakes, and a number of other phe-
nomena.

Several natural questions may
occur to readers at this point:

. What is intense sound and what
is weak sound, and where is the de-
marcation iine between them?

. What are nonlinear effects,
what is unexpected and extraordi-
nary in them, and what are their
applications?

llvan Vorobyov, "The Bounding
Main," May/|une 1994, pp.20-25.
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We will try to answer these ques-
tions one by one. First of all we re-
call what a sound wave is. A sound
wave is composed of traveling vi-
brations of a medium, which are
successive points of high (compres-
sion zones) and low (rarefaction
zones) pressures. Sustained pres-
sure oscillations caused by changes
in compression occur in every point
of the medium. The pressurevaria-
tions are superimposed with the
mean pressure (existing in the me-
dium in the absence of sound
waves) to find the (net) acoustic
pressure.

A soundwave carries energy-the
potential energy of elastic deforma-
tion (when sound is propagated in
the atmosphere, this is the energy of
air elastic deformation) and the ki-
netic energy of moving particles.
The energy is carried in the same
direction as the progress of the wave.
The flow of energy-the amount of
energy passing perpendicularly
through a unit area per unit time in
the direction of the waYe propaga-
tion-characterizes the intensity of
the sound wave.

Clearly, both the intensity l and
the acoustic pressure P depend on
the characteristics of the medium
through which the sound w ave trav-
els. We will not deduce the respec-
tive formulas but ratherwill give the
formula that describes the intensity
1in terms of the density p and the
sound velocity c (in the particular
medium):

where Po is the amplitude of the
acoustic pressure.

Now let's consider what is
"strong" and what is "weak" sound.
The intensity of sound is measured
in terms of decibels {dB), which are
related to the amplitude of the
acoustic pressure:

B:201og (P/P.*) dB.

Here P is the pressure we are in-
terested in, P,n, is the threshold of
acoustic pressure/ conventionally
accepted to be 2' 10-5 Pa. The pres-
sure P,* corresponds approximately

to the intensity /th, : 10-12 W lm2 ol
a very weak sound, which can be
perceived by humans at a frequency
of 1000 Hz.

The greater the acoustic pressure,
the louder the sound. Our subjective
impression of sound intensity is re-
lated to the notion of "volume," so
it is connected with a certain fre-
quency range characteristic of the
human ear (see Table 1). What
should we do when the sound fre-
quency lies outside of this range and
corresponds to ultrasound? At these
frequencies of about I MHz, it is
most simple to observe the nonlin-
ear sound effects in the laboratory
conditions. Thus, an intense wave is
one in which nonlinear phenomena
become pronounced.

Now let's consider these nonlin-
ear effects. The usual (linear) sound
wave is known to travel in a me-
dium without changing its shape.

The zones of compression and rar-
efaction propagate with the same
speed, which is the speed of sound.
If the source of sound generates/ say/

a sine wave/ its profile will remain
sinusoidal at arry distance from the
source.

By contrast, in an intense sound
wave the compression zones (acous-
tic pressure positive) travel at a

larger speed than the sound, and the
rarefaction zones travel at a smaller
speed than the sound (in the given
medium). As a result, the wave pro-
file is distorted: The wave front be-
comes steeper and the trailing edge
flattens.

Similar phenomena can be ob-
served in ocean waves. At a shoal,
the smooth waves sharpen their
front steeply before breaking in the
surf area. Formation of a steep wave
front or a breaker is a nonlinear phe-
nomenon. The distance 70, over

D)
r - 'l)

2pc

Intensity
level
idB)

Intensity
of sottnd
(w/',')

Acctustic
pressute

(Pa)

Perception and sound source

0 10 r2 210. tht eshold of audibility

10 10il 6.3 10 .
rttstle of leavas in a forest; a weak whisper

at a distance of 1 m

20 10 r0 2.10 4 ticking of pocket watch; tt whisper

30 l0-e 6.3 .10 I the reading ltall in a library

40 108 2103 sttbdued talk' low music

50 107 6.3.10-l weak sound of a loudspettker

60 106 2.10) loud talk; moderately busy street

70 105 6.3 10 '
a truck; noise inside a tafi1; a piano 10 m

awatt

80 10 1 2.10-t a metal-cutting machine; loudspeaker at
maximttm volutne; o busy street

90 103 6.3 10 I old meto car; tlmbulaitce siren

100 10-2 2
the fllght compartnlent o;f tt passenger

plane

110 10r 6.3 ffue engine sfuen; fast train; iackhammer

t20 1 20 ptston afuplane engine; strorlg thunder

130 10 63 rocket engine; painful sensation
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Table 1. Parumeters of soundfor dit'fercnt examples



which a wave should travel to suffi-
ciently distort its shape, is called the
length of breaker formation. Like
any nonlinear phenomenon, the dis-
tortion of a wave's contour depends
on the wave's amplitude Po: The
length of breaker formation is in-
versely proportional to the ampli-
tude-that is, 1, - l/Po. The more
intense the wave, the greater its
amplitude, and the less distance is
needed to distort and break its con-
tour.

However, there is a rival pro-
cess-the damping of a wave in a
viscous medium. Due to this damp-
ing, the wave amplitude decreases,
which results in some "braking" of
the wave contour distortion. If the
damping is rather strong and occurs
over a distance Iu that is smaller
than 16, the nonlinearity canbe sup-
pressed and may not appear at all.
Naturally, parameter 70, similar to 16,

depends on the characteristics of the
medium in which the sound propa-
gates.

Now we can formulate a more
exact definition of a powerful
acoustic wave: It is a wave for
which lu . 10. The ratio 1ol1o is
called the acoustic Reynolds num-
ber (Re). If Re > 10, the wave is in-
tense/ and if Re << 1, it is weak.
Reynolds number is Re : apolf ,

where I is the sound frequency, or

is a certain constant characterizing
the nonlinear and viscous proper-
ties of a medium (the "response" of
a medium to a powerful impulse
and the degree of its distortion by
the medium). Values of this coef-
ficient are different in various
media: for example, for water
o - 300 (Pa . s)-1. When sound of
frequency f - | MHzpropagates in
water, Re > 10 for waves with an
acoustic pressure Po, 3 . 104 Pa.
Thus, an intense sound wave in
water is a wave with intensity

, ,'2,
(3 10.,)

wlrr,'

Figure 1

Let's return to the very tempting
idea of transmitting high-density
energy over large distances with the
help of an acoustic beam. For a
rather long time this idea was con-
sidered to be close to implementa-
tion. In recent years an inspiring
example was laser radiation. Read-
ers may know that powerful laser
pulses can destroy structures and
punch holes at large distances from
the laser. At first glance, it seems
that substituting sound for light in
these operations is possible in prin-
ciple, and only some technical
hurdles must be overcome. How-
ever, there are fundamental ob-
stacles that spoil the idea of creating
a supersonic weapon.

The point is that for any given
distance, there is a limiting value of
sound wave intensity that can
reach the target, and the smaller
this limit is, the larger the distance
to the targets.

The problem here is not the
trivial attenuation of acoustic waves
during propagation in an absorbing
medium, which is described by the
formula P,: Poexpl-xl1^1. Usually
the attenuation length of an acous-
tic wave decreases with frequency as

1^- f-'.In other words, attenuation
drastically increases with frequency.
Flowever, we can choose the fre-
quency such that the usual (linear)
attenuation at the necessary dis-
tances is negiigible.2

Now imagine that at some point
(x = 0) we generate a wave of ampli-
tude and frequency at which the
nonlinear effects are pronounced.
Figure I shows the changes of its
one-period oscillation during propa-

gation. We can see that in the first
part of its path (x < 16) the wave does
not decay at all. Howeyert at x, 7,o,

nonlinear attenuation occurs. The
wave amplitude decreases with dis-
tance from the source as

Po(r r 4)= l:.
1+:

l6

So, the larger the initial ampli-
tude P6, the cluicker it fades. At
very large initial amplitudes, the 1

in the denominator can be omitted,
so the amplitude drops as If x, and
the rate of decay does not depend
on the initial pressure Po, because
lb * I I P o. This attenuation proceeds
to distances where the nonlinear
effects disappear, and thereafter the
wave propagates linearly. Linear
decay is far less pronounced and
does not depend on the initial sig-
nal.

We can obtain a formula for the
maximum amplitude of the sine
wave at the input of a medium, tak-
ing into account both nonlinear (due
to the formation of the steep wave
front) and linear attenuation (which
is described by the attenuation coef-
ficient Ill^l:

-Iim P6(x , 1r,) : P-,*(r) - 4f 
,-xt\' .

P6s- 0,

Again note that the signal amplitude
Polxl at the finish (at distance x >> 16)

does not depend on the signai ampli-
tude Po at the start. We cannot trans-
mit pressure larger than P*o(x) for
any given distance no matter how
powerful the sound generator and
how large the amplitude of the
source signal!

Let/s try to estimate the maxi-
mum intensity that canbe transmit-
ted through 100 m of water by an

pl
r 'U

2pc (z ro')(r s ro3)

= 300 Wm2 ,

which corresponds to an
pressure of B > 180 dB.

2Eor a l-MFlz ultrasonic wave
. propagating in water, 1- = 50 m, whileacousttc i. fo, a higf,-frequency"ultrasonic wave

may be only 10 cm.

0llAI'lIUl'l/tEIIURt 2g



Figure 2

ultrasonic wave with frequency 1

MHz'.

P3,,(, = tOO tt )

Again, at large initial amplitudes Po,

the 1 can be neglected in the de-

nominator. In this case the ampli-
tude of a single pulse at the observa-
tion point (say, an obstacle) does
depend on the amplitude at the ex-
plosion point and is described by the
formula

P,(x)= ro

The dependence on initial ampli-
tude Po is very important here. We
see that in a case where nonlinear ef-
fects are strongly manifested (that is,

in the shock wave), the maximum
value of Po(x) is not iimited by some
value, although it increases more
slowly in comparison with the pres-

sure of the sound generator (it's
proportional to 

^/26= 

and not to Po, as

in the linear case). Thus, by increas-
ing the power of an explosion and
the initial amplitude of the sound
wave/ we can create any large pres-

sure at any given distance and de-
stroy a tatget.

Up to now we've considered the
deformation of a powerful acoustic
wave and the decrease in its ampli-
tude as it travels through a medium.
However, we haven't mentioned the
most important thing-the change
in its spectrum. This phenomenon
is very important in applied acous-
tics.

Let's recall the notion of the
spectrum of a signal. Usually the
word spectrum is associated with
magnificent photographs of the
visible atomic emission spectra/
which consist of bands of different
colors. Every atom is characterized
by its individual "spectral finger-
print." For example, the spectrum
of sodium has a bright yellow line

ever hard we may try to transform
a light wave of a given spectrum in
a linear medium-sending it
through any kind of light filters,
scattering media, amplifiers, and
56 s11-1,vg/11 never obtain new fre-
quencies (that is, new spectral
lines). F{owever, nonlinear trans-
formation by methods of nonlinear
optics is another matter entirely.
It's known that the infrared beam
of a high-power laser can become
red after passing through a spe-
cially chosen crystal. In so doing,
it doubles its own frequency.3

A similar phenomenon of a

multiple increase in frequency-
or, in other words, the generation
of higher harmonics-is also im-
portant in the physics of high-
power acoustic waves. When we
discussed the distortion of a har-
monic signal (fig. 1), we actually
brushed up against this effect. In-
deed, the spectrum of the signal
shown in figure I is composed of
a set of ecluidistant frequencies:
the fundamental frequency of the
generated signal / (corresponding
to the initial, nondistorted sinu-
soidal signal) and higher harmon-
ics of frequency nf (n:2,3,4, ...1,

which arose as the acoustic wave
propagated in a nonlinear me-
dium. In other words, the distor-
tion of the shape of the sinusoidal
wave results in the appearance of
higher harmonics in the spec-
trum. The amplitude of the sec-
ond harmonic (n : 2) increases
proportionally to the distance
traveled by the wave. It can be-
come comparatively large, so it
can be measured quite accur ately.
On the other hand, when the dis-
tance between the sound radiator
and the receiver is fixed, the am-
plitude of the second harmonic

3The article of B. Fabrikant
"Through a Glass Brightly"
lQu antum, September/October 1 990,
pp. 3a{8) describes how visible light
changes its color from green to red
after traveling through several pieces
of green glass. However, that
phenomenon has nothing to do with
nonlinear wave transformation. Can

r
'max

Inserting the values c = 1.5' 103 m/s,
p = 103 kg/m3, cr = 300 (Pa ' s)-1, and
1^ = 50 m/ we get 1-r, = | W fm2.
Therefore, in the optimum condi-
tions for the propagation of intense
ultrasonic waves in water, we can
transmit over 100 m only a small
amount of energy, approximatelY
equal to t Il^2 of the receiving an-
tenna. This is enough for a flash-
light, but far from the power neces-
sary to damage a ship or traumatize
a sperm whale.

What a disappointing result! So

how are the various technological
applications of ultrasound possible?
The answer is that these operations
are performed at comparatively
small distances from the acoustic
generator, where nonlinear attenua-
tion cannot yet damp a powerful
wave and the saturation effect does
not occur.

A reader may ask how we can
explain the mighty effects of shock
waves. We know that shock waves
from explosions can destroy build-
ings at great distances from the ex-
plosion. Shock waves are a very non-
linear phenomenon, and nonlinear
attenuation should progress more
rapidly here than in the rather mod-
erate waves usually considered in
nonlinear acoustics.

The problem is that a single im-
pulse (fig. 2) behaves quite differ-
ently than a periodic wave (fig. 1). Its
peak value decreases with distance
according to

Pr(")=

2cp

8lr r- 7

cpu.-

4,%
tii * 

v?

Po

\,"T + x/7b
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at the wavelength 0.59 pm. How- you guess why?



depends on the elastic properties
of the medium, or as physicists
and materials scientists say, on
the nonlingar modula of the me-
dium. If you're a devoted Quan-
tum reader, you've come across
Young's modulus any number of
times. This parameter describes
the elastic deformation of a solid
body under the action of applied
mechanical stress (recall Hooke's
law). Young's modulus is a linear
parameter, because according to
Hooke's law, the deformation of
a body is directly proportional to
the stress (that is, it depends on
the stress linearly). In case of
large stresses, when the defor-
mations cannot be considered
elastic (the material becomes
"plastic"-it "yields" or even
crumbles), the dependence of de-
formation on stress is character-
izednot only by linear but also by
nonlinear modula of the medium.

Thus, when we measure the am-
plitude of a second harmonic that
has passed through a nonlinear me-
dium, we thereby determine the
nonlinear modula of this medium
and, thereforet can describe its plas-
ticity, strength, and other important
characteristics.

Now we can understand one of
the most important notions in non-
linear acoustics. When we study
the parameters of solid bodies, we
usually subject them to large
stresses. Special devices exert loads
of tens of thousands of atmo-
spheres. Often, instead of using
bulky and expensive equipment,
we can use a far simpler method. A
sound radiator is attached to the
end face of a rod, and an intense
wave is generated in the sample.
On the other face of the rod, the
nonlinear signal is recorded (for ex-
amp1e, by measuring the amplitude
of the second harmonic), which
contains the information we seek
about the characteristics of the ma-
terial.

In contrast to linear waves/ an
intense wave "remembers" the
properties of the medium through
which it propagates. This is why
nonlinear signals are used to analyze

soils and water, which may be im-
pervious to other types of radiation
but "transparerrt" to sound.

If an intense sound wave encoun-
ters another wave (signal), rt "re-
members" the meeting and its char-
acteristics will change. In other
words, an intense beam serves as a
kind of probe (or antenna). |ust imag-
ine: If we just increase the power of
the sound radiated into, say, water,
we get a receiving hydroacoustic
antenna spread over tens or hun-
dreds of meters. The role of the an-
tenna in such a setup is played by
the water column that contains the
acoustic beam-that is, by the space
between the sound generator and
the receiver. Of course/ nothing of
this kind is possible with weak
waves. We know that two linear
waves pass freely through one an-
other, creating an interference pat-
tern in the arca where they cross.
Leaving this area, each wave travels
on as if it had never encountered the
other.

An intense beam can be not
only a receiving antenna but also a
transmitting antenna. Devices that
radiate sound by means of suc.h an-
tennas are called parametric radia-
tors. What are these devices good
for?

We know that the only kind of
radiation that can travel great dis-
tances underwater is sound. With-
out acoustic communication, the
oceans could not be tamed or their
resources tapped. However, to ob-
tain a narrow beam of directed ul-
trasonic radiation, we need very
large antennas whose reflecting sur-
faces are tens of meters in diameter.
The problem of constructing huge
transmitting antennas cafi be
avoided by using the nonlinear in-
teraction of acoustic waves. To this
end, two antennas of conventional
srze are used, which radiate the in-
tense waves with frequencies f, and
lr. These waves interact before fad-
ing at a distance of, say, l km from
the antennas. As a result of this in-
teraction, a new wave is generated
that has a low (differential) fre-
quency f, - f, and is attenuated far
less than the source waves and thus

can travel much farther. Even more
important is the fact that this far-
reaching wave is generated not on
the surface of the antenna (only ul-
trasonic waves with frequencies f,
and f ,are generated there), J:ut deep
in the water. Thus the kilometer-
long column of water-the area
where the waves interact-be-
comes a huge transmitting antenna.
We don't need to build it-it's al-
ready there!

Parametric radiators are cur-
rently used in geophysics, medi-
cine, and atmospheric research.
However, these antennas are most
widely used in marine research.
They make it possible to study the
relief of the ocean floor as well as
the soil characteristics there. Para-
metric acoustics has also been ap-
plied in archaeology: scientists used
it to search for valuables seized by
Napoleon from the Kremlin in
Moscow and discarded during the
French army's tetreat somewhere
in the marshy, silted lakes near
Smolensk; and in another instance/
it uncovered objects from the {irst
poiar expeditions.

Still another application involves
acoustic locators to find schools of
fish at the surface or near the ocean
floor, in the mouths of rivers, or in
shoals-in other words, where stan-
dard acoustic devices can't do the
work.

In this article we tried to de-
scribe just a few of the many inter-
esting phenomena that occur in in-
tense acoustic fields. Nonlinear
acoustics is a relatively young sci-
ence-only about forty years old. It
abounds in problems to be studied
by the younger generation of re-
searchers who are interested in
nonlinear physics and its applica-
tions. O

Quantum articles on waves and
sound:

Kaleidoscope: "Songs That Shat-
ter and Winds That Howl, " latuaryl
February, 1994, pp. 32-33.

Roman Vinokur, "The Impor-
tance of Studying the Physics of
Sound Insulatiorl " November/De-
cember 1995, pp. 78-23-
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higher at the same abso-
lute humidity?
4. High air temperatures can be en-
dured rather easily in deserts due to

the low humidity. Why are high
temperatures unbearable at high hu-
midity?
5. In spring, the water content in the
soil around unmelted snowdrifts is
higher than at some distance from
them. Why?
5. It's drizzling on a cold autumn
day, ar,d the laundry is hung to dry.
Will it dry near an open window?
7 . Can an aspirator raise boiling wa-

ter?
B. How can you convert unsatur-

ated vapor into saturated vapor?
9. When can an increase in the
density of a substance coincide
with a rise in temperature?
10. A licluid is poured into con-

nected vessels of different di-
ameters. If the wider vessel is

qg"B' ry eS,$

ffii11fu,,",i;f?:,1 I

\
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snow crystals-all are cre-
ated by vapors. Water vapor in the
air plays a big role in determining
the weather. Accordingly, weather
forecasts regularly include observa-
tions of relative humidity.

Vapor is also a con-
cern of such vari-

ous people as
sportsmen
and glaciolo-
gists, design-
ers of steam
boilers and

engines, pilots
Ii and sailors, and7/ housekeepers

who hang laundry out
to dry-all of them need to know
about the properties and behavior of
vapors. How much do you know
about vapors?

Questions and problems
1. Why does a drop of
water begin to "lump" =lt;$i-

after landing on a red-hot 'eM#

Iw
plate?
2. Under what conditions can an
increase in the absolute humidity
of air be accompanied by a de-
crease in its relative humidity?

KALEIDOSC

Do you really Ifi

plugged with a cork, will the lev-
els in the vessels change as a re-
sult?
11. Saturated air-free water vapor is
trapped under the piston in a cylin-
der. Will this vapor respond as an
elastic body during compression?
12. A plastic bottle is filled to
9ll0 of its volume with
boiling water and
plugged with a

cork. Shaking
the bottle may
pop the cork. whv?
13. Why does fog hover after
sunrise in autumn for a longer time
over a river than over soil?
14. Precipitation occurs because
Iarger drops grow from smaller ones.
How do you explain this phenom-
enon?

ry

Microexperiment
Water is boiling in two identical

teakettles set on identical burners.
The lid of one kettle jumps persis-
tently while that of the other does
not move. Why?
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OSCOPE

'lffiotttlttapor$?

p
,{

1. $1".'. layer ot water I.I m deep
- - , f; - would be evaporated in a year

-j:'-:j:.i.:f *" from the surface of the oceans.

.if Earth's hy- gineer |ohn Aptken
discovered that during the

...in 1880, the
Scottish marine en-

formation of fog, clouds, and
rain, water vapor condenses on
microscopic par-
ticles such as
sea-salt, specks
of dust, and so
on. Some modern
methods of artifi-
cially stimulating
rain are based on this
discovery.

...the modern device for
measuring water vapor, the
infrared hydrometert car,
operate in conditions
when all other de-

i
l-

I

\

lowered. Such a vapor is used in the vices are virtu-
Wilson cloud chamber, designed for ally useless.
detecting elementary charged par- It compares
ticles. two differ-

Quantum
articles about

vapors:

M. Anfimov and A.
Chernoutsan, "While the water
evaporates/" |uly/August 1995, pp.
25-26.

I. Vorobyov,
"Smoky moun-
tairr," Novem-

ber/December
1995, pp.38-40.
I.Mazin, "An invita-

tion to the bathhouse,"
September/October I 990,' pp.20-22.
A. Abrikosov, "The story

of a dewdrop," September/
October 1992, pp. 34-

38.
A. Buzdin and V.

Sorokin, "Double,
double, toil and

trouble," May/fune
1992, pp.52-53.

A. Stasenko, "Love and hate in
the molecular world," November,,'
December 1994, pp. 10-13.

It is interesting
that...

".4 ,,1 
* ...if Earth's hy-

>;:.*, drologic cycle stopped, a-'.,'/;'/ra?'
li.rt,*' layer of water 1.1 m deep

. :-! i'' -" "' ...if a very clean vapor doesn't con-
tact liquid, it can become supersatu-
rated vapor when the temperature is

dense than dry air at
the same tempera- ANSWERS'-H\IyTS & SOLUTIONS

, ON PAGE 55ture ano pressure.
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...the first hair hydrometer
was constructed in 1783 by the
Swiss geologist and naturalist

Horace B6n6dict
de Saussure. In the

ent waYe-
lengths of infrared radia-

tion that pass through
alayer of air. One wave-

length is absorbed by
water vapor while

the other travels
through it safe and

sound.



PHYSICS
CONTEST

Up,tlpandatntay

by Arthur Eisenkraft and Larry D. Kirkpatrick

Hands, do what you're bid:
Bring the balloon of the mind

That bellies and drags in the wind
tnto its narrow shed,

E'S FULL OF HOT
air! We all know
what the expression
means. Empty talk,

unsubstantiated state-
ments, pretentious \/er-
biage, andboastful babble
all come to mind when we
hear the expression "full of hot air."
Where did such a statement origi-
nate? O. Henry once said, "A straw
vote only shows which way the hot
air blows." What is there about hot
air that would equate it to talking
nonsense? Perhaps the hot-air dia-
tribe is thought of as having no sub-
stance/ ready to just float away.

As students of physics, we take a
more substantial look at hot air. We
know that hot air rises and is one
means by which we can have a bal-
loon soar above us. This month, we
will ignore bees, birds, and helium-
filled birthday balloons and 1et our
minds soar with the hot air that levi-
tates tourists on a Sunday afternoon
or adventurers embarking on a
'round-the-globe expedition.

The hot-air balloon begins to rise
because it is buoyant in the cooler
surrounding air. It rises until the
buoyant force is equal to the weight
of the balloon and the air within it.
To understand the rise and suspen-
sion of the balloon, we must then be
reminded of the grand 1aw of buoy-
ancy, Archimedes' principle, and the
determination of the density of the
cooler air at dlfferent elevations.

perature), we can derive
the equation relating the
pressure to the eleva-
tion.

A fluid element is as-
sumed to be at equilib-
rium within a larger fluid.
For equilibrium, the pres-

sure pushing up from the bottom
must equal the pressure pushing
down from the top surface plus the
weight.

PA=(P + dP)A+ dW
pA=(p + dp)A+pgAdy

dP, = -P8.dy

The pressure decreases
ing elevation.

Since we are assuming
density is proportional to
sure/

P
Dr tl

P
= -SPo;

10

9Po 6,
D.
'1()

tra=-SPo uPo Po'
8po

,-rr,,-,ut

-William 
Butler Yeats

Archimedes, prior to running
through the streets shouting "Eu-
reka!" rcahzed that an object is
buoyed up by a force eclual to the
weight of the displaced fluid. An el-
egant proof of this would assume
that a block of water is floating
amongst the rest of the water. The
buoyant force, due to the pressure
difference between the top and bot-
tom of the slab of water, must be
equal to the weight of the water for
the static equilibrium that we ob-
serve. The pressure difference will
be identical if another object re-
places this slab of water. If, however,
this object weighs more than the
water it displaces, it will sink. If it
weighs less than the water it dis-
places, it wiil rise.

Water is barely compressible,
and the pressure differences will
remain constant regardless of
where the block is placed within
the liquid. The atmosphere is
compressible, and the pressure and
density of the air varies with el-
evation. Assuming that the pres-
sure and the density are propor-
tional to one another (as they
would be for a constant air tem-
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\\,ith Archimedes' principle and
;.-ru denved dependence of pressure
'l c-lcvation/ we are now ready to
:nrbark on our journey through this
month/s contest problem. It is
...Japted frorn the International
Phi'sics Olyrnpiad problem given in
Germany in 1982.

A hot-air balloon, when inflated,
has a constant volume V, : 1.10 m3.
Thc rnass of the balloon material is
llr,, = 0. 1 B 7 kg, and its volume is neg-
ligible. The initial tempcratlue of
the air is T, :20.0'C, and the atmo-
spheric pressurc outside the balloon
is Pu : 1.013 . 105 N/m2. Under thesc
conditions, the density of the air is
p, : 1.20 kg/m3.

A. To what tempcrature must the
air in the balloon be heated for the
balloon to begin to float?

B. The balloon is tethered to the
ground, and the air in the balloon is
heated to a steady state temperature
of 110'C. What is the net force on
the balloon when it is released?

C. The balloon is tethered to the
ground, and the air in the balloon is
heated to a steady state temperatlrre
of 110'C and released. The balloon
rises isothermaliy in the atmo-
sphere, which is assumed to have a
constant temperature of 20'C. De-
termine the height gained by the
balloon under the conditions de-
scribed.

D. The balloon hovers at the
height calculated in part C and then
is pulled from its equiiibriurn posi-
tron by Afi = 10 rn ancl released. De-
scribe the subsequent motion of the
balloon.

Please send your solutions to
Quantum, 1840 Wilson Boulevard,
Arlington, YA222Ol-3000 within a
lllonth of receipt of this issue. The
best solutions will be noted in this
space.

Around and al'ound s]le Uoes
Thrce readers sent in different

approaches to the solution of the
tirst problem in thc March/April is-
sue of Quantum. Art Hovey, a

teacher at Amity Regional High
Sc1-roo1 in Woodbridge, Connecticut,

stated that when the chip breaks off
the rim of a rotating disk, it exerts
no impulse on the disk, so the angu-
lar momentum (and, thus, the angu-
lar speed) of the disk does not
change. David Heller, his student,
noted that the angular momentum
of the particle is initially mR2rllo and
.finally myR. But v: 06R, and the
angular momentum of the particle
doesn't change. By the conservation
of angular momentum, the angular
momentum of the disk doesn't
change. Rob Morasco {rom Hatfield,
Pennsylvania, used a more math-
ematical approach. Conservation of
angular momentum requires

looo : Qo- mRzlar+ mR2roo.

Rearranging terms/

(10 - mR2)roo : (10 - mR2lar.

Therefore, 0f = 00.
The problem in which the ball of

mass m and speed v hits a stick of
mass M and length a proved to be a
bit more difficult. As with all colli-
sion problems/ we must conserve
momentum. Conservation of linear
momentum gives us

mv: MV,

where V is the speed of the stick's
center of mass and the final speed of
the batl is zero. Therefore,

V =9v.M

Because the ball strikes the stick

near one end and perpendicular to
the stick, the angular momentum of
the ball about the center of mass of
the stick is

Li=mv*'
2

The angular momentum of the stick
about its center of mass is

Lt = Ir3= LMo'r,'12

where co is the stick's angular speed
about its center of mass.

Conservation of angular momen-
tum then yields

6mv(D=-.
Ma

Art Hovey was able to find the
condition on the masses for such a
collision to be possible. We know
that the kinetic energy after the col-
lision cannot exceed the kinetic en-
ergy available before the collision.
Therefore,

!-r'>!mv'*!rr'
222

o

=!nil !,)'*1f I mu,\f6mv 1)) \.M ) )\1) )\. uo 1

and

I ./ 4m)_ __r-l 
M ),

M> 4m.
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M241
Squared and cubed. Find all real

solutions to the equation

(x2 + 100)2: (# - 100)3.

M242
Proof perpendicular. Let Mbe the

point of intersection of the diagonals
of the inscribed quadrilat eral AB CD,
where IAMB is acute. An isosceles
triangle BCK is constructed on the
base BC such that ZKBC + IAMB
:90". Prove that KM is perpendicu-
Lar to AD.

M243
Scorched earth. A wildfire in

Florida spreads in all directions at
1 km/h. A bulldozer arrives at the
fire's edge when the fire has burned
a circle of radius I km. The bull-
dozer moves at 14 km/h as it makes
a trench that cuts o{f the fire. Find a
path for the bulldozer such that the
total area burned will be no larger
than (a) 4nltr?; (b)3n km2. (Youmay
assume that the grader's path consists
of line segments and arcs of circles.)

M244
Blocky world. The planet Brick is

a rectangular parallelepiped with
edges of 1,2, and 4 km. The Prince of
Brick built a brick house at the cen-
ter of one of the largest faces. What is
the distance from the house to the far-
thest point on the planet? (The dis-
tance between two points is defined
as the length of the shortest connect-
ing path along the planet's surface.)

HOW DO YOU
FIGURE?

ChallBltUE$

M245
Range finder. The real numbers

a, b, and c satisfy the conditions

0<a<b<c,
a+b+c:7,

abc = 9.

Find the range of possible values for
eachof the variables a, b, and c. (Wam-
ing: Our solution involves calculus.)

Physics

P241
Bubble in glycerin A small air

bubble is in the middle of a long, cy-
lindrical tube filled with glycerin.
When the tube is vertical, the bubble
moves at a constant vo : I crn/s.

If the tube begins horizontal and
then is accelerated in the direction
of its length to the speed v :20 mf s,

at what position will the bubble
stop? Where will the bubble stop if
the tube's speed is gradually in-
creased to 30 m/s? Where will the
bubble be after the tube decelerates
to zero speed? (A. Andrianov)

P242
Helium under pressure. The de-

pendence of the scaled temperature
TlTo of helium on the pressure p/po
has the shape of a circle with its cen-
ter at the point (1, 1). The minimum
temperature of helium in this process
is t-. Find the ratio of minimum to
maximum helium atomic concentra-
tion in this process. (V. Pogozhev)

P243
Compound fuse. A lead wire of

diameter d, : 0.3 mm is meltedby an

electric current 1, : 1.8 A, ard another
lead wire ld2= 0.6 mm) melts at the
current Iz:5 A. At what current will
a fuse blow i{ it is made of two such
wires of the same length connected in
parallel? What current will blow the
fuse if in addition to a single thick
wire it is made of 20 thin wires that
have the same length and are also
connected in parailel? (A. I(hodulev)

P244
Magnetic lift A rigid thin conduct-

ing ring lies on a nonconducting hori-
zontal surface in a homogeneous
magnetic field B, which has horizon-
tal magnetic lines of force. The mass
of the ring is m, and its radius is R.
What current in the ring will cause it
to rise off the surface? (S. Krotov)

P245
X-ray examination. An X-ray

unit consists of a point source S and
a receiver R firmly fixed on aframe.
A thick-walled, cylindrical vessel is
placed between S and R (figure 1).

A
1.0

0.8

0.6

0.4

0.2
0

101234x/cm/
Figure 1

The plot shows the intensity of the
X-ray radiation, which varies u.ith
the r-coordinate. Is there any sub-
stance absorbing the radiation insicle
the cylinder? (A. Andrianovl

ANSWERS, HINTS & SOLUTICNS
ON PAGE 50
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AT THE
BLACKBOARD I

Hiuh-speed Golt$Erttatiun

by A. Korzhuyev

O SOLVE PROB-
lems dealing with
bodies moving at
speeds approach-

ing the speed of light,
we need the laws of
conservation of mt-r-
mentum and energy,
which are well known
in classical mechanics,
but written in a special
form.

Thus, the relativistic
momentum and total
energy of a body with
rest mass mo moving at
speed v is given by the
formulas:

lI7ny
P=-7_::*,.lt- v'l c'

and

E-

where c is the speed of
light. These formulas
are true only for par-
ticles whose rest mass
is not zero. The photon-which
moves at the speed of light and has
zero rest mass-has an energy

E: hv

and momentum

p: hvf c,

where h:5.62. 10-34 | . s is Plank's

constant and v is the frequency of
the photon. Now let's try our
knowledge in practice.

Problem 1. Two gamma ray are
produced by the annihilation of an
electron and a positron, both of
which were moving slowly. At what
angle do they fly away from each
other? What are their frequencies?

Solution. This annihilation pro-

cess can be considered
with the help of con-
servation of energy
and momentum:

jc +-je -+ zy.

Since the initial ve-
locities of the particles
are small, conserva-
tion of momentum
yields

^ ftv, hu,
,

CC
SO

Vt : vz'

The photons must
Ieave in opposite direc-
tions (figure 1), be-
cause only in this case
can the total momen-
tum of the particles be
zero a{ter interacting.

Conservation of en-
ergy produces

2moc2:hvr+hv,

and taking into ac-
count that v, = Y2= Y,

we get

Problem 2. A neutral particle
traveling at v : O.Bc decayed into
two photons that went in opposite
directions after the event lfi1.2l.
What is the ratio of the frequencies
of these quanta?

froc2

lt_ i1c2

)m^c'
hoY

C
0)

-C(-)
@
(U

'=
f

_o
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Figure 1

v(r-
s\/^.-- \.-',^.-',^.,

hr, hr,

Figure 2

Solution. Again we use conserva-
tion of momentum and energy. The
initial momentum of the particle is
equal to the sum of the projections
of the photons'momenta on the ini-
tial direction of the particle's mo-
tion

_ 7rv, _ hv,
t(

The particle's total energy equals
the total energy of the quanta:

-nf , =-hvr+ftvr.
,1 - v2/cr

Upon inserting the value y: 0.8c
into these formulas and multiplying
the left- and right-hand terms of the
first formulaby c, we get

4o
imoc' = hvt - hv z,

5,
i-or'=hvt-hvz.

Adding and subtracting these
equations yields the frequencies of
radiation:

o-r!
hr,
c

hr,
C

vl ='

vz=

3tnocz

zh

,11rrr/

6h'

and the desired ratio

Vt 
-o

Y2

Problem 3. The disintegration of
a moving neutral particle produced
two photons moving at angles
0r : 30o and ar= 60o to the initial
trajectory of the particle. What was
the speed of the particle?

Solution. In this case conserva-
tion of momentum should be "pro-
jected" onto the horizontal and ver-
tical axes (fig. 3):

Figure 4

Problem 4. The disintegration sf
a particle moving at v :0.8c pro-
duces two photons. Find the mini-
mum angle at which these photons
diverge.

Solution. Conservation of energy
and momentum results in (fig. 4)

=hvt+hvr,

hU
C

froc2tw
\t- / lc)

hv, hv,
= 'COStXlr 

-CL)S0,,CC

o = 
ft', ,irro, - 4I2.irror.
cc

Conservation of energy yields

moc2
= hvr + hvz. (3)l-vzfc2

Inserting the relationships sin u,
: I12 and sin u, - "lZ 1Z into (2), we
get

Vt: v2\8.

Plugging this into equations (1) and
(3) results in

i hv. \2-'[-J

*2h2vJzcosb
.)l

C.

where B = 180'- u.
Upon inserting v: 0.8c and mu1-

tiplying the second formula by c, we
get

5,
i*or'=hvr+hv,

t *3r* = (t u,)' + (hv r)2

+2h2vrvrcoso,,.

Now we add and subtract ZhLv rv -2
in the last equation:

15 .A
t -3ro : (hr, + hv 2)2

-2h2vrvr(L- cosu).

Since the total energy of the photons
is constant and equal to (5f 3lmocz,
we have

2h2vrvr(I - cos cr) = mo2c4

which can be rearranged to

- -3"0l-COSU=-
Zhzvrvr'

To make the angle o (or the differ-
ence 1 - cos u) as small as possible,

Now we divide these equations by
one another and get

\J+t

2cv=-=U./3c'.
ri3 +1

, .],

l*nult,ffil Iflvr l
t^t
\L /

frov
ir

,l - v'f c'
(1)

12)

movc

\l- "'1J
= 2hv t,

L

V

h rr_

c

Figure 3

Finally,
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v^^, v2

Figure 5

the product vrv, should be as large
as possible. We know from math
that the product of two numbers
whose sum is constant will be
largest when both factors are equal.
This is exactly our case/ because
hv, + hvr: 15l3)mocz, So V, = Vr.

Now we'll prove this rigorously.
Let's write the product vrv, (it's
more convenient to use hvrftv, for
this purposel as ll5l3)moc2 -hvr)hv,,
and examine the maximum of the
function

. (5 .
/(v: ) = ;flr6d'

\.1

il l, , ) )
=-m,,C'hY, -fi-Vi.f l,

.)

V1

Thus,

-5r515l
hVr =; ffioC' -=ffioC' - jffioC',doo

and the desired product is

_25 mfica
vr v. 

-'r'1 J6 h)

Upon inserting this value into
the expression for (1 - cos cr) we
get

1 - cos 0-i. : l9l25 :0.72,

from which we obtain

gmilr = arccos 0'28 = 47''

Problem 5. Can a free electron
absorb a photon?

Solution. Again we use conserva-
tion of energy and momentum. Let
the electron be at rest before absorb-
ing a photon and then let it acquire
speed v. Conservation of energy

is a pa- yields

) 1 IITnt')
.lllrlC- + 1l\' = ------------u

, I - v-/c'
ancl conservation of flromentum re-
sults in

hv _ mov

, Jr _ ,21c2

Inserting the expression of hv ob-
tained from the second equation
into the first one, we get

"t ITinVC - ffiOCZ--+t-7/7 xr-;r;;
Attet rearangements we have

(c-r)'=c2-v2.
This equation has the formal

roots v : c andv :O.In other words,
the speed of the electron should be
equal either to ct which is impos-
sible, or to zerot which doesn't work,
because in this case the photon's fre-
quency must be zero.

Well, the theory of relativity isn't
so {rightening after alll O

The graph of this
rabola (fig. 5) that

function
peaks at

flocZ
h

5

6

- hr, lhr,-)

[l'l'alum
The gunfire racing problem (P232,

May/|une 1998) stated: A projectile
was fired horizontally from a moun-
tain at an altitude h = 1 km with a
velocity v: 500 m/s. After the time
to = 1 s, another shell was fired in
pursuit of the first. What must the
minimum initial velocity of the sec-
ond shell be and at what angle should
it be fired to hit the first sheil?

Assuming that the author meant
for the two proiectiles to collide in
flight, the answer given is wrong. As
the author's analysis coffectly indi-
cates, the minimum veiocity occurs
at the instant just before the two
projectiles hit the ground. For the
two projectiles to collide earlier re-
quires a larger velocity.

The first projectile will hit the
ground in a time T = trZnls: 10017 s at ahoizontal distance
x: (500 m/s)T :50,00017 m from

its starting point. The second pro-
jectile must reach this same point
in a time t = lT - I sl = 93 17 s. Con-
sequently, after a time t, the hori-
zontal distance of the second projec-
tile from its starting point must be
given by yo cos o,ot:50,000f7 m.

Similarly, after a time f, the verti-
cal distance of the second projectile
from its starting point must be given
by -1,000 r\: -gtz12 + vo sin oot. The
horizontal displacement equation
gives vo cos cx,o :50,000193 m/s. The
vertical displacement equation gives
vo sincro : -945.7193 m/s. Dividing
gives tan uo = -945.7/50,000, or
do = tan-r (-0.018914). The mini-
mum velocity is then given by

s0.000
m/s = 537.73 mls.

93 cos cx6

The author's answer of 535.1 m/s is
not coffect.

The author's solution has two er-

rors. First, the equationfor vris writ-
ten with a cosine instead of a sine.
This appears to be a typographical
error, because the answer is consis-
tent with the use of the sine func-
tion. The second error is more fun-
damental. In calculating the speed r/,
the author uses the entire time of
flight for the first bullet rather than
this time minus tn. Consequently,
the equation for f in the solution
should read

--, 56'M
,l; -to
\t 6

Using tn : 1 s and substituting the
recomputed value for v' in the
author's solution yields the correct
answer of approximately 537.73 mf s,

which is consistent with the alter-
native solution discussed above.

-Submitted 
by |ohn W. Hanneken, The

University of Memphis.
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D. FISCHER, Stetne and Wellruun, Kdnlgswnlet and

H. DUERBECK, Untvegiy of Munsler, bolh, Gunany
tit t:r, f,l ,.4 |,- -t -.. t. t- tt;,;, ; ' I i:

: . 
y' r:

Arguablythe single mostsuccesstul scientitic instrumenteverbuill,

the Hubble Space Telescope continues to dazzle us, ln recent

m0nths il has discovered the rnost dislant known galaxy and lhe

most massr\ie kno\,{n slar and has beef at the lront llnes of all lhe mosl pressing questions in astro-

physlcs.Whai stheageoltheUniverse?Howarestarsborn?Areextrasolarplanetssimilartothose

in our galaxy?

ln Hubble Revrsteci; The Disccvery llacb;te ',he artrors ol ihe highiy acclained Hubble: A New Wnd1w

lo the Unlveseptese\1 a re?/ atras c':.e a:es: 
r" -cc 0' "1ages. c0nD eie !(rth easylo.read explana-

torytext,Thlsb00kprovrdesreaoefs\!i:a.ex.:,'E !:iaea ardgorgeolsyillustratedaccountof
Hubble's breathtakrng discoveries

Acc)atnfor Hubble; A New Windav,'tc i1e i'":3's, SB\ :-3E:.3,16:2.' Sr! 50t:

'...i ts the color plctures whlch naXe j.i j-'.'i ,i.'-ri'" .r i:'-,.,, .r-.1 : ;'l ieast yw: eyes

i4 wondelul v1lune..A clear and rrts,!,1!1",' €xria..atiot s inciuced izr 9;5r ;"i €tt", ^age"

- IHE PLANETABiAN

NOVEMBER 1ggUAPPROX,208 PP.. 1M COLOR ILLUSJHARDCOVEB/S4O,OO/ISBN 0-337.985514

P.J. NAHIN, Untye$lly ol New Hanlshte. Duthan

Rffit* ffin*fusrt*s
ilrrt .Ir*r+i iri fii'i.tilr, irieiri:irr:ic:. aati i,cicir{re lii{i*u
SilIi!al$ l&lii{}l!

kom the foreword of the second edition-
'The nlst lhotough conpendiun et/et willen on line travel ln science flc-

tton...also lhe masl lh1t1ugh ret/iew ol seri)us scientllc lllenlurc 0n the

sublecl..., I an slruck by lhe ttchness and conplexily al the tapeslry ol ideas

that Nahln pesenls.' - KIP TH0RNE, Cal Tech, Pasadena,

aulhor ol Black Holes and nne l/yarys

irorn revlews oi the i rsl edition-
'Herc's a gen ola baok...all peppered wlth dellghllul notes lron science ltclian fllns, nlvels, and canics.

I can'l lun a page wilhaul linding alewel.' - CLIFFORD ST0LL, Universiiy of California,

Berkeley. author oi The Cuckoa's Egg

Explores the idea of lime travel from the fust account in English literature to the latesttheories of physi-

cists such as Kip Thorne and lgor Novikov, This very readable work covers a variety oJ topics including

the history oftime travel in fiction; the fundamental scientific cofcepts 0f time, space{ime, and the foufih

dimension; the speculalions ol Einslein, Richard Feynman, Kurt Goedel, and olhers; time travel

a1-p- Paradoxes, and much more,

RE55 rgsaAppRox. 640 pp., 75 rLLUs./soFTcovER /$34.00/rsBN 0.387.98571.9

C. J. H0GAN, Sutth, WA

Ytue tiitEc $s*k *f Y*r* ffiig ffixmg
i1 {.ii::*rir i}rir,r*t

"Hogan conprexes lhe fllleen-bllllon-year nbl)ry 0l lhe UnMe$e tnlo a pleasurable et/enlng. ln a very

dlrecl way, he answers lhe queslllns eve\lone asks,"

- MARGABET GELLEB. Harvard-Snrithsonian Center for Astrophysics

'Thb delrghtlul liftle prinu bmgs ylu tghl up ta the cuftlng edge ol naden cosnology,'

- GE0RGE SlVl0OI, Principal lnveslrgator. C0BE and author of lUrinkles h fine
An excellent bridge by whlch lhe layperson can enlet the danaln al lhe Cosnls wllh

understanding.' - BoBERT WILLIAMS, Director, Space Teiescope Scrence lnstitute

1998n81 PP., 2i tLLUS./HARDCoVER/$20.00/|SBN 0.38i.98385.6

D.A.LIND, Universrly olColoado, Bzuldet and S.P. SANDERS, //,rirerslJz olNew Mextca, Albuquerque

?he Fhssi*e *f $k[c6t$
iii)r; ei ii:r l:itit }:ili*lr

'Dellvered wlth inslghl and daily, kb b00k deserues a splt on lhe shell al any ski deyltee and wintet

nounlaineer. lU presenls a collecllon ol ideas lhal has slnethlng lo oller each tine lt's opened.'

- LINDA CBoCKETT, Education Director, Professional Ski lnstructors ot America

'Thls skier and physlcist found lt a pleasure l0 read aboul ke htslory ol sking and to haye a welLwib

len b00k on lhe physics ol snow, equlpnent, and sking lechntques (ab7 sn1wb1ading)'

Tip- - ERNEST l\,1. HENLEY, Physics Department. U. Washington

PR€E 1997/2s0 PP., 98 TLLUS./S0FTC0VEB/$26.00/rSBN 1.56396.319.1

A. SHIMONY

lllustations by JoNAIHAN SHIMoNY

ffifum*dm mxtd tfue ${mle im the $alendar
'fhis is lhe stary d fibaldo's great slruggle l0 saye hls 12k binhday hast. ll rs ln ke gnnd tradition ol
Alice in Wonderland andwinnie the Pooh - a childtenb bo1k thal will delight adulls.'

PHYSICS TODAY

WhenPopeGregoryXlldecreesalong-neededcalendarreform,partofthecorrection nvolvesdrop-

ping ten days irom the year. Social upheaval ensues. Determined to recover his birthday, the quick-wrl-

ted hero, Trbaldo, manages an audience wlth Pope Gregory and speaks his mind. This story cleverly

weaves an enjoyable account of the cultural and scientific mllieu ot 16th century ltaly. Beautifully illus

trated wllh drawings that leflect the style of the era, Trbaldo and lhe Hole ln lhe Calendarotlers

a {ascinating look at the Benaissance period and a delightful tale that wili entenain readers of

all ages.

1997/165 PP, 85 TLLUSJHABDCoVER/$21.00/|SBN 0.38i.94935-6

F.G. MAJOR, Cakolic Univenity, Eneritus, Washington, DC

€ite ftffimastssm K$eat
Ii:e ft;rrii Piirr:ipler ll;It*roi* {ilscks

Tlis inlrrgr:rg book examines ihe physrcal principles underlying the workings of clocks - lrom the ear
liest inecnan ica clock to the present-day sophisticaled clocks based on the propefiies o{ individual at0ms,

The presenratior covers a broad range 0f salient topics relevant to lhe measurement 0f frequency and

trme interva s. The nain focus rs on eleclron c time-keeping: clocks based on quafiz cry$al oscillators

afd, al greater lenglh. atomc clocks based 0n quantum resonance in rubidium, cesium. and hydrogen

atoms, and, more recenlly, mercury ons, lntended Ior non.specialists with some knowledge oi physics

orengineering, the bookexp arnsthe myradworklngs cfclocks ofall kindsand ourfundamental reliance

on them.

r998/489 PP., 230 TLLUS./ITARDCoVEB/S49,95/tSBN 0.387.98301.5

L. MERO
s& & & * a rd
[Y{{$8.6i* Uef$ruEeft S[rS
fixrile Tir*or5. icgi*, anii i*ltm:l* Frailt3

ls there such a thing as rational behavior, and if so, how do we use it to our advantage? Hungarian

mathematician Ldszld M6ro introduces us tolhe basics ofJohn von Neumann's gan]e theory and shows

howitilluminalessuchaspects0fhumanpsychologyasaltruism,competition,andpolilics, M6rocov.

ers such concepts as zero-sum games; Prisonels Dilemma, the game of Chicken, where logic proves

that lhe rational strategy is to be irrational: how to be kind to your love through game the0ry; and when

the Golden Rule works and when it leads to disaster. He also shows how game theory is applicable to

ffi fields rang ng trorn phys cs lo evolutionary bioiogy, and explores the role of rational thinking in

{ffi the context of real-Jife siluations ranging lrom dooruay eliquette lo the nuclear arrns race.

# rsgotzez ppJHARDcovEB/$28.00/rsBN 0.387.994r9.4

T.P. J0RGENSEN, Unaerslty ol Nebraska, Llncok

Ttue Physies *f fiolf
'F1r anyone whl has swung a g0ll club, the book is lun la rcad.'

- ROBERT K. ADAIR,aulhot ol The Physics of Baseball

Uugensen lelb g1llers what key 1ught l0 be dolng and why, lhe c1ffecl lechnique accotding to the

princrphs ol physics.' - GoLF WEEKLY

'The heart ol goller Ted J1rgenseng delghtul book lies ln his analysb oflhe swing ol the golfclub and

how, arned wilh lnslghls hon lhat analysis, you, he and I nighl all swing the club beller and play bel.

let gllt... fhe exposition is designed lo be accesslble t0 lhe casual rcadet while satslying the ultlcal
sludent. gul lltsl wlrd u lasl, lor anyone who has swung a goll club, the book ls fun t0 rcad.'

AIP _ PHYSICS TODAY

PRSE 1997/rss pp., 36 TLLUS./S0FTC0VER/$27,00/|SBN 0.8831 B-9s5-0

Ftlerr fiasg tffnys to firder:
. Call Toll Free: S0GSPRINGEB 8:30 am to 5.30 pm EST or FAX: 201-348-4505:

Please nentior Code H307 wher ordering by prone:

. Write to Springer.Verlag New York, lnc.. Dept. H307, P0 Box 2485,

Secarcus. NJ 07096-2485:

. E-mail orde's@sp.4gerly.con (outside Norlh America. orders@spr nger.oe);

. Visit your local scientilic bookstore or u,ge you'1b'arian t0 order.
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AT THE
BLACKBOARD II

Auxilial'y polynomials

by L. D. Kurlyandchik and S. V. Fomin

reason for this relationship.
Let u and y be tr,r.o real numbcrs.

What cluadratic ecluation are they
the roots of? The sirnplest way to an-
swer this cluestion rs to consider the
polynomial

P(t) : lt- u)(r - r-l = Ir + pt + Lt.

Its coefficients arc given by the fol-
lowing formulas:

P:-1rz*l-),
q: Lt\'. {1)

That is, the coeiticients are equal tcr

the surn oi u and r-, taken with thc

opposite sign, and to the product of
these numbers. (In some parts of the
world, the formulas (l ) are referred
to as Vieta's formulas, after the six-
teenth-century French mathemati-
cian FranEois Vidte. For conve-
nience' sake, we'll follow suit.) In
school you must have studied two
theorems connected with these for-
mulas:
. If u and y are the roots of a qua-
dratic equation t2 + pt + q = 0, then
formulas (1) hold (Vieta's theorem);
. The numbers u and y are the
roots of the quadratic equation

E CAN REDUCE MANY
problems to calculating the
roots of an aigebraic equa-
tion. But sometimes it turns

out that to solve a problem we
must construct a polynomial whose
roots are the numbers that we are
given. In what follows we will see
how such auxiliary polynomials
can help us solve various difficult
problems. Many of these situations
are related to those explored in
Gradus ad Parnassum in the |uly/
August l99B Quantum. Later we
will see that there is a very good

,#

o
C
CO

c)o
a)a

_o

42 SIPTEl|/lBIR/OCTOBIB 1SS8

'.,;;,, , 'l
'{' /i'.a;.ri$;+,



t2 - (u + v)t + uv = 0 (the converse
of Vieta's theorem).

Now we'll give a few examples
of problem,s where the converse
theorem proves handy. Let's start
with a simple problem.

Problem 1. Write down a qua-
dratic equation with integer coeffi-
cients, one of whose roots is 2 + J3..

Solution. The solution of this
problem, as well as that of many
other problems, is based on the ob-
servation that the quadratic equa-
tion whose leading coefficient is 1

and whose roots are the "conjugate"
numbers a * b^ld and a - b"tZ,
where a andb are integers, has inte-
ger coefficients. (For more on conju-
gate numbers/ see "Unidentical
twins" by V. N. Vaguten in the No-
vember/December 1997 Quantum.l
This fact is, of course, a direct impli-
cation of formulas (1).

Thus, the roots of the ecluation
we are looking for are tt : 2 + JB
and tr:2 - J 3, and therrlfore its co-
e{ficients are equal to

P: -(\ + tr): -4
and

q: tJz: t.

Answer. t2-4t + 1:0.
Problem 2. Does the number

\: "tE7 - ,m satisfy the inequal-
ityt2+9t-17>Ol

Solution. Consider the quadratic
equation with roots t, and l, : -,lZl
- "lzo:

t2+2^l2Ot-t7=0.

Since 2"u00 = ,80 < 9, we conclude
that

tr2 +9tr-17 > Lrz +2JzOtr-17 =0

(cLearly, tr r 0).
Answer. The number t, satisfies

this inequality.
It often proves much easier to cal-

culate the value of a function at
some point if you start by compos-
ing a polynomial that vanishes at
that point. Here's an example.

Problem 3. Calculate ua - 5u3
+ 6u2 - 5u, when u: Z + "13 .

Solution. Remember the result
of problem t: u2 - 4u + l: 0, or

u2 :4u - 1. Using this relation, we
can express ua andua as linear func-
tions of u:

u3 : u2u : (4u - llu : 4u2 - u
:4(4u-l)-u:l|u-4;

u4 : u\u : (llu - 4lu : l}uz - 4u
: l5(4u - ll - 4u : 56u - 15.

And thus,

u4 - su3 + 6u2 - 5u: S6u - 15

- 5(15u - 4l + 6(4u - 1)- 5u = -1.

Answer. -1.
Taking this example for the

model, we can represent the value of
any polynomial with integer coeffi-
cients at a point u: a + b^,8 inthe
form ku + I (here a, b, d, k, and 1 are
integers).

Problem 4. Demonstrate that the
number (7 + ^,!+slz + (7 - {48 )13 is an
integer and is divisible by 14.

Solution. The numbers u:7 + .yfug

andv :7 - ^[48 
are the roots o{ the

square trinomial * - l4t + 1. Using
the formulas u2 = l4u - 1 and
# : t+v - 1, we obtain the following
"recursive relations" for the values
an: 1ln + vn:

ao: 2,
At:U+V:14,
az: 1t2 + # : (l4u- 1) + (|av- 1)

:74at- ao,

a.t : u3 + # : u(l 4u - l) + v(I4v- t)
': l4az- at,

I

an:11n + vn

- un-2(l4u - ll + vn-zl14v - Il: l4ar_r- an_2.

The fact that a1l the numbers a,
are integers follows directly from
these formulas. In addition, we can
show that for odd n, a, is fivisible by
14. We prove the latter statement by
induction on n: If an_ris divisible by
14, then the last formula implies
that anis also divisible by 14.

Problem 5. Calculate the value of
uB + lfug, iIu = ",li+ l.

(Answers and hints for problems
5, 10, 13, and the exercises can be
found on page 54.)

Vieta's formulas for polynomials
of arbrtrary degree are obtained just
as they are for quadratic polynomi-
als. We write

Pltl : lt - x,)(t - ,zl ... (t * x,l
= ln + arLn-1 + artn-)+...+an,

where xr, X), ... I xn are its roots. We
remove parentheses, collect like
terms, and set equal the coefficients
of equal powers of t on both sides.

Let's write these formulas expiic-
itly lor a third degree polynomial
with roots x, y, and z:

Pltl:(t-xllt-y)lt-z)
:t3+ptz+qt+r,

P=-x-Y-2,
q: xy + yz + zxt (2)

r = _xyz.

Now we proceed to the most in-
teresting problems illustrating the
advantages of employing auxiliary
polynomials. In all of these ex-
amples we consider the polynomials
constructed for a set of three or more
roots.

Problem 6. The numbers x, y, and
z satisty the reiation

X+l+Z=4,
Ilx + Ily + llz: 1/a.

Prove that at least one of these num-
bers must be equal to a.

Solution. Let's use formulas (2).

We obtain

p:-lx+y+zl:-6,
q: xyz(llx + lly + llzl

:xyzfa=-rla,

and thus

P(tl:t3-atz-(rla)t+r
: lt - al(rz - rl al.

So, one of the roots of the polyno-
mial P(t) is equal to a. And therefore,
one of the numbers X, y, or z must
be equal to a.

Problem 7. The sum of three in-
tegers u, v, ar.d w vanighes. Prove
that the number Zua + 2t/ + 2t# is a
square of an integer.

Solution. Let P(t) : ta + pt2 + qt + r
be a polynomial with roots u/ v, and
w. According to Vieta's theorem,

p:-(u+v+w):0.
Therefore

u3+c1u+r:0,
tF+c1v+r:0,
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-n+fi + qw + 1: 0.

We want to obtain the expression
given in the problem/ so we multi-
ply these formulas by 2u,2v, ar,d
2w, respectively, and add them. We
get

Zua +2# +2t$ +2qlu2 +* +v?):0
(we've used the condition u + v + w
= 0). But

u2+tP+-"tP:(u+v+wlz
- zlxy + yz + zx) : -2q.

Therefore

2ua+2t/+Zyf:lzql'.
A similar technique works for the

following problem, which often ap-
pears in mathematical Olympiads.

Problem 8. Decompose the fo1-
lowing polynomial in x, y, and z

F*f+23-3xyz
into the product of two other poly-
nomials.

Solution. Consider the polyno-
mial P(t) : t3 + ptz + qr + r with roots
x, y, and z (that is, P(x) :0, P(y) :0,
P(zl:Ol. Let's add the corresponding
equalities:

*+p*+ex+r=0,
t'*pf+el+r:0,
z3+pz2+qz+t:0.

Using Vieta's formulas (2) and the
identity

**f+22:lx+y+zl2
-Zlry + yz + zxl: pz -2q,

which we've used in the previous
problem, we obtain

f * t' + * + plpz - \ql - qp + 3r : O,

and thus

**f+*-Bxyz:#*t'+*+3r
= -plpz - 3ql
: lx + y + zll* + f * * - xy - yz - zYl.

Remark. The quantity

**f+22-xy-yz-zx
is nonnegative (since

k - yl' * b - zl2 + (x - zl2 > 01.

Thus the identity we've proved im-
plies the inequality

a+b+c _^s

-a\l 

t" ubc, (3)
.-)

which connects the arithmetic and
geometric means of three nonnega-
tive numbers. It's sufficient to set
, : \li, y : W, and z : {,6 in irr-
equality (3).

Now 1et's show how auxiliary
polynomials help solve systems of
equations.

Problem 9. Solve the system of
equations

Solution. Continuing with the
methods we've developed, we start
by considering the following polyno-
mial:

P(tl:(t-xlft-y)(t-zl
:t3+pt2+qt+r.

According to Vieta's theorem,

= -5.
2

To calculate the coefficient r, we
multiply the equations of the sys-
tem by c1, p, and 1, respectively, and
add them. Since P(x) : PVI : Plz) :0,
we obtain

-3r :2q + l4p + 20
: -10 -28 + 20 : -18.

Consequently, r :6 and

P(t) : t3 *2t2 - 5t + 5.

We can see that the number 1 is a
root of this polynomial (we invite
the reader to check this). Now we
can factor Pltl:

P(tl : (t3 - *) - (t2 - t) - (6t - 6)
:lt-t)(t2-t-61.

Therefore, its roots are l, -2, and 3.
Answer. (I, -2, 3l; lL, 3, -Z);

(-2, t, 3li l-2, 3, t); 13, t, -2)j
(3, -2, ll.

Problem 10. Solve the system of
equations

The method that we consider
here proves efficient in many prob-
lems involving inequalities. Here
are several examples.

Problem 11. The numbers 7it vt wl
x, y, and z satrsfy the foilowing re-
lations:

X+y+Z:A+V+W,
XIZ = UVW,

0<u<x<y<z3w,u<v<w.
prove that u = Xt V = j/, W: Z.

Solution. Consider the two poly-
nomials

P{tl:lt-x)lt-ylft-z)
:f+pt2+qt+rl

and
O(t): (t -ullt-vllt-w):t3+pt2+kt+r

(according to Vieta's theorem, the
constant terms and the coefficients
at t2 of these polynomials must be
equai). Set R(u) : P(t) - Qltl : (q - k)t.
Then

R(u) : Plul : (u - xlfu - y)(u - zl < 0.

On the other hand, Rltl : kI - k)u,
and thus q - k <0. Similarly,

R(w) = Plwl : lw - x)(w - y)lw - zl > o,

and therefore q -k > 0. Thus, we
conclude that q = k, and the polyno-
mials P(r)and Q(t)are equal. So, the
sets of their roots coincide. We fin-
ish the proof by taking into consid-
eration the inequalities given in the
problem statement.

Problem 12. (This problem was
proposed to the participants of the
XXV International Mat\ematical
Olympiad (19841in Prague.) Prove
that the following inequalities hold
for all nonnegative X, y, and z such
thatx+y+z:l:

0 < xy + yz + zx - Zxyz < 7 127.

Solution. It is not difficult to
prove the first (left-hand) inequality:

xy+yz+zx-2xyz
: xy(l - zl + yz(l - xl + zx> O.

lxvz=l
)r'*r+z=xy+yz+zx
frt*rr1+zt=7318.

lx+y+z=)

]'. 
.'. + /.=14

fr'*y'+z'=20.

/-- -, -\ .
1'--\^TyaL)_-Ll

q=xy+yz+zx

(x+y+r)'-("'+t2 +r')
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To prove the second inequality, let's
consider the polynomial

P(t)=(t-xlft-illt-zl.*3 *2:1"-L-+qt+r,

where q : xy + yz + zx, t : -xyz. Lett s

rewrite the inequality as follows:

Exercises.
1. Prove that Q8 : 13 - 210 if

0 : (1/2)(1 - .,,,5 
)

2. The sum of the lengths of the
edges of a rectangular parallclepiped
is 96 cm, its surface area is 286 cr:-'tz,

and its volurne is 120 cm3. Calculate
thc lengths of its edges.

3. Solve the system of equations

lx+v+z=l
1... , . ,) , -) - t
1x"+Y-+z =r
lrt *y' + z' =1.

4. Factor the polynomial in the
form of the product:

. ,1; ,,, -l r r - .,lr
l^-yt +\y-21 +\z-At

5. The positive numbers x, y, ar1
: .atisfy thc ine.lualities

xyz > l,
\-l-+ z<lfx+lly+llz.

Shorr that one and only one of thesc
numbers is 1e ss than 1. O

ANSWERS -r,r'ilS & SOLUTIONS
O1'1 PAGE 54

We conclude our article with sev-
eral problems involving polynomi-
als with degrees greater than three.

Problem 13. Soive the system of
equations

X1 +X2+...+X,=l?

"l +"2, + ...+ xl = n

,,t _.1 , , __,1

^l 
f ir t...T  n - 1l

::
xlt+r. - .+r.] =71

(here x,, X), ... , x,. are regarcleil as

complex numbers).
An attentive reader rught har-.'

noticed that all of the problems
we've considered dealt with so-ca11ed

"symmetric poiynornials" : the same
sorts of polynomials discussed in
Gradus ad Parnassum in the three
previous issues oI Quantttm.

one such nurnber, of coursc), then

/,i 1 l=l1-,,ll!- " []_, l.o\2) 12 )rt')\) )

Srnce

Pllt=l)l
it is enough to demonstrate that
Pll12) < ll216.If none of the num-
bers x, y, and z exceed 1/2, then, by
thc arithrnetic-geometric mean in-
equality (3), we have

d Ll=ll_"lll_"1[1-,]
12,/ \2 /12 i\2 )

i I t I \'
lr-r*t-I---zl ,ti, t=l 3 l=ta.l 

=zK.
l,,l

And if one of these numbers is
greater than l12 (there can only be

lB,g,e,ks [gn: lP,ee,ple Mh,e, ]Eftke ilI:urnhenstli
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IN THE LAB

tUlaunetic lieldworlt

by D. Tselykh

certain value of velocity when af-
fected by a {orce; its velocity in-
creases gradually. In the same way/
closing a circuit cannot produce an
immediate increase in current; self-
inductance causes it to grow gradu-
ally also.

In electrodynamics the quantity
that is analogous to the mechanical
velocity v is the current 1, which
describes the motion of electric
charges. The analogue of the mass
m is the (self-) inductance I, since
I is the value that determines the
rate of change of the electric cur-

I N PHYSICS COURSES, STU-
I d"n,.learn the methods that aI-

I ,o- us to measure tne energy or
I electric field U.. For exariple,
we can discharge a capacitor of ca-
pacitance C initially charged to a
voltage V through a resistor R and
a microammeter. By plotting the
graph of the dependence of elec-
tric power P on time, we can de-
termine the amount of heat Q dis-
sipated in the resistor during the
discharge of the capacitor, which
is equal to the area under the
curve. According to the conserva-
tion of energy/ this amount of
heat is determined by the energy
stored in the capacitor's electric
field

u^ =cv''),

However, students are not usu-
ally shown how the energy stored
in a magnetic field is measured.
We will try to fill in this gap. It is
known that a current-carrying
wire generates a magnetic field
whose energy is determined by the
current 1 and the inductance I of
the wire:

rr :Ll'"m 2'

This formula can be obtained in
the simplest way by analogy be-
tween the phenomena of inertia and
self-inductance. Inertia dictates that
a body cannot immediately garrT a

Figure 1

rent variation. Therefore, the en-
ergy of a magnetic field should be
analogous to the kinetic energy of
the translational motion of a mov-
ing body mv2f Z-that is, LI2f 2. A
more rigorous derivation of this for-
mula is based on calculating the
work of the self-induced emf during
the change of electric current in the
circuit. Try this derivation on your
own.

This theoretical result can be
tested experimentally. The energy
of a magnetic field can be found
from the amount of dissipated heat.
The experimental design is as fol-
lows: Self-induced current in the
electric circuit (figure 1) results in
the dissipation of heat in the resis-
tance R6, and the amount of dissi-
pated energy is equal to the loss of
magnetic field energy. When the
circuit is closed, the current travels
only across the coil with induc-
tance L, since the diode D is con-
nected in reverse with respect to
the polarity of the battery. When
the circuit is open, the current
passes through the resistance, dis-
sipating heat.

The amount of dissipated heat is
measured by a thermoscope (figure
2), which is made of a test tube that
contains a heating coil (our resistor
R6) and a caplllary tube with a col-
umn of lic1uid. When current passes
through the heating coil, it warms
the air in the test tube and therefore
displaces the column some distance
Ax. The amount of heat obtained by
the air in the test tube is determined
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by the formula

Q = cinLT,

where m is the mass of air in the
tube, c is the speciiic heat of zrir, and
AT is the change in terlperature,
which can bc found from the ideal
gas law. As he:rting takes place at
constant pressure P, the tempera-
turc chzrnge is related to the change
of volume -\l'accorcling to the for-
mula

PLV = lan ,M

where M is the molar rnass of air
and R is the gas constant. Wc also
have

- rd)
-\\'=.r\ = 

-Ii,
where d is the diameter of the cap-
illary tube. Inserting the tempera-

tute inctement determined by this
forrnr-rla into the equation for Q, we
get

Prd) l-xcM
4R

Thus, the arnount of heat dissi-
pated in the thermoscope is clirectly
proportional to the displacement A,v
ot the litluid colurnn.

We rnust now recall that the in-
cluctance coil is made of wire and
thus also has a resistance R.. There-
iore, the a1-nourlt of hcat obtained
by rhe a1r 1n the test tube is morc
correctl)- derermrnecl br. the for-
mula

t' - L-l'''I'''
R6+R-

which shows that the energ,v ot the
magnetic field U- is also directil
proportional to the displacement \r

of tl-rc licluid column in the capillary
tube of the thermoscope.

In our experimcnts we used diode
D226B, a chokc coil with 3600
tllrnsi ancl a core {which can be
found in a school lab). The heating
coil R,, was made o[ constantan wirc
0.05 mm in diameter and 35-210 cm
in length. The therrnoscope ({igurc
2), which measures hcat energy,
consists of a test tube (1), rubber
stopper (2), coppcr wires (3), T-tube
(4), the capillary tube {frorn an alco-
hol thcrmometer) with licluid co1-
umn 151, a scale i(r), srtt,rrtatt spi-
ral l7 ) , and syringe ( 8 ) (the syringe is
needed for adjusting the position o{
the licluid column in the capillary
tube).

The experiment should be re-
peated sever:rl times with different
virines of the current 1in the incluc-
tror-r coil lthat is, with various values
.t th. rnrtral srorcd rxagnetic cn-
ct:r . The rr:Lrlts of this experi rttent
are gir-en in iigure 3.

The plot ot the clisplacement Ax
versus the stlu:rre oi the current 12

(figure rl), rvhich eleterrlines the en-
ergy of the magnetrc iiclcl, shorvs
that the displacement is almost cli-
rectly proportional to thc cncrgl. oi
the magnetic fieid, rvhicl-r corre-
sponds to our previous theoretical
reasoning.

Repeating this experrmcnt $,itil
different induction coils shows that
the displacement Ar of the licluid
column is directly proportional tcr

the inductance I if the strength of
the current is the sanc in all tests.
Now we only need to calibrate our
devicc using a coil with a known in-
ductance to finish our homemacle
magnetometer. O

Quantum articles alrout nrtgnetic
fielcls:

Ktleidoscole: " Electromagnetic
induction," March/April 1991, pp.
JZ_OJ.

A. Mitrofanov, "Can you see the
magnetic field?" ]uly/Augr-rst 1 997,
pp. 18-22.

A. Stasenko, "Magncts, charges, and
planets," May/lune 1997, pp. 12-45.

|. Wylie, "Magnetic monopoly,"
May/|une 1995, pp.4-9.
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HEN WE AIM A CAMERA
and bring the picture into
sharp focus/ we are position-
ing the optical image exactly

on the emulsion layer of the film. To
focus a movie at the cinema, the
projectionist must make the image
coincident with the plane of the
screen. However, the concept of
definition (sharpness) becomes
somewhat unfocused when no
screen is needed for observation (for
example, when an object is regarded
with the unaided eye).

Let's try a simple experiment.
Look out the window. The distant
objects appear clear. Now look at
the objects located several meters
from you. The definition (sharp-
ness) is also high. Moreover, when
reading this page, you have a sharp
image of the text as weil! This is
possible because your eyes are au-
tomatically adjusted for sharpness.
The adjustment is performed by
your brain with the help of clliary
muscles that de{orm the pliable

AT THE
BLACKBOARD III

ln loctl$

by A. Dozorov

crystalline lenses in your eyes/ a
process known as accommodation.
As a result, the optical image is
made to lie on the retina (the bio-
logicai "screen"), and your vision is
clear (fig. 1).

In other words, although the dis-
tance d to the object varies, the dis-
tance d'between the lens and the im-
age (retina) doesn't change. This is
possible only when the focal length I
of the crystalline lens varies accord-
ing to the lens formula:

OI

11, -D-T--1-dd'

where P : llf is the optical power of
the lens. The unit of optical power
is the diopter when the focal length
is given in meters.

When an eye views a distant ob-

iect (l ld -+ 0), the accommodation
muscles are virtually at rest. In this
case, f : d' andP : lld'. Usually the
distance d' between the crystalline
lens and the retina is about 3 cm, so

f : 3 crn and P = 33 diopters. When
an object approaches the eye, the
accommodation muscles start to
work: They decrease the focal length
of the lens according to the lens for-
mula; the lens becomes more con-
vex. When an object is placed at the
distance of most comfortable vision
(about 25 cml, the optical power of
the lens is 37 diopters.

A further decrease of the distance
between the eyes and an object over-
strains the accommodation muscles.
They can't work properly, and the
image is no longer focused on the
retina and becomes blurred. If the
accommodation muscles are rather
strong/ the optical power can be en-
hanced up to 43 diopters to see an
object from a distance of only 10

cm. In this case the smallest details
can be viewed best, but the eyes get
tired very quickly. Thus, the dis-
tance of comfortable vision corre-
sponds to the optimal case, when
the small details of an object can be
viewed cluite clearly without over-
straining the accommodation
muscles.

Now let's consider the case when
the eye is assisted by a system of
lenses-say, by a microscope. The
optical system of a microscope cre-
ates a magnified virtual image A'B'
of an object AB ([1g.2). Sometimes
when looking at an oblect through a
microscope/ we cannot see it clearly

Figufe 2. rhe opticttl systern of a
n-ticrosco1te. The magnified ttncl inverted
virtttal intag,e Ats'of the obiect AB is
viewed by obsen,er's eye.

111r_-_
d' d'- f '

t,
A'

Figure 1 . Formation of an image on
the retina of an eye. Shovw are the
object O,lens, and retina R.

obiectlve
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(its definition is low). Why can't the
eye produce a clear image in this
case? And what happens when we
adjust the rrlicroscope for sharpness?
What do we do by shifting the
microscope's ocular lens?

The point is that the virtual im-
age is formed by the system of lenses
too close to the eye/ so either the eye
or the image should be moved to
meet the requirements of the ac-
commodation muscles. These con-
ditions are known-the image
should be positioned at the distance
of most comfortable vision. If we
simply move our eye away from the
ocular lens, most of the light rays
from the image will not hit the eye,
and the projection on the retina will
be degraded both in scope and
brightness. Therefore, it is farbetter
to shift the image rather than the
eye. This can be done easily by
changing the distance between the
objective and ocular lenses. This is
just what we do when adjusting a

system of lenses for sharpness.
Until now we have tacitly sup-

posed that the object is planar. In
reality, most obiects are three-di-
mensional, but their images in any
optical system are planar.

Let's draw the images of points A,
B, and C of the same object that are
located at different distances from
the lens (fig.3). Each image lies in a

different plane. If the screen is posi-
tioned so the image of point B is un-
blurred, the images of points A and
C will appear not as points but

Fi g ure 3. rl-,e ef f ect of bettnt s,ticlth on
tlte deptlt of focus. Tlte noruowet'beants
provide l'tig,her clefinition of the intages
of tlte points A ancl C,

rathcr as clisks known as "circles of
confusion." The size of thc circle oi
confusion is related to the size of thc
lcns: the smaller the lcr-rs's diarneter,
thc lcss blurrecl are thc images A'
and C'. Therefore, narrow light
beams are the best tools for focusing
the images of points that :rre at dif-
ferent clistanccs from the lens. In
other words, dccrcasing the diam-
eter oi thc light beam (apcrture) im-
proves the clepth of focus. What does

this n-reanl
\\'hen a Lrcrson views a disk with

Lrnalrlerl eve s, thc clisk rs perceivcd
ils a poinr 1it-s irnage is clearl if the
il1rgL1lirr magnitr-rcle of the disk is
about 1' = 3 10-- racl. Usually wc
obserr-c an obicct ir-om the rlost
comiortable drstance r = l5 crl. In
this casc, the r-n:rxir-nlL1r e11;lmcter oi
thc circle is

2r - lo tan u = luu. = --. l0 ' crtt
: 0.075 n-rm.

Let points A and C (fig. 3J be pro-
jccted onto the screen as circles oi
confusion of the same radius r. In
this casc, the geometrical range of
sharp im:rgcs (the distance between
thc planes on which points A and C
can be projected as points rather
than circlcs of confusion) is cclual to

t t -2rl -Ll'a./r -l)='t'--D,-D,t

where I is the air,rr." between the
lens and the obiect and D, is the
lens's diameter. This value is re-
ferred to as the dcpth of focus (not to
bc confused with the depth of fieldJ.
The formula shows that the depth of
focus is inversely proportional to the
wrdth o{ the bearn.

Since the diffcrent points of thc
object correspond to different circles
ot confusion in the itnage, it is im-
portant that these circles do not
overlap. Ii the acljacent circles do not
overlap, they arc perceived as sepa-
rate entities. In this case, the opticai
systcm is said to resolve these two
points. On the contrary, when the
circlcs are superimposed, the result-
ing imagc consists of a singlc spot,
or in other wrr1i5, the points arc not
resolved by thc system. A decrcase

in the lens's diameter leads to
smzrllcr circles of confusion ancl tirus
to an increilse in resolvlng powcr. If
the lens's cli:rmetcr is large, the rc-
solvrng power becomcs low, ancl in-
stead of a sharp imagc we get a

bIurrerl sI\()1. Thus, tnittirnizing ap-

cl'ture theatr-r width) is very i:ttptrr-
tzrnt for obtaining a sharp image of
an object.

In any optical systcm the light
beam is limited in diarleter, by lens
mounts or special diaphragms of
variablc diameter. In the cye, the
role of such a diaphragm is playcd by
the iris, which has atr orifice trf vari-
able diamctcr, the pupil.

Flowever, there is another sicle of
the coin: Minimizing the aperture
rcsults in a decreasc in the lumi-
nous flux coming into the optical
s-YSteln. Thereforc, the image is
rlirlmcr. Take a coffrmon camera as

an erirmple. In many cases, peoplc
p1-rotogralph cllstant objects, so the
curresponding images lie exactly in
the toc:r1 plane oi the objective. In
thrs case, 11nage rllumination-the
ratro oi lurninous flux to image
area-becomes proportional to the
square oi the ratio oi the diatneter
of the objectir,c to rts iocal length
(check this on )-our otr-nr. The ratio
of the cliameter of the objectir-e to
the iocal length is knorr,n as the i
number.

Therefore, an increase in thc
depth of {ocus leads to a decrease in
the brightness of the image. High-
performance objective lenses pro-
vide bright images with high defini-
tion.

In closrng we mlrst note that we
have considered the problem of
depth oi focus and resolving power
only within thc frarnework of geo-
metrical optics. In rcality, such phe-
nomena as light diffraction, defects
of optical systems, and chernical
properties oi the light-sensitive layer
also play significant roles. O

Quantum articles about art and the
dcpth of photography:

M. L. Biermann, "Clatity, real-
ity, and the art of Photography,"
Scptcmber/October 1995, pp. 26-
31.
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M241
If x is real, it must be nonnega-

tive. In fact, since the left side of the
given equation is positive, -# , 100.
Thus we can transform the given
equation to

The equation has obtained the form
x : flflxll, where /(x)= r[x3 - Ioo, a
monotonically increasing function.
For such functions, the equations
x : f(fkll and x = f(x) are equivalent
(we will prove this later)Jhus we
obtain the equation , = Jr' - 100 or
# - P - 100 = 0. The left-hand side
of this equation can be factored. We
can write the ecluation as

(f - tzs) - (* - zsl :0,
and therefore as

(x-sl(*+4x+20) =0
(by factoring the difference of two
squares and of two cubes). Thus
both this equation and the original
one have the uniclue real solution
x:5.

Let us now prove the auxiliary
proposition. Consider the two equa-
tions

" - flflx)) (1)

and

r: l(x),

where l(x) is a monotonically in-
creasing function. We can see that
any root of the second equation is
also a root of the first equation (for
this to be true, monotonicity is not
required). We will show that a root
of the first equation is also a root of

ANSWERS,
H INTS &

SOLUTIONS

the sccond. Let xo bc a root of eclua-
tion (1). Assume that xo does not
satisfy ecluation i2J. Then, either
I , /{xo) or xo < i(xo). Let x,, , f(xo).
Becausc of the monotonicity of /(x),
we havc

xorf(-vo) ,l1i1xn)),

which conrrarlicts the assurnption
that xu is a root of equation (1). A
similar argllment u,orks if xn < l(xn).

M242
Lct's prove that K is the center of

thc circle crrcumscribed about tri-
angle BMC. Indeed,

IBKC: 180' .2IKBC
: 180" - 2.i90' - IBMA\
: LZBMA: 360' - ZZBMC.

Srnce IBMC is obtuse, this mcans
that K is the center of the circle cir-
cumscribccl about triangle B MC . Lct
P bc the point oi intersection of KM
and. AD isee fig. 1). Since K is the
center of the circle through B, M,
and C, we have IMBC = k ZMKC.
A1so,

IAMP = ZKALC: 9O'- h IMKC
: 90" - tMllc = 90. - IMAP

(the last bec:ruse IMIIC and ZMAP
intcrcept thc same arc 0n circle
ABCD. Examrning triangle AMP,
we find that IAPM = 90').

M243
Part (a): See figure 2. From its

starting point A, which is 1 km from
the center of the circle of flre, the
bulldozer can go 1 km along a radius
of the circ,le and then goes along the
circie of radius 2 km with its center
at O. The total route length is 1 + 4rc

< i4 km. This means that the fire
would not be able to travel 1 km in
this time, so a circle with an area of
4nkrn2 will be burned.

Part (b): See figure 3. From its
starting point at A, the bulldozer can
go 0.5 km along a radius of the circle
of fire to a point B and then along arc
BC (of the circle with radius of 1.5
km centered at O) with a central
angle of 4n13. Then it can proceed
along radius CD (of the circle with
radius 2 centered at O) for 0.5 km,
then along arc DE (of the same
circle) with a central angle olZnf 3.
It can complete its route by travel-
ing along arc EF of the circle cen-
tered at B with radius 0.5 km (where
F lies on the circle centered at O
with radius 1.5 km).

In order to prove that the route
described cuts off the fire, we can

Figure 2

__ [

(2)

- 1oo)3

50 stPTtllllBtR/0cT08tR tssS

Figure 1 Figure 3

.'AI-"'. r-rr
,' I 

\\L'j'Lt\)

i.l,, ()'-._ i n, ;r- u
,^-



prove that the fire cannot travel
more than 0.5 km while the bull-
dozer travels from A to C, and it can-
not travel r4ore than 1 km before the
bulldozer completes its route. This
is ecluivalent to proving that the
length of the route from A to C is
not greater than 7, and the length
from A to F is not greater than 14.

The length of the route from A to F
is not greater than 14. The length of
the route holr:' A to C is

4n3
0.5+ "-.- <7.32

To estimate the length of the path
from A to F, we must show that
IEBF < 2x13. To see this, note that
triangle OFB is isosceles. If BF
were equal to 1, triangle OFB would
be equilateral, and IEBF would be
2r/3. Since BF:0.5 < 1, we see that
ZFBO > nf 3, so IEBF < 2n13.

Now we can assert that the
length of the path from A to F is

o.s+11 i+o.s *?! z32 3

+2J !.ru.
32

Let us evaluate the area S en-
closed by the bulldozer:

- ) /3)r
,) < -IIt -3 (2,/

18+16+1=n- <3n.
t2

M244
Figr,rre 4 shows a rectangular paral-

lelcpipecl ABCDA p tC tD t, where
AB : Z, BC = 4, arrd AAr: 1. Let P be
the center of thc face ABCD (fig. 4),

where the Prince's house is situated.
Let's find a point on the segment con-
nectrng the midpoints of the srnall
srdes oi thc opposite face, such that
the shortest l.:rth irorl P to this point
passing through t1-re cdgcs BC irnd
B, C, is erlua1 to tire shortest Lrath pass-

ing through the eclges -{B and,1 8..
Let this point, M, l''c sitr.iatqJ rtt .) .Li--

tance x from thc center of the tace
AtB )C lD r. We clarm that no point on
Brick is farther from P than M.

First lct us find the shortest dis-
tance from P to M. Figure 5 shows
two dcvelopments of the parallelepi-
ped. From thcm, we obtain the eclua-

tion

5 x=r.l*t,

from which we find that x = 1.6. For

DA

this x, the length of each of the paths
under consideration (from P to M)
equals 3.4.

We must now prove that any path
from P to M is equal to 3.4; it is suf-
ficient to prove that any path from
P to M that crosses BB,lor AArl is
longer than3.4.It is easy to see that
any path that crosses the edge AB
cannot be shorter than 3 .4. Any path
that goes thfqlgb BC and BB, has

the length trg2 +2.+2 > 3.a (fig. 61.

Thus no path from P to M is shorter
than3.4.

Now we must show that no other
point on this ferce is closer to P. To
prove this, it is sufficient to cclnsider
only those paths that cross the edgcs

RC and B, C,, and paths that cross thc
eclgcs AB ancl A,8,, as well as paths
thilt crL)ss o1.rl]osite pzrirs of cdges. The
corrr-sponding lottr circlcs of radius
3.-l cor-er thc cntire face A,B,C,D,
1fig. zt The iact thirt the chstance to
any polnt on the othc-r tour faces from
1] is less than ,3.-l rs fairh er,ic'lent. In-
cleecl, the vertices of thcse iaces that
zrre also the vertices oi the face
ArBrCjDl are iarthest irom P. Tl-rus,

the clistance from the Prrnce oi
Brick's housc to the farthest pornt on
the planet is 3.4.

M245
Consider the polynomial

P(r) =(x-a)\x-bJ(r-c)
:-\i 7r)+px-9,

where c1 : ttb + bc + ca. The roots of
tlris polynon-rial are a, b, and c. From
the equation P{rJ : 0, we obtain

(l--xl-7x-91x.
Plot this function for r > 0 (fig. 8).

The variabl e q :nray take only those

+!n2,*!nl!)',1 I \))
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values for which the iines y : q in-
tersect the curve at three points
with abscissas a, b, and c (two of
them may coincide, in which case
the corresponding Iine is tangent
to the curve). Differentiating, we
have

e'=-2x+7-91*.
Find the roots of this derivative. We
have the equation

2f-7*+9=0,
or

(x + rll2* -9x + 9) = 0.

Since we are interested only in
positive values of x, we obtain
xr= 312 andxr= 3. The original func-
tion q(x) has a minimum at the
point x, = 312 that is equal to 5714,
and q(xl has a maximum at the
point xz = 3 that equals 15. The
line q = 5714 touches our curve at
the point ,312, 

57141and intersects
it at the point (4, 5714). This inter-
section point can be found from
the equation

-*+7x+9lx:5714,
which can be transformed to

(2x-3)2(x-4) :0.
The line q: 15 touches the curve

at the point (3, 15) and intersects it
at the point ( 1, 1 5 ). This intersection
point can be found from the equa-
tion

-*+7x+9fx:15,
which can be transformed to

(x-3)2(x- 1):0.
Thus, we obtain the constraints

on the numbers a, b, and c:

I a a 13f2,
312<b<3,
3<c<4.

The reader can check that all
these values are indeed possible.

Plrysics

P241
Glycerin is a very viscous liquid, so

we can assume the bubble's speed

52

relative to the tube (that is, in the
dynamic frame of reference) is at any
moment proportional to the accelera-
tion of the tube (and the bubbie!) rela-
tive to Earth, because the force of vis-
cous friction is proportional to the
relative speed. Tal<ing into account
the relationship between the accel-
eration, speed, and displacement of a
point, we can say that the displace-
ment of the bubble relative to the
tube is related to its speed (in this
frame of reference) in the same way
as the tube's speed is related to its ac-
celeration in the lab system.

The motion of the bubble in the
vertical tube is just the same as in the
horizontal tube, provided the latter is
moved with a constant acceleration
of a: g = 10 m/s2. Remember that the
bubble's velocity has the same direc-
tion as the acceleration, because glyc-
erin is lighter than water. We have
the following data: During the first
second of its motion, the tube ac-
cluires a speed of 10 m/s and an accel-
eration of 10 m/s2, and the bubble
will be displaced I cm. Thus, the
speed of 10 m/s corresponds to a 1 cm
shift of the bubble. Accordingly,
when the tube gains a velocity of
20rnf s, the bubble will be 2 cm from
its initial position. When the tube's
speed is further increased to 30 m/s,
the bubble will move 1 cm more, but
when the tube is stoppe{ the bubbie
will assume its initial position. It
seems that the tube and bubble oper-
ate like a measuring device. What
does it measure?

P242
According to the equation P : nkT,

the concentration n of helium atoms
is determined by its temperature 7
and pressure P (k is the Boltzmann
constant). Therefore, a line passing
through the origin of the tempera-
ture-pressure coordinates corre-
sponds to a larger concentration of
atoms if it is drawn at a smaller
angle to the P-axis. Accordingly, in
the process shown in figure 9, the
maximum concentration is achieved
at point B and the minimum con-
centration at point A (the figure is
drawn in the reduced coordinates
r: TlTo and 5 = PlPol. The figure

o

Figure 9

shows that

^ PB Po cotB
--max 

kT, kTo I

where B is the inclination of the tan.
gent BO to the 6-axis on the reduced
diagram. Since AACO: ABCO, the
angle between the tangent AO and
the t-axis on the reduced diagram is
also B, so

^ PA PotanB
lrmax = k,o= k?b

Therefore, the concentration ratio is

flmin 
- tan2 B.fl*r"

If we take into account that the
minimum reduced temperature
r,^: T^lTs of helium and the radius
r of the circle corresponding to the
given process are bound by the equa-
tion r = 1 - x-, we get sin u = rf "12,
because LCBO is a right triangie
and its hypotenuse OC = JZ. fhe
figure shows that u + $ = nf 4, from
which we obtain

nmin 
-tan2B=tan2II-o]fi^, \4 )

( l- tan2uf 1- sin2cr

[1 + tan2u] 1+ sin2a

t- r5- 12

1.,..,)rtl\L-t

_ 1- (l- r,,,)\ 2-(l- r,,, ))

I + (l - r,,, )\ 2 - 1l - r,,, )l

I - (l - r,,, )\ I - 2t,,, - r)u,

1 -(l - r,,,), I +2r,,, - ri,
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At first glancc, the problem is

trivial. The thin wire is capablc of
carrying electric currcnt up to
1l = 1.8 A, while the rnaximum cur-
rent of the thick wire is 1, = 5 A. As
the currcnts are summed for paral-
lcl conncctiolr5, tlle rnarirnunr cur-
rcnt oi the combrnecl iuse should be
I, * I. = 6.8 A. Horrever, this reason-
ing is based on the false prer-r-risc that
the total current ot 6.8 A rrill bc tlis-
tributcd as 1.8 A and 5 A benr-e er-r

thc thin and thicl< wile:, l csf cc-
tivcly. In reality, the distribution
will bc quitc different, since it is
determined by the resistances of the
wires and not by tlreir rnaximunr
currents. Thcrcfore, if the rnaxi-
mum current flows through one
wire, the currcnt rn the other wi.re
will be less than the rnaximLrrn cu,r-
rent of that wire. Therefore, the to-
ta1 current will be less than 6.8 A.

The first step of the correct solu-
tion is to deterrline rvhich of the
wires will meit first when current in
the circuit is gradually increasecl. In
a paraliel connection, the voltage is
the same across both wlres. Thus,
the wire with the smalier value of
the maximum voltage rvill be blown
first. Let's find the ratio of these
maximum voltages. The length of
the wircs is denoted by 7 and the re-
sistivity of lead is denoted by po. The
resistance of the iirst wire and its
maximurn voltage are

-pl
^l = J

ftd-
L

4

and

t/-Dt-Plltvl-r\lrl- , ,

ftal
4

respectively. For the second rvire,
the resistance and maximurl volt-
age are:

,, -Qll.' ') nrll 
'

4

The voltage ratio we are looking {or is

V -Ir di
v) I, dl

Plugging the numerical valucs into
this ecluation yields V tlV, > 1. Thus
\'. . V, r.vhrch means that the sec-
ond lthrckcrll u,ire will blow first. At
this rlornent it carries the maxi-
lrrlrlrr current 1. : .i A rvhile the cur-
rent in the iirsi rtre is on1.v

1.R, I.,iI 
- 

- L I]: \,t -'Rrd;

Therefore, the total maxirnLrrn .uL-
rcnt of the combined "fuse" will be

Ir' + I, = 6.25 A.

Immediately after the thick wire
blows, all thc current will flow
through the thin wire, and it wili
blow as well.

The second case is even rnore in-
teresting. When the thick wire
blows, each thin wire will carry the
current If, so the total currcnt rn the
"fuse" will be

1-, = l01i 1 7, = 30 A.

Stil1 this is not the answer to the
problern: The fuse will contj.nue to
work u,ith only the thin wires! In
contrast to the {irst case, the current
I'r,., u.ill be ec1ually distributed
among all 20 wires, and every indi-
viclual current will be lcss than the
marirlum current. Therefore, the
iuse r'vi1l work until the total current
rises to the value

the ring's diamcter AB.The first e1-

ement is affccted by the downward
vertical force

AFr = B/AJ sin cx, = BIA,Y,

where Ax is the projection of AJ on
the diameter AB. Thc sccond ele-
ment is affected by the upward force

AFr=BIAJsinu:BIAx.

Thcsc forces are equal in value and
opposite in direction, so they form a

force couple that produccs a torque
relative to the AB axis:

At : AF,1,-,, : BIAxlcD= BIAS,

where AS is the area of the dashed
region.

Now wc dividc the ring into the
analogous pairs of small segments
sr-rnmetrical to diarnetcr AB. We
rin.l thar rr rhin condLrcting ring car-
r\-1ns a crlrrent 1 located in a hori-
zontai millJnetic iield B will be af-
iectecl br thc rorrllrC

T,rrr.,,:B1S=81;tRr

due to the magnetrc force s. This
torque tries to turn thc nng :rrouncl
the horizontal axis AB.

When the ring almost begrns to
rise, two forces will opposc rrc ruta-
tion: the clownward vertlcal iorce oi
gravity rug applied at the ring's cen-
ter and the upward norrnal force N
applicd at the supporting pornt oi
the ring. As the ring is still at equi-
librium,

rng-N=0,orN=n18,

so the mechanical forces develop a

force couple of their own, which
produces the torquc

T,rr..6 = 1?1$R '

At equilibrium, the total torclue of
all forces-that is, the sum of mag-

I'ro. = 20Iy = 36 A

P244
Let's consider the ring as it lies

horizontally (figure 10 gives the top
view of the ring). We chose two
sma1l elements of length AJ located
at points C and D symmetrical to 

Figure

A
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netic and mechanical torques-is
equal to zero:

M -M,:0.maFn mecn

or
BInRz - mgR:0,

which yields the value of the electric
current we are looking for:

,mg
nBR

P245
The plot in figure 11 shows that

the cylinder's wall is I cm thick and
its outer diameter is d -- 4 cm. To
solve the problem, we can just com-
pare the intensity of radiation in the
middle of the cylinder at x :2 cm
(here the ray passes through the
cylinder's contents and two opposite
parts of its wa1l with a total thick-
ness of 2 cm) with the intensity of
the radiation where the total thick-
ness of the pierced metal is also
2 cm. If these values are identical,
then the cylinder is empty.

The geometry (figure 12)yields

P:h2+(r-x12,

where r = dlL : 2 cmandh = 1 cm.
Thus,

xr=2-J5=0'28cm,
Xz =2+ rE = 3.72 clrr-.

The plot shows that at x:2 cm

[n o
-1 0i234r/cm/

Figure 11

Figure 12

the intensity is 0.4 units, and at
x: xrandx: xrit is about 0.5 units,
which is somewhat larger. There-
fore, the cylinder is not empty.

Bl'ainlea$El'$

8241
Sam is indeed correct. It is easy to

find three numbers that satisfy the
equation if you note that 365 is the
number of days in a year (not a leap
year), and 28, 30, and 3 1 are the pos-
sible numbers of days in a month.
Thus, x : l, y : 4, z : 7 is a solution.

8242
First we simultaneously light one

piece of fuse at both ends and the
second piece at one end. The first
piece wili burn in 30 seconds. As
soon as it finishes burning, we light
the second piece of fuse at its other
end. The second fuse will burn for
15 more seconds, which completes
the 45 seconds. We invite the reader
to check that a variable rate of burn-
ing along each fuse makes no differ-
ence.

8243
To maximtze the seven-digit

number formed by dropping the
commas/ we would like to have as

many 9's as possible as its leftmost
digits. It is not difficult to see that
four 9's are not possible: No matter
how the remaining three digits are
distributed to form two (positive) in-
tegers/ the difference between them
will be too small to yield the re-
quired arithmetic progression.

So we must try three 9's. Let the
seven-digit number be 999ABCD
(where iuxtaposition of letters indi-
cates place value). An argument
similar to the one above will show
that the third number must have a
single digit, so that the arithmetic
progression is 999, ABC, D. Then it
follows that D :Z(ABC) - 999, and
we want to maximize ABC.II is not
hard to see that a maximal D wili
yield a maximal ABC, so we try
D :9. We quickly find the required
sequence: 999,504,9.

-LJ tz 11 10

Figure 13. rhe solicl lines indicate
the cLtts; tlte dotted lines tlte folds.

13- 12

Figure 14. rhe bctld hne rlelticts tlte

I,Ordtr r tl ot)C Ot thC p,trtt.

0 ttee

its image',
Y.

NJ)l\ ./ll.t\./i
I \ /-r

i.'

Figure 15

8244
A solution is illustrated in figures

13 and 14.

8245
The answer is given in figure 15.

Auiliary polyltotnial$
Problems.

5. Answer: u8 + ll:ds - 1154.
Hint. The numb?t u:1 * J2 is
a root of the quadratic equation
P - 2t - 1, whose other root can be
written as -lf u. Thus we find that

u-lfu=2,
u2 + lf u2 :6,

ua + lf ua :34,
u8+lfug:L154.

10. Answer: ll,2,Il2l; (1,ll2,zli

A
[-]s i o
!

{- -p=- 0.8

l/" \ oa+l 
1

\_-/ 01

" 
0.2
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1712, t, 2)) ll12, 2, \)) 12, t, ll2\i
12,l,Il2). Hint. I{ we set

X+f+Z:0,
we get

P(r)-(/-xl(r-yllL-zl
=73-n|z+0t-l
:(t-1)(tr+r +l-at).

So, one of the r.ariables rs eclual to 1.

Nor,v lt is possrble to soh.c the sys-
tcrn by direct calculati,,n.

13.Answeri X,:1 r =1.
Hint. Sct

Plt) = 7" * rrrt" 1 +... + ttli_tt + ;:r1

: 1r - x,)(r - ,z) ... .lt - x,,);

thcn

0 = P(x,) + P(x,) +... + P(x,,)

= 17 + 17AI+ ... + 17At) I t ilAr, = nPll),

ancl thus, one of the numbers {for
example, r,) is cc1ual to 1. Now we
obtain similar s)rstems for xr, ... ,xr,
and so on.

Exercises.
1. Hint:

gr+Q-i:0,
rp'- (l -qlr: I -Jo -,l -sr: I .tq.

08:+-12Q+9or:13-210.
2. Answer: 1 cm, 8 cm, 15 cm.

Hint: If x, 1,, ancl 7 are the three dif-
fcrent lengths oi the edges of the par-
allelepiped, then

41r+i'+z)=96,
1.' --.1 :)g(rz1 \) * 

.\ L * L 

x1'z : L20'

That is, these are the roots of the
ecluation

F -24P + l43t - 120 = 0.

By inspection, I is a root, and thc
other roots can be obtained using
stanclard methocls.

3. Answer: (1, 1, -1); (1, -1, 1),
( -1, 1, 1J. Hir-rt: The first and the sec-
ond equations, coupled with Vieta's
forrnulas, imply that r, y, z are the
roots of the ecluation

t3-t2-t+r:O
{since

Y\'+\/7+7Y

(r-y+z) -y'-y -z
2

Thus, as in problcms 3 and 4 we get

+;-,1, "\r) ,) ,lt )"r -lJ-rrl -lL-tJL Lr

for r : X, y, Z. Aclcling these relations
and using the thircl equation of the
original systeln, wc find that r : 1.

That is, x, y, arrd z are the roots of
thc polynomial

13- rr- r + 1 : (t- t)2(r + t).

4. Answcr:

5{r-yl(y -z)lz-x).,rl-l-.' t z' -x) -yz zxl

Hint: Consrcler a polynomial with
the roots

W:Z-X,

and proceecl as in problem 8, taking
into consideration that u + y + ly : 0.

5. Hint:If
l)tt!-tt w\tt ',lrr .lz\i\rfl\tLl

: t3 + ptl + qt + rl

then
-r>1, p.ctll-r).

Taking t : 1, wc get

P(1):1 +p+q +r>1 +p+pr+r
= (1 +p)(1 + r) > 0.

That is, {1 x)(1 - y)(l - z) > O.

lhleido$coIE
1. A vapor layer forms around the

drop on the red-hot plate, tossing the
drop upward.

2. When the temperature is rising.
3. At the time when air tempera-

ture is lowest (usuaily around 5 e.ln.).
4. Ev apor atrng perspiration eff ec-

tively cools the body in a desert, but
humid air hinders evaporation/
which means that the body can eas-
ily overheat.

5. The temperature is lower near

the snowdrlfts, so the relative hu-
miclity of air is higher there. As a

result, water evaporation proceecls
at a low rate, and evcn condensation
is possible.

6. Thc pressllre of saturzrtecl vapor
in the open air is much lower than
that in the room, because the air
temperature in the room is higher.
Whcn the window is open, vapor
rapidly leavcs the room, and thcre-
fore the linen will dry quickly.

7. No, it can't, bccause insteacl of
rareficd air there will be vapor at a
pressure equal to atmospheric pres-
surc.

8. By compression, ccloling, or both.
9. It is possiblc for a saturated

vapor over a liquid.
10 Yes, they wi1l. The levcl will

rise in the narrolv vesscl. Vapor
drarnage irorl the rvide vesscl will be
stoprpgil, sc-, thc \-apor in it will bc
saturatcri and its pressllre r.r.i11 cxcced
the pressure in thc n:lrro\\- r.essc1.

1l. No, rt rr-i11 not. T}-re r-apor-rvil1
condense during comprcssion and
its prcssure will r-rot chirngc.

12. Shaking increases the suriace
of evaporation, whicl-r rcsults in
higher vap0r pressure.

13. The absolutc humiclitl- rs
higher over thc river than ovcr rhe
soil.

14. The vapor, which is not satu-
ratecl for a small drop, will bc super-
satlrrated for larger drops. Molecule
B (figure 16), which enters thc liquid
when its surfacc is flat, will remain
in the vapor phase in the case of a
curved surface.

Microexperiment
The lid doesn't jurnp on the kettle

that contains less water and where
vapor is draincd via the spout. The
other kettle is fil1ed with a larger
amollnt of water, so vapor collects
just bclow the lid ancl periodically
lifts the lid to cscape.

I
(mA) 50 70 90 I t0 140 180 230 290 .350

Ax
(mrrl)

1 2 3 4 7 11 16 28 4t

Figure 16
= -1.
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HAPPEN INGS

Fil'e and ice: The l gg8

lnlernaliunal Physics 0lympiad

AST JULY 2-t0, 265 HICHLY
motivated students from 55
countries met in Reykjavik, Ice-
1and, for the 29th International

Physics Olympiad (IPO). Reykjavik
means "smoky watersr" so named
because of its numerous hot springs.
The air is clean and invigorating in
its summer coolness. In summer the
Sun dips only slightly under the ho-
rizon of Reykjavik harbor after mid-
night, preserving bright twilight
until it emerges over the summit of
Mt. Esja before 4 e.ui. The geologic
creation of Iceland continues in the
work of over 200 volcanoes and the
Mid-Atlantic Ridge, which passes
through the island. Iceland is home
to Vatnaiokull, the largest glacier in
Europe.

The IPO opening ceremonies
were held |uly 3 at the University of
Iceland. Folk music was provided by
the Hamrahli6 Choir, three dozen
young people dressed in traditional
Icelandic costume. In Icelandic, they
sang

Come and be ioyful
I will dance meuily with my

sweetheart.
May God let us drink from the

goblet of ioy.

"Who can worry about the future
with such wonder{ul people around? "
asked the master of ceremonies,
Gudrun P6tursd6ttir.

The five U.S. Physics Team mem-
bers in Reykjavik were Eiizabeth
Scott of Houston, Tex.; Lisa Carlivati

by Dwight E. Neuenschwander

of Reston, Va.; Andrew Lin of
Wallingford, Conn.; Michael Lipatov
of New York, N.Y.; and Peter Onyisi
of Arlington, Va. Team coaches
Dwight E. Neuenschwander of
Southern Nazarene University in
Bethany, Oklahoma, and Mary
Mogge of Califomia Polytechnic Uni-
versity in Pomona, California, ac-
companied the team.

The participants enjoyed Icelan-
dic hospitality as all students and
coaches were invited into the
homes of local families one evening
during the week. A nation's great-
est resource is its people, and Ice-

land is richly blessed despite its
small numbers.

The exam

On |u1y 4 the students took the
five-hour theoretical portion of the
1998 Physics Olympiad. In Problem
1 they explored the mechanics of a
hexagonal prism rolling down an
inclined plane. In Problem 2 the
pressure beneath an ice cap was de-
termined, and the students pre-
dicted the slumping of the surface
that results after a conical intrusion
of lava melts a cavity beneath the
ice. A presentation later in the week

F

)

c

Mentbers o[ t]te U.S. P7r1,5;65 Tetrnt ytose in front of tlte Wltite Hottse during
their visit lo Wasltington, D.C.
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by Magntis Tumi Gudmundsson of
the University of Iceland Geo-
physics Department, describing
the volcanic eruption beneath the
Vatnajokuil Glacier in 1996, re-
vealed how realistic this simple geo-
physics model can L-rc! For Problem
3 the students used 1994 astrophysi-
cal clata reporting :1n apparent
superltLtninll tl,,ti,)n ,f a ict of tnat-
ter in a galactic radjo 5()Llrcc. Atter
leading the stucler-rts ir-rto imphca-
tions of the pararlor, the problem
statement suggested its rcsoluticln
by having the studcnts recalibrate
the distance to the sLrLrrcc using the
relativistic Doppler shrtt

On |uly 5, benveen t}-re Theoretical
and Practical Exan-rs, the students
enjoyed an excursirrn. Mrchael
Lipatov was rnoved br the landscape:

We visited llra pl11;.' srltere a

thctusand IC.77'i Li'{o tlte f irst
Althingi cons,eneci rir :ls ltills of
IceLand. Tlte rr-,ir.'ril]Js, tlte
lnoss-covered cliiis the tncred-
ible history ot IJtl ;r..16; ntode nte
f eel like neve r Lte icr':. Tlte lttnd of
the Vikings, thet ltn:Ltttge, their
descendant-s, IJr:;; iitstory' were
ttll ctottncl nte. lt :s t iterce land,
for people oi coLu',tge,

In Problem 1 oi the expcrimental
exam, the students investrgated the
attenuation of a magnetic field by
various thrcknesses of aluminum
foil, inch-rdrng the frequency depen-
dence of the attenllation coefficient.
Problem 2 asked thc students to
measure the self-inductance of two
coils, then link them like a trans-
former to dctermine mutual incluc-
tance and the magnetic susceptibil-
ity of the core matcrial.

Tearn USA ernerged trom the
scoring rvith Honorable Nlentrons
ior Lisa Carlir-atl and Michael
Lipatov, a bronzc n-reda1 for Peter
Onyisi, and a silver medal for An-
drew Lin. We are ver.v proud of all 25
members of the 1998 U.S. Physics
Tearn arrd their fi ve rcplc5enti.ltives.
Their places on the tearn were hon-
orably earnccl from 1,100 teacher-
nominated students from across the
United Statcs, and the five repre-
sented their country admirably.

In the cclrnpetition there werc 11

gold and 15 silver medals prcsentecl,
down from recent years. Fivc gold
medals went to China, and three
golds and two silvers went to Russra.
Iran won one gold, three silvers, :rncl

a bronze; Vietnam took one gold and
{our bronzes; Hungary carnccl frr-e
bronze medals; and Geruanr bagged

four bronzes. Indra team clelir-ere cl an
irnpressivc ncrf()1'nr.ll'lcs rn rt5 tllst
IPO, with one srh,er irnci one bronze.

Lisa Carlivatr, rn irn e-mail mes-
sagc to the other 20 rnembers of
Teirnr US.\ att* tlte competition,
reflectcJ ,,u hcl cxpelience:

\\-e htttT L1 \\.c)nderful tinte in lce-
lLtncl. . . . I st,ant to take this clttrnce
to thank everybody again fctr all
s-ctut ltelp throughout thls experi-
e nce. I never would have done half
tts well if I had never nTet you

.guy.s. You ttre the best, Iceland
was great. Wewalked on tt glcrcier,

we sa\,v the Atlantic frctnt the
ctther end, we ntet all sorts of
pectple. . . . It was a lot of fun.

Amazinu Ul,ace
In the closing ceremony on fuly 9,

f,oruurn Ragnarsclotti r of isl andhanl<i,
a sponsor of IPO '98, reflected on thc
reasons for sul.lporting a Physics
Olympiad: It forms "the best w:ry to

open our dreams to tomorrow. . . .

Young people carry the future." The
1998 IPO General Manager, Vi6ar
Agistsson, noted that "Life is not
only a competition-it's living and
enjoying Ithunderous applause].
Your knowledge can never be taken
away. The memories you gathered
here will form a lasting treasure."

The immeasurable worth of this
treasure was revealed at the final
banquet, held in the village of
Hveragerdi, located one hour east of
Reykjavik. After dinner the stage
was opened to any student wishing
to perform. Their abilities beyond
physics were amazing. For example,
Saikal Guha of India performed with
incredible skill on the violin the dif-
ficult raga "Mishra Bhairarn,"
which evokes morning in India.

This was also a moment for
miracles. Stepping to the stage,
Yuan Liu from the People's Repub-
lic of China announced/ "This is a
song of China, called'Good Wish."'
As she was joined by her teammates
and by the team from Taiwan, she
said, "We are allChinese here." Stu-
dents from Yugoslavia performed
arm-in-arm with students from
Croatia. A group of 20 students from
countries of the former Soviet
Union (including our Michael, who
speaks fluent Russian) performed a

U.S. Plr),sjcs Tettnt representtttittes )n lleykiavik. Front left to t.ight: Elizabetlt
Sccttt, coaclt Dwigltt E. Nettenschwancler, Listt Carlivttti, Andrev. Litt. l,'[ic]tttel
Liltatov, cooclt M,:try Mogge, and Petu On,vlsi.
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Russian song together. The Roma-
nians led an enthusiastic sing-along
rendition of "We Are the World"
that involved the entire audience.

Toward the end of the evening,
the American students organized an
ensemble to sing three verses of the
hymn " Amazing, Grace." Michael:

"Amazing Grace" was sung by'
teams of the USA, Sweden, Por-
tugal, New Zealand, Belgium,
and many others off the stage. I
felt like it was the finest moment
of my life. It certainly concluded

one of the most amazing adven-
tures that has happened to me.

Following the banquet here in the
land of fire and ice, we boarded the
bus at 1:00 e.u., under a sky still
bright with the midnight Sun. But
the brightest light of all shines in the
eyes-and the futures-of these 256
Olympiad competitors and the thou-
sands of peers they represent. They
are the world. May they always be
touched by an amazing grace!

Takk fyrir, og vefiu sa1l! (Fare-
well, till we meet again!) O

Dwight E. Neuenschwander is tlte acd-
dentic director of the IJ.5. Ph1t5j15 f e.11111

trnd tlte director of the Society r.tf Pltys-
icr- .Srudcxts Ltt tlte Anterican lnstitttte
of Pltl,sic< in College Pttrk, Mttrltlttnd,
ttnd tt professor in the l)epartntenl ctf
P7r1,5i65 at Southern Ndzarene Llniver
sity in lSathuny, Oklahomtt.

Thanl<s to Tearn USA's trainir-rg cantp
coaches: Mary Mogge, Caliiornia Polytechnic
University; Lcaf Turner, Los Alamos Na-
tronal Laboratory; fennifer Catclli ancl Apriel
Hodari, University of Maryland-College
P;r11<; K:rtc Kevern, Arizona State Univcrsrty,
Chris Norris (1995 U.S. Physrcs Team mcr-n
ber), Unrvcrsity of Caliiornra Berkeley.

lttll0 l'esulls
An American team of six high

school students placed third out of
76 countries at the 39th Interna-
tional Mathematical Olympiad
(IMO), held in Taipei, Taiwan, |uly
10-21,1998. Out of a possible 252
points, the American team scored
186. Iran took first place with 211
points, and Bulgaria secured second
place with 195 points. The remain-
ing top nine teams were/ respec-
tively, Hungary (186), Taiwan (184),
Russia (175), India {174), rJkraine
(L66l, Vietnam (158), Yugoslavia
(156), Romania (155), and Korea
(154).

The American team members
were Reid Barton (Arlington, Massa-
chusetts)-gold medalist, Gabriel
Carroll (Oakland, California)-gold
medalist, Sasha Schwartz (Radnor,
Pennsylvania)-gold medalist, Kevin
Lacker (Cincinnati, Ohio)-silver
medalist, PauI Valiant (Milton, Mas-
sachusetts)-silver medalist, and
Melanie Wood (Indianapolis, Indi-
ana)-silver medalist.

Titu Andreescu of the Illinois
Math and Science Academy was the
team's Head Coach and Leader. "We
had a very young and ambitious
team this yeat .... Our team success-

Bullelilt Boal'd

fully defended its position among
the IMO powerhouses. Competing
against 413 students from around
the world, all USA team members
achieved gold or silver medals,"
Andreescu said. The team was also
accompanied by E1gin |ohnson of
Iowa State University and Walter E.
Mineka of the University of Ne-
braska-Lincoln.

Team USA was chosen from the
top performers at the USA Math-
ematical Olympiad, held this past
April. The selected team members
then participated in a summer pro-
gram to prepare for the IMO. Said
Andreescu, "We conducted an in-
tensive four-week training program
preceding the competition and our
hard work paid off one more time."
The University of Nebraska-Lin-
coln hosted this year's Mathemati-
ca1 Olympiad Summer Program.

Here's a problem from this year's
IMO: "In a competition, there are a
contestants and b judges, where b is
an odd integer gteater than or equal
to 3. Each judge rates each contes-
tant as either "pass" or "fail." Sup-
pose k is a number such that, for any
two judges, their ratings coincide for
at most k contestants. Prove that k
divided by a is greater than or equal
to (b - 1) divided by 2b."

Cylel,TeasEr
The September/October Cyber-

Teaser (brainteaser P.242 in this is-
sue) lit a fuse for some of you. |udg-
ing from the number of correct
entries, most of you puzzle-solvers
have no problem telling time with
pieces of fuse. Here are the first 10
people who submitted a coffect an-
swer electronically:

Bruno Konder (Rio de |aneiro, Brazrl)
Leo Borovskiy (Brooklyn, New York)
fim Nastos (Waterloo, Ontario)
Karl Chen (San |ose, California)
fohn Beam (Bellaire, Texas)
]ack Merrin (Las Vegas, Nevada)
Worawat Meevasana (Santa Barbara,
California)
H. Scott Wiley (Weslaco, Texas)
Nick Baxter (Hillsborough, Califomia)
Liam Hardy (Union City, California)

Each winner will ,"""ir" a free
copy of the September/October is-
sue and a Quantum button. Every-
one who submitted a coffect answer
in the allotted time was eligible to
win a copy of Quantum Quanda-
iles, a collection of the first 100
Quantum brainteasers.

Hankering f or aprize of your own?
Then go to w\^rw.nsta.org/quantum
and click on the Contest button. 0
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Arross

1 1012: pref.

5 Rap gcnth'
9 R:rn :lrv:.11'

13 Bird rving part

15 Chemical compouncl

16 Pro _
17 Lipid
18 Greek portico
19 Pale

20 Commor-r circuit

22

23

21

26

30

31

32

39
r11

12

43

44

46

47

19

51

53

55

56

62

clements
Empioys
Algerian sc:1port

lJrs:r _ (lesser bear)

H.,As

Hyperbolic fr-rnctior.t

Scorch

One tent}r: pref.

Hallc,v's _
Ha1)itr-r:1te

Actor's signal
Burnrng
Type of ce1l or wind
Biochen-rists Carl
ancl Gerty _
Oklahor.na city
Typc oi bag

Ceometric _
Unit of viscosity
Look searcl-ringly

Trirmp
Tcrrrperature scale

Surgeon _
Wangensteen

i1898-19811
63 Shakespeare:rn kir.rg

64 Volle-v

65 Arizona city
6(r Roughly i2 wds.)

67 Bancl instrumcnts
68 Russian city
(r9 C1-rrrstmas caro1

70 focusing clevice

0own

1 Magnesrurl srlicate
2 Charles 1ar.r-rLr

3 Wilclcats' coach

Aclolph _ (1930-
107)l

by David B. Martin
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Inter (arnong

othcr thrngsJ

Seed coat

Astronorler _
Pannekoek (1873

I 9601

Secure a ship
Ionizcd gas

Typc of cliiiraction
Cowboy's rope

Former l-rypothetical

mecliurn of space

Units oi tirne
Cor'nicc support
\{ade mad

.\ncicnr PL-[r \.rti\.
Ad phrasc

Gamblir-rg torrn
Bible king
Lrke sorle nurlbers
Level
60,62) lin base 1(r)

Cupric oridc
Skirt type
Great lake
Koppcl antl Danson
God of love
Worcls of ur-rder-

stanr-1ing

zl8 Cookware co:rting
50 1973 Chcm. Nobelist

Otto Fischer

51 Energl'per unit time
52 Fat

shiit
Actor Fl,vr-rr-r

Genus of priln:ltcs
Oi aircra{t
Transport

i9 Europc:rn rrver
60 P1-rysio1. _ P:rr,1ov

(r1 Throrv
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SALUTION TO THE JULY/AUGUST PUZZLE

R I E F C o L T S R E N A l\,4

N N N A R I L C I R C I N C H

A T T A R H B T E T T I E N c E

T H o I\4 S L E D I S o N L I C E

E D E N N T o N R U S S E L L

S C A L A R L I N I L J I B

A R E Y E S B o D E C S o N I C

T E R E G a U R E T I C H A S H

E N o L S G R E T H E R R o T

A N S A L E C N C I S

E B N E S T o R L N D o L R E N C E

L I E E R E D L Y L A C

o U M E E N N I E C E D o N e

P E R I P L C E D R Y S L I o H

E N o C H J T R T S R E E F N T

H A S o R B I E L E K E Y

G E N E B L L I
c L E M Y L

N L B E N J M I N F R N K L I N

T T S R I U I C I N tll A I N E

E C T o E T H N T o N N E L G E D

T A N S H A G E N G E L N I N E S

OUAlllIUllll/CRISSCBOSS SCIINCI 5g



rI
MUSINGS

The danuer ol llalian reslaurants

by David Arns

f| r" b.lslrt afternoon in the spring of the year,
I took out my family to eati
With such an enormous selection of spots,
Choosing was not a small feat.

At last we decided: Italian it was,
And the restaurant had opened just recently;
We decided to go in and give it a shot,
And see if they fixed their food decently.

Once seated and reading the menu, I fuoze:
"Sttely," I thought, "Thi.s can't be!"
I looked around, wild-eyed, at c,ustomers' plates,
Resisting a strong urge to f1ee.

Two items I'd seen on the menu/ I knew,
If combined, would be terribly deadly.
I desperately tried to settle my breathing,
And force my wild heart to beat steadily.

The danger/ you see/ is most serious indeed,
For the eater and others as well:
Enormous explosions, with high radiation,
Could a knowledge of science foretell.

Explosions so big they could flatten a town-
Reduce it to smoldering crater-
Its molten-glass sides just a hint of the heat
That won't cool until days or weeks later.

"Don't these people know physics?" I thought in my grief,
While pond'ring the coming destruction-
The cooks just plowed on and obliviously worked,
Maintaining their rate of production-

"These people can't see that the energy flash
Will be a deathblow to the nation!"
For, of course, mixing pasta and antipasta
Would result in complete annihilation!

David Arns is a graphics software documentation engineer for Hewlett-Packard in Fort Collins, Colorado, and also
operates a small business designing and creating web sites. In his spare time he dabbles in poetry on scientific themes.
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${AilDBOOK OF IVIATHEMATICS AND EOMPI'TATICINAL S&{ENfiS
A reference handbook lor modern mathemarics. The Handlsook oJ Mathemotit s urtrl C,,tttputatit,ttul Scirnce is lilled r.l ith
lormulas. equarions. Iables. and explanations. This tully up-to-dale handbook contains new and expancled chaplers on
Craphs and Algebras. Probabiliry Theory. MaLhematical Statistrcs. Fuzzy Logic. Neurrl Netuork\. rnd the u>e olCorrputers.
An ertcllent re\ource lor students rnd mathematicians alike.

Contents: Numerical Computation (Arithmetics and Nurneric.s; . Equations and Inequalities (Algebra) . Geometry and
TrigonometrJ in the Plane . Solid Geomctr) . Functitrnc . Vector Analysis . Coordinate Systems . Analytic Geotnetry
. tr{arrices. Determinants. and Systems of Linear Equations . Boolean Albegra - Application in Switching Algebra

Anaiysis'Comple.r Yariables and Functions . Differential Equations . Fourier Transfbrmation . Laplace and Z
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WATERLOO MAPLE INCORPORATED, Waterloo, ON.

Canada

MAPLH U* $TUOENT VERSION:
RELTASE 5
il:!ut' tuttl !l'ir;/uus oti {'il-Ron)
'l he Mttple V Stutlent V<'rsion: Rel<,tt.se 5. Mac
and Windows on CD ROM, provides the science
student with the porverlirl symbolic and numeric
computational capabilities ol the Maple V cornputer
algebra system. An easy-to-implemcnl program-
ming language and comprehensive library ol built-
in mathematical functions make solving problems
lrom algebra to dit-ferential ecluations fast and
relirble. \lrple . {\fcn rrehirc(lurc gires one
freedom to rlevelop a personalized library of lunctions
or to customize the systen tbr almost any application.
Maple's two and three dimensional graphics puts
the poucr ol .cierttil'ie \ isurli/rli()n ,)n )our
desktop. Maple V t'eatures the most advanced
graphical inlertace in a student version. ln addition
to bcing ablc to quickly solle math problems. you
can create exciting electronic or printed tecbnical
documents. Word processing features such as

collapsiblc sections. document st) les. anal complete
font control provide maximum l-lexibility lbr
creating professional looking technical documents.
This packagc includes the Mn21e V Learning Guide.

1998/$99.00/ISBN A 387 L4240 7

A. ENGEL, lohann Wolfgafg Goethe Universitat, Germany

FROBLEM.$CILUIilG $TRATEGIES

Problt:ttt Solr.'ing Slrot(gies is a unique collcction
ul'compclilion prohlem. from orer tuenl) rnujor
national and international mathematical competi-
tions tbr high school students. The discussion
of problem solving strategies is extensir,e. lt
will appeal to high school teachcrs conducting a

mathematics club who need a range of sirrple to
complcx problems and to those insti'uctors wishing
to pose a "problem of thc week,'' "problem of the
month." and "research problem of the year" to their
studerts, thus bringing a creative atmosphere into
their classrooms with continuous discussions of
matlrematical problems. This volume is a must-have
fu instructors wishing to cnrich their teaching with
somc interesting non-routine problems and tbr
indjviduals who are just interested in solving
dillicult and challenging problems.

1997 / 476 PP., 223 TLLUS./SoFTCoVER,/$39.95

tsBN 0-387-98219-1
PROBLEM BOOKS N MATHEMATICS

DARREN REDFERN. P.actical
Approaa- C!ircratlol. \Yater oo.

Canada ancl COLIN CAMPBELL,
Un verslt) of \\ate. cc C..'ada

THE MATUIBC 5
HANDBOOK
Tlte Mutlab Httntlbook is

an casily accessible reference
tool of the first resource

for the numerical computation system Mathb. It
provides the reader wilh a deflnitive listing of each

N'[atlab elernent, in both tbe standard librar.v and
the applications toolboxes. with a brief. yet precise
description of its workingl a well-structured organ-
iration of the aYailable Matlah elements into logicrl
subject areas u,here each rclevant element is described
in terms of jts connection with the subjcct area as a

whole: a practical introduction to each subject area

and to Matlab programrning as a wholei and cross-
relerences to the most popular Matlab manuals and
application texts. Eleryone who uses Matlab il
more than the most cursor.v fashion will tind this
book a helptul tool. not only because of its strlrcture.
bul because it combines elements preYiously unavailable
in any otherbook or in the on line help files for
Matlab. It is lully up to date lbr Matlab 5.

199a/522 PP./SaFTCOVER/$34.95/rSBN 0 387 94200 9

R. LAUBENBACHER and D. PENGELLEY, both of New

l\4exico State University

MATI{EMATICAL EXPEDITIONS
Chronicles hy lhe Explorers

Certainly almosl every mathematical idca is built
upon a succession of prcccding iders. And as one
goes back along this chain. the motivation for a

problerr uhich started the journey becomes ever
clearer. rvith seleral *orks in the chain otien
standing out as milestones on the road toward our
present knowledge. By working through sorne of
these original sources which discuss and solve. or
attempt to solve, antecedent problems. this book
helps to discover the roots of rlodern problems.

ideas, and concepts. cven whole subjects. Students
will also see the obstacles that earlier thinkers
had to clear in order to move ahead. Readers will
thereby gain insights into curent problems and

how to approaclr them.

1998,/APP. 376 PP., 93 ILLUS./HARDCOVER/$59.95

rsBN 0 387 98434 8

ALSO AVAILABLE IN SOFTCOVER $32,00/ISBN O 387 98433 X

O.A. IVANOV, St. Petersburg State Unlversity, Russia,
and R.G. BURNS, York University, Canada
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This book airns at introducing the rcader with somc
hi-qh school mathematics to both the higher and
th. nlLrr. fundrlnental developrnents of the basic
thenrr. oi e1e[rentar]' n)athcrnatics. Most chf,pters
berln u ith l rerier of elenrentarv problerts. behind
ri ho:e dir enins iornrulatiur morc adr,anccd
marh.mrti!'rl idclr lie hidden. The\e are then
made e\plicir lrnd irLrhe r developnlents ol them
explorcd. therebr deepeninr and hrcadening the
reader's under:trndiuS Lrl mrtherruics enabling
him or her to see nrathenrrtii: a: r hologram. The
book arose tiom a coursc fLrr prr.nrixl high school
teachers of rratherratics tau-ght for ser cral r cars at

St. Petersburg Unilersitl . ancl nearlr er en chapter
ends with an interestin-g conmrentarl on the ralelance
of its subject mltter to the actual clr\sroom \erting.
However. it can be recommended to it rnuch l ider
readership; even the professional mathcnaticirn
will derive much plcasurable instruction iiom
rcading it.

1998/APP. 240 PP., 60 tLLUS.,/SOFTC0VER/$29.95

tsBN 0,387,98521-2

EDWARD LOZANSKY, National Science Teachers'
Association, Washington, DC and CECIL ROUSSEAU,

University of l\4emphis, TN
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COWCULATIONS

tly lapper

by Dr. Mu

ELCOME BACK TO COWCULATIONS, THE
column devoted to problems best solved with a

computer algorithm. Black flies are the " swarm"
enemy of all cows. These pesky critters attack

us unmercifully and can really get under our skin. Our
ancestors/ who must have suffered from the same prob-
lem, evolved a flexible defensive weapon and, so we
wouldn't lose it, attached it to our rear.

Farmer Paul keeps the flies inside the barn under
control by taking advantage of their stupidity. He built
a dimly lit vestibule entrance of two cow lengths where
we enter the barn. Near the middle of this space he
placed a blanket low enough that we have to duck our
heads when we entet. The flies on our head, neck, and

back are swept off as we pass through.Theybuzz around
in the dimness until they spot a bright slit overhe ad, fly
up through it, and find themselves in a closed empty
room full of windows. They don't have the brains to go
back into the darkness to save themselves, and they
eventually fly themselves to death against a window
looking for an escape. Farmer Paul sweeps them up by
the bushel basketful.

But in the pastures, where we love to spend our sum-
mer days, the fly problem has gotten out of control. In an
effort to rid this space of the flies for good, Farmer Paul
has built his very own Fly Zapper.It's an electronic jolt
generator mounted on an ultralight plane, which I fly over
the fields. When the zap button is pushed, a polyhedron
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shaped death charge rains down to earth. Any fly near a
lattice point inside this polyhedron is toast. (Lattice
points are points {r, y, ,l with integer values.)

Let's do the math. Farmer Paul farms 173 acres of
land laid out in a square, 12,000 yards to a side. He
places an atttacter at each of the four corners of the farm.
The Fly Zapper, flying over the 1and, releases its charge
at the zap location 1., a, pl, to the nearest yard. (For this
discussion, the unit of length will always be the yard.)
A polyhedron is formed by joining thezap point to each
of the four corners of the farm. This is illustrated in
Mathematica as follows. Place one corner of the farm
at {0, 0, 0} and the other corners at {0, 12000, 0}, {12000,
12000, 0|; and {12000, 0, 0}."

side = 12000; (*length of one side of the
farm in yards*)

Zdp = (6000, 9000, 10000); r

above farm*)
polyhedron = tine[{(0, 0, 0},

{side, side, 0}, {side, 0,
zdtrl, {0, side, 0}, {side,
{side, 0, 0} i I ;

Show[Graphics3D[polyhedron], Boxed ->
FaIsel

Below is the set o{ 1,665 zapped flies within a poh -

hedrcin with base size of 20 and zap point 111 1l L+ .

l0

This suggests a problem, which, you guessed it, is
yolrr next Challenge Outta Wisconsin.

c0tIll r2
How many flies can be zapped above Farmer Paul's

land with a single jolt from aFly Zapper at the zap polnt
{6000, 9000, 10000}, assuming the square base has sides
of length : 12000. Write a program that will accept arry
zap point 1., a, pl of positive integers and any base of
positive integer length and have it cowculate the num-
ber of lattice points inside the polyhedron formed by the
square base and the zap point. Don't include any flies
on the surface of the polyhedron.

Black flies are swarming in the sky.
Load up your charye and let her fly.
Find a point to zap them all.
And count the bodies as they fall.
When you're done, come back to earth.
You've zapped this COW for allit's worth.

Dr. Mu

sduri0n r0 c0tllll0
In COWl0 you were asked to write a program that

f inds the shortest path around the herd and
cowculate its length. Recall our construction of a
random herd.

cow := {Rand.om[], Randomll ]
cows = Tabl-e [cow, (40] I ;
herd = {eointSize[ .O27, Point/@ cows]i
Show [GraBhics [herd] I ;
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A function to measure the length of a path was pro-
vided.

Bathlength [path_J : = (Apply IPlus,
uaptJ#+ &, parh - RorateRighrtparhll)
I also constructed a simple closed path around the

herd based on the centroid of the cows. The path was
ordered based on the polar angle of each cow with the
centroid.

angLela_, b_l := Apply[ArcTan, (b - a)]
centroid = ApplylPlus, covrsl ./Lengrthlcomrs] ;
cows = Sort[cows, (angileIcentroid, #1]

<= anglelcentroid, #21 )el ;
route = Line [,Ioin lcows, {First [cows] ] I I ;
Print["Simple closed. path length = ",

pathlength Icowsl ]
p1 = ShowlGraphics[(route, herd]l l

(*zap point

, {0, side, 0},
0} {0, o, 0},
side, 0), zdB,,
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Simple closed path length = 6.28958

The key to finding the shortest route around the herd
is to skip all cows that live at a right turu as you travel
around the simple closed curve in a counterclockwise
direction. Suppose that on the simple closed path you
identify three consecutive cowS; u, v, and w. It can be
shown by elementary vector analysis that cow v lives
on a right turn if the determinant of

is negative and on a left turn if it is positive. So we
use this fact to define a test for a left turn at v.

leftturnl{u-, v-, w-}l := Detl{v - u,
w-u)l>=0
The heart of the Mathematica solution is to con-

sider all triplets of consecutive cows, delete the ones
who live on right turns/ and repeat this process until
there is no longer any change in the number of cows on
the path. We begin by defining a takeOutRightTurns
fun ction.

takeoutRightTurrxslcotrrs_] := Select [Partition
l.foin[cows, Take[cows, 211, 3, ]-7,
leftturnl#l&] /. tz_, y_, z_l :> y
Now watch what happens when we apply this func-

tion to the cows on the original simple closed path.

cows = takeOutRightsTurns lcows];
route = Line liloin [cows, (Firet lcows] ] I I ;
Print ["Simp1e closed path J-ength = ",

pathlengthlcowsl I
p2 = ShowlGraphics[{route, herd}l I

Simple closed path length = 3.73923

We see that our first iteration has deleted many right
turns but has developed some new ones in the process.
So we simply takeOutRightTurns again.

cows = takeOutRightTurnslcowsl ;
route = Line [.Ioin [cows, (First [cows] ] I I ;
Print["Simp1e closed path length = ",

pathlength Icows] I
p3 = ShowlGraphics[(route, herd]l I

Simple closed path length = 3.01379

We're not rid of all right turns yet/ so we continue

cows = takeOutRightTurnslcowsl ;
route = Line [,loin [cows, {First [cowsl ] I I ;
Print["Simp]-e cl-osed path length = ",

pathlength[cowsl L
p4 = ShowlGraphics[(route, herd]l I

Simple closed path length = 3 .04932

After three iterations, we have a path with only left
tums remaining, and this is the shortest path around the
herd. Putting the stages all together, we see the evolu-
tion of the solution.

ShowlGraphicsArrayl((p1, p2], {p3, p4}}I I ;

lv-u )
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There is a simple way to go directly from the simple
closed curve to shortest path by iterating the
takeOutRightTurns function via Mathematica using
the FixedPoint function. This function applies the
takeOutRightTurns function to the cows until the
length of the path no longer changes.

shortestPatsh =
rixedpoint [takeOuURightTurns, cows,
SameTest, -> (Length[#11 == Lengtht#2]&)l;

Altd tiltally ...
Send in your solutions to COW 12, in any language,

to drmu@cs.uwp.edu. Past Mathematica solutions are
available on the Internet at http: I lusaco.uwp.edu/
cowculations.

If you like to zap the competition while programming
a computer in C/C++ or Pascal, stop by the USA Com-
puting Olympiad web site athttp:llusaco.uwp.edu. The
1998 USA Team of Matt Craighead, Tom Do, Adrian
Sox, and Alex Wissner-Gross has just returned from the
1Oth International Olympiad in Informatics held in
Setribal, Portugal, September 5-12,1998. Check out the
links to IOI'98 and see how over 60 teams from around
the world fared in this international programming com-
petition for precollege students. It could be the chal-
lenge you've been waiting for-if you've got the right
stuif. o

American Mathematical Society (65, cover 4), Knowledge

Revolution (7), Metrologrc Instruments (65), Princeton

University Press (45), Springer-Verlag, Inc. (41,61)
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rrnring irLrm 05 to ri.(lm\\i

\O\\ \\ \IJ.\BI E T\

GREE\ i.il5m\\' onli r

Laser Pointer 3mW

0nly $49.95

0ptics Kit $20.00

Various Kits Also Available

* speed of light * build a laser kit

x laser optics lab * physical optics lab

Circle No. 3 on Reader Service Card

%=€Eaa*'*F€epp**E*,'gzz:r?1rr=**?4:=-'====-=z-==-=i==.=2'?-=..::ti'r'i?="

:e*v#*3+*j*
Barry Cipra
Praise {or volumes 1,2 and 3 of Itl7lnf 's Happeniug

Stylish format . . . largely accessible to laymen . .. This publi-
cation is one of the snappier examples of a grotting gatre

from scientific societies seeking to increase yublic tmder-
<landing of lheir work and il5 societill aalue.

-Sciertce 
& Goxenrnerrt ReTtort

Anotlrcr clnirc of neu erciting datelolnttettts in ttttltt
matics. Thcsc tolumes reilly deserle n ltrgc auLliettce,
sfudents as ruell as researclrcrs iuill be lnscinfted bv
the insights and o-oerzrit:ttts presentt,tl.

t}-iis puLrlic.-rtrorr .-r clelig]-rifr-rl .rre-l intriguing read ;-icces-

siblt' to a \\'i(1e arlL'1iL']1c.'. High school stutler-rts,

;r1.rfg55ors. re'sear chers, errgir,eers, statisticiar-rs,
conlputer scientists-anvr.ne rr-ith an irrtere.st in mathe-
nlati!s rr ill iinc-l c.1pti\ .ltinq m.rteri.rl in this book. As
tlie l0th cL.ntr11\' !'h a\rs tLr .r close., l\'/i,tt's Hn.t!t1't1il1c

pre5e11ts the state oi moclern n-r.rthen'ratics anrl its 
'

t'orldt'ic'1e srgniiicance in a tinrelv ar.rd encluring
f.rshion.

Featured articles include ...
. "From \Virccl to \{eirt1". on aclr'.rnces that are encour-

aging research ln quantrnn comlrutation.
o "A lrrime Case of Chaos", on ne\\- connections betrveen

number theor\' and theoretical phvsics.
. "lJcctlcmania: Chaos in Ecolog},", on nelr. evidence for

chaotic dvnamics in an actual population.
o "A Blue-Letter Dav for Computer Chess", on the mathe-

matics undcrlying Deep Blue's victorl, over Carry
Kasparor,, and much more!

What's Happening in the Mathematical Sciences, \blume -1;

1998; approrirnatelv 120 pagcs; Soitcovcr; ISBN 0-8218-0766-8;
Llst $1.1; L)rder cocle HAPPE\INCi/4Q89
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The topics chost:n nnd the liuelll iorLtins fill Lt
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beauty of nntltntotics nrore uisible for tlut
gtneral public ... rLtell-illustrtted ...
CtrtlrfrlillolntF lt' Bnrru Ctfto.

Ze ntr tlb I a t t .fiir M athemfiik
This r olume is for-rrth in the much-acclaimed AMS
.-'r:> 1\-l:,ri'; LInTtTtening in the Mathenm.ti.cal Scien.ce s. The
: . .:-. le .:rc1 in-ciepth ci)\-erage of some of the most
'i rr::-: :-..:r.enings" irr mathernatics todav make
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Model Categories
Mark Hovey. Wesleyan University, Middletown, CT

Model categories are a tool for inverting cerlain maps in a category
in a conlrollable manner. As such, they are useful in diverse areas
of mathemalics. The list of such areas is continually growtng.

This book is a comprehensive study of the relationship between a
model category and its homotopy calegory. The author develops
the theory of modei categories. givrng a careful development ol the
main examples.

The book requires little irom the reader beyond standard iirsl-year
algebraic topology, some category the0ry and set theory, making it
accessible to graduate students,

Mathematical Surveys and Monographs: 1999:207 pages; Hardcoverl
ISBN 0-8218-1359'5; List $54i lndividual member S32:0rder code
SURV-HOVEYI89

The Book of lnvolutions
Max-AIbert Knus, Eidgenossische Technische Hochschule.
Zurich, Switzerland, Alexander Merkuriev, Universily ol
California, Los Angeles, Markus Host, UniversitAt at
Regensburg, Germany, and Jean-Pierre Tignol, Universit6
Catholique de Louvain. Louvain-la-Neuve, Belgium

This monograph is an exposition of the theory of central simple
algebras with involulion, in relation to linear algebraic groups. It

pr0vides the algebra-theoretic foundations for much of the recent
work on linear algebraic groups over arbilrary fields. lnvolutlons are
viewed as twisted versions of bilinear forms, leading to new devel-
opments rn the algebraic theory of quadrattc iorms. ln addition to
classical groups, phenomena related to triality are also discussed.

as well as groups of type F, or G2 arising from excepttona Jordan or
composition algebras. Severa{ results and nolions appear here for

the lirst time, notably the discrimtnant algebra of an algebra with
unitary involution and the algebra-theoreiic counterpan to linear
groups of type Dr .

Colloquium Publications, Volume 44: 1gg8:593 pagest !arccove( ISBN
0 8218-0904-0; Llst $69; All AIUS members $55 C:cer ccce Cotr44t89

Prospects in Mathematics
lnvitedTalks on the Occasion of the
25Oth Anniversary of Princeton University
Hugo Rossi. Mathematical Sclence,q Research lnstitute,
Berkeley, Edilor

ln celebration of Prrnceton universily s 2501h anniversary, the math-
ematics department held a conierence entitled 'Prospects in
Mathemalics". The purpose of the conference was to speculate on
future directions of reseai'ch rn mathernatics.

The volume contains 1 1 an cles by leading mathematicians, based
on talks at the conference. li provides a guide to some of the most
signrficant mathemalrcai wcrk of this decade.
'1999r 154 pages flaricc!er: ISBN 0-8218-0975,X: List $29: AIIAMS
members 523 0rd.r ccce ?lf/-F0SSl189

Mirror Symmetry I
Shing-Tung Yau. Harvard University, Canbridge, MA, Editor

Thrs volume ls an updated edition of Essa/s on Minor Manifolds.
the lirst book of papers published after the phenomenon of mirror
symmetry was discovered. lt continues t0 be an important book on
this spectacular achievement in algebaic geometry and mathemat-
ical physics.

AMSTIP Studies in Advanced Mathematics, Volume g:1998;444 paoes;

Hardcover: ISBN 0-821 8'0665-3i List $49: lndlvidual member g29t 0rder
code

A1\'1SlPi 9189

NEYV FRO}I THE AMS
Hyperbolic Equations and
Frequency lnteractions
Luis Caffarelli and Weinan E, Courant lnstitute, New York
University, New York, Edilors

The research topic for this IAS/PCMS Summer Session was nonlinear
wave phenomena. Mathematicians from the more lheoretical areas 0{
PDEs were blought together with those involved in applications. The
goal was to share ideas, knowledge, and perspeclives.

How waves, or "frequencies , interact in nonlinear phenomena has
been a central issue in many of the recent developments in pure

and applied analysis.

lncluded in this volume are write-ups of the "general methods and
tools" courses held by Jeff Bauch (on geometric optics) and lngrid
Daubechies {on wavelets).

Also included are specialized articles such as "Nonlinear
Schrodinger Equations" by Jean Bourgain. "Waves and Transport'
by George Papanrcolaou and Leonrd Hyzhi, and "Stability and
Instability of an Idea{ Fluid" by Susan Friedlander.

lAsiPark City Mathematics Series, Volume 5; 1999: 466 pages: Hardcover:
ISBN 0 8218-0592-4: List S69; All AMS members $55: Order code PCMS/st89

Classical Galois Theory
with Examples
Lisl Gaal

This book rs strongly recannended to beginning graduate students
who already have some background in abstract algebru ... The
large number ol partially or fully solved examples is its special
leature 

-Mathematicat Beviews

Excellent for undergraduate tndependent study stnce tt denands
readetparticipation' 

-AmericanMathematicatMonthly
AMS Chelsea Publishing; 1998:248 pages: Hardcover: ISBN 0 8218,1375,7:
List $29i All AMS members $26; 0rder code CHELt268.Ht89
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Partial Differential Equations
P B. Garabedian
AMS Chelsea Publishing;1998t 672 pages: Hardcove| ISBN 0-8218-1377-3i
List $45: All AMS members $41 i Order code CHELi325.Ht89
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Partial Differential Equations
Lawrence C. Evans, University of Caltfornia, Berkeley

This text gives a comprehensive survey of modern technrques in
the theoretical study of partial differential equations (PDEs) with
particular emphasis on nonlinear equations. The exposition is

divided into three parts: 1 ) representation formulas for solutions,
2) theory for linear partial differential equations. and 3) theory for
nonlinear partial diff erential equations.

The author summarizes the relevant mathematics required to
understand current research in PDEs, especially nonlinear PDEs.
While he has reworked and simplified much of the classical theory
(particularly the method of characteristics), he primarily emphasrzes
the modern inlerplay between functional analytic insights and
calculus-type estimates within the context of Sobolev spaces.
Trealment of all topics is complete and self-conlained. The book s

wide scope and clear exposition make it an excellent text for a
graduate course in PDES.

Graduale Studies in Malhematics. Volume 19: 1998; 662 pages; Hardcover:
ISBN 0-8218-0772 2: List g75t Ail AMS members $60:0rder code
GSMi 1 9r89
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